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A B S T R A C T

Following the spread of the COVID-19 pandemic and pending the establishment of vaccination campaigns,
several non pharmaceutical interventions such as partial and full lockdown, quarantine and measures of
physical distancing have been imposed in order to reduce the spread of the disease and to lift the pressure on
healthcare system. Mathematical models are important tools for estimating the impact of these interventions,
for monitoring the current evolution of the epidemic at a national level and for estimating the potential
long-term consequences of relaxation of measures. In this paper, we model the evolution of the COVID-19
epidemic in Belgium with a deterministic age-structured extended compartmental model. Our model takes
special consideration for nursing homes which are modelled as separate entities from the general population
in order to capture the specific delay and dynamics within these entities. The model integrates social contact
data and is fitted on hospitalisations data (admission and discharge), on the daily number of COVID-19 deaths
(with a distinction between general population and nursing home related deaths) and results from serological
studies, with a sensitivity analysis based on a Bayesian approach. We present the situation as in November
2020 with the estimation of some characteristics of the COVID-19 deduced from the model. We also present
several mid-term and long-term projections based on scenarios of reinforcement or relaxation of social contacts
for different general sectors, with a lot of uncertainties remaining.

1. Introduction

While there are many models addressing the COVID-19 pandemic,
it is important to have models representing each specific country
since the evolution of the outbreak as well as the mandated control
measures and their efficacies are different. Compartmental SEIR-type
epidemic models (Rock et al., 2014) – where the population is divided
into some compartments such as Susceptible, Exposed, Infectious and
Recovered – are very suitable for long term projections due to their
potential computational speed of running different scenarios, in com-
parison to e.g. individual-based models. Moreover, SEIR-QD variants –
with additional compartments concerning hospitalisations (Q because
hospitalisation status is quite similar to quarantine) and deaths (D) –
are particularly well suited for COVID-19 pandemic due to the lack of
unbiased information on the real prevalence (Peng et al., 2020; Yang
et al., 2020).

We present one of the very few existing extended SEIR-QD model
adapted and calibrated on Belgium situation and data. Two simi-
lar approaches have been developed by the SIMID COVID-19 team
(UHasselt-UAntwerp) (Abrams et al., 2021) and the BIOMATH team

∗ Correspondence to: Namur Institute for Complex Systems (naXys) and Department of Mathematics, University of Namur, Namur, Belgium.
E-mail address: nicolas.franco@unamur.be.

(UGent) (Alleman et al., 2020). Those independently developed models
have their own characteristics and are complementary since it is diffi-
cult at this time to exactly know how to model COVID-19 in the best
way. The main goal of those three models is to inform policymakers
in Belgium about the projections of potential future decisions as well
as informing hospitals, institutions and the scientific community on
the estimated effects of non pharmaceutical interventions (NPI). Al-
ternative approaches have also been developed as an individual-based
model (Willem et al., 2021) and a meta-population model (Coletti et al.,
2021).

The three Belgian compartmental models have common character-
istics as a calibration on hospitalisations, deaths and serological studies
(but not considering cases data), a separation in several age classes with
different characteristics, a distinction between asymptomatic, presymp-
tomatic and symptomatic people with a different infectiousness, the
use of social contact data (Willem et al., 2020) to monitor the trans-
mission of the virus at different places (home, work, school, leisure)
and a Bayesian sensitivity analysis using Markov Chain Monte Carlo
(MCMC) methods. However, the model presented in this paper provides
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several improvements. The main one is the fact that nursing homes
are modelled as isolated entities in order to account for differences in
timing of spread of the coronavirus compared to the general population
and for a proportion of non-COVID-19 related deaths in Belgian nursing
homes collected data. Our model has no informed parameter (except
social contact data) in order to recover different characteristics of
COVID-19 and is calibrated on different stages of the hospitalisation
path (admission, discharge and death) to get a good view on length of
disease and hospital stay. There is also a specific estimation of potential
reimportations coming from travellers during the holiday period to
avoid an overestimation of the national transmission.

The paper is organised as follows. In Section 2, we present a tech-
nical description of the model. The main characteristics are presented
in Section 2.1, equations in Section 2.2, precisions on the data in
Section 2.3 and explanations of the calibration method and sensitiv-
ity analysis in Section 2.4. Additional details including the timeline
used and the full set of estimated parameters of the model are given
in Appendix A. The Results and Discussion Section 3 starts with a
presentation of the current estimation from the model in Section 3.1
with different indicators including reproduction number and infection
fatality rate at different periods as well as some characteristics of the
COVID-19 disease. Then we present a test on the validity of the model
in Section 3.2 with the confrontation of more recent data with previous
calibrations. In Section 3.3, we analyse a mid-term projections based
on estimations of new policy measures applied in October and Novem-
ber in Belgium concerning hospitalisations and deaths together with
an extrapolation on prevalence and seroprevalence within each age
group. Then some scenarios-based long-term projections are presented
in Section 3.4 visualising potential impacts of various exit strategies
during the first semester of 2021. Finally, in Section 3.5 we provide
a conclusion with strengths and limitations concerning the presented
model.

2. Materials and methods

2.1. General description of the model

The continuous deterministic compartmental model is divided into
the following 8 compartments in order to take account of the different
possible stages of the disease as well as the separation between asymp-
tomatic and symptomatic people with different infectiousness: Sus-
ceptible 𝑆, Exposed 𝐸, Asymptomatic Infectious 𝐼𝐴, Presymptomatic
Infectious 𝐼𝑃 , Symptomatic Infectious 𝐼𝑆 , Hospitalised 𝑄, Deceased 𝐷
and Recovered 𝑅. A more precise description is presented in Table A.5
of Appendix A. All those compartments exist for every age class. We
do not consider in this model any subdivision inside the hospital com-
partment. A schematic view of the compartments with their relations
is presented in Fig. 1.

In addition, 2000 isolated nursing homes (Assistance Retraite, 2018)
of similar average size are considered with all those compartments, also
presented in Fig. 1, and modelled as isolated entities in order to take
account of the different spread timing of the coronavirus compared to
the general population. The transmission of infection from the general
population to those nursing homes is modelled by a discrete random
infection process which is detailed in Section 2.2.2.

We consider the following age classes among the population: 0–
24, 25–44, 45–64, 65–74 and 75+. Those classes correspond to public
available data (Sciensano, 2020). We assume that the classes up to 74
are only present among the general population, while the remaining is
divided between a general 75+ and a specific class of nursing homes
residents. The transmission of the coronavirus between all classes of the
general population is computed using social contact data at different
places (Willem et al., 2020).

Some additional estimated parameters are considered in order to
capture specific effects. A probability parameter is capturing the fact
that only a part of the reported deaths from nursing homes are due

to the COVID-19 (Gillain et al., 2020). A corrective coefficient is used
to correct the new hospitalisations data since patients initially hospi-
talised for another reason or with no valid PCR test are not officially
considered in the admissions data (Sciensano, 2021). Recovery and
death rates from hospitals are considered variable in time in order to
take the continuous improvement of care methods into account (de
Pauw et al., 2021). A variable hospitalisation policy is considered
for nursing homes during the first wave (period March–June) since
residents are less likely to be hospitalised when the hospital load is
important (more than half of the hospitals had admission criteria and
specific agreements with nursing homes during the first wave (van de
Voorde et al., 2020)). All those specificities are detailed in Section 2.2.
This model takes into consideration potential reimportations of COVID-
19 from abroad during the holidays period based on travel trends data
which are detailed in Section 2.3.

Policy changes, according to Belgian epidemic’ schedule, are mod-
elled using different coefficients for the social contact matrices (Willem
et al., 2020). Social contacts are divided into 4 categories: home (house-
hold and nearby family), work (with transport), school and leisure
(with other places). All contacts are considered at 100% during the
period up to March 14, 2020. Then reduced percentages are estimated
by the model for the different periods of lockdown and phases of lift
of measures. These reduced percentages are the effect at the same
time of mobility restrictions, social distancing, prevention measures,
testing and contact tracing, while it is mathematically impossible to
determine the exact part of those effects. Hence new parameters for
some or all social contact types are estimated each time there is an
important policy change. The timeline of control measures in Belgium
and the way those measures are modelled are described in Appendix A
and Table A.7. Long-term scenarios-based projections are constructed
assuming a constant policy and compliance to measures during the fu-
ture with different realistic possibilities of percentage of social contacts
for still unknown policy effects, but otherwise estimated impacts of
previous control measures are assumed to remain the same in future.

This model does not take into consideration effects like seasonal-
ity or cross-immunity. The population is only age-structured and not
spatially structured. A spatial refinement of such a model would be
really important, but currently the public data officially provided are
not detailed enough to properly fit a complex spatial-structured model.

2.2. Equations of the model

2.2.1. Equations of the model for the general population part
Equations of the model for the general population are the following

ones, with 𝑖 = 0–24, 25–44, 45–64, 65–74, 75+ depending on the age
class:

d𝑆𝑖
d𝑡

= −𝑆𝑖
∑

𝑗
𝑀𝑖𝑗

𝜆𝑎(𝐼𝐴𝑗 + 𝐼𝑃𝑗 ) + 𝜆𝑠𝐼𝑆𝑗
𝑁𝑗

− 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑣𝑒𝑙

−𝑁𝑢𝑟𝑠𝑖𝑛𝑔 ℎ𝑜𝑚𝑒𝑠 𝑛𝑒𝑤 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 (𝑓𝑜𝑟 𝑆75+𝑜𝑛𝑙𝑦)

d𝐸𝑖
d𝑡

= 𝑆𝑖
∑

𝑗
𝑀𝑖𝑗

𝜆𝑎(𝐼𝐴𝑗 + 𝐼𝑃𝑗 ) + 𝜆𝑠𝐼𝑆𝑗
𝑁𝑗

− 𝜎𝐸𝑖

+ 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑣𝑒𝑙
d𝐼𝐴𝑖
d𝑡

= 𝜎𝑝𝑎𝑖𝐸𝑖 − 𝛾𝑎𝑖𝐼
𝐴
𝑖

d𝐼𝑃𝑖
d𝑡

= 𝜎
(

1 − 𝑝𝑎𝑖
)

𝐸𝑖 − 𝜏𝐼𝑃𝑖
d𝐼𝑆𝑖
d𝑡

= 𝜏𝐼𝑃𝑖 − 𝛿𝑖𝐼
𝑆
𝑖 − 𝛾𝑠𝑖𝐼

𝑆
𝑖

d𝑄𝑖
d𝑡

= 𝛿𝑖𝐼
𝑆
𝑖 − 𝑟𝑖(𝑡)𝑄𝑖 − 𝛾𝑞 𝑖(𝑡)𝑄𝑖

d𝐷𝑖
d𝑡

= 𝑟𝑖(𝑡)𝑄𝑖

d𝑅𝑖
d𝑡

= 𝛾𝑎𝑖𝐼
𝐴
𝑖 + 𝛾𝑠𝑖𝐼

𝑆
𝑖 + 𝛾𝑞 𝑖(𝑡)𝑄𝑖
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Fig. 1. Schematic view of the compartmental model. Straight lines represent the usual flows of individuals for a SEIR-QD-type model. Susceptible individuals (𝑆) move to an
exposed state (𝐸) and after a latent period either to a completely asymptomatic disease (𝐼𝐴) or to a path presymptomatic–symptomatic (𝐼𝑃 → 𝐼𝑆 ). They all recover (𝑅) except
a portion of symptomatic ones who require hospitalisation (𝑄) and either recover (𝑅) or die (𝐷). A significative proportion of symptomatic individuals in nursing homes directly
die without passing through hospital (𝐷ℎ) (this effect is minimal within the general population and ignored here). All those straight line flows are considered continuous and
proportional to the size of the initial compartment. In order to take account of an overreporting in Belgium data concerning individuals dying directly from nursing homes, an
adjustment is performed with the dotted line flow. Dashed lines represent specific flows which are discrete in time (performed each day) and represent either infections due to
external transmissions (due to travels for the general population or to visits for nursing homes) or new arrivals to nursing homes in order to compensate deaths. Those specific
flows are detailed in Section 2.2 and parameters in Table A.6.

Compartments are Susceptible (𝑆), Exposed (𝐸), Infectious asymp-
tomatic (𝐼𝐴𝑖 ), presymptomatic (𝐼𝑃𝑖 ) or symptomatic (𝐼𝑆𝑖 ), Hospitalised
(𝑄), Deceased (𝐷) and Recovered (𝑅). The main part of the model is
continuous (time unit is days). Elements in italic are additional discrete
actions performed each day. Infections during vacation travels are
modelled as follows: during the holiday period (July–September 2020),
some individuals are removed each day from the 𝑆𝑖 classes and added
to the corresponding 𝐸𝑖 classes (for age classes below 75) according to
estimated travellers and estimated prevalence in the visited countries
(as explained in Section 2.3) with a global coefficient 𝐶reimp.

Parameters are listed and explained in Table A.6 of Appendix A.
Some specific parameters are time-dependent and their dependence are
computed using a logistic sigmoid function in order to model a smooth
transition between two states with a minimal number of estimated
parameters in order to minimise overfitting. For the general popula-
tion, such a logistic function (called ‘‘recovery’’ function) monitors the
continuous care improvement at hospitals over time (de Pauw et al.,
2021) (with parameters estimated from the data):

𝛾𝑞 𝑖(𝑡) = 𝛾𝑞 𝑖

⎛

⎜

⎜

⎝

1 +
𝑃recovery

1 + 𝑒
−

𝑡−𝜇recovery
𝑠recovery

⎞

⎟

⎟

⎠

𝑟𝑖(𝑡) = 𝑟𝑖
⎛

⎜

⎜

⎝

1 −
𝑃recovery

1 + 𝑒
−

𝑡−𝜇recovery
𝑠recovery

⎞

⎟

⎟

⎠
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The structure of the population is 𝑁0−24 = 3250000, 𝑁25−44 =
3000000, 𝑁45−64 = 3080000, 𝑁65−74 = 1150000 and 𝑁75+ = 870000
outside nursing homes (with an additional 𝑁ℎ = 150000 inside nursing
homes) for a total population of 𝑁 = 11500000 (including death
compartments) which is assumed constant. Those numbers are round
numbers coming from the structure of the Belgian population as pro-
vided by the Belgian Federal Government on April 2020 (Statbel,
2020). The estimated initial prevalence 𝑝0 is proportionally distributed
between the 𝐸𝑖 on day 1 among the general population (corresponding
to March 1 reported situation = February 29 real situation). Nursing
homes are assumed not initially infected.

Transmission is governed by the so-called social contact hypothe-
sis (Wallinga et al., 2006). Social contact matrices 𝑀𝑖𝑗 (representing the
average number of contacts per day of age class 𝑖 from an individual of
age classes 𝑗) are based on social contact data from Flanders (Belgium
main region) collected in 2010 (Willem et al., 2012) and computed
separately for home, work, school and leisure using the SOCRATES
online tool (Willem et al., 2020). Work and transport categories are
merged as well as leisure and other places. Scaling coefficients 𝐶∗ are
used to represent the differential effect of introduced lockdown/policy
measures on each of these types of social contact. Those coefficients
capture at the same time the transmission reduction coming from a
global diminution of the contact rate (lockdown, closures) as well as
from sanitary measures like social distancing or mask wearing. Hence
the complete contact matrices are (for each given constant policy
period detailed in Appendix A):

𝑀𝑖𝑗 = 𝐶home𝑀𝑖𝑗home +𝐶work𝑀𝑖𝑗work +𝐶school𝑀𝑖𝑗 school +𝐶leisure𝑀𝑖𝑗 leisure

In addition to the contact rate, there are two coefficients 𝜆𝑎 and 𝜆𝑠 rep-
resenting the transmission probability for asymptomatic/
presymptomatic and symptomatic individuals, capturing susceptibility
and infectiousness. There are assumed age-class independent, while the
heterogeneity in infectiousness is introduced by a distinct probability
𝑝𝑎𝑖 of being asymptomatic.

The basic reproduction number for the general population is esti-
mated by the leading eigenvalue of the next-generation matrix (Diek-
mann et al., 1990, 2010) (with 𝑖, 𝑗 indexing the age-classes of the
general population):

𝑅0 = maxeigenv
[

𝜆𝑎

(

𝑝𝑎𝑗
𝛾𝑎𝑗

+
1 − 𝑝𝑎𝑗

𝜏

)

𝑀𝑖𝑗 + 𝜆𝑠

(

1 − 𝑝𝑎𝑗
𝛾𝑠𝑗 + 𝛿𝑗

)

𝑀𝑖𝑗

]

𝑖𝑗

The effective reproduction number is estimated by 𝑅𝑡 = 𝑅0

∑

𝑖 𝑆𝑖(𝑡)
∑

𝑖 𝑁𝑖−
∑

𝑖 𝐷𝑖(𝑡)
.

Those reproduction numbers only capture the epidemic within the gen-
eral population, while the situation within nursing homes is considered
as a separated system (for which cases can arise due to contact with the
general population through visits, but which does not itself affect the
general population).

2.2.2. Equations of the model for the nursing homes part
Equations for the population in nursing homes are nearly similar to

those of the general population:

d𝑆ℎ
d𝑡

= −𝑆ℎ𝑚ℎ
𝜆𝑎(𝐼𝐴ℎ + 𝐼𝑃ℎ ) + 𝜆𝑠𝐼𝑆ℎ

75
(

−𝑟ℎ(𝑡)(1 − 𝑃𝑐𝑜𝑟)𝐼𝑆ℎ 𝑖𝑓 𝑆ℎ > 0
)

+𝑁𝑒𝑤 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠

−𝑅𝑎𝑛𝑑𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑣𝑖𝑠𝑖𝑡𝑠
d𝐸ℎ
d𝑡

= 𝑆ℎ𝑚ℎ
𝜆𝑎(𝐼𝐴ℎ + 𝐼𝑃ℎ ) + 𝜆𝑠𝐼𝑆ℎ

75
− 𝜎𝐸ℎ

+𝑅𝑎𝑛𝑑𝑜𝑚 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑣𝑖𝑠𝑖𝑡𝑠
d𝐼𝐴ℎ
d𝑡

= 𝜎𝑝𝑎ℎ𝐸ℎ − 𝛾𝑎ℎ𝐼
𝐴
ℎ

d𝐼𝑃ℎ
d𝑡

= 𝜎
(

1 − 𝑝𝑎ℎ
)

𝐸ℎ − 𝜏𝐼𝑃ℎ
d𝐼𝑆ℎ
d𝑡

= 𝜏𝐼𝑃ℎ − 𝛿ℎ𝐼
𝑆
ℎ − 𝛾𝑠ℎ𝐼

𝑆
ℎ − 𝑟ℎ(𝑡)𝑃𝑐𝑜𝑟𝐼

𝑆
ℎ

d𝑄ℎ
d𝑡

= 𝛿ℎ𝐼
𝑆
ℎ − 𝑟ℎ(𝑡)𝑄ℎ − 𝛾𝑞ℎ(𝑡)𝑄ℎ

d𝐷75+
d𝑡

+ = 𝑟ℎ(𝑡)𝑄ℎ

d𝐷ℎ
d𝑡

= 𝑟ℎ(𝑡)𝐼𝑆ℎ
d𝑅ℎ
d𝑡

= 𝛾𝑎ℎ𝐼
𝐴
ℎ + 𝛾𝑠ℎ𝐼

𝑆
ℎ + 𝛾𝑞ℎ(𝑡)𝑄ℎ

(

−𝑟ℎ(𝑡)(1 − 𝑃𝑐𝑜𝑟)𝐼ℎ 𝑖𝑓 𝑆ℎ = 0
)

Parameters for disease dynamics in nursing homes are distinct from
those in the general population (except age-class independent ones,
cf. Table A.6). There are 2000 nursing homes (Assistance Retraite,
2018) considered as separated entities, with a constant population of
75 inside each one, for a total of 𝑁ℎ = 150000 residents (rounded
up from official 2018 statistics (Belgian health care knowledge centre
KCE, 2019)). New arrivals are considered in order to maintain each
nursing home’s population and are removed from the 75+ susceptible
class (while deaths originated from nursing home are considered as be-
longing to the general population, hence the nursing homes population
remains constant). Those transfers from the general population 𝑆75+ to
nursing homes 𝑆ℎ are taken into consideration since, according to the
small population inside each nursing home, new arrivals can have a
non-negligible effect on the proportion of susceptible residents.

Transmission inside each nursing home follows a usual SEIR-type
transmission with a specific contact rate 𝑚ℎ. Transmissions coming
from the general population is computed in a particular way using a
daily probability of infection: each day, for each nursing home, one
additional (integer) infected resident is moved from the 𝑆ℎ compart-
ment to the 𝐸ℎ compartment with probability 𝑃𝑡ℎ𝑆ℎ

∑

𝑗
𝜆𝑎(𝐼𝐴𝑗 +𝐼𝑃𝑗 )+𝜆𝑠𝐼𝑆𝑗

𝑁𝑗
,

where the coefficient distinguishes between the initial phase 𝑃𝑡ℎ and
lockdown and subsequent phases 𝑃 ′

𝑡ℎ. Note that this particular process
is stochastic, as opposed to the rest of the model which is deterministic.
Starting from lockdown, transmissions are only considered from the 25–
65 population (i.e. with 𝑗 = 25–44 and 45–64) since transmissions are
mainly from nursing homes’ workers. Potential reverse transmissions
are however not monitored here i.e. nursing home residents do not
infect the general population because their impact is more negligible
due to the huge size of the general population infected compartments.

Deaths from nursing homes through hospitalisation are counted
within the 75+ class for consistency with reported data. Additional
COVID-19 reported deaths from nursing homes (without hospitali-
sation) are monitored using an additional death rate 𝑟ℎ. Since the
officially reported data combine both confirmed COVID-19 deaths and
suspected COVID-19 deaths (Gillain et al., 2020), there is an un-
known overreporting percentage within the data. This overreporting
is captured by a constant probability 𝑃𝑐𝑜𝑟 that deaths are COVID-19
related. Hence only 𝑟ℎ(𝑡)𝑃𝑐𝑜𝑟𝐼𝑆ℎ are removed from the symptomatic
compartment while the remaining non-COVID-19 related deaths are
assumed occurring in the susceptible class or in the recovered class if
the first one is empty. For the first wave only (March 1 to June 30) a
variable hospitalisation policy is computed (to represent the fact that
the probability of hospitalisations of COVID-19 patients from nursing
homes varied over time (van de Voorde et al., 2020)) using variable
parameters 𝛿ℎ(𝑡) (proportion of hospitalised) and 𝑟ℎ(𝑡) (proportion of
direct deaths) of constant sum 𝛿ℎ(𝑡) + 𝑃𝑐𝑜𝑟𝑟ℎ(𝑡) = 𝛿ℎ, this proportion
being monitored over time by an estimated logistic function (called
‘‘hosp’’ function) depending on hospitals load with an additional delay:

𝛿ℎ(𝑡) = 𝛿ℎ −
𝑟ℎ𝑃cor

1 + 𝑒
−

𝑄(𝑡−delay)−𝜇hosp
𝑠hosp

𝑟ℎ(𝑡) =
𝑟ℎ

1 + 𝑒
−

𝑄(𝑡−delay)−𝜇hosp
𝑠hosp

This variable hospitalisation policy was not applied in the second wave
since most of nursing home residents were hospitalised. Hence from
July 1, those parameters are considered with the value 𝑄 = 0.
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2.3. Data used

We consider the following data for the calibration of the model
coming from Sciensano’s (national public health institute of Belgium)
public raw data (Sciensano, 2020) (October 31, 2020 release), all in
daily incidence: new hospitalisations, discharged and deaths from hos-
pital, age-class specific deaths and deaths directly coming from nursing
homes. Concerning new hospitalisations, an additional corrective esti-
mated parameter SUPPℎ𝑜𝑠𝑝 is added which estimates the percentage of
missing COVID-19 patients at the time of admission (hence catching
supplementary patients not initially hospitalised for COVID-19 or with
no valid PCR test (Sciensano, 2021)). This correction is directly applied
to the data. Deaths reported with a specific date are considered on that
specific date while situations reported by hospitals are considered to
occur up to 24h before the hospital report hence 2 days before the
official data communication. Note that graphics are plotted using the
dates of Sciensano’s communications (1 day delay).

Additional constraints are considered coming from Sciensano’s epi-
demiological reports (Sciensano, 2020). Those constraints determine
the set of admissibles parameters. Serological studies on blood donors
during the first wave are considered to provide strong constraints
on the prevalence. However, those serological data are biased since
there are strict conditions to be blood donors: being between 18 and
75 years old and having not developed any COVID-19 symptoms during
the previous weeks. This bias is naturally integrated into the model
by considering for the fit the ratio between immune people coming
directly from the asymptomatic compartment (hence the total number
in ∑

𝑖 𝑅𝑖 coming from 𝐼𝐴𝑖 compartments, denote by ∑

𝑖 𝐼
𝐴
𝑖 → 𝑅𝑖) and the

total asymptomatic population who has not developed a symptomatic
COVID-19 disease (∑𝑖 𝑆𝑖+𝐸𝑖+𝐼𝐴𝑖 +𝐼

𝑃
𝑖 +[𝐼𝐴𝑖 → 𝑅𝑖]) for the classes 𝑖 = 25–

44, 45–64 and 65–74. This ratio should be respectively between 0.5%
and 2.8% 7 days before March 30 and between 3.5% and 6.2% 7 days
before April 14, April 27 and May 11 (the 7 day delay is here to take
the needed time to build a detectable immunity into account). There
are also trivial constraints on parameters as e.g. 𝛿0−24 < 𝛿25−44 < ⋯
in order to reproduce the increase severity of the COVID-19 for older
people as well as trivial constraints to avoid negative or out-of-bound
parameters.

Additional constraints are imposed on nursing homes coming from
the result of massive PCR test on April–May: the average percentage of
infected people should be 8% ± 3% during the period April 15–30 and
less than 2%±2% during the period May 15–31. Those percentages are
estimated from Sciensano’s epidemiological reports using a calculated
incidence between each week. Additionally, the average percentage
of asymptomatic residents (including presymptomatic ones) among
infected should be 75% ± 10%.

This model takes into consideration potential reimportations of
COVID-19 from abroad during the holiday period. No reimportation is
assumed in June since borders where barely opened. Reimportations
are estimated during the period July to September using the following
method: According to 2019 travel trends (Association of Belgian Travel
Organisers, 2019), we consider a proportionality of travellers of 36% in
July, 26% in August and 21% in September. There is no data available
concerning the inhomogeneous repartition inside each month, but we
assume a homogeneous one for July and August while a 2 to 1 ratio
between the first half of September and the second half. Only the
top five countries of destination are considered with the following
proportion: France 23%, Spain 11%, Italy 9% and The Netherlands 7%
(Belgium is discarded). Then for each of those countries we consider
the daily ECDC statistics on cumulative numbers for the previous 14
days of COVID-19 cases per 100000 (ECDC, 2020). The reimportations
are added using an estimated global coefficient 𝐶reimp and injected
proportionally in the exposed compartment of the classes 0–24, 25–
44, 45–64 and 65–74 and removed from the corresponding susceptible
compartments. The estimated reimportations per day are presented in
Appendix A Table A.9.

2.4. Calibration method

Except social contact data, all of the 65 parameters of the model are
estimated using a Markov Chain Monte Carlo (MCMC) method (Metropo-
lis et al., 1953), hence there is no assumption coming from studies
in other countries. We assume that each daily incidence data fol-
lows a Poisson distribution which is appropriate when dealing with
count data (Hilbe, 2014). The log-likelihood function, representing the
probability that observed data correspond to model’s projections, is
computed as:

log𝐿 =
∑

(

−𝑦𝑖 log(𝑌𝑖)
)

+ 𝑌𝑖

where 𝑦𝑖 represent the observed incidences and 𝑌𝑖 the expected in-
cidences as given by the model for a given set of parameters. Note
that the sum is done over all incidence data (new hospitalisations,
discharged and deaths) presented in Section 2.3 for each day and that
a constant log(𝑦𝑖!) is ignored.

The fitting procedure is performed in two steps:

• Best-fit mode: An initial calibration step is performed using the
maximum likelihood method with an optimised first-choice hill
climbing algorithm performed half of the steps on one parameter
at a time (i.e. one neighbour = variation of one parameter) and
the other half on all parameters (i.e. one neighbour = variation
of all parameters), with a quick best fit search performed on
accepted descent directions to speed up the process. For all pa-
rameters, wide normal prior distributions are used (Table A.10).
This initial calibration is highly computationally demanding due
to the presence of a very high number of estimated parameters
and the presence of local minima. It is initially performed during
5000000 iterations with a special trick to increase the rapidity
of the algorithm: instead of 2000 different nursing homes, only
100 nursing homes are considered with each time 20 copies of
each. This approximation is suitable as long as the algorithm is
still far from the best-fit. In a second time, the best-fit search is
pursued for 20000 iterations using the complete 2000 different
nursing homes in order to further refine selected parameters.
All this procedure is repeated at least 1000 times using parallel
computing and 250 parameter sets with best scoring model runs
are retained (the others 75% are discarded in order to avoid
unwanted local minima).

• MCMC mode: A classic Random-Walk Metropolis (RWM) algo-
rithm (Metropolis et al., 1953; Lesaffre and Lawson, 2012) is
performed in order to provide Bayesian inference using the Pois-
son log-likelihood assumption with the algorithm initiated from
the 250 parameter sets obtained from the best-fit mode. For each
parameter set, a 20000 burn-in period is performed followed
by 200000 iterations retaining every 20000th iteration, which
provide 2500 final samples coming from potentially different
local minima zones in order to avoid a too high autocorrelation
of the results.

The program is written is C language. The code source is publicly avail-
able (Franco, 2021). The full ODEs are solved by numerical integration
using the GNU gsl odeiv2 librairy and a Runge–Kutta-Fehlberg45 inte-
grator. The computation was performed on the HPC cluster Hercules21.

3. Results and discussion

3.1. Current estimations

We present in this section the result of the calibration of the model
as on November 1, 2020, with considered data up to October 31,

1 ‘‘Plateforme Technologique de calcul Intensif’’ (PTCI) located at the
University of Namur, Belgium.
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Fig. 2. Incidence in new hospitalisations (with underreporting correction included) and deaths with 90% CI (dotted lines).

Fig. 3. Incidence deaths within age classes with 90% CI (dotted lines).

2020. Results are presented in the figures with medians, 5% and 95%
percentiles, hence with a 90% confidence interval. The comparison
between the model and some hospitalisations and deaths incidence data
are presented in Fig. 2 for the general incidence data in hospitalisa-
tions and deaths and in Fig. 3 for incidence data in deaths with age
class repartition (for the classes which have a significative amount of
deaths). Data in Fig. 2 are plotted with the correction coming from the
underreporting on new hospitalisations to account for the discrepancies
in COVID-19 hospital admissions, discharges and deaths. We can notice
that, since this model is deterministic, it only captures the average
evolution with an uncertainty concerning this average evolution, hence
the uncertainty does not capture stochastic realisations around this
average.

Fig. 4 shows a general representation of the evolution of the epi-
demic in Belgium with hospitalisations, people discharged from hos-
pitals and deaths coming from hospitals and from nursing homes, all
in prevalence or cumulative numbers. We can see that the model
calibration fits the hospitalisation prevalence and cumulative deaths
data with a good exactitude (excluding of course data noises) despite
that fact that the calibration is entirely done on incidence data. The
interest in modelling the epidemic within nursing homes separately
from the general population can clearly be seen on this figure. Indeed,
the form of the death curve for nursing homes is really different from
the ones for the general population since the epidemic started later in
nursing homes but was more significant.

Initially the model overestimated the number of deaths from the end
of the first wave. It was not possible to calibrate constant death rates
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Fig. 4. General view on prevalence data and estimations with 90% CI (dotted lines).

throughout all phases of the epidemic. This may be a consequence of
either or both care improvement in hospitals and lower aggressiveness
of the virus. Hence death and recovered rates within each age class are
modified by a logistic function depending on time (cf. Section 2.2 for
details). The current improvement (in comparison to the very beginning
of the epidemic) is estimated as 58.2% [49.3% ; 64.4%], hence 58.2%
of the patients which should have died in March are now recovering
from hospitals. We remark that it is impossible to know which part is
due to care improvement (which was confirmed (de Pauw et al., 2021))
and which part is potentially due to lower aggressiveness of the virus
(if there is any) and that the death rate seems to rise again in October.
However, Fig. 3 presents a slightly larger increase than expected for
the deaths within the class 75+. This could be indicative of a small
decrease in the quality of care during the second wave due to the huge
load of the hospitals (but still better than during the first wave).

Deaths coming directly from nursing homes are not all due to
COVID-19 since many PCR tests are lacking. The model estimates
that only 83.1% [66.9% ; 89.4%] of direct nursing home deaths are
really due to COVID-19. The ratio between deaths coming directly
from nursing homes and deceased patients in hospitals coming initially
from nursing homes seems to be not constant, and it was necessary to
introduce a variable hospitalisation policy (van de Voorde et al., 2020).
The best answer found was to monitor hospitalisations from nursing
homes through a logistic function depending on general hospital load
but with a specific delay (cf. description of the logistic function in
Section 2.2.2). Hence, when hospital load starts to become too high,
less people from nursing homes are hospitalised and the reverse effect
occurs when hospital load gets lower, but with a delay parameter
estimated at 10.6 days [8.4 ; 12.9].

The basic reproduction number 𝑅0, representing the average num-
ber of cases directly generated by one infectious case in a population
which is assumed totally susceptible, is estimated in average for each
period (we consider this number dependent on lockdown measures)
and computed as the leading eigenvalue of the next-generation matrix
(cf. Section 2.2 for details). The effective reproduction number 𝑅𝑡 repre-
sents the average number of cases directly generated by one infectious

case taking account of the already immune population, hence varying
over a period. Estimations for the general population are presented in
Table 1.

The reproduction number of the pre-lockdown period is a bit over-
estimated compared to other Belgian models ((Abrams et al., 2021;
Willem et al., 2021), but in accordance with (Alleman et al., 2020)).
This is probably due to the fact that the model does not take explicitly
account of infections coming from foreign travel at this particular time
and this results in an estimated 𝑅0 slightly above 4. For the period
May 4–June 7 phases 1A-1B-2 (cf. Table A.7), since there were policy
changes almost every week, we only provide here the estimated 𝑅0 at
the end of this period. The second wave 𝑅0 does not take account of
the new measures applied in October 19 whose effects should only be
visible on November.

The infection fatality rate (IFR) can be estimated using the total set
of recovered people according to the model (hence including untested
and asymptomatic people). Due to variable death rates over time, the
IFR in the early period of the epidemic is higher than in the later
months. Estimations are presented in Table 2. The mean and last period
are limited to September since October data need some consolidation
regarding the number of deaths.

Table 3 presents some model estimates characterising disease pro-
gression. Durations are derived according to some specific rate parame-
ters related to the model. The model cannot really detect the exact time
when symptoms appear, hence the end of the incubation period merely
corresponds to the estimated time when the infectiousness becomes
more important. The total disease duration for symptomatic people
concerns only not hospitalised individuals (not directly recovering from
the 𝐼𝑆𝑖 compartment), while the duration is longer for the others. The
hospitalisation duration is the average until discharged or deceased (no
distinction is provided, hence according to the average rate of exit of
the 𝑄𝑖 compartment) at the beginning of the epidemic, hence before
care improvement. The duration for asymptomatic nursing homes’
residents cannot really be estimated by the model (the confidence
interval is very wide). Indeed, once a single nursing home is completely
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Table 1
Estimations of 𝑅0 and 𝑅𝑡 values.

𝑅0 𝑅𝑡 (at the end of the period)

Pre-lockdown: March 1 → March 13 4.08 [3.90 ; 4.34] 4.04 [3.86 ; 4.30]
School and leisure closed: March 14 → March 18 2.22 [2.13 ; 2.34] 2.16 [2.07 ; 2.27]
Full lockdown: March 19 → May 3 0.65 [0.60 ; 0.71] 0.61 [0.56 ; 0.66]
Phase 1-2: May 4 → June 7 0.79 [0.74 ; 0.83] 0.73 [0.69 ; 0.78]
Phase 3: June 8 → June 30 0.98 [0.91 ; 1.06] 0.91 [0.84 ; 0.98]
Phase 4: July 1 → June 28 1.37 [1.28 ; 1.50] 1.27 [1.19 ; 1.39]
Phase 4bis: July 29 → August 31 0.73 [0.63 ; 0.88] 0.68 [0.58 ; 0.82]
Second wave: September 1 → October 31 1.70 [1.62 ; 1.80] 1.34 [1.28 ; 1.41]

Table 2
Infection fatality rate estimations.

General IFR March–April period July–September period

Overall population 1.04% [0.93% ; 1.14%] 1.15% [1.02% ; 1.28%] 0.34% [0.31% ; 0.36%]
0–24 0.01% [0.00% ; 0.02%] 0.01% [0.00% ; 0.02%] 0.00% [0.00% ; 0.01%]
25–44 0.05% [0.03% ; 0.07%] 0.06% [0.04% ; 0.07%] 0.02% [0.01% ; 0.03%]
45–64 0.21% [0.20% ; 0.22%] 0.22% [0.21% ; 0.23%] 0.09% [0.08% ; 0.10%]
65–74 1.85% [1.78% ; 1.92%] 1.97% [1.90% ; 2.05%] 0.97% [0.93% ; 1.02%]
75+ (nursing homes included) 8.34% [7.57% ; 9.36%] 9.75% [8.81% ; 10.99%] 2.19% [1.97% ; 2.47%]

infected, asymptomatic infected residents can remain a very long time
inside the 𝐼𝐴ℎ compartment without infecting any new resident, hence
there is no constraint within the model on this duration coming from
the available data. This excessive duration must be considered as an
outlier.

3.2. Confrontation of previous calibrations

One way to test the robustness of a model is to assess ability of
the model to predict the evolution of the epidemic beyond the time
period for which data is used to fit the model. This model can provide
projections or scenarios in two different ways. When new policy inter-
ventions are expected or a specific behaviour change is planned due
to the calendar, it is possible to extrapolate the future transmission
of the COVID-19 (monitored here by the number of contacts) using
relative percentage of transmission in comparison to the pre-lockdown
phase. This percentage can only be a vague estimate of what could
be the real transmission and it is sometimes necessary to look at
several different scenarios. On the other hand, when no new policy
intervention is expected for a certain time, it is possible to have a more
precise projection based on current estimated contacts (what we call
the current behaviour) but which is only valid up to the next policy
intervention.

We present two old projections from the model. The first one in
Fig. 5(a) is a 2.5 month projection based on the specific scenario that
the transmission at school from September 1 would be at a level of 75%
in comparison to the pre-lockdown period due to sanitary measures like
masks wearing. The second one presented in Fig. 5(b) is a 1 month
projection based on the current behaviour and the estimation from the
model of the percentage of transmission at schools compared to the pre-
pandemic situation (coefficient 𝐶school), which was estimated at that
time to be 69.7% [44.2% ; 88.6%]. Comparison of these old projections
with observations highlights the fact that the uncertainty must be taken
into consideration.

3.3. Mid-term scenario-based projection

Every scenario is hypothetical. New measures that have not been
tested cannot really be estimated on the level of their impact and
it is impossible to predict evolution in compliance to them from the
population as well as future policy changes. This is why any realistic
projection must rely on the assumption of a perfect continuity of
measures and compliance for elements which are a priori not suspected
to change soon and on different hypothetical scenarios for untested
modifications of measures.

In response to the large second wave in Belgium, authorities decided
to enforce new measures on October 19 such as closing bars and
restaurants, reducing the allowed social contact (known as bubble) to
one person, promoting teleworking and establishing a curfew night
time. On November 2, a soft lockdown was put into place, with closure
of non-essential shops, teleworking mandatory, leisure mostly reduced
and social contacts even more reduced. Schools are closed during 2
weeks and then reopen with a 5/6 attendance (except for universities).

While it is impossible to know with precision the impact from
those measures, we estimate that the effect from the soft lockdown
could be comparable to the effect of the first lockdown, since the
small remaining liberties could be balanced by generalised sanitary
measures like mask wearing. The effects from October 19 measures
are more uncertain but should be situated in terms of efficacy between
September behaviour and lockdown behaviour. Hence the most realistic
mid-term scenario is to consider a medium situation from October 19,
with a full reduction applied from November 2 until the December
13 planned deadline. Schools are considered at 0% transmission from
November 2 to November 15 and at 5/6 thereafter. Every contacts are
assumed to be restored at September level after December 13 (except
for usual school closures). Social contact matrix coefficients concerning
this scenario are detailed in Table A.8.

In Fig. 6(a), we present the estimated effect on hospital load from
those measures. We note that, according to those measures and to
the model, the theoretical maximum capacity of 10000 hospital beds
in Belgium should be almost reached but not exceeded. Fig. 6(b)
presents the expected mortality in case of the new measures scenario.
This expected mortality relies on a quality of care that may not be
maintained.

We must remark that the uncertainty shown in the different pro-
jections (5, 6, 7) is the result of uncertainty on posterior parameter
estimates, but those parameters include both disease characteristics
and previous reductions on specific contact rates (coefficients 𝐶∗). For
example, the current behaviour scenario in Fig. 6(a) is represented
using the uncertainty coming from COVID-19 estimated characteristics
as well as the uncertainty coming from the estimation of the current
behaviour, while the new measures scenario also uses the uncertainty
coming from the estimation of first lockdown contact rates.

We can also extrapolate the evolution of the prevalence. In Fig. 6(c),
we present the estimated percentage of infected people over time for
each age class. We can clearly see the effect of mid-March lockdown
measures on children and working people. The effect of lockdown
measures on older people (especially 75+) is less important since the
curve is broken in a less effective manner. Concerning the second wave,
we can see that the virus is really present among the very young
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Table 3
Some characteristics of the COVID-19 as estimated by the model. All durations are average durations, and the given uncertainties are uncertainties on those averages, not on the
individual values.

0–24 25–44 45–64 65–74 75+ Nursing homes

Latent (pre-infectious) period 1.4 days [1.1 ; 2.0]

Presymptomatic period 6.7 days [4.7 ; 8.0]

Total disease duration 4.7 days 5.2 days 5.7 days 6.3 days 7.8 days 27.3 days
asymptomatic people [4.1 ; 5.4] [4.5 ; 6.0] [4.7 ; 6.5] [5.5 ; 7.5] [6.3 ; 10.0] [17.0 ; 62.9]

Total disease duration 11.2 days 11.6 days 12.1 days 12.7 days 13.2 day 13.9 days
symptomatic people [9.6 ; 12.4] [10.3 ; 13.1] [10.8 ; 13.6] [11.3 ; 14.0] [11.6 ; 14.6] [12.3 ; 15.3]

Hospitalisation duration 15.4 days 17.4 days 16.4 days 12.1 days 11.4 days 10.7 days
(before care improvement) [12.6 ; 17.9] [16.1 ; 18.9] [15.2 ; 17.6] [11.1 ; 13.5] [10.6 ; 12.5] [9.0 ; 11.9]

Overall percentage of 91.5% 84.3% 72.8% 55.8% 35.3% 25.7%
asymptomatic people [78.4 ; 95.3] [70.5 ; 90.1] [60.3 ; 81.2] [41.9 ; 64.8] [23.9 ; 50.1] [12.5 ; 38.5]

Fig. 5. Previous projection from August 17 based on the scenario of a 75% transmission at school from September 1 and from September 28 based on the continuation of current
behaviour. The strong line represents the median, continuous lines represent deciles (10% percentiles) while dashed lines represent ventiles (5% percentiles). Uncertainty covers
both uncertainty about disease parameters and the impact of control measures.

population due to two complete months of school opening. Prevalence
in this age groups is drastically reduced by the two weeks closure and
brought at a lower level than other age classes.

In Fig. 6(d), we present the estimated percentage of recovered peo-
ple, hence the estimated percentage of immunity acquired within each
age class if we make the assumption that a non-waning immunity is
granted to recovered people. Such a lasting immunity is not guaranteed
for the moment, but recent studies show that antibodies are present
after several months for a large majority of the population (Wajnberg
et al., 2020). The seroprevalence is calibrated using blood donor tests
results (around 1.3% on March 30 and 4.7% on April 14) (Sciensano,
2020). Since those tests where only performed on an (almost) asymp-
tomatic population which have not developed COVID-19 symptoms
from the past 4 weeks, the model also takes into account immunity
coming from the symptomatic population and from nursing homes.
Note that we allow a 7 days delay in our model after recovering to be
sure of the detectability of the antibodies. Table 4 presents the detail
of some seroprevalence estimation.

3.4. Long-term scenarios-based projections

The model allows to construct long-term scenarios which are very
suitable to study the potential impact from a specific measure. The
possibilities are numerous but we present in this section a simple
study of the potential impact of an increase in contacts at a specific
place (school, family, work and leisure). The increase is perform from
January 4, 2021 up to June 30, 2021, when the risk of an emerging
third wave is present. We work here with the assumption that there is

no modification on the set of susceptible people except from natural
infection, hence with the assumption that a non-waning immunity
is granted to recovered people. This hypothesis could be modified
negatively in the future if the probability of a reinfection is important
or positively if the immunity is artificially increased by the arrival
of a vaccine. We must emphasise that those scenarios are not real
forecasts but only projections under some assumptions. In particular,
these projections do not take into account any potential variant of
concern with significantly different characteristics.

The baseline scenario is the restart of all activities on January 4
with similar transmissions/contacts as in September. Those estimated
contacts percentage are 𝐶school = 88.2% [40.5%; 99.0%] for school con-
tacts, 𝐶home = 51.4% [46.9%; 54.4%] for family contacts, 𝐶work = 9.3%
[6.0%; 14.5%] for work contacts and 𝐶leisure = 31.3% [21.2%; 55.6%]
for leisure contacts. We recall that those percentages do not correspond
to the exact number of contacts as determined by the attendance, but to
the reduced transmission in comparison to the pre-lockdown period as
the result of decrease of contacts but also of sanitary measures. These
numbers reflect that transmission is estimated at a very low level at
work since sanitary measures and social distancing are more respected
than during leisures or among family. The high transmission percentage
at school does not necessarily mean that schools are the engine of the
virus transmission since most of the student are asymptomatic with a
reduced infectiousness, and the uncertainty concerning this parameter
is very high.

The baseline scenario is presented in Fig. 7(a) together with the
potential impact of full transmission at school 𝐶school = 100%, hence
a transmission without any sanitary measure as well as without any
quarantine imposed by the testing and tracing process. We can see that
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Fig. 6. Mid-term scenario with potential effects from new measures applied on October 19 and November 2. The first figure presents a comparison of the hospital load with or
without the effects from the new measures. The others figures present the projections on mortality, prevalence and seroprevalence under the new measures. Uncertainty covers
both uncertainty about disease parameters and the impact of control measures.

Table 4
Seroprevalence estimations for the new measures scenario.

Global immunity Among asymptomatic Inside nursing homes

March 30 2.53% [2.22% ; 2.86%] 2.22% [1.89% ; 2.52%] 1.42% [1.12% ; 1.81%]
April 14 5.16% [4.(7% ; 5.76%] 4.24% [3.66% ; 4.66%] 8.79% [7.14% ; 10.74%]
October 31 16.80% [14.14% ; 19.05%] 9.35% [8.26% ; 10.10%] 30.71% [26.20% ; 35.43%]
January 1 26.53% [21.02% ; 30.29%] 17.13% [15.21% ; 18.33%] 52.23% [44.42% ; 58.00%]

the baseline scenario itself provides a non-zero probability of a third
wave but still low. The full contacts at school scenario increases a bit
this probability to a reasonable extent.

Increases in family contacts, work contacts and leisure contacts are
presented in Figs. 7(b)–7(d) with each time a hypothetical increase of
10% or 20% on respectively 𝐶home, 𝐶work and 𝐶leisure. Those increase
must be understood as a non-proportional increase (e.g. a work increase
of 10% corresponds to 𝐶work = 9.3% + 10% = 19.3%). We can clearly
see that an increase in leisure contact has the most important effect
on the evolution of the epidemic and could lead to a potentially
problematic third wave. Full transmission scenarios for family, work or
leisure cannot be taken as realistic since they would provide a complete
explosion in the absence of vaccine.

3.5. Conclusion

We have presented an age-structured SEIR-QD type model with a
number of improvements compared to others models as a specific con-
sideration for nursing homes, variable parameters and reimportation
from travellers. Those improvements were important in order to catch
the specificity of the epidemic in Belgium.

The model allows to have a good study of the current behaviour of
the epidemic, with an estimation of hidden elements like the real preva-
lence of the virus and the potential evolution of the immunity. More
important, the model allows to construct scenarios-based projections in
order to estimate the potential impact from new policy measures and
can explicitly serve to complement others models for policy makers.

However, the model suffers from several limitations which would
be important to try to solve in order to better catch the evolution of
the epidemic. In particular, the model is only capturing an average be-
haviour resulting in a kind of underestimation of the uncertainty on the
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Fig. 7. Long-term scenarios with potential isolated effect from an increase in contacts at a specific place (with ventiles). Figure (a) presents the baseline scenario in blue as well
as an increase in school contacts in green. The other figures present each time two possibility of increases in contacts in green and red, while the baseline blue scenario was
omitted for readability. Uncertainty covers both uncertainty about disease parameters and the impact of control measures.

real data. This is mainly due to the deterministic nature of the model
not capturing daily stochastic realisations. This model captures some
key elements as heterogeneity concerning the age structure and the
particular role of nursing home but misses other heterogeneous aspects.
For example, the lack of spatial consideration is a huge approximation
of the reality, even if the Belgian country is small and very connected.
Also, the compartmental distinction is limited to asymptomatic and
symptomatic while there are several variations of the severity and
hospitals are considered as a unique homogeneous element. Further-
more, the lack of refinement inside age classes is a brake on the study
of interesting scenarios, as e.g. studying the separated impact from
transmission at primary school, secondary school or university. We
must remark however that such a distinction is impossible without
sufficiently refined data, and those are not publicly released in Belgium,
which is very problematic for quality scientific research.
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