
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Accelerating t-SNE using Fast Fourier Transforms and the Particle-Mesh Algorithm
from Physics
Delchevalerie, Valentin; Mayer, Alexandre; Bibal, Adrien; Frénay, Benoît

Published in:
IJCNN 2021 - International Joint Conference on Neural Networks, Proceedings

DOI:
10.1109/ijcnn52387.2021.9534334

Publication date:
2021

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Delchevalerie, V, Mayer, A, Bibal, A & Frénay, B 2021, Accelerating t-SNE using Fast Fourier Transforms and
the Particle-Mesh Algorithm from Physics. in IJCNN 2021 - International Joint Conference on Neural Networks,
Proceedings. Proceedings of the International Joint Conference on Neural Networks, vol. 2021-July, IEEE.
https://doi.org/10.1109/ijcnn52387.2021.9534334

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1109/ijcnn52387.2021.9534334
https://researchportal.unamur.be/en/publications/7203b5d7-4126-46ee-9d67-c3bf0aa384de
https://doi.org/10.1109/ijcnn52387.2021.9534334


Accelerating t-SNE using Fast Fourier Transforms
and the Particle-Mesh Algorithm from Physics
Valentin Delchevalerie

Fac. of Computer Science
NaDI & naXys institutes

University of Namur
Namur, Belgium

valentin.delchevalerie@unamur.be

Alexandre Mayer
Department of Physics

naXys institute
University of Namur

Namur, Belgium
alexandre.mayer@unamur.be

Adrien Bibal
Fac. of Computer Science

NaDI institute
University of Namur

Namur, Belgium
adrien.bibal@unamur.be

Benoı̂t Frénay
Fac. of Computer Science

NaDI institute
University of Namur

Namur, Belgium
benoit.frenay@unamur.be

Abstract—t-Distributed Stochastic Neighbor Embedding (t-
SNE) is a well-known dimensionality reduction technique used
for the visualization of high-dimensional data. However, despite
several improvements, t-SNE is not well-suited to handle large
datasets. Indeed, for large datasets, the computation time re-
quired to obtain the visualizations is still too high to incorporate
it in an interactive data exploration process. Since t-SNE can be
seen as an N -body problem in physics, we present a new variant
of t-SNE based on a popular algorithm used to solve the N -body
problem in physics called Particle-Mesh (PM). The problem is
solved by first computing a potential in space and deriving from it
the force exerted on each body. As the potential can be computed
efficiently using Fast Fourier Transforms (FFTs), this leads to a
significant speed up. The mathematical correspondence between
t-SNE and PM presented in this work could also lead to other
future improvements since more advanced PM algorithms have
been developed in physics for decades.

Index Terms—Machine learning, Numerical Physics, Dimen-
sionality Reduction, Visualization, t-SNE, Particle-Mesh

I. INTRODUCTION

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a
dimensionality reduction technique well-suited for the visual-
ization of high-dimensional data. SNE was first introduced
by Hinton and Roweis [1] and then improved by van der
Maaten and Hinton [2] to achieve t-SNE. Given a dataset
P ≡ {xi ∈ Rp}Ni=1, dimensionality reduction aims to find a
mapping P → Q ≡ {yi ∈ Rq}Ni=1 such that q � p, while
leading to the smallest possible loss of information. If q ≤ 3,
Q can be used to produce a visualization of the dataset on
a scatter plot. For data scientists, such visualizations are a
common data analysis tool. It can help to reveal structures in
data, and, in a more general way, help to get better insights.

As the aim of visualization is to quickly get data insights,
it should be possible to incorporate it into an interactive
data exploration process. In other words, the computation of
visualizations should be fast enough to be incorporated in
online tools. However, t-SNE exhibits an O

(
N2
)

complexity
in both time and memory that makes it unusable when N is too
large. This typically happens when N becomes greater than
a few thousands, i.e. most of the time. Several improvements
have been proposed to tackle this issue. Van der Maaten [3]
was the first to show the similarity between t-SNE and the
well-known N -body problem in physics. He proposed to use

tree-based algorithms as it was already proposed by Barnes
and Hut [4] in astrophysics. This leads to an O (N logN)
numerical complexity, which is much better than the original
O
(
N2
)
. Surprisingly, there has been no other attempt to take

advantage of algorithms developed in physics for t-SNE.
The goal of this work is to describe t-SNE with another

formalism borrowed from physics. This approach highlights
the fact that t-SNE can be implemented using an algorithm
called Particle-Mesh (PM) [5]. The idea is to compute a scalar
potential φ (r) in the low-dimensional space and to derive the
forces exerted on each instance from it, similarly to what can
be done for conservative forces in physics. The advantage lies
in the fact that φ (r) can be computed efficiently using the FFT
algorithm. The fact that PM involves a well-known formalism
in physics actually motivated our work. It will be possible
indeed to bring new improvements to t-SNE in parallel to
improvements of PM in physics.

The main contributions of this work are the following:

• A new formulation of t-SNE is presented inspired by
the PM algorithm used in physics to solve the N -body
problem. It leads to a significant acceleration and a new
way to interpret t-SNE, with more physical insights.

• A quantitative study to evaluate the quality of visualiza-
tions is proposed, which is, to the best of our knowledge,
not performed in other similar papers.

Section II describes the t-SNE algorithm and reveals its
mathematical similarity with the N -body problem. Section III
presents state-of-the-art means for accelerating t-SNE. Section
IV describes the PM algorithm and shows how it can be
transposed for t-SNE. Section V presents the experimental
setup and results of our comparative study. Results are then
discussed in Section VI, before concluding in Section VII.

II. BACKGROUND ON t-SNE

Let P ≡ {xi}Ni=1 be a set of instances in a high-dimensional
(HD) space Rp. The first step of t-SNE is to compute a
pairwise similarity matrix P such that pi,j =

pj|i+pi|j
2N with

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i

)∑
k 6=i exp (−‖xi − xk‖2/2σ2

i )
, (1)



and pi,i = 0. The widths σi are determined using a meta-
parameter u called the perplexity, which defines how large
the neighborhood of each instance is. Good values for the
perplexity are usually between 30 and 50. For each instance,
σi is linked to u by u = 2H(Pi) with

H (Pi) = −
∑
j

pj|i log pj|i (2)

and binary search can be used to approximate σi.
Now, let Q ≡ {yi}Ni=1 be the instance positions in a

low-dimensional (LD) space Rq that are randomly initialized.
Again, a pairwise similarity matrix Q can be computed.
However, instead of the Gaussian distribution used in Equation
(1), van der Maaten and Hinton [2] show that using a Student
t-distribution in the LD space is preferable, leading to

qi,j =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l (1 + ‖yk − yl‖2)−1

, qi,i = 0. (3)

In order to make the Q similarities as close as possible to
P, t-SNE minimizes the Kullback-Leibler divergence

C = KL (P‖Q) =
∑
i 6=j

pi,j log
pi,j
qi,j

. (4)

The pairwise similarities in the LD space are then as similar as
possible to those in the HD space. It is then possible to draw
conclusions about data by visualizing Q. t-SNE minimizes C
with a gradient descent (GD) by computing

∂C

∂yi
= 4

∑
j

(pi,j − qi,j) qi,jZ (yi − yj) , (5)

where Z =
∑
k

∑
l 6=k
(
1 + ‖yk − yl‖2

)−1
is a normalization

factor. At step k of GD, Equation (5) is used in the update

y
(k)
i = y

(k−1)
i − λ ∂C

∂y
(k−1)
i

+ η (k)
(
y
(k−1)
i − y

(k−2)
i

)
(6)

that iteratively moves each point yi to minimize C, where λ
is the learning rate and η (k) is a momentum factor.

In order to reveal the similarity between t-SNE and the N -
body problem, Equation (5) can be split in two terms as

−1
4

∂C

∂yi
=
∑
j

pi,j
yj − yi
1 + d2i,j

+
∑
j

1

Z

yi − yj(
1 + d2i,j

)2
=
∑
j

Fattri,j +
∑
j

Frepi,j ,
(7)

where di,j = ‖yi−yj‖. For more mathematical details on how
to obtain the equations in this section, see van der Maaten and
Hinton [2]. The first term is defined as an attractive force. By
analogy with physics, − ∂C

∂yi
represents the force exerted on

the instance i. Since yj − yi is a vector directed from i to
j, instance i will move closer to j according to this term.
Similar reasons explain why the second term can be defined
as a repulsive force. The factor 1

Z can be seen as a balancing
factor between the attractive and repulsive forces. The next
section explains how these two forces are usually computed.

III. STATE OF THE ART ON ACCELERATING t-SNE

This section presents the most often used techniques to
accelerate t-SNE. The acceleration performed for the attractive
term and for the repulsive term are presented.

A. Computation of the Attractive Term

Computing the attractive force in Equation (7) takes an
O
(
N2
)

numerical complexity in time and memory. Indeed,
P ∈ <N×N must be computed, albeit only once, since only
the yi’s move in LD, not the xi’s in HD. Fortunately, pi,j
quickly tends to 0 when the distance between the instances
i and j increases. This behavior is accentuated by the fact
that in HD spaces, the euclidean distance between two points
increases faster. It is therefore acceptable to approximate P by
a sparse matrix by considering only the k nearest neighbours
of each instance i, other elements being really close to 0. Most
of the time, the k nearest neighbor search is performed with
k = 3u using trees such as kd-trees or ball-trees.

Some authors, such as Linderman et al. [6], Pezzotti et al.
[7] and Tang et al. [8], show that using approximate nearest
neighbor search algorithms does not significantly impact the
quality of the obtained visualizations. An example of such
algorithm is implemented in the Annoy library [9], which uses
random projection trees [10] to search for points in space that
are close to a given query point. Computing the attractive
forces can then be done efficiently in O (uN).

B. Computation of the Repulsive Term

There are two issues when computing the repulsive term in
Equation (7). The first issue is that it requires to fully compute
Q, and the second issue is that it also requires to compute the
normalizing factor Z, i.e. to compute each di,j = ‖yi − yj‖.
These two issues lead to an O

(
N2
)

complexity. A method
able to speed up the computation of the repulsive forces, while
also building a correct approximation of Z, is thus needed.
Contrary to what can be done for the attractive term, the first
issue cannot be solved by only using the k nearest neighbors
of each instance. Indeed, the instances in the LD space are
constantly moving and it would therefore require to perform
the k nearest neighbor search at each iteration, which would
drastically slow down the algorithm. Furthermore, in the LD
space, a Student t-distribution is used instead of a Gaussian,
which means that the qi,j tend more slowly to 0 as the Student
t-distribution has thicker tails. Therefore, only considering the
k nearest neighbors may lead to greater errors.

To solve these two issues, the Barnes and Hut version of t-
SNE [3] uses kd-trees to approximate the repulsive forces,
while at the same time obtaining an approximation of Z.
This exploits the fact that, when computing the repulsive
force exerted on instance i by all other instances, groups of
instances close to each other but far away from instance i can
be reduced to only one fictive instance that resumes them all.
These groups of instances are found using kd-trees, which are
used to iteratively structure space into smaller groups. The
goal of these trees is then to go from the root to the leaves
and use a group when rcell

‖yi−ycell‖ < θ, where rcell is the length



(a) Computation with θ = 0 (b) Computation with θ = 0.5

(c) Computation with θ = 1.5

Fig. 1: These figures, inspired by Heer [11], show the subdivi-
sion obtained with a kd-tree in a 2-d space. While iteratively
subdividing space into smaller cells, a tree is constructed. Each
node of this tree stores the number of instances in each cell
and their center of mass. The black star represents the instance
on which the force exerted by all other instances is computed.
In Figure (a), no group is accepted, which is equivalent to a
brute force computation. In Figure (b), the number of instances
considered is significantly reduced, but points too close to the
black star are not grouped together. In Figure (c), too many
instances are grouped, which results in approximation errors.

of the diagonal of the cell that forms the considered group,
ycell is its center of mass and θ is a threshold parameter that
balances speed and accuracy. Figure 1 illustrates the impact
of θ on the approximation.

The work of Linderman et al. [6] constitutes another possi-
bility to accelerate the computation of the repulsive term. Their
algorithm, the FFT-accelerated Interpolation-based t-SNE (FIt-
SNE), is based on polynomial interpolations combined with
the use of FFT to speed up t-SNE. However, they do not
exploit the formalism of the well-known PM algorithm in
physics, whereas we will be able to use the improvements
of PM developed in physics for many years. This can lead to
better insights and has the potential for further improvements.

IV. DESCRIPTION OF PM-t-SNE

This section presents the Particle-Mesh (PM) algorithm and
how it can be used for the computation of the repulsive forces
in t-SNE. It begins with a brief introduction to the N -body
problem in electrostatics. This will allow us to (i) introduce
the objective of PM and (ii) introduce the key concept of
charge (or instance) distribution in space. The two following

sections then describe the solution proposed by PM, from a
mathematical and a numerical point of view respectively. As
the key concepts of PM will be transposed to t-SNE in the last
section, these sections make it possible to understand where
the mathematical developments of PM-t-SNE comes from.

A. The N -body Problem in Electrostatics

The N -body problem arises in physics as soon as multiple
bodies interact with each other. This happens in multiple
applications such as celestial mechanics, plasma physics, fluid
dynamics, electrostatics, etc. However, the N -body problem
has no analytical solution as soon as N > 2. Furthermore,
a brute force algorithm to solve the problem requires to
evaluate 1

2N (N − 1) interactions, which is intractable when
N increases. Numerical physics has therefore been an area
of active research and multiple algorithms appeared. PM is
one of these algorithms used in physics to solve the N -body
problem for large systems (usually N ∼ 105 − 107).

To understand the idea behind PM, this section presents the
particular case of electrostatics, but developments are similar
for other interactions. We consider a set of N punctual charges
at positions {ri}Ni=1 in a 3-d space that exert forces on each
other given their charge {qi}Ni=1 according to Coulomb’s law

F (ri) =
qi

4πε0

N∑
j=1

ri − rj
‖ri − rj‖3

qj , (8)

where ε0 is the electric constant. In a more general way, if
charges are distributed continuously in space, Coulomb’s law
can take the more general integral form

F (ri) =
qi

4πε0

∫∫∫
ri − r′

‖ri − r′‖3
ρ (r′) d3r′, (9)

where ρ (r) is the charge distribution in space. This ρ (r),
representing here the amount of charge at position r, can be
related to the number of instances at the position r in t-SNE.

B. Background on Particle-Mesh (PM)

Now that the N -body problem has been presented in the
previous section, one classical way to solve it is by using PM.
The main idea of PM is to use the electrostatic potential

φ (r) =
1

4πε0

∫∫∫
ρ (r′)

‖r− r′‖
d3r′ (10)

to compute the forces exerted on each particle, given that
F (r) = −qi∇φ (r). Thus, evaluating φ (r) allows us to
compute {F (ri)}Ni=1. This way of computing forces is the
key idea that we want to bring back to t-SNE. The advantage
is now that the computation of φ (r) involves a convolutional
product that can be computed in an efficient way using Fourier
Transforms (FTs). Indeed, Equation (10) can be written as

φ (r) =
1

4πε0
(ρ (r) ∗ h (r)) , (11)

where ∗ denotes a convolutional product and h (r) = 1
‖r‖ .

Since φ (r) ∝ ρ (r) ∗ h (r) ⇐⇒ φ̂ (k) ∝ ρ̂(k)ĥ(k), where ·̂



1 2 3

4 5 6

Fig. 2: Black points are grid points. The star represents a
particle and the cloud surrounding it is the region of the
space where the charge is uniformly distributed. With NGP, the
charge is attributed to the grid point 3. With CIC, the charge
is distributed between grid points 2, 3, 5 and 6, with a bigger
fraction of the charge added to 3, and a smaller one to 5.

denotes the FT of the function, it is possible to trade the hard-
to-compute convolutional product for a simple product by first
computing ρ̂(k) and ĥ(k). It is then possible to get back to
φ (r) by taking the inverse FT of φ̂ (k). For more mathematical
details, see Arfken et al. [12].

Without using FTs, φ (r) is directly obtained by computing
the convolutional product described in Equation (11) and PM
exhibits an O

(
M2
)

numerical complexity, where M is the
number of points in the grid used to discretize space. PM
can therefore constitute an improvement regarding the brute
force algorithm if the grid resolution is such that M < N .
However, the use of FTs reduces the numerical complexity
to O (M logM). Since, as presented in Section V, M can be
much lower than N for large datasets, this leads to a significant
speed up compared to the solution of Barnes and Hut [4].

C. Discretizing Space

The previous section describes the mathematical develop-
ments of PM. Now, in order to use them from a numerical
point of view, PM needs to discretize space. There are multiple
ways to build a grid and obtain ρ (r) from {yi}Ni=1 in order
to compute {F (ri)}Ni=1. The easiest way is to assign qi to
the point of the grid that is the closest to yi (i.e., building
a 2-dimensional histogram). This corresponds to a first-order
interpolation scheme, also called Nearest Grid Point (NGP).
If the resolution is low, this can bring significant errors.
However, when N is large, they tend to compensate each other.
Another commonly used solution is to consider a second-order
interpolation scheme. In that case, the 4 points of the grid that
are the closest to yi get a fraction of qi (these fractions are
inversely proportional to the distance between each point and
yi). This method, known as Cloud In Cell (CIC), is more
accurate. Figure 2 illustrates how these two methods work.

Once the potential is computed for each point of the grid,
its gradient is computed using a first- or second-order method
depending on the interpolation method used to build ρ (r).
Indeed, it does not make sense to use a second-order method
to evaluate ∇φ (r) if ρ (r) is estimated using a first-order

approximation. The same kind of reasoning applies when it
comes to evaluating the force exerted on each particle.

D. Closing the Gap Between t-SNE and PM

Now that PM has been presented, this section aims to
transpose it to t-SNE. As the attractive force in t-SNE can be
computed efficiently (see Section III-A), this section focuses
on the computation of the more problematic repulsive term in
Equation (7). It seems already similar to Equation (8) if we
suppose that qi = 1,∀i. This means that there is no privileged
instance in the dataset. Inspired by PM, this force can then be
computed by discretizing space, i.e. by using a grid such that

Frepi = Frep (yi) =
1

Z

M∑
g=1

ρg
yi − yg

(1 + ‖yi − yg‖2)2
, (12)

where g is a super-index that runs through the M points of
the grid, and ρg is the number of instances assigned to the
gth grid’s point. When M → ∞ in Equation (12), the finite
summation becomes an integral and the equation becomes

Frep (yi) =
1

Z

∫∫
ρ (r′)

yi − r′

(1 + ‖yi − r′‖2)2
d2r′. (13)

To be able to use PM for t-SNE, a potential such that
−∇φ (r) ∝ Frep (r) is needed. If it is expressed as

φ (r) = ρ (r) ∗ w (r) , (14)

where w (r) = 1
1+‖r‖2 , one can show that

Frep (yi) =
−1
2Z
∇φ (r) |r=yi

. (15)

Indeed,

−1
2Z
∇φ (r) = −1

2Z
∇
(
ρ (r) ∗ 1

1 + ‖r‖2

)
=
−1
2Z

∫∫
ρ (r′)∇r

1

1 + ‖r− r′‖2
d2r′

1
=

1

Z

∫∫
ρ (r′)

r− r′

(1 + ‖r− r′‖2)2
d2r′

= Frep (r) .

(16)

Equation (14) involves a convolutional product that can be
computed efficiently using FTs. The gap between t-SNE and
PM is then almost closed, only Z still needs to be computed.
Fortunately, the expression

φ (r) =

∫∫
ρ (r′)

1

1 + ‖r− r′‖2
d2r′ (17)

can be used to compute Z, as it is linked to φ (r) by,

Z =
∑
k

φ (yk) , (18)

1given that ∇ 1
1+‖r‖2 =

∂ 1
1+‖r‖2
∂‖r‖

r
‖r‖ = −2r

(1+‖r‖2)2
.
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Fig. 3: Scheme for the computation of the repulsive term. Step
(A) discretizes space and evaluates ρ and w. Step (B) consists
of using FTs in order to compute φ efficiently. Step (C) is a
simple product between ρ̂ and ŵ. Step (D) consists of using
inverse FTs to obtain φ and step (E) consists of using it to get
both the repulsive forces and Z with Equations (15) and (18).

since, by considering a grid of infinite resolution,

Z =
∑
k

∑
l 6=k

1

1 + ‖yk − yl‖2

=
∑
k

M∑
g=1

ρg
1

1 + ‖yk − yg‖2

=
∑
k

∫∫
ρ (r′)

1

1 + ‖yk − r′‖2
d2r′,

(19)

where g is a super-index that runs through the M grid’s points.
Computing the potential hence allows us to compute the

repulsive term completely. Since the potential is expressed as
a convolutional product, it can be computed efficiently using
FTs and inverse FTs. Figure 3 sums up the scheme for the
computation of the repulsive term.

V. COMPARATIVE STUDY

This section carries out a comparative study to assess the
quality of the visualizations obtained for a given computation
time, and for different t-SNE algorithms. Several datasets of
different sizes are used to make this comparative study.

A. Experimental Datasets

For the comparative study, experiments are performed on
multiple datasets of different sizes. For a clear comparison,
datasets and preprocessing steps are close to those of van der
Maaten [3]: (1) the CIFAR-10 dataset of Krizhevsky [13], (2)
the MNIST dataset of LeCun and Cortes [14], (3) the SVHN
dataset of Netzer et al. [15] and (4) the TIMIT dataset of
Garofolo et al. [16]. This section briefly presents them. For
each one of them, PCA was performed after preprocessing to
reduce them to 50 dimensions. This dimension for the HD
embedding is a classical choice proposed by van der Maaten
[3], and is used because t-SNE performs less well when the
initial dimension is too high.

CIFAR-10 consists of 60, 000 tiny 32 × 32 images with 3
channels. There are 10 classes such as airplane, automobile,
bird, cat, etc. with 6, 000 instances each. As 32 × 32 × 3
dimensions is too high for t-SNE, we used a Convolutional
Neural Network (CNN) to extract a 512-d embedding.

MNIST consists of 70, 000 28×28 greyscale images of 10
handwritten digits evenly represented in the dataset.

(a) DSC=60.15%, DC=77.34% (b) DSC=88.81%, DC=93.99%

Fig. 4: Two visualizations obtained with PM-t-SNE on SVHN.

SVHN consists of 630, 420 real-world 32×32 color images
obtained from house numbers in Google Street View. Each
image is labeled as a single digit. Again, a CNN is used to
extract a 64-d embedding.

TIMIT contains 3, 696 spoken utterance for a total of
1, 105, 455 frames labelled with the 39 phonemes. We used
13 mel-frequency cepstral coefficients (MFCC), delta features
and delta-delta features to obtain a 273-d embedding.

Contrary to CIFAR-10 and MNIST, SVHN and TIMIT are
more complex real-world datasets where classes are not evenly
represented. In SVHN, some images may be of bad quality,
and in TIMIT, data is so complex that it is difficult to visualize.

B. Experimental Setup

In this comparative study, 3 different algorithms are used.
The first one, called skkd Exact for this study, comes from
scikit-learn [17] and uses the Barnes and Hut approximation
explained in Section III-B. The second one, that we called
skkd Approx, is almost the same, but the approximated nearest
neighbor search is performed using Annoy instead of kd-trees.
The last one, PM-t-SNE, is our implementation that uses a
Cloud In Cell interpolation method and the same approximated
nearest neighbor search than skkd Approx.

For the 3 algorithms, a similar experimental setup as the one
described by van der Maaten [3] is used, including the use of
early exaggeration in the first few hundreds steps. The number
of iterations for GD is fixed to 750. The learning rate λ is
also set to 750. The perplexity u is set to 30, and the number
of nearest neighbors to consider for the computation of the
attractive term is set to 1.5u, as no significant loss in quality
was observed compared to using 3u nearest neighbors. The
early exaggeration is performed during the first 200 iterations
with α = 12. The momentum η (k) is initially set to 0.8 and
decays exponentially. For the Annoy library, the number of
trees to use is set to 10 as it is the best value according to all
our preliminary experiments. For skkd Exact and skkd Approx,
20 different values between 0.1 and 8 are tested for the meta-
parameter θ (called angle in scikit-learn), except for SVHN
and TIMIT where it was too long to test them with θ = 0.1.
For PM-t-SNE, 20 different values for the number of grid
points M between 42 and 4, 0962 in a log-scale are tested.
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(d) TIMIT

Fig. 5: Results obtained on the CIFAR-10, MNIST, SVHN and TIMIT datasets. Notice that NCIFAR-10 < NMNIST < NSVHN <
NTIMIT. Red circles point out points in the elbows, which is discussed in Section VI. The speedup axis represents the ratio τ

t
where t is the computation time, and τ is a reference time arbitrarily chosen as the red circle for the skkd Exact method. Note
that the brute t-SNE implementation is not used as a baseline since it takes too long to run. For PM-t-SNE, the meta-parameter
M increases from left to right. For skkd Exact and skkd Approx, the meta-parameter θ decreases from left to right. The low
DSC obtained by all methods for TIMIT can be explained by the complexity of visualizing this dataset of audio recordings.
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Fig. 6: DSC and DC obtained as a function of M for the
SVHN dataset. Results are similar for the other datasets.

When the size of the dataset N increases, the time needed
for the computation of the attractive term also increases as
it exhibits a numerical complexity of O (uN). However, the
computation of this term can be easily parallelized. Therefore,
for the 3 algorithms and each run, the computation of the
attractive term was spread between 8 cores of a 32-core AMD
Epyc 7551P CPU clocked at 2 GHz. On the other side, only
one core was used for the computation of the repulsive term.

The distance consistency (DSC) and distribution consistency
(DC) introduced by Sips et al. [18] are used to assess the
quality of the visualizations. This choice is motivated by the
work of Sedlmair et al. [19], which shows that these metrics
are among the best to assess the quality of a visualization. To
illustrate this, Figure 4 presents two visualizations with their
DSC and DC scores. DSC is defined as the proportion of points
in the LD space that are closer to the centroid of their class
than to another one. DC aims to extend DSC to more general
spacial distributions. Pixels are considered instead of clusters,
and a measure of entropy in each pixel is used to evaluate the
quality. If n points of any class overlap on a particular pixel,
the associated entropy for that pixel is −

∑
c
nc

n log2
(
nc

n

)
,

where nc is the number of points of class c overlapping in
the pixel. If nc = n, the entropy is equal to 0 and the con-
sistency is maximal. When datasets contain a large number of
instances, a lot of points overlap each other in the visualization
and pixel entropy increases. Therefore, considering pixels to
assess the quality is particularly meaningful. For our study,
images of our visualizations with 300× 300 pixels were used
to evaluate the DC. As the visualizations obtained from t-SNE
can vary w.r.t. the initialization of Q, 8 visualizations are used
to compute the mean quality.

C. Results

Results on the different datasets are presented in Figure 5.
Note that DSC and DC are built such that a larger percentage
reflects a better visualization. For PM-t-SNE, points from the
left to the right are obtained by increasing the grid resolution
(M ). For skkd Exact and skkd Approx, θ decreases for points
from the left to the right. When increasing M or reducing
θ, the computation time required to obtain the visualization

(a) For 103 instances (b) For 104 instances

Fig. 7: These figures show the density of instances obtained
using a Cloud In Cell interpolation method on a 50× 50 grid.

increases, but quality also increases until reaching a plateau.
When the dataset size is larger, the difference in time between
the 3 algorithms for a visualization of a given quality increases
(the gap between the elbows increases).

Figure 6 shows how the quality of the visualizations changes
with M for PM-t-SNE. Only the results for SVHN are
presented, but those for the other datasets are similar.

VI. DISCUSSIONS

In Figure 5, all the curves contain an elbow. The optimal
choice in a particular curve, for the meta-parameters M or θ,
is the one that leads to a good balance between visualization
quality and computation time. These optimal choices are
represented by points in the elbows, and are highlighted with
red circles. The computation time for these particular points
can be used to characterize how efficient algorithms are. For
small datasets, the curves obtained with PM-t-SNE present
more fluctuations and this choice of reference point may then
be discussed. Nevertheless, PM-t-SNE aims to be applied on
large datasets, where these fluctuations tend to disappear.

By looking at these points in the elbows, we can see that
PM-t-SNE is able to produce visualizations with a quality
similar to the two others. We can also see that PM-t-SNE
performs better for datasets with a larger number of instances,
i.e. a smaller computation time is required by PM-t-SNE in
order to obtain visualizations of similar quality.

For the CIFAR-10 dataset, PM-t-SNE allows us to obtain
visualizations with a smaller computation time but at the
cost of a small loss in quality. As we will see with other
datasets, this is due to the fact that the number of instances
in CIFAR-10 is too low for PM-t-SNE. Notice also that using
an approximated nearest neighbors search does not lead to a
significant speed up as the computation time for skkd Exact is
really close to the one of skkd Approx. Yet, it does not lead
to a decrease in quality either. For the highlighted points, the
value for M is 6, 561 and for θ it is 1.8.

For MNIST, conclusions are similar to those for CIFAR-10.
For the red points, M is 6, 561, and θ it is 1.8.

For the SVHN dataset, PM-t-SNE is ∼ 9 times faster than
skkd Approx and the loss in quality almost vanished. The
interest of using an approximated nearest neighbors clearly
appears as skkd Exact is nearly one order of magnitude slower



than skkd Approx. For the highlighted points, the value for M
is now 2, 809, which is really low compared to the number of
instances in the dataset, which is 630, 420. The value for θ
for the two other algorithms is still 1.8. For such big datasets,
PM-t-SNE is quite efficient, as it is faster and it allows us to
build visualizations of equivalent qualities.

Finally, for the TIMIT dataset, PM-t-SNE is even faster as
it is now ∼ 12 times faster than skkd Approx and ∼ 18 times
faster than skkd Exact. In terms of DC, PM-t-SNE slightly
overtakes other implementations. For the highlighted points,
the value for M is 1, 296 points, and for θ it is still 1.8.

In conclusion, it is always possible to build a grid such
that PM-t-SNE is faster than an implementation based on
the Barnes and Hut approximation. In order to obtain visu-
alizations of good quality from PM-t-SNE, it requires a large
number of instances. This makes sense as it relies on the
discretization of the distribution of instances in space (i.e., a 2-
d histogram). This discretization leads then to errors as points
are moved on the grid. If there are a small number of instances,
this 2-d histogram is not good enough to reflect the positions
of the instances. For a larger number of instances (typically,
∼ 105 − 106 or even more), these errors tend to compensate
for each other and the 2-d histogram is better at describing
the disposition of instances in space. Figure 7 illustrates this.
For such datasets, a grid between 50× 50 and 100× 100 can
already be sufficient even if it leads to M ≪ N .

VII. CONCLUSION

This work presents a new formalism for t-SNE called PM-
t-SNE, based on the well-known PM algorithm used to solve
the N -body problem in physics. Combined with the use of
FFT, it allows us to obtain a significant speed up. We found
that this method is well-suited for large datasets (N ∼ 105 −
106, or even more). In that case, PM-t-SNE overtakes other
implementations based on the Barnes and Hut approximation
in terms of computation time, while maintaining the quality of
the visualizations. From a numerical point of view, PM-t-SNE
exhibits a complexity of O (M logM), whereas Barnes and
Hut implementations exhibit a complexity of ∼ O (N logN).
For large datasets, M ≪ N and this leads to a significant
reduction of the numerical complexity.

The PM algorithm has been used in physics for decades, and
has been improved several times. Now that PM can be used
to perform t-SNE in a more efficient way, more sophisticated
versions of PM could be transposed as well. As an example,
we only considered equispaced grids in this work, but Splinter
[20] shows that it is possible to use a system of nested grids.
In this way, it is possible to increase the grid’s resolution in
regions where the density of instances is higher, and decrease it
in less dense regions. It would also be interesting to parallelize
the computation of the repulsive term, as it is not as trivial as
for the attractive term, and also consider other interpolation
methods. Finally, it could be interesting to consider an hybrid
algorithm that uses both the PM methods and the Barnes
and Hut approximation, as it is already done for the N -body
problem in physics by Bode and Ostriker [21].
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