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ABSTRACT
Dynamic Software Product Lines (DSPLs) engineering implements
self-adaptive systems by dynamically binding or unbinding features
at runtime according to a feature model. However, these features
may interact in unexpected and undesired ways leading to criti-
cal consequences for the DSPL. Moreover, (re)configurations may
negatively affect the runtime system’s architectural qualities, man-
ifesting architectural bad smells. These issues are challenging to
detect due to the combinatorial explosion of the number of interac-
tions amongst features. As some of them may appear at runtime,
we need a runtime approach to their analysis and mitigation. This
thesis introduces the Behavioral Map (BM) formalism that captures
information from different sources (feature model, code) to auto-
matically detect these issues. We provide behavioral map inference
algorithms. Using the Smart Home Environment (SHE) as a case
study, we describe how a BM is helpful to identify critical feature
interactions and architectural smells. Our preliminary results al-
ready show promising progress for both feature interactions and
architectural bad smells identification at runtime.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Computer systems organization→ Self-organizing autonomic
computing.

KEYWORDS
Software Product Line Engineering, Dynamic Software Product
Lines Engineering, Self-adapting system, Software architecture,
MAPE-K loop, Software testing
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1 INTRODUCTION AND MOTIVATION
Self-adaptive systems change their behavior depending on environ-
mental changes and reconfiguration plans and goals. Dynamic Soft-
ware Product Line (DSPL) engineering implements self-adaptive
systems (SAS) by dynamically enabling or disabling features at
runtime as prescribed by a feature model [5]. Consequently, the
DSPLs validation process is complex because the number of possi-
ble configurations grows exponentially with the number of features,
and features may interact in both unexpected and undesired ways
[2, 8, 28]. Such problems are further amplified if the system can
update itself (for example, by downloading new features to inter-
face with a sensor newly plugged into the system) [6]. The feature
interaction problem is well-studied for systems where features are
bound at specification or design time [1–3, 7, 8, 15, 19], but runtime
interactions are less explored [6, 24].

Adaptations at runtime may affect architectural qualities and
properties. For instance, the (re)configuration process may add a
new architectural solution in an inappropriate context, combine
architectural fragments with undesirable behaviors, or apply archi-
tectural abstractions at the wrong granularity level via new features
loaded at runtime. In these circumstances, Architectural Bad Smells
(ABS) may appear, implying reductions in system maintainability
[9, 18]. ABS are a set of architectural design decisions that nega-
tively impact the system’s properties (understandability, testability,
maintainability, extensibility, and reusability) [9, 11, 14]. However,
an ad-hoc literature review identified only two studies exploring
ABS in SAS at design time [25, 27]. In addition, there is a gap in
evaluating the impact or identification of ABS in SAS at runtime
[20].

This thesis advocates a model-based approach to the aforemen-
tioned issues. We tackle the feature interaction and architectural
issues (e.g., ABS) by introducing the Behavioral Map (BM) formal-
ism, a directed graph capturing interactions defined in the feature
model but also capturing control and data flow interactions inferred
from the candidate reconfiguration implementation. Besides, DSPL
engineering generally represents the features of a system family
(their commonalities and variabilities) and their relationships. Such
a model has a high abstraction level and is used as a starting point
for the feature selection and product derivation in design time
or runtime. However, such a model does not capture control and
data flow interactions inferred from the SAS. This information is
essential to identify unpredictable behavior or unpredictable rela-
tionships among features at runtime.

Thus, we envision that BM will support the feature interaction
issues identification, ABS identification, and testing prioritization
based on the analysis of a runtime configuration. Furthermore, we
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can include the BM in the system adaptation process to verify the
selected configuration before its deployment. Consequently, the sys-
tem will not execute the faulty configuration and will keep the last
valid configuration until a new one gets computed. STARS contribu-
tions are: i) usage of the BM to derive an ABS catalog dedicated to
SAS; ii) the exploitation of identified feature interactions to derive
test generation and selection algorithms for the configuration under
study, notably when new features emerge via hot-plugging mech-
anisms; and finally, iii) evaluation of map inference mechanisms
on several case studies. This evaluation will allow the performance
assessment of our inference and prioritization algorithms.

The rest of the paper is organized as follows: Section 2 states the
research questions that we address in this thesis. Section 3 shows
the methodology, our approach, and threats to validity. In Section
4, we present our results on map inference and architectural bad
smell identification. Finally, in Section 5, we recap our progress and
provide a monthly work plan.

2 RESEARCH QUESTIONS
In this thesis, we aim to answer the following research questions
(RQ):

RQ1 How to model DSPL architectures at runtime? We
seek to understand how to model DSPL architectures based on
their configuration at runtime.

RQ1.1What are the necessary concepts needed to identify
architecture issues?We aim at discovering the concepts required
for architecture issues analyses.

RQ1.2 How to infer such a model? This question covers the
techniques able to learn our model automatically from running
artifacts describing the DSPL configuration.

RQ2. What are the validation means the Behavioral map
can support? We want to evaluate empirically the benefits of our
model for feature interactions and ABS identification as well as test
prioritization.

3 RESEARCH METHODOLOGY AND
APPROACH

3.1 Research Methods
We have defined a research methodology divided into four steps,
as described below.

Step 1: We conducted a literature review that aims to identify
what strategies are used to test dynamically adaptive systems and
raise evidence on techniques and tools that achieve high defect
detection even in unpredictable contexts. As a result, we found no
readily applicable technique able to perform defect detection in
unpredictable runtime contexts.

Step 2: We conducted an ad-hoc literature review to identify
which types of ABS can occur in SAS and how to identify each bad
smell. There are ABS catalogs in the literature [4, 13], but their role
in self-adaptive architectures is less known, and we identified only
two works in this case [25, 27].

Step 3: We defined a new formalism and a framework imple-
mentation that allows the inference of behavioral map models at
runtime. The framework uses static analysis implemented via Call
Graph and the Context-Flow Analysis (CFA) algorithms to support
the data extraction process. Also, we selected the Neo4J platform

Figure 1: Behavioral Map (BM) process overview.

[21] and the Neo4j APOC Library [22] to implement the graph
analyses, map visualization, and storage of behavioral maps. Neo4J
is a graph database management system that supports analyses via
the Cypher query language [23]. Cypher allows us to extract infor-
mation about the feature interactions and ABS using pre-defined
queries.

Step 4: We will conduct empirical experiments to assess that
the Behavioral Map supports bad smell identification and feature
interaction analyses. In addition, we will evaluate the prototype
developed on a small scenario in the Smart Home domain based
on the SHE system [10, 26]. Also, we plan to conduct other ad-
vanced evaluations using different SAS types available in Software
Engineering for Self-Adaptive Systems website 1 to check the BM
feasibility.

3.2 Proposed Approach
This thesis intends to answer the research questions by offering a
Behavioral Map definition and architecture specification to identify
feature interaction problem and ABS at runtime. A BM maps the
interactions and influences that a feature has on other features in
a specific configuration for a given runtime context, i.e., a context
configuration. Consequently, the BM needs to interact with the
component responsible for defining the change plan used in the
adaptation process at runtime and retrieving the configuration
rules. We used the change plan selected by the SAS to create the
map based on its configuration rules. Such a strategy was adopted
because we assume that the system implements a MAPE-K loop
[16] to monitor, analyze, plan and execute the adaptation process at
runtime according to the application feature model. We thus avoid
building a BM for an invalid configuration.

3.2.1 Behavioral Map Building Process. To build a BM, we
follow the process described in Figure 1. The MAPE-K loop moni-
tors continuously a set of managed resources and correlates them
into symptoms. Then the Analyze loop analyzes the symptoms to
determine whether an adaptation is necessary based on knowledge
(including the DSPL feature model). If an adaptation is needed, it
will create a change request for the Plan phase that will determine
the appropriate configuration (a set of enabled and disabled fea-
tures) to execute according to the change plan. The BM process
(right part of Figure 1) takes as input this change plan containing the
candidate configuration and a set of configuration rules noted CR.
The BM process comprises the following: i) Detection determines

1https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
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interacting features using pairwise analysis [28] and their relation-
ships based on the CR; ii) Analysis further classifies interactions in
categories according to the 𝐸𝑇𝑦𝑝𝑒𝑠 set (see Section 4.1). A feature
can thus control, read some information from, suppress the behavior
of, or require an other feature; iii) Finally, the Map Building build
the map.

3.3 Threats to Validity
There are some general threats to validity that have to be consid-
ered, threatening the internal validity of results themselves or their
generalization.

Internal. There are specific architectural styles that can impede
the precision of our map inference and analysis algorithms. When
multiple components exchange event messages via a shared event
bus (e.g., publish-subscribe architectures) [14], interactions are more
challenging to identify [9]. To mitigate such a threat, we analyze
the class hierarchy that composes each feature and its configuration
instruction. Thus, we identified which features depend on the event
bus to establish communication with other features that composes
the system, regardless of the communication topics used at run
time.

External. It is not easy to find real-world SAS based in the
MAPE-K loop with open source code and a distinct feature model.
Therefore, our main issue for conducting experiments to evaluate
the BM framework is finding suitable case studies. We used a smart
home system developed for academic study [10, 26] to test our BM
framework in a small scenario. Thus, evaluation results may not
generalize to all real-world SAS. To address this threat, we plan
to use the self-adaptive systems exemplars available in Software
Engineering for Self-Adaptive Systems community website.

4 PRELIMINARY RESULTS
The results in this section are early results addressing the BM
approach (definition, algorithm, and framework) answering RQ1
and the preliminary outcome of the research as Behavioral Map
example and Architectural Smell Identification answering RQ2.

4.1 Behavioral Map Definition
A BM can be seen as a hybrid structure, mixing structure, data, and
control information about one configuration of the DSPL. Formally,
a BM is a tuple:

𝐵𝑀 = (𝐶,𝑉 ,𝑉𝑇𝑦𝑝𝑒𝑠, 𝑣𝑡𝑦𝑝𝑒, 𝐸, 𝐸𝑇𝑦𝑝𝑒𝑠,𝐴, 𝑣𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠), where:

• 𝐶 is a configuration, i.e. a valuation of features from the
feature model,
• 𝑉 ⊆ 𝐶 is a set of vertices,
• 𝑉𝑇𝑦𝑝𝑒𝑠 = {Core, Controller, Sensor, Actuator, Presenter},
• 𝑣𝑡𝑦𝑝𝑒 : 𝑉 ×P(𝑉𝑇𝑦𝑝𝑒𝑠) \ ∅ is a function giving the types of a
vertice. We suppose that a vertice/feature can have multiple
types. For example, a feature can be core (i.e., present in all
configurations) and also serves as controller,
• 𝐸 is a set of edges such as ∀𝑒 ∈ 𝐸, 𝑒 = (𝑣, 𝑣 ′, 𝑟 ) where 𝑣, 𝑣 ′ ∈
𝑉 and 𝑟 ∈ 𝐸𝑇𝑦𝑝𝑒𝑠 = {Controls, Reads, Suppresses, Requires},
• 𝐴 is the set of all attributes,
• 𝑣𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 : 𝑉 × 𝑃{𝐴} is a function giving the value of all
the attributes for a given vertice.

Figure 2: Behavioral Map Architecture overview.

4.2 Behavioral Map Algorithm
The BM building process is summarized by Algorithm 1. It starts
from a table loaded by the loadConfigurationRulesFile proce-
dure (line 1 at listing 1) and creates the vertices (features) on the
map (createVerticesOnMap, line 2). It then looks for each created
vertex (feature) and identify its relationships in the Configuration
Rules (table). We create three loops, as shown lines 3, 4, and 6. The
first loop selects a vertex on the map and then looks for its informa-
tion in the table using the second loop. Line 5 checks for each row
of the table whether it contains the selected vertex. Line 6 retrieves
all relationships (row.getAllRelationships()) related to the se-
lected vertex on the map. For each relationship, createEdge creates
an edge in the map based on the following arguments: i) the vertex
from which the edge starts, ii) the relationship type represented
by the edge, iii) the destination vertex (relation.featureName in
line 8). The last loop (line 6) will repeat until all edges are created.

1 table← loadConfigurationRulesFile(CR𝑓 𝑖𝑙𝑒);
2 verticesOnMap← createVerticesOnMap(table);
3 foreach vertex in verticesOnMap do
4 foreach row in table do
5 if row.name.equals(vertex.name) then
6 foreach relation in row.getAllRelationships() do
7 if relation.relationship is not null then
8 createEdge(vertex, relation.relationship_type,

relation.featureName);
9 end

10 end
11 end
12 end
13 end

Algorithm 1: Behavioral Map algorithm.

4.3 Behavioral Map Framework
Figure 2 shows the implemented framework to infer behavioral
maps whose architecture. The framework uses the Neo4J platform
[21] and its Cypher query language [23]. We defined the top-most
layers (Map Builder, Analyzer, and Interaction Detector) pro-
cesses in Section 3.2.1. In the following, we focus on the remaining
elements of the framework. The Integration Layer (IL) provides
a interface between DSPL (via Data Extractor) and the map build-
ing components. Also, the framework supports different CR file
formats: XML, JSON, or CSV, see Figure 2.

The Data Extractor (DE) performs the runtime integration be-
tween the Integration Layer and the SAS. The DE relies on the
Plan function (see Figure 1), reading the Change Plan information
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Figure 3: Behavioral Map (BM) for one SHE configuration.

at runtime. The DE identifies all features used and their relation-
ships involved in the new configuration defined in the Change Plan.
Thereafter, the DE builds a CR file including all involved features
and sends it to the Integration Layer. The DE performs static anal-
ysis using the WALA API [17]. Such analysis allows identifying
the dependency relationships among the class hierarchy used by
selected features or performing interprocedural dataflow analysis
and identifying relationships’ types. Also, complementary informa-
tion that is available in manifest files (used to install each feature
of the candidate configuration before its deployment) can be used
to identify the relationships.

The DE can be implemented for all adaptation process types, it
just needs to receive the following parameters: the features and their
𝑉𝑇𝑦𝑝𝑒𝑠 , set of source code paths in the packages and the related Jar
files. Also, we used these parameters to map the relations between
features and components implementing them.

4.4 Behavioral Map example
We exemplify the BM framework on the SHE [10, 26] system. SHE
is a smart home system relying on a MAPE-K loop to adapt to new
situations (such as a new sensor being plugged in) and updates
a dashboard (e.g., adding a widget for the new sensor). The SHE
core features are: Manager, Listener, Loader, Installer, and Presenta-
tion Layer. They control the adaptation, communication, and data
presentation. They are optional features: i) Luminosity: used to
read data from the luminosity sensor; ii) Presence: used to read
data from the presence sensor; iii) lampController: responsible
for controlling Lamp feature’s behavior based on information gath-
ered from Luminosity and Presence features; iv) Lamp: an actuator
used to switch on and off lights based on the lampController fea-
ture’s data. This example configuration is presented Figure 3. An
implementation of this example with a tutorial to perform BM
construction and ABS identification is available on our companion
website2.

4.5 Architectural Bad Smell Identification
We selected the architectural smells shown in Table 1 because
they were proposed for self-adaptive systems [25, 27]. In the SHE
configuration analyzed, we identified the Hub-Like Dependency

2https://github.com/edilton-santos/BehavioralMapExample

Table 1: Selected Architectural Bad Smells for Self-Adaptive
Systems.

Smell Name Detection

Cyclic Dependency (CD) [4] Full
Extraneous Connector (EC) [13] Full
Hub-Like Dependency (HL) [4, 25] Full
Oppressed Monitors (OM)[27] Partial

(HL) and Extraneous Connector (EC) smells. The former appears
when a component has (incoming or outgoing) dependencies with
a large number of other abstractions (e.g., components) or concrete
classes [4, 25]. Since theBM is a graph, computing the in/out-degree
for each vertex (feature) is easy, features having high in/out-degrees
suffer from theHL smell. In Figure 3, the Listener feature is subjected
to the HL smell as it is involved in most of the Requires of the BM.
The publish-subscribe architecture adopted by the SHE framework
is the cause of this smell. Indeed, the Listener centralizes all the
communication processes in this software architecture and works
as a communication broker. While acceptable in this case [4, 12],
hubs may greatly impact the systems if they fail.

The latter smell arises when two connectors of different types are
used to link the same pair of components [13]. It is easy to identify
this smell as edges and vertices have types, colors providing visual
cues. As depicted Figure 3, the lampController uses two types of
connectors to connect with Presence, Luminosity, and Lamp features.
The lampController uses the Listener (Publish-Subscribe client to
implement the Reads edge) and procedure call communication
(represented by the Requires edge) with Presence, Luminosity, and
Lamp. Computation of paths between vertices may support the
automated identification of this smell.

5 WORK PLAN
Being in the middle of this thesis, we established the main concepts
of behavioral maps and designed an inference framework. In the
next year, we want to refine the mapping between features and their
realizations, currently being one-to-one relationships. We want to
introduce “modules" to allow a more fine-grained traceability [29].
We also plan to extend the formalism to support family-based BMs
to analyze architectural issues for the entire (D)SPL in a static way
(as opposed to current configuration level analysis), which may be
relevant for smells detection [25]. We plan to work on this challenge
between September and February 2022.

The second research direction focuses on providing test gen-
eration/prioritization algorithms, at runtime and for one given
configuration, that rely on edge types between features. One can
give a higher priority to features involved in a control relationship
rather than those involved in a reads one. We plan to work in paral-
lel with the first research direction notably in September-December
2021 and again from March 2022.
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