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Abstract

The interplay between light and matter gives rise to several phenomena, including nonlin-
ear optical (NLO) effects. This thesis aims at describing and understanding, using quantum
chemistry, the NLO properties of molecules. In particular, it focuses on their second (SHS) and
third (THS) harmonic scattering responses: fsys and yrys, respectively. The goal is to provide
insights and to help towards the design of new materials, in a multidisciplinary framework
combining theory and experiment.

In the first part, the chapters are dedicated to the accurate description of (gas phase)
molecular responses of reference molecules, crucial for experimental measurements. So, a
hierarchy of Coupled Cluster methods has been employed with large basis sets and checked
against experimental results in order to select an appropriate level of approximation. Then,
the first quantum chemical investigation on y ;s is reported, presenting the calculated values
and their decomposition into spherical components, at the light of comparisons with fB¢ys.
It shows that Y4 is dominated by its isotropic contribution contrary to fsyg, of which the
major contribution is dipolar or octupolar as a function of the molecular structure. Finally,
the impact of vibrational contributions has been addressed for the water molecule as a model
system, thanks to a homemade implementation of finite-field differentiation techniques. It
is shown that the contributions to the dynamic NLO properties are small but non-negligible
(10% or less), while much larger in the static limit.

The second part focuses on the study of molecules of increasing complexity, displaying
large or remarkable second-order NLO responses. On the one hand, NLO switches have been
explored, with a focus on the characterization (structures, linear and nonlinear optical re-
sponses) of each of their states as well as the f3¢y¢ contrast between them. In particular, two
types of compounds have been considered: i) octupolar molecules with 6 ruthenium(II) cen-
ters that can be oxidized and ii) multi-state compounds, involving two or three benzazolooxa-
zolidine units, leading up to 4 or 8 different states, respectively. In both cases, quantum chem-
ical calculations have provided precious insights for a better understanding of their behavior
and optimization. In particular, the second-order NLO responses have been rationalized using
different few-state models to account for their complex architectures. On the other hand, a
new methodology to study the NLO response of fluorescent proteins, biotags of interest in
second-harmonic imaging microscopy, has been developed. As a proof of concept, two pro-
teins have been considered, with promising results. For instance, for the bacteriorhodopsin,
the comparison with experimental data is excellent, providing an avenue for unraveling the
origin of these NLO responses.

These different contributions pinpoint the importance of quantum chemistry to deduce
structure-activity relationships and help the design of new and improved molecules.
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Introduction, objectives and methods






Chapter One

Introduction and objectives

Abstract

This first Chapter is dedicated to lay the foundations of our work. Hence, the first part
introduces the interaction between light and matter, which is the source of nonlinear optics
(NLO). It is followed, in second and third sections, by the description of NLO materials and
NLO molecular switches, which are the main topics of the thesis. Emphasis is put on both
the first and second hyperpolarizabilities. Finally, the main objectives of the manuscript
are detailed at the end of this chapter.



4 CHAPTER 1. INTRODUCTION AND OBJECTIVES

This thesis lies at the crossroad between three domains of science. The first is chemistry,
study of matter and its transformations. As such, its realm extends roughly from the atomic to
the macromolecular level, with a particular focus on the composition, structure, and properties
of substances, together with the examination of the changes they undergo when they interact.
It is of primary importance in the work. The second is quantum chemistry, a branch of quantum
mechanics, which has seen rapid developments in the last 100 years and provides, since then,
unprecedented understanding of the chemical phenomena, thanks to many methodological
developments (some of them are reviewed in Chapter 3). The last is modern computing:
together with robust algorithms, it provides the ability to translate the theories into computer
codes that are applied routinely to systems with hundreds of electrons. These three topics are
combined here for the study, at the molecular level, of nonlinear optics.

Section 1.1

Nonlinear optics (NLO)

Interactions between light (or any other electromagnetic field) and matter give rise to sev-
eral phenomena. It is also the basis of many spectroscopic techniques, which depend on both
the range of wavelengths that are used and the intensity of the beam to probe the properties
of matter. Indeed, with the invention of the laser, it was discovered that the optical properties
of a material may not result from phenomena that are linearly dependent to the intensity of
light, hence the term nonlinear optics (NLO). An example is the experimental observation of
the second harmonic generation (SHG) by Franken et al.* in 19612 and of the third harmonic
generation (THG) by Terhune and co-workers? in 1962. In such processes, a photon of fre-
quency 2w (3w for THG) is generated from the interaction of a NLO material with a laser
beam of frequency w. The amount of generated photons is proportional to the square (cube)
of the incident intensity in SHG (THG).

At the macroscopic level

Electromagnetic phenomena at the macroscopic level are well described by Maxwell’s
equations. Simplifications arise from neglecting the magnetic properties, which are not con-
sidered in this work, so that only the interactions between an electric field, F, and matter are
of interest. It is easy to show that this results in a polarization, P(F), of the material coming
from the modification of its charge distribution (electrons and nuclei). In isotropic media and
for weak fields, the resulting polarization is linearly dependent to F:

P(F) = ¢y x F, (1.1)

aNote: the bibliographic references will be given chapter per chapter.
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where ¢ is the dielectric constant of vacuum and y, the electric susceptibility of the medium.
In anisotropic media, which is the case for many crystals, the polarization depends on the
direction and so the susceptibility becomes a (rank 2) tensor:

X,Y,Z

P,(F) =g, Z xij F; = €0 (x - F), (1.2)
J

where i and j are Cartesian coordinates X, Y, Z, in the laboratory frame (denoted with up-
percase letters). In strong electric fields, the linear behavior described by previous equations
is no longer valid, and a power series is used instead:

P(E)
€0

:X(l)-F—i-x(z):F2+}((3)5F3+... (1.3)

where y (D is the linear susceptibility, and y®, ¥ are the first and second nonlinear suscep-
tibilities.

At the molecular level

The source of the polarization is, at the molecular level, the modification of the dipole
moment of the molecule in response to the field, so its phenomenological description is:

1 1
w(F) = ugy + Au(F), with A,u(F)za-F+§[3 :F2+§yEF3+... (1.4)

where u, is the intrinsic dipole moment of the molecule and a, the molecular polarizability,
while 8 and y are the first and second hyperpolarizability tensors, respectively. Note that
instead of a Taylor series (which is referred to as the “T” convention), a power series may be
used (the “B” convention).?

If, instead of a static electric field, one composed of a static and dynamic part is used,
F(w) = F° + F® ('@t 4 ¢'t) | different nonlinear optical phenomena appear. Indeed, when
pluging this expression in Eq. (1.4) truncated after the third term, one gets:

A‘LL(F) — A,u(o)-i—A,u(‘“) (e—iwt +eiwt)+A‘u(2w) (e—2iwt+62iwt)+A‘u(3w) (e—Bia)t +63iwt)
(1.5)

wherein the terms oscillating at the same pulsation were collected:
(0) 0 1 00 wpw 1. 000 cp0powpow
Ap® = a-F+ 2B FOF + B FUF + oy iFOFF + v iFOFUF,
(w) w Opw 1 . Op0pw 1 . WpEWRW
A = F+ FF + oy FFF + 2y iFUFOFY,

1 1 .
AU = 3 B : FCF® + ST FOF“F®,
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1
AuB) = o {FOFYF®. (1.6)

Each term identifies a different process, characterized by the combination of static (F®) and
dynamic (F®) electric fields for the input and output pulsations. For example, the THG process
is the only term to contribute to u®®) in Eq. (1.6). The y tensor probed by THG is generally
written y(—3w; w w, w) to reflect this combination. The different NLO processes found in the
previous equation are detailed in Table 1.1. In all generalities, the tensors are written:

a(—(l)o-; wl), ﬂ(_wO’J w1, (1)2), and Y(_waz w1, Wy, (1)3), (17)

where w, = D, w; is the frequency of the outgoing electric field (conservation of energy),
and

Xyz

Ap;(F) =Z a;j(—wg; 1) Fj(w)
j

Xyz

1
J

Xyz

+ %Z Yij(—Wo; w1, Wg, w3) F; (1) Fr(wy) Fy(ws) +... (1.8)
" jkl

where i, j,k,l refer to Cartesian coordinates x, y and z, this time in the molecular frame

(denoted with lowercase letters). In Chapter 2, one will explore how to relate these molecular

tensors (which are the outputs of the calculations) to the macroscopic quantities obtained in

experimental measurements (in the cases of SHG and THG).

Permutation and symmetry

The order of the input fields does not matter in Eq. (1.8) (the incident photons are indis-
cernible and the scalar product is commutative). This translates into an intrinsic permuta-
tion symmetry: for a rank n NLO tensor, permutation of the n—1 last indices gives unchanged
quantity. In other word:

Bijk = Bikj = Bicjky> and Yijir = Yijik = Yikjt = Yiktj = Yitkj = Yijjk = Yi(ikl)> (1.9)

where the parentheses indicate the permutation of the indices. Hence, the first and second
hyperpolarizability tensors, which contain 27 and 81 components, only feature 18 and 30
independent ones, respectively (in the case of SHG and THG). Furthermore, in the static case,
full permutation symmetry is assumed. In this case:

/3i(jk) = ﬁj(ik) = /3k(ij) = ﬁ(ijk), (1.10)
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and so on for the y tensor. The number of independent components further reduces to 10
(15) for the first (second) hyperpolarizability tensor. The Kleinman’s conditions state that this
remains valid if all input/output frequencies are far from any resonance (excitation energies).
In such conditions, the components present no imaginary part.

Furthermore, some (independent) components may be zero due to the symmetry of the
probed system. The root of this assumption lies in the Neumann-Minningerode-Curie Principle
(also called Curie’s principle), which states basically that: >~

(gobject < (gproperty: (1 11)

where ¥ is the symmetry group: for a property to exist for an object, it is necessary (but not
sufficient) that the group of the object is a subgroup of the physical operation. In other words,
if amolecule is invariant with respect to certain symmetry operations, then any of its properties
must also be invariant to those operations. An important result is that all components of the
P tensor are zero if the system is centrosymmetric (contains an inversion center).

a(0;0) Static polarizability
p(0;0,0) Static first hyperpolarizability
v(0;0,0,0) Static second hyperpolarizability
OR B(0;—w, w) Optical rectification: static electric field from a NLO
medium
dc-OR v(0; —w, w,0) dc-optical rectification
Light scattering a(—w; w) Dynamic polarizability
dc-Pockels p(—w; w,0) Linear change of the birefringence of a medium (lin-
ear electrooptic effect, EO)
dc-Kerr v(—w; w,0,0) Quadratic change of the birefringence of a medium
(quadratic EO)
DFWM v(—w; w,—w, w) Degenerate four-wave mixing (intensity dependent
refractive index)
SHG B(—2w; w, w) Second Harmonic Generation
ESHG Y(—2w; w, w,0) Electric field induced SHG (also written EFISHG)
THG y(—3w; w, w,w) Third Harmonic Generation

Table 1.1: List of the different NLO processes that may arise from a combination of static and
dynamic electric fields (up to third order).*
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Section 1.2

NLO materials

Although NLO materials may be inorganic, our thesis focuses on organic compounds. In-
terestingly, they have been identified to give large NLO responses, while providing many op-
portunities to design NLO switches, which are one of the topic of this thesis, and of the next
section.

Preamble: the sum-over-states (SOS) expression

On the ground of perturbation theory (see Chapter 3), the SOS expression of Orr and
Ward® states that any component of any nonlinear optical tensor y(w,; w,...) (of order n)
is given by:

Xijk...(n times)(_wo; w1, .. ) -

n

(1,06 ),0j,01)... Z Mo, B g, -+ My
(fwy, —hw,) (fw,, —w, —hw,) ... (fw

o,l,.. 2
k h&)k)

(1.12)

P a;,as...(n-1 times) Qg

where i, j,k... are the Cartesian coordinates x, y,z (in the molecular frame), w;, w,..., the
corresponding pulsations, a;,a, ..., the excited states of the system (with fiw,. the excitation
energy of the state a;), a;i’aj = (a;|r|a;) — 84,q, (0|r]0), the transition dipole moment from
excited state a; to a; (it corresponds to the excited state dipole moment of state a; when i = j,
from which the ground state dipole moment is subtracted), with r the fluctuation operator,
and )., is the sum of the different permutations over each pair (i, ), .. ..

Organic NLO materials with large first hyperpolarizabilities

For the first hyperpolarizability, a common approximation is to consider a one-dimensional
(main axis oriented along z) two-state system, with therefore only one excited state (labeled e,
while the ground state is re-labeled g). This is the so-called two-state approximation (TSA).°
Taking Eq. (1.12) in the static limit, it yields

Y
ﬁzzz—6w, with Ay, = th, — My (1.13)
From this equation, it is clear that a molecule presents a large first hyperpolarizability pro-
vided it combines the following characteristics: i) small excitation energy, ii) large difference
between the ground and this excited state dipole moment, and iii) large ground to excited
transition dipole moment (or oscillator strength, which is proportional to the area under the
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curve in a UV/VIS spectrum). Push-pull molecules check all those requirements: they are
constituted of a donor (D) and acceptor (A) group, connected together by a m-conjugated
segment and they generally feature a low-energy charge-transfer excited state. Furthermore,
one could use the electron-in-a-box approximation, to show that the difference of energy be-
tween the ground and excited state decreases with the length of the 7-conjugated path, so
B o< L*. Nevertheless, Lu and co-workers'® showed that saturation with the size of the path
is, in fact, observed.

A very simple model to understand the property of those systems is the so-called VB-CT
model, which assumes that a system can be described by two limiting (orthogonal) states, Wz
(valence bond state) and ¥, (charge-transfer state, see Fig. 1.1). First studied by Mulliken
in the 50’s, this model was applied to the prediction of hyperpolarizabilities in the 90’s. 1%:12-15
The parameters used to describe the first hyperpolarizability differ from one author to another,

b~~~y —— +DMA_

Yy Vet

Figure 1.1: Limiting forms of the VB-CT model.

but one combination is composed of:*

* mer € [—1;1], the mixing between the VB and CT states in the ground state: —1 means
that the ground state is dominated by VB, 1 means it is dominated by CT and O is the
so-called cyanine limit. This parameter is linked to the bond length alternation (BLA,
mean difference between single and double bond lengths) ;

* t, a off-diagonal Hamiltonian element related to the difference of energy between W 5
and Yer;

* ucr = (Yerll|¥or), the CT state dipole moment (the one of the ground state is assumed
to be zero).

As shown in Chapter 11, Eq. (1.13) gets the form:

3 T
CT
ﬂzzz =_§ mCT(l—m%T)Z ? (114)

An additional design rule follows: though t lowers (and 8 increases) if the strength of the
donor and acceptor increases, it is obvious from that expression that f is null if m.; €
{—1,0,1} and maximal if m.; = £+/5/5. The donor/acceptor pair should therefore be well
chosen to get into this area.

Variation of this simple “dipolar” architecture is also explored in Chapter 11. For example,
the TSA model can’t describe the octupolar compounds (i.e., they belong to the Dy, T or
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T, point groups), proposed by Zyss in the 90’s as efficient NLO compounds. '>!” Indeed, with
group theory arguments, it is easy to show that Au,, = 0, so one needs to increase the number
of states to describe this kind of system.

Finally, instead of purely organic molecules, organometallic compounds can be used, thanks
to various low-energy CT processes, including metal-to-ligand CT (MLCT). Ruthenium- and
iron-based (e.g., ferrocene moiety) complexes have been the most investigated, '*!° but other
metals are also found in NLO materials.?°? Different ligands are linked to the metal center,
which modulate the NLO properties and provide access to various molecular arrangements
(e.g., tetrahedral, square planar or octupolar). Metal-organic frameworks (MOFs) are also
part of these organometallic compounds, which can display large NLO properties if well de-
signed.??

Organic NLO materials with large second hyperpolarizabilities

The second hyperpolarizability is better described using a three-state model (g, e; and e,),

Yarss = vD 4y U0 4y THTD 4 172, (1.15)
with
eq,e z )2 z \2 e1,e z \4
o W) (Apg)™ kS ()
Y - 3 ) Y - 3 )
n “en o “en
eq,e b4 b4 z b4 eq,e Z N\2(,,2 )2
(I111-1) _ 12? Hen A‘u’gn Mnm Mg and yUI-2) — 12? (‘ugn) (‘u‘mn) (1.16)
’ B w2 ’ v B w2 ' '
m#n gn —g&m m#n gn —g&m

Four excitation channels are featured in this formula (Fig. 1.2). Again, a low excited state
and large difference of dipole moment between the ground and excited states helps to design
molecules with large second hyperpolarizabilities. Furthermore, starting from the electron-
in-a-box model, Rustagi and Ducuing?* showed that the chain length dependence in the case
of m-conjugated polymers should be y o< L° (again, with saturation in practice®).

An additional route to achieve molecules with large y is provided by Nakano and its co-
workers.?%3? Focusing on centrosymmetric molecules (Au,, =0, so y!) = y!I"1) = 0), they
discovered that diradical open-shell compounds present interesting features. They proposed
a simple system based on the dissociation of the H, molecule. Considering two sites (a and
b) and two electrons, 4 possible arrangement are possible, using localized natural orbitals:
lab),|ba) (neutral, diradical, determinants), |aa), and |bb) (ionic determinants), where |a)
indicates an electron of spin 8 on site a, while |b) indicates an electron of spin a on site b.
Diagonalizing the Hamiltonian results in four energy levels (eigenvalues) with corresponding
orbitals (eigenstates). In particular, three of them are singlet: two with the g symmetry (in-
cluding the ground state), and the other with u symmetry. Application of the Laporte rule>!
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Figure 1.2: Excitation channels of the three-state model given in Eq. (1.16). Vertical and
oblique arrows indicate transition dipole moments (e.g., U,,) while horizontal lines indicate
differences between excited and ground state dipole moments (e.g., Au,,). Adapted from
Ref. 26.

results in: b o )
(w0t (Mg, )" (kg
y =D gl - T8 ge“z e’ (1.17)
wgeu wgeu weueg

where e, and e, are the two singlet excited states (the zzzz indices are dropped for clarity).
One can then approximate the transition dipole moments, with R,;, the distance between
the two centers. Furthermore, ry = 2K,;,/U is defined, where K,; is the exchange integral

between the a and b sites and U = U,, — U, is the difference between on-site and intersite

Coulomb integrals, which are both non-diagonal elements of the Hamiltonian. It yields:2-3°
8q* 4q>
. Y/Us - — —+ - , (1.18)
1 1 1
ab (1+vV1—¢?) (1—2rK+ 1_q2) (1—2rK+\/1__qz) (M)
00 /(R V%) a2/ (RS, /U%)

where q is the bond order, defined as ¢ = 1— y, with y, the diradical character. This expres-
sion, plotted in Fig. 1.3, shows a maximum for an intermediate diradical character. Thus, by
controlling the diradical character, one can tune the second hyperpolarizability. 8- Most of
these materials are based on polycyclic aromatic hydrocarbons (PAH), which spontaneously
feature some diradical character. Examples include diphenalenyl compounds®? and graphene
nanoflakes.333* The model can also be extended to non-centrosymmetric molecules, as shown
in Ref. 35.

Applications

First applications of NLO materials reported in the literature are found in photonic de-
vices.® The requirements of such are:®’ i) large nonlinear optical response, so that the device
can be operated with low-power laser source, ii) fast response times, and iii) specific device
needs: stability (to optical damages), processability and low optical losses. Hence, develop-
ing actual photonic materials requires to overcome different challenges, in order to provide
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Figure 1.3: Evolution of y,,,, (the subscripts are omitted for clarity) with the diradical char-
acter, y, as described by Eq. (1.18). Adapted from Ref. 29.

light-driven equivalents to the classical electronic devices (e.g., switches, logical gates, ...).3®

It should be already noted that many photonic devices presented in this section rely on the
modification of refractive index, so the Pockels, Kerr and DFWM processes (Table 1.1).

One of the successful examples of photonic devices that rely on the first hyperpolarizability
(or its macroscopic equivalent, y®) are the poled polymers. They are obtained through the
dispersion of NLO chromophores in a polymer matrix or the functionalization of the polymer
with NLO-active moieties, followed by electric field poling (alignment of the NLOphores by
the application of an external electric field) to avoid global centrosymmetry.3° They can then
be used to provide functions such as frequency conversion?®*! (e.g., frequency doubling),
polarization control** (e.g., Pockels cells and Q-switching) and opto-electronic devices****
(e.g., modulation or switching of light). An example of the latter is given in Fig. 1.4. Another
method to get efficient NLO-powered devices are the Langmuir-Blodgett films which consist
of the transfer of a molecular monolayer (giving a preferential orientation of the NLO-active
moieties, at least for one mono-layer) from air-water interface onto a surface, with a very
controlled thickness.*> An advantage of this technique, in the case of frequency doublers, is
that it allows a better control on the (quasi) phase matching between SHG beams, which
would otherwise destructively interact, lowering the output.

On the other hand, materials with large second hyperpolarizability do not necessarily re-
quire preferential orientation (even though poled polymers are also proposed), but the optical
losses (generally due to two-photon absorption) should be minimal.2>#+4%47 In the photonic
area, y® materials are used to create phase-conjugated mirrors*® (i.e., the output of the de-
vice is F(w)*, with the reverse phase), optical bistability**—>! (hysteresis behavior of the output
w.r.t. input beam) and more generally, all-optical switches**>2>% (i.e., light controlling light).
Still today, they are difficult to achieve with organic-based NLO chromophores. **

Out of the photonic topics, a last interesting application is Second-Harmonic Imaging Mi-
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croscopy (SHIM). This technique provides high-resolution and structural information in bio-
logical imaging.>>™® Other advantages include a lower phototoxicity, less out-of-focus pho-
tobleaching, and higher penetration in tissues w.r.t. conventional fluorescence.>® Finally, it
is very complimentary to two-photon-excitation fluorescence (TPEF) microscopy, which gives
information about the concentration and localization of chromophores. To achieve good con-
trasts by this technique one normally relies on intrinsic biological systems (like myosin>>->%
or collagen triple helix®>®1). If not, specific dyes can be used when the signal is not strong
enough. Ref. 57 draws the requirements for such biomarkers: i) a strong SHG response at laser
frequency (which, usually, has to be enhanced with resonance), ii) high affinity to the (hy-
drophobic) cell membrane, iii) high density, and iv) overall organization of the chromophores
to enhance the signal. Many authors have thus pointed out that fluorescent proteins (FP) are
biotags of choice.>”%2 Indeed, FPs are already in use in biological microscopy, since they are ei-
ther intrinsically (due to folding) or extrinsically (due to the binding of an external molecule)
fluorescent. Let us add that, in the past, quantum chemistry has already helped to understand
and rationalize the impact of the FP chromophore on the SHG signal.®*” Based on these
clues, a mutant FP (named SHardonnay) was engineered specifically for its improved SHG
properties.® Chapter 10 is a step towards improving the strategy to predict the SHG response
of such large systems.

NLO material with large
@ and refractive index

/

Light in — Light out

Buffer material
(with lower re-
V(t) fractive index)

Figure 1.4: Example of photonic device, the Mach-Zehnder interferometer (or modulator): a
light beam passes through a waveguide composed by a ¥ ® NLO material. The beam is split
in two and recombined at the end. An oscillating electric field can be applied on one of the
two arms: the change of refractive index (originating from the dc-Pockels effect) induces a
dephasing between the two beams. In the extreme cases, the beams constructively (no phase
shift) or destructively (phase shift of T/2) interfere, so it becomes a switch. Adapted from
Ref. 43.
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Section 1.3

NLO molecular switches

Even though there are many examples of biological molecular switches (e.g., the cis-trans
isomerization of retinal, basis of animal vision), the probably best-known ones (even by the
general public) are the pH indicators. This large family also features what is probably the
first man-made (synthetic) molecular switch, phenolphthalein, still found today in chemistry
laboratories. ®® Since then, many progresses have been made including up to the 2016 Nobel
prize® of Savage, Stoddart, and Feringa “for the design and synthesis of molecular machines”,
and the field is still very active.

More generally, a molecular switch is a molecule that adjusts its structural and electronic
properties to an external stimulus. The input may be as various as chemical, electrical or op-
tical, and the molecule shifts between (at least) two states. The different states are stable, the
transformation is fast and reversible and the system returns to its initial state when the exter-
nal stimulus is turned off, but those are not absolute requirements. It should be added that, in
order to be useful, the different states of a switch should be distinguishable by measurement
of a property, and the highest the difference between the forms, the best.”®~% Conceptually,
the stimulus may be seen as the “writing” operation, while the measurement consists of the
“reading” counterpart.

NLO switches based on the first hyperpolarizability

Different methods of classification exist for the (NLO) switches, based on the nature of
the stimulus (e.g., light, pH, ...), the one of the molecular switch (e.g., a particular donor or
acceptor) or source of the effect (e.g., bond breaking, ...). The latter was explored by Coe
in 1999:7° starting from the D-7-A architecture, he proposed to categorize the NLO switches
depending on the part of the molecule which was modified during commutation, as given in
Fig. 1.5. Types I and II compounds generally rely on redox, acido-switching or magnetic”®
switching, while type III switches encompass a wider range of processes (e.g., thermal”’).

The advantage of 3-NLO switches is the fact that the high sensitivity to geometry and
environment of 8 gives rise to high contrasts. Also, in the specific case of a light-triggered
switch, the low-energy light used for the readout operation cannot trigger back the switch.

7883 are found in Fig. 1.6, and a redox-triggered

Prototypical examples from the literature
switch is studied in Chapter 7. Generally, the figure of merit is the contrast between the first
hyperpolarizabilities of the different forms. These simple building blocks may eventually be

combined with:

1. Polymers, for example through post-functionalization, to form the aforementioned poled
polymers.®* An important issue is that switching would normally require a reorganiza-
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tion of the polymer, which reduces the phenomenon in practice.

2. Surfaces, in the form of self-assembled monolayers®> or Langmuir-Blodgett films, ¢ so
if the stimulus is applied locally, then the first hyperpolarizability is spatially dependent.

3. Other switching units to form multi-state switches. 3”88 One of our collaborators, Lionel
Sanguinet, is following this path with benzozalooxazolidines (BOXs, Fig. 1.7), see, e.g.,
Ref. 89 and references therein. Chapters 8 and 9, which study molecules with 2 and 3
BOX units, represents one step towards this goal.

Finally, in their 2013 review, Castet et al.®® introduced the idea of multi-addressable NLO
switches, which react to more than one stimulus. Again, BOXs (Fig. 1.7) are prominent ex-
amples, since they can be opened with either light, pH or a difference of potential.®!

NLO switches based on the second hyperpolarizability

The classification proposed in Fig. 1.5 could actually be extended to the second hyperpo-
larizability switches, since they rely on the same mechanisms (modification of the donor, the
acceptor or the m-conjugated path). It is supported by the fact that the authors sometimes
check for 8 and y at the same time. Note that they generally include the TPA (imaginary part
of y) behavior as well. When y is the only targeted property, redox switching is generally the
main stimulus, especially since it gives a large contrast with organometallic compounds. >3
Ruthenium and iron compounds are, again, generally featured. On the other hand, the deriva-
tives of hydrocarbons have attracted attention in the recent years. Two examples of second

hyperpolarizability switches are given in Fig. 1.8.

stimulus A o type I

m o <:| type II
B >0, “on” state type III

B ~ 0, “off” state

Figure 1.5: Types of strategy for switching the first hyperpolarizability response of dipolar
D-7-A molecules, adapted from Ref. 75. The first two types are the modification of the nature
of the donor or acceptor moieties, respectively (generally through a redox process), while the
last is the alteration of the mt-conjugation.
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N°N Et
N
O2N OQNON p—

Figure 1.6: Prototypical first hyperpolarizability switches. Types III: disperse red 1 (1, cis-trans
isomerization of an azobenzene derivative triggered by light, from Ref. 78), diarylethene (2,
photocyclization triggered by light, from Ref. 79), anil (3, phototautomerization, from Ref.
82, also of types I and II), indolinooxazolidine (4, acid-assisted ring breaking, from Ref. 83).
Types I (triggered by redox): Ruthenium complex (5, from Ref. 80) and ferrocene derivative
(6, from Ref. 81). The forms with the lowest 8 response are put on the left-hand side.
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OH

Ry
e, acid or hv /J
N®
Nj S—R,
R, O Ry

Figure 1.7: The benzozalooxazoline (BOX) multi-addressable NLO switch (see, e.g., Ref. 91).
R, is generally an acceptor group (or the grafting point in the case of multi-states switches),
while R, is generally a donor. The form of the left- (right-) hand side is generally referred to
as the “closed” (“open”) form, with the lowest (largest) 8 value.
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Figure 1.8: Examples of multi-state redox triggered second hyperpolarizability switches: with
metallic centers (1, “type I”, from Ref. 94) or with a diradical character (2, “type II”, from Ref.
95).

Applications

Together with the previously mentioned photonic technologies, three other fields may re-
quire (NLO) molecular switches: i) digital processors,”® based on molecular gates, which need
multi-states switches with orthogonal stimuli, ii) molecular storage or memory, which relies
on very stable “on” and “off” states with important contrast, and iii) sensors, which become
advantageous if the NLO properties show more contrast than their linear equivalent (see, e.g.,
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Ref. 96, where a NLO switch is used as a selective cation sensor).

Section 1.4

Objectives

During this first chapter, different kinds of NLO materials have been presented, with mul-
tiple applications. They have been made thanks to the interplay between modelisation and
experiment. The first has provided design rules and propositions to the second, which in
return gives opportunity to improve the theoretical methods to better reproduce the experi-
mental reality. This multidisciplinary approach is the context of our PhD Thesis.

There are two aims in our work. The first is to provide a better description and under-
standing of the first and second hyperpolarizabilities of reference molecules, which is crucial
for the experimental measurement (as explained in Chapter 2). The second is the study of
new NLO materials, to understand their properties, provide insights, and help their design.
These two goals will highlight the role of quantum chemistry in the present and future of
material sciences.

The thesis is therefore divided in four parts. Part I, which includes this chapter, introduces
the main concepts. In particular, the next chapter describes the macroscopic quantities asso-
ciated with the first and second hyperpolarizabilities that are used through the thesis. Then,
Chapter 3 reviews the different quantum chemistry methods that are used through the work.

Part II is dedicated to our first goal. The accurate description of the gas phase molecular
response of reference molecules is addressed in Chapters 4 and 5 with a hierarchy of Coupled
Cluster methods for different NLO processes. In Chapter 4, we concentrate on the agreement
with experimental gas phase EFISHG, and Chapter 5 constitutes the first quantum chemical
investigation of yrys (Third Harmonic Scattering) and its decomposition in spherical ten-
sor components (which shows that the response is dominated by its isotropic contribution).
Following, in Chapter 6 the impact of the vibrational contributions on both S5, (Second Har-
monic Scattering) and yryg (again, for the first time), is analyzed with the water molecule as
an example. Though small, especially at the usual laser wavelengths, they are nonnegligible.

Part III is devoted to our second goal, the study of complex NLO materials. First of all,
in Chapter 7, an octupolar NLO switch with 6 Ruthenium metal centers, triggered by redox,
is considered. To better understand its response, it is decomposed and its fragments are also
analyzed. Then, Chapters 8 and 9 are dedicated to two multi-state, multi-addressable, NLO
switches containing 2 and 3 BOXs, respectively. One of the main conclusions is that these
structures can be opened sequentially and are differentiable in term of NLO properties. Ad-
ditionaly, Chapter 10 focuses on the 3 response of two fluorescent proteins with a simplified
approach. In this exploratory work, we focus on two proteins (iLOV and bR), for which it
was possible to obtain the first hyperpolarizability with a reasonable amount of computing
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ressources (a few days), with a good agreement with experimental values for the bacteri-
orhodopsin (~ 3850 atoms). Finally, Chapter 11 goes back to the simple few states models,
which are generally used as the basis for the design rules, in a systematic study.

Part IV finally reviews and concludes our work and adds some perspectives.
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Chapter Two

Second and third harmonic scattering

Abstract

Chapter 2 describes one measurement method, based on second and third harmonic
scattering, to get the first and second hyperpolarizability. After a general introduction in
the first section, the second is dedicated to the calculation of experimental quantities from
the molecular tensors to ease their comparison. Finally, the third section introduces the
decomposition of the first and second hyperpolarizability tensors in spherical invariants,
with the aim to provide a better understanding of the origin of the response.

29
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Section 2.1

Generation and measurement of harmonics

As shown in the previous Chapter, the interaction between a NLO medium and an os-
cillating electric field of pulsation w results in the spontaneous generation of higher order
harmonics (multiple of the fundamental frequency) among other phenomenons.

Mechanism

An equivalent description is pictured in Fig. 2.1, where two (three) photons of energy fic
excite the ground state and are combined to generate a new photon of energy 2fiw (3fw).
More precisely, the first photon interacts with the ground state and excites the molecule to
an intermediate, generally virtual (short-lived), state. One (or two) other photon(s) then
interact(s) within a close time frame with this excited molecule to bring it to the final virtual
state, from which the molecule decays and emits a photon of twice (three times) the energy
of the original ones.

Virtual
B b - excited

N states
fiew

Sample S et -

wﬁ\( % 1 l v Ground

state

Figure 2.1: Energy-level diagram describing first, second and third harmonic scattering pro-
cesses, respectively associated with a, 3, and y.

Though the existence of those virtual states is well established, their interpretation differs.
For some authors, they are allowed by the time-energy version of the Heisenberg uncertainty
principle,! given by At AE > fi/2, so that absorption can occur without breaking the energy
conservation principle if the re-emission happens in At < 7/2ar, hence the short-lived. It
also explains the low transition probability to such states. For others, the root lies in the
interpretation of the time-dependent perturbation theory (see Ref. 2 for a gentle, though
provocative, introduction).

Nevertheless, when one of the energies is close to an excited state, the transition probability
is enhanced, so that the NLO response becomes large (as predicted by the SOS model, see

Eq. (1.12)), which is referred to as resonance. Although a desirable experimental feature in
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many applications, this may complicate the characterization of the NLO response of a molecule
and its prediction (which requires near-resonance theory, e.g., the introduction of damping in

response function®*).

Measurement of harmonic generation from scattering

In this thesis, the measurement of SHG and THG f and y tensors is assumed to be ob-
tained from the measurement of harmonic scattering (HS). The experimental setup for the
measurement of second (SHS) and third (THS) harmonic scattering is pictured in Fig. 2.2.
The fundamental light beam (of frequency w), which is elliptically polarized (© and 6 de-
scribe the state of polarization, and in this case 6 = 7/2), propagates in the Y direction while
the Z-linearly polarized component of the scattered beam (of frequency mw) is recorded in
the X direction. One generally distinguishes between two polarization combinations: the VV
geometry (vertical-vertical, both incident and scattered lights are vertically polarized, with
© = 7/2) and HV [horizontal-vertical, the incident (scattered) light is horizontally- (vertically-
) polarized, with © = 0]. Note that other combinations of polarization are possible, which

probe different components of the hyperpolarizability tensors.>”’

mow
I@V

Sample

Figure 2.2: Sketch of the experimental SHS (mw = 2w) and THS (mw = 3w) setup.>>&11
X,Y and Z stand for the coordinates axes in the laboratory frame. The measurement is done
at 90° with respect to the incident beam.

Both gas® and liquid !%!!

phase measurements are possible, in which it is assumed that
only the incoherent scattering contributes to HS, which is a good approximation of the exper-
imental conditions.” The goal is to avoid any intermolecular interaction that would lead to
a preferential orientation of the scatterers (which is the case in crystals). What is measured
is thus, ideally, the overall response of randomly oriented individual molecules. Therefore,
the light intensity I™* (for the m® harmonic generation) without any polarization is given
by: &11:12

" =Gf2C(x* I, 2.1
where [ is the incident light intensity, G, a constant containing geometrical, optical and

electrical factors of the experimental setup, C, the concentration of the chromophore, y, either
Brrs OF Yrrs (see below), (2), the rotational averaging of the individual responses (see next
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section), and f;, a local field correction when approximated using the high frequency Lorentz-
Lorentz spherical cavity expression, including the refractive reading as:

_(ni+2)m(nfnw+2) 09
fr= 3 —5 | (2.2)

On the same principle, the Iy intensity is proportional to (82,,) and (y2,,,), while Iy is

proportional to (82,,) and (y2,,,), respectively. For a non-polarized incident signal, both
polarizations have equal probability and the intensity becomes proportional to the sum of the
HV and VV observables. This allows defining ;s and vy, the molecular first and second
hyperpolarizability determined by HS, as:

ﬂSHS = \/(ﬂ%zz> + <ﬂ§xx): (2.3)

YTHS = \/(Yézzz) + (Y%XX)(> (2.4)

Another interesting quantity is the depolarization ratio (DR):

2

2
I
DR = Y DRg;g = /5§22> and DRy = EYzzzz>

s . (2.5
HV (Bryx) Y%XXX>

As shown in the next section, the depolarization ratio takes specific values that depend on the
part of the molecule which is responsible for the NLO response, and its symmetry. It should
be noted that the SHS experiment is also referred to as the Hyper-Rayleigh scattering (HRS)

13,14 50 that 85y and Byrs are considered to be the same quantity

experiment in the literature,
in the present manuscript.

An additional peculiarity of the experimental procedure is that it should be calibrated,
either with internal or external references.'%!> Generally, He or N, (external references) are
used for gas phase experiments, while the solvent is used (internal reference) for the liquid
phase counterpart. In the end, it relies ultimately on ab initio gas phase calculations to cali-
brate the setup, which is why a part of this thesis (Part II) is dedicated to accurate gas phase
calculations.

The advantages of the SHS and THS technique are the following: '° i) octupolar molecules
and charged species can be probed (contrary to the EFISHG technique), ii) the technique is
sensitive to the different components, thanks to the possibility to use different combinations
of polarizations, and iii) it is relatively simple compared to other techniques. There are also
disadvantages, such as i) a strong laser and a very sensitive detection are required (incoherent
process), ii) measurements get difficult if close to resonance, and iii) fluorescence at double
frequency, if present, should be removed.!’
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Section 2.2

From the molecular tensor to the macroscopic quantities

Rotational averaging

When a molecule interacts with the experimental system, the result depends on the molecule
orientation and may be described by a function f (8, ¢, ) of the three Euler angles (Fig. 2.3).
The bulk response, (¥"), is given by:

T 27 27
(y™ = LJ do sin6 J do J d¢ x"(6,¢,0), (2.6)
0 0 0

82

which perform a per molecule average over all possible orientations of the molecule. Fur-
thermore, the molecular properties are generally expressed in the molecular frame, while
the experimental system (e.g., an external electric field) is the same for all molecules in the
bulk and defined in the so-called laboratory (of external) frame.!'® Following Andrews and

L

|
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I
|
|
|
|
|
I
I
I
I
I
I

zZ

A

X

Figure 2.3: Laboratory reference (X, Y, and Z) and molecular reference (x, y, and z) frames.
0, ¢, and v are the Euler angles that relate the coordinate systems. For clarity, only z is
shown. Adapted from Ref. 18.

18-20

co-workers, the signal, A, associated with a nonlinear interaction is given by:

A< Si1"'in z (2.7)

Ly

where S is a rank n tensor representing the incident radiation field, S; ; are the element of
these radiation, and &, a response tensor of the same rank. For incoherent processes involving
m photons, the main contribution comes from a term with n = 2m, so 6 and 8 for SHS and
THS, respectively. S is constructed by the outer product of n vectors describing the polarization
of the photons, and their complex conjugates. Here, the {i,} indices indicate that both S and
T are defined in the same coordinate system, which is the one of the incident radiation (so
the laboratory frame). A is therefore the signal of a single molecule for which the response
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tensor has been expressed in the laboratory frame. Such transformation is performed from
the tensor expressed in the molecular frame by the relation:

zl”'in = Z Lilll te Linln 9}1...)% (28)
Ay

where the L; ; are the direction cosines between the é; and &, axes in the molecular frame.
The intensity, I o< (A), is obtained by rotational averaging:

(A =S ... Fy.n IV with I = (Li, - Ly, (2.9)

T eee] vos 3 Y
nol lnkl An n/‘1 n

Thus, to get the average signal, the evaluation of the IV is required, which turns out to be 3%"
integrals. Although modern computers can evaluate integrals quickly, a simpler way exploits
the fact that this matrix is invariant in both the molecular and laboratory frame: it can thus be
expressed as a linear combination of isotropic tensors (string of Kronecker delta). Therefore,

(0= OV MO, 210

where f and g(™ are vectors of laboratory and molecular coordinates, while M™ is a coef-
ficient matrix. Their size (and the one of the M™ matrix) depends on the rank of the tensor,
and amounts to 15 and 91 for the SHS and THS processes, respectively. M(" is obtained by a
matrix inversion, as explained in Ref. 19. Once M™ is found, the average signal rate is given
by Eq. (2.9), which is rewritten:

()= > [fe" MG (8715, 2.11)
i,A

where [fe"]; =S ... (™7 and [gZ ], = g™ T,.-2,» both rotationaly averaged, are referred
to as independent observables or rotational invariants.?° In particular, a linear combination
of the [gZ ], can describe (A) for any polarization of the photons. Note that from intrinsic
permutations (the n — 1 incident photons have the same polarization), one can reduce the
size of the elements in Eq. (2.11) since some elements are therefore identical. The number
of invariants thus drastically reduces if all components are real, to 5 and 7 for SHS and THS,
respectively. The strategy to obtain the macroscopic quantities described in Section 2.1 is
therefore:

1. Write an expression accounting for the direction and polarization of each photon in the
setup to construct the S matrix;

2. Apply intrinsic permutation symmetry® to get the invariants [fe"]; and [gT ];
3. Simplify the M™ matrix, starting from the ones found in Refs. 19 and 21;

4. Get the expressions of (A) (here ($2) and (y?)), using Eq. (2.11).

3This part was performed with the help of a Python script, written by myself.
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Application to SHS

In the specific case of SHS, one writes:

_p2 _ _
Ingcper = B° = BapcPper SABCDEF = TaTBSc T g Sg (2.12)

where r describes the polarization of the incidents photons, and s, the polarization of the
scattered photon. For example:

0480 cEOpr TapcpEr = BiijPrjk = 6ac08EO DF TaBCDEF (2.13)
5486 cEOpr Sascprr = |8 1> = 8¢ 8556 b SascpEF- (2.14)

The last equalities are obtained assuming intrinsic permutation symmetry.
With an elliptically polarized incident light propagating along the Y direction and a Z
linearly polarized scattered photon, the expressions for r and s are:

r=2¢y cos(@)—ié, cos(@+06)and s =2¢,, (2.15)

where © and 6 describe the state of polarization, and é, and éy are unit vectors in the corre-
sponding directions. The phase retardation is § = 7/2 (see Fig. 2.2). The matrix M(®), along
with the corresponding rotational invariants are given in Table 2.1, which includes the form
of the isotropic tensors and the corresponding polarizations. The application of Eq. (2.11)
then gives the following expression for the ©-dependent intensity:

(4—26c0s20 +20cos*®) | rian
]

) 44 2c0s’© —8cos*O [gB%]5
I2¢ o< (B%(0)) = Tos 1—10cos?® + 12cos*® [gB%1c |- (2.16)
2 +8cos’0 —4cos*® [gB%1p

\4+2cosz®—8cos4®] \[8/52]13

The VV geometry corresponds to © = 7/2 (all photons have the same polarization), and the
HV geometry is when © = 0 (the polarization of the incident and scattered photons are per-
pendicular). In those two cases:

xXyz

(B777) = 105 Z2ﬁl]k+/5ijjﬁikk+4(ﬁiij/51kk+/3iijﬁkjk+/31jkﬁjik) (2.17)

xXyz

Zzﬂuk + 34 Bikics (2.18)

l]k

xXyz

(Brxx) = 105 Z6ﬂ1]k+3ﬁijjﬁikk_2(ﬁiijﬁjkk+/5iijﬁkjk+ﬁijk[5jik) (2.19)
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xXyz

1052 Bl — BijiBixks (2.20)

where Egs. (2.18) and (2.20) are simplifications of the previous ones if Kleinman’s conditions

are assumed or satisfied. 1222

60 —24 —20 16 —24]
—24 32 8 —12 4
MO=_ |20 8 16 —10 8
2101 16 _12 —10 22 —12
|24 4 8 —12 32

iorA £ org® [gB2%], [fe®]; [fe®]; assuming Eq. (2.15)
A Oup0cpOpr BiijBj Rel(s-r)(s™ )" -r")] 2 cos*® —3cos’@ +1
B 0480cE0pr BiijPijk |s - r|? 1—cos?©
C  0apbpcoir BijiBirk |r-rf? 4cos*©—4cos?O +1
D 6,p0pedcr iij 1 1
E  6450pp0cr BijBjik |s - r*|? 1—cos’®

Table 2.1: Solution for the SHS case (two identical incident photons of polarization r and one
scattered photon of polarization s).

Application to THS

In the case of THS:

L2 _ * K% Kk _*
IaBcpErGH =Y = YaBcDYEFGH SABCDEFGH = TaATBTCSpTp T TGSy (2.21)

where r describes the polarization of the incidents photons, and s, the polarization of the
scattered photon. Considering, the same assumption about the polarization of the incident
and scattered photons (Eq. 2.15), the matrix M®, along with the corresponding rotational
invariants, is given in Table 2.2, which includes the form of the isotropic tensors and the
corresponding polarizations. It is interesting to note that the polarization parameters are the
same as for the SHS case, except for [fe8], and [fe®];. The ©-dependent intensity is thus
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given by: %0
[ 6—81cos?© + 198 cos*® — 126cos® @ \ ! ([ng]A\
24 — 108 cos?©® — 72 cos*© + 144 cos® © [g7%];
12 +54c0s?© —90cos*© + 18 cos® © [g7%1c
3¢ o< (Y*(@)) = % 6 —54c0s*© + 36 cos*© + 36 cos® @ [¢r°]p |, (2.22)
4+ 36c0s20 —12cos*® —12cos° O [e7%1e
6—81cos?O +198cos*® —126cos® © [g7%]r

\12+54c052@—90cos4@+18cos6@] \[8}”2]6}

and once again, the two geometries (HV and VV) are distinguished:

<Y§zzz> _ % nyz: { 2Yl'2jkl + 1273 juk + 6 (ViijiYijie + Vi Y jixt) }
gm U T3y i + Vi Yk + YijjkY kitt)
oo
~ 315 Uzkl: 8Vijk T 24V iijkY jku + 3 Viij Y kit
(12 ) = % xzyz: { 16 Yizjkz + 24y Y ik — 12 Y4k Y juk
tm U =0 (rueyujme + Y Y jike) — 3 (Vi ik + YVijjaY ki)
xXyz
~ 530 ;kl: 10 Yizjkl + 3YiijY jku — 3Yiijj Y kit

(2.23)

(2.24)

(2.25)

(2.26)

where Eq. (2.24) and (2.26) are a simplification of the previous ones if Kleinman’s conditions

are assumed.

Section 2.3

Irreducible tensor forms

The concept of irreducible tensors (or spherical tensors) is based on the idea of rotational

invariance with respect to the continuous group of rotation-inversion in 3 dimensions [SO(3) ].

In other words, in the previous section, the tensors were expressed in Cartesian reference

frame, which is affected by a change of the reference system (i.e., the laboratory frame).

To circumvent the problem, the solution is to express the tensor in different components on

the basis of spherical tensors, thus giving irreducible tensors, or spherical invariants. In the

context of SHS and THS, it provides an additional interpretation of the macroscopic quantities,

especially the DR.
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[ 216 —108 —54 —27 9 —27 27 |
—108 1512 —540 —432 360 —108 —540
—54 =540 540 189 =225 27 135
M®=-1 | 27 432 1890 378 —234 —27 189
3780 9 360 —225 —234 330 9 —225
-27 =108 27 =27 9 216 —54
27 =540 135 189 225 —-54 540
iora % org® [g72]; [feb]; [fe®]; assuming Eq. (2.15)
A 8ap6cpOrnbre YiijiYak Re[(s-r)(x-r)(s*-r)(r" -r)] —4cos®©+8cos*®@—5c0s?O + 1
B 0a0cebpubrc YijxYjuxk  Re[(s-r)(s*-r)(r*-r")] 2cos*@®—3cos’@ +1
C  OaBOcrOpuOEG YiijkYljik |s - r|? 1—cos’*@©
D 64s0pcOprbon YijjkYin Ir-r|? 4cos*® —4cos’@+1
E  0408r0cuOpe Q\w.z 1 1
F 8ar6pcOpebon YijjkYrin Rel(s-r)(r-r)(s"-r)(r" -r)] —4cos°© +8cos*©®—5cos’O + 1
G 6ar0prdccOpu YijkiYjikl |s-r*|? 1—cos’*@©

Table 2.2: Solution for the THS case (three identical incident photons of polarization r and one scattered photon of polarization s).
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Procedure

A Cartesian tensor of rank n can be reduced in a sum of irreducible tensors 7;_; of weight
J (with 2J + 1 independent components), with J < n:22°

N
n J
7= Zojﬂj:j, with 7;_; = Z%;q), (2.27)
J= q=

where q is the seniority of the irreducible tensor J;,,), of weight j and N J.(n), the multiplicity.
The goal is to express the average intensity, I o< (72) (from the previous section), in this new

basis:
. N
(72) = 2 17, with 1752 = D T ©" Tij, (2.28)
j=0 rq

where ®" is the (tensor) index product repeated n times. The first equality is coming from the
fact that the irreducible tensors are now invariant to rotation and orthogonal to each other,

and the last equality assumes that all components are real. The multiplicity is given by:2>~27

L(n=j)/3] .
() [ n 2n—3k—j—2
N = E —1 . 2.29
’ k=0 . ( k ) ( n—2 *2

The values of the different multiplicities are given in Table 2.3. Note that those multiplicities
further decrease if intrinsic or full permutations (Kleinman’s conditions) symmetries are taken
into account. If the latter is assumed, 3 is only composed of one dipolar (J = 1) and one
octupolar (J = 3) component, while y decomposes into an isotropic (J = 0), quadrupolar
(J = 2), and hexadecapolar (J = 4) components. Those are the decompositions generally
found in literature.

j n=3 n==4

No Intrinsic Full No Intrinsic Full
0 1 0 0 3 1 1
1 3 2 1 6 1 0
2 2 1 0 6 2 1
3 1 1 1 3 1 0
4 — — — 1 1 1
Total 7 4 2 19 6 3

Table 2.3: Value of the multiplicities N j(") for each irreducible tensor of rank n and weight j,

as computed by Eq. (2.29), and effects of the intrinsic or full permutation symmetries.2>2’

The reduction procedure is based on the formula:2°

i) n oo (nlj) ~j AU n
’9(1;‘1) o H(j;Q) 0" T = {G(O;q) © G(O;q)} "7, (2.30)
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where I1 is the operator that extracts the tensor of weight j and seniority q, which is defined by

(N?((é!g, which extracts the tensor of rank and weight j, and G((g.|£, which

maps the tensor of rank j to rank n. They are constructed out of isotropic tensors (string of

two other operators:

Kronecker deltas), with the resulting operators as found in Refs. 23. Their application extracts
the different irreducible tensors, expressed as linear combination of the invariants given in the

previous section.”

Application to SHS

The decomposition of tensors of rank 3, without any assumption on the permutation sym-
metry, is detailed in Ref. 28. Asssuming intrinsic permutation symmetry, four irreducible
tensors are obtained (Table 2.3), two of which are of weight J = 1, denoted f3,-,, and ;1.
From Eq. (2.28) comes 5 different products:

Xyz

1
Bomal® =5 D 3285 B (2.31)
ijk
Xyz

1
|ﬁJ:1ﬁ|2 =z Z3ﬁiij Brjk (2.32)
ijk
Xyz

1
1Br=1apl” = 3 Zﬁii]’ Bjkss (2.33)
ijk
1 Xyz
Broal® = 3 Z Zﬂizjk — 2 Bijic Bjik — Bijj Bikk — Biij Prji + 2 Biij Bjxks (2.34)
ijk
Xyz

1
Br=sl* = I Z 5/3i2]-k + 10 Biji Bji — Bijj Birie — 4 Biij Brejk — 4 Piij Bircr- (2.35)
ik

The last equations can also be written in the form of a matrix multiplication:

(1Bl (0 0 18 0 0 ([ehL)
0 0

1Br=1p]? ; 27 0 0 [gB°15
Brz1apl® [=5c| =9 0 0 0 0 [gB%1c | (2.36)
1By=al 30 —15 —15 30 —30 | | [gB%]p

\|/3J=3|2 ) \-12 —12 -3 15 30 | \[g/sz]E)

so that a matrix inversion in combination with Eq. (2.16) gives:

1 4 4 2
2 _ 2 2 2
(ﬂzzz) - %'ﬁjzla' +E|ﬂJ=1ﬂ| _EVjJ:laﬂ' +£|/5J:3|2> (237)

bThis part was also performed thanks to symbolic calculus implemented in a home-made Python script.
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1
~ < 1= 1|2+—|/3J 5%, (2.38)
1
2\ _ 2, 2 2, 2
(Brxx) = —|ﬂJ 1al? +—|ﬂJ 17+ 1c |/3J:1a/3| +E|I3J=2| ﬁlﬁj 31%, (2.39)
1 2 2
N — 2.40
1By + e Byl 240

Again, Egs. (2.38) and (2.40) are the version of the previous ones when the Kleinman’s con-
ditions are assumed, with:

Xyz Xyz
1By=1l* = Bij; Bixk> and |B;= 3I° = ﬁl T ﬂijjﬂikk- (2.41)
ik 7
ij ij

A B-nonlinear anisotropy parameter can be defined to highlight the impact of the dipolar and

octupolar contributions to 3:1%12
|By=3?
P3/1 = \lﬁ: (242)
J=1
so that:
183, +63
PRsus = (2.43)
sHS = o 5/1 —

Therefore, in the static limit, if the NLOphore is purely dipolar (p3,; — 0), the depolarization
ratio is equal to 9, while it amounts to 3/2 if it is purely octupolar (p3,; — 00).

Application to THS

The formula for the y tensor in the specific case of THS can be found in Ref. 20 (based
on the work in Ref. 25). This time, it results in six different irreducible tensors, two of which
have J = 2. One ends up with 7 products:

xyz

|YJ 0| - ZYU]] Y kkil> (2.44)
l]kl

Xyz

|YJ:1|2 ZBYU]k Yikil — SYl]]k Vkill> (2.45)
1]kl

xXyz

1
Y =2al® = 12 215}’Uﬂ<}’klzz+15Yu]lekzz 1074155 Yiuko (2.46)
ijkl

Xyz

|YJ=2[3’|2 Z 15Y11]k Yl]lk SYll]] Ykilks (2.47)
1]kl
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1 Xyz
|YJ=2a[5|2 =51 ZZYiijj Ytk — 6 Yiiji ¥ jitks (2.48)
7kl
sl = 1 nyz: { 15 Yizjkl + 20 Viijx Yjuk + Yijjk Vi } (2.49)
20 55 U =10y Yok — 15 g Vi — 117 ijjk Yikn
) _al? = 1 N { 35 Yizjkl + 105 Yiji1 Vit + 127115 Yraik } (250)
140 55 1 =607 iijn ¥ juk — 30 Viiji Yijk — 157 jjk Yirut — 157 ik Y it

Or, in a matrix shape:

[ Irsmol® ) (84 o 0o 0o 0o o 0\ /(lerh)
ly I 0 0 0 126 0 —126 O [g7%]5
¥ ) —aa |2 N B (U 150 0 150 O [g7°]c
Iy y—2pl? | = 226|100 0 300 0 0 0 0 [g7%], |- 2.51)
|YJ=2a[5|2 40 —120 0 0 0 0 0 [ng]E
ly ;a2 0 420 —210 —231 315 21 —315 || [¢7%]s
\ lrs=al? \ 36 —180 —90 —45 105 —45 315 ] \[gyz]c;]
The inversion of the coefficient matrix in combination with Eq. (2.22) gives:
1 6 6 6 8
2 _ 2 2 2 2 2
(Yzzz2) = §|YJ:0| + 175 |7 s=24/" + 175 Y s=2p"— 35 Y s=2ap|” + 315 7 5=4l", (2.52)
1 4 8
~ E|YJ:0|2+£|YJ:2|2+E|YJ=4|2, (2.53)
1 1 2 1 1 1
2 _ 2 2 2 2 2 2
(rzxxx) = 10 [Ys=1l"+ 14 Y s=24]" + 175 Y s=2p|” + 7 Y s=2ap|” + 35 |vs=sl"+ 63 75=4l"
(2.54)
3 2, 1 2
Ny 2 2 2.55
120 |7 s=2l 3 |7 =4l (2.55)

where Egs. (2.54) and (2.55) are the version of the previous ones when the Kleinman’s con-
ditions are assumed, with:

xXyz

1
lyy=al® = = Z6Yiijk}”jkzz — 2715V kkil> (2.56)
ikl
1 Xyz
Y s=al* = 3t 235}’%;{1 =307 kY kit + 3 Yiiji Y kit (2.57)
i7kl

The y-nonlinear anisotropy parameters:

77 =0l and Pajs = |YJ=4|
7 =2l

Poj2 = (2.58)

7722l
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compare the relative contributions of the different components of the second hyperpolariz-
ability tensor with each other. The THS depolarization ratio (Eq. 2.5) is rewritten as:

32p%, +252p7,, + 144

DRyys =
e 2002, +27

(2.59)

When p,/, — 00, DRrys converges to the hexadecapolar limit, 8/s. However, when p,4,, — 0,
the limit value depends on p 5, since:

28 , 16

= 1 =2 42 2.60
04720 3 Por2 3 ( )

so that the DR tends to the “pure" quadrupolar limit of 16/3 when p,/, — 0, and to co when
Poj2 — ©9, ie., in the isotropic limit. These relationships, together with Eq. (2.43), are
explored in more details in Chapter 5.
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Chapter Three

Quantum chemistry methods

Abstract

In Chapter 3, one introduces the theoretical concepts and methods. Owing the large
number of methods used in our work, this chapter is divided in different sections. The first
one is dedicated to the wavefunction approach of quantum mechanics and discusses the
Hartree-Fock (HF) method and its extensions. In the second part, the density functional
theory (DFT) approach of quantum mechanics is presented. Then, in the third section, one
tackles the calculation of molecular properties, either through numerical differentiation or
response functions. Finally, the last section introduces methods to include the effects of
surroundings.

Note. Atomic units are used in the chapter.

47
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Section 3.1

The wavefunction approaches

In quantum chemistry, the goal is to describe the evolution of a (molecular) system in
time and space. One way to achieve such goal is to solve the non-relativistic time-dependent
Schrédinger equation: !

A . a
HY =i1—VY, (3.1)
ot

where the system is described by a wavefunction, ¥({rp}, t), depending on the positions of
the particles, {rp}, and time, t. H is the Hamiltonian operator, which basically describes the
interactions between the different particles, as well as the impact of a possible environment.
Stationary states of the system are thus obtained by solving the time-independent Schrodinger
equation:

HY, =E,¥,, (3.2)

an eigenvalue problem in which {E;} are the eigenvalues (energies) of the system described
by the eigenfunctions {¥;}, which contain all information on the system at a given time t.
The goal of quantum chemistry is therefore to obtain both eigenstates and corresponding
eigenfunctions.

The Hamiltonian may be decomposed into:

A

A=T+V+4,,, (3.3)

where H, ., describes the influence of the environment, which is assumed to be zero for the

ext
moment and addressed in the last section, T is the kinetic energy operator, which for a system

of N, particles is written as:
A 1 1
P=—> —V2 (3.4)

where m, is the mass of the particle and V% is the Laplacian. V is the potential energy operator,
which is due in this case to Coulombic interactions between the N, particles of charge gp:

N
V= _9rdq (3.5)

)
P<Q |rP - rQl

For a molecular system, one distinguishes between two types of particles: electrons (e) and
nuclei (N), so

%
N,
> v (3.6)
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N, N, N
ZA ZB . _ZA
N ) 5
A<B [ta— i<j [, — 1| Iz, _rA|
w—/ —_———
Vn V.. VNe

where Ny and N, are the numbers of nuclei and electrons, respectively.

Although exact (in the non-relativistic framework), the Schrodinger equation gets difficult
to solve when the number of particles exceeds 2. The goal of the following sections is therefore
to explore how to get (reliable) approximate solutions to the problem. Before that, the Born-
Oppenheimer approximation? proposes to separate the total wavefunction into its nuclear
and electronic parts, the latter taking the nuclear coordinates as parameters. This allows one
to focus on the electronic Hamiltonian, H,:

N, Ny

. —Z
+V., vNe_——Z er—rl Zzlr—iAl' (3.8)

i<j

A

H =

e

'~]>

For now on, one will focus on the electronic Hamiltonian and its corresponding electronic
wavefunction, so the e indices are now dropped for clarity.

Furthermore, since electrons are fermions, the electronic wavefunction should be antisym-
metric with respect to the exchange of the coordinates of any pair of electrons (this introduce
the so-called Fermi correlation). This property could be fulfilled if one expresses this wave-
function as a Slater determinant (or a combination of Slater determinants),>™

01(x1) ©4(x3) -+ ©1(xy)
Wi = | #0000 T Ol (39)
Oy(x1) Oy(x2) -+ On(xy)

built out of the occupied spinorbitals, ©;(x;) = Y ;(r;) 0;(w;), which are one-electron wave-

functions, r; being the spatial coordinate and w;, the spin coordinate, which may be either
up or down (a or f3).

The variational principle

Within the framework presented in the previous section, solving the Schrodinger equation
would result in finding the combination of spinorbitals so that the corresponding Slater de-
terminant is the best approximation of the ground state wavefunction, ¥,, associated with H,
if a method to get it was available. The variational principle®’ defines such road towards ¥,
(it is actually more general than this specific case). Indeed, it states that any normalized trial
wavefunction, ¥, has a higher energy than the exact ground state energy E,:

(P|H|P) > Ey = (¥|H[T,), (3.10)

so that the problem actually translates into minimizing the energy of a trial wavefunction.
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The Hartree-Fock (HF) method

The HF method proposed by Hartree and Fock®!! arises from applying the variational
principle to a wavefunction described by one single Slater determinant. For a system with N
electrons, the HF method relies on the Fock equation which is, for one spinorbital ©;, written
as:

) @i(x:) = £;0,(x) (3.11)

12,13

where f is the one-electron Fock operator and ¢;, the energy of the spinorbital. f can be

decomposed in two parts:

£(ry) =h(ry) + V() (3.12)
where:
1 &z,
h(r,))=—=V?— (3.13)
' 2! ; |r; — 1

is an operator accounting for the kinetic energy and nuclear attraction of electron 1, while
VHF is the HF potential, which accounts for the potential experienced by electron 1 arising
from the environment constituted by all other electrons, defined as:

N
VHF () = D Jie) = Ry(ry). (3.14)
J

where the sum runs over all other electrons, i.e., over all the occupied spinorbitals. J j is the
Coulomb operator, which computes the average Coulomb potential due to the electrons in the
spinorbitals ©;, defined as:

A @;(Xz)@j(xz)
Jj(rl)@i(xl) == dX2 i Xl) (3.15)
) — 15
K ; is the exchange operator, defined as
A @;(Xz) 0;(x3)
Kj(l‘l)@i(xl)I dX2 ji Xl) (3.16)
) — 15

It comes from the antisymmetric nature of the wavefunction, and only appears for spinorbitals
with the same spin function.
Therefore,

N N Ny,
EHF:<‘I’|f|‘1’)+ENN:Z{hii"'ZJij—Kij}+Z A8 (3.17)

A

where:

h; = <@i(x1)|i1(1'1)|@i(x1)) > (3.18)
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Jij = (ei(xl)|jj(r1)|®i(x1)> = (ijlij) = (iiljj), (3.19)
Kij= <@i(xl)|f<j(r1)|@i(xl)> = (ijlji) = (ijlij), (3.20)

obtained through integration over spin and space. (ii|jj) is the Mulliken notation for the
corresponding two-electron integrals over spatial orbitals instead of spinorbitals.

With respect to the exact energy, E“*?!, that would be obtained using the Hamiltonian in
Eq. (3.8), the HF method introduces an error called electron correlation, E°"" = E&¥act —
EHF 1415 The sources of error are twofold. First, each eigenstate of the system (including the
ground state) is described by a single Slater determinant, where for some systems, more would
be needed, which is the so-called “static” electron correlation error. Then, the J j operator
only considers the interaction of one electron with the mean field created by the others, it
is referred to as the “dynamic” correlation error (also refered to as Coulomb correlation).
Both the post-HF methods and density functional theory that are introduced later tackle the
electron correlation issue.

The LCAO approximation and Roothaan-Hall formulation of HF

Although it introduces a nice analytic framework, Eq. (3.11) remains difficult to solve for
complex systems. It is customary to introduce the Linear Combination of Atomic Orbitals
(LCAO) approximation,'® which states that the molecular orbitals, v;(r;), can be advan-
tageously described as linear combinations of atomic orbitals forming a basis set of known
(Slater) atomic orbitals {¢,, }:

K
Y1) = > Cutpu(ry), (3.21)
w
where the ¢;, are the LCAO coefficients and K is the size of the basis set. Introducing this
definition into Eq. (3.11) gives:
F@) D Cuvux) = £ Y Cuipu(x1), (3.22)
u u

which, in matrix notation, transforms into the Roothaan-Hall equation: 718

FC = SCe, (3.23)

where F is the Fock matrix, C, the LCAO coefficient matrix, €, a diagonal matrix containing the
MO energies, and S, the overlap matrix, S,,, = (¢,|¢,). They are K x K matrices. Since the
Fock matrix depends on the solutions of the problem [the molecular orbitals, see Eq. (3.14)],
the problem has to be solved iteratively to get the set of LCAO coefficients (which describe the
HF wavefunction) that minimize the energy: the SCF-LCAO-MO cycle.

Using the definition of the density matrix elements,

N
D,,= > CuiCy, (3.24)
i
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Eq. (3.17) becomes

K
EMF = Eyy + » Dy, (H,, +F,), (3.25)
uy
where:
K
F,uv = ZDn{ [2 (MVMC) - (l-“?l vC)]ﬁ and H‘uv = ((pulhhpﬁ/) ’ (326)
{n
Basis sets

When Slater-Type Orbitals (STO o< e™") are used, the two-electron integrals of Eq. (3.26)
may get difficult to solve. Gaussian Type Orbitals (GTO o< e™"’) are usually used instead.!® To
mimic STOs, a contraction of N.,,, GTOs is used to form a basis function ¢,. A GTO centered
on nucleus A is defined as a so-called primitive function,

[ — |2
Grtm, (F—14) = Ny o, (e =1, )" (ry — 1) (ry — 1, )" e Fmal
Ncont
so that ¢, (1) = Z Cux Glmn’aw(r— ) (3.27)

K

where a,, is the exponent (which controls the spread of the orbital), Niim,a,,> 2 normalization

factor, c,,, a coefficient depending on the contraction, and L = n+ 1 + m defines the angular
momentum (or shell) to which the GTO belongs: in analogy to the quantum angular number,
L = 0 defines s-type orbitals, L = 1 defines p-type orbitals and so on. Constructing a basis set

then relies on these three concepts:

1. Minimal basis sets are constructed using one contraction per shell, they are called simple
¢ (SZ). If the number of contractions per shell increases, the basis set is labeled n-tuple
{: double ¢ (DZ), triple { (TZ), ...

2. Then, as from the chemistry point of view valence orbitals are more affected in chemical
processes than core orbitals, it is customary to define split-valence basis sets, which use a
different (usually larger) number of contractions for valence orbitals than for core ones.

3. Finally, basis sets are generally augmented with two special types of GTOs: i) diffuse
functions (with a very small exponent a), and ii) polarization functions (with higher
values of L than those present in the ground state of the corresponding atom). The first
one helps to describe long-distance interactions, while the latter are important for bond
description.

In the present work, two main families of basis sets are used:
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* The Pople basis sets.?!>?> They are named from the number of contractions and primi-
tives in each of them: the 6-31G basis set (“G” stands for Gaussian) consists in a single
contraction (of 6 GTOs) for core orbitals together with 2 contractions (of 3 and 1 GTOs,
respectively) for valence orbitals. From the number of contractions for the valence part,
it is still referred as double {. Triple { basis sets also exist, like 6-311G.

Diffuse functions are marked using the “+” sign: the 6-31+G basis set adds diffuse
functions to heavy (second row of the periodic table and later) atoms, while 6-31++G
contains two sets of diffuse functions on heavy atoms and one on first-row atoms (mainly
hydrogens).

Polarization functions are denoted using the shell type of the additional set of functions.
For example, 6-31G(d) is a basis set in which d-type (L = 2) functions are added to
heavy atoms. Extra refinements, like 6-31G(d,p) which add p-type orbitals to first-row
atoms, are also possible. Note that an alternative notation for those basis sets is 6-31G*
and 6-31G**.

¢ The Dunning basis sets, 2>**

noted cc-pVXZ, where “cc” stands for correlation consistent,
“p” for polarization functions (added on all atoms) and “XZ” refers to the number of
contractions per shell: DZ, TZ, ... They may be augmented by diffuse functions : the
aug-cc-pVXZ and d-aug-cc-pVXZ basis sets used in some part of our works include one

and two sets of diffuse functions (on each atom), respectively.

Rayleigh-Schrodinger (RS) perturbation theory

The idea of RS theory?>?° is to split the Hamiltonian in two parts, H(A) = Hy + AV (A €
[0,1]), so that Eq. (3.2) becomes:

(I:IO + A‘A/)\I’l - Ei ‘Ijl', (3.28)

in which PAIO is an Hamiltonian for which the solutions, {\Ifl.(o)}, are known, while V is treated
as a perturbation of such solutions: if A = 0, ¥ = ¥, As it is customary in physics and
chemistry, if the perturbation is small, a (power) series in A may be used:

(e.]

v= > AP =00+ 200+ (3.29)
k=0
oo

E=> MEP =P+ 21E" + .. (3.30)
k=0

where \pi(k) [and corresponding El.(k)] is the correction at the k™ order of the wavefunction

(energy) so that:
k k
(k)_la 2 (k)_la E;
O T MET S e

(3.31)
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Note that \Ili(k) has to be expressed on the same basis as ¥(©). Assuming (\Ifi(O)I\IJl.(k)) = O (to
get (\Ili|\IJl.(o)) = 1, which is the so-called intermediate normalization condition),

(k) _ (k) ., (0) _ 0) 17, (K\ +7,(0
v = o ‘I’;S)—Z#:(‘I’,S)I\Pi ) o, (3.32)
2 UFEL

Introducing Egs. (3.29) and (3.30) into Eq. (3.28) results in:

Ak \Ilfk)} - {Z Ak xvi“‘)} {ZAZ Ef”}, (3.33)
k=0 [=0

which, by grouping terms of same power in A and setting A = 1, results in a set of k equations

(Hy+AV) {

k=0

of the form:
k

Ao + 0 gD S EO gD — o, (3.34
=0

Multiplying the previous equation to the left by \Pi(o) and integrating over space results in:

Oy 1@ :
W Hy W ifk=0,
.(k) = {< l | 0| : ) (335)

‘ @O Dy if k> 0.

Therefore, to get the perturbed energy at order k, it is mandatory to know the wavefunction
up to order k — 1. For example, in order to get energy up to order 2, one needs the perturbed
contribution to the wavefunction of order 1. The procedure is thus the following: taking
Eq. (3.34) for k = 1, multiplying the previous to the left by \P§O) (with j # i) and integrating
over space yields:

0) 0
(w719

71Oy — (50 _ (0) 0)},,(1 0y —
(W) = (B -E) (119 < (171") = —G— G, (3.36)
i j
which gives an expression for the overlap to insert into Eq. (3.32),
b )
pFEL i u
Finally, with Eq. (3.35),
[ (w0 ) |
YR (O IARA(V)] (2 _ [ L
EN = (@0[e®”), and EF = (3.38)

(0) (0)
uF Ei —Ey

One can carry out this procedure further, up to any order. Note that the first equality is the

Hellmann-Feynman theorem.?’
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Mpogller-Plesset (MP) perturbation theory

To apply the RS perturbation theory to the electron correlation problem, 28 the perturbation
is considered to be the difference between the exact Hamiltonian of Eq. (3.8) and the sum of
the one-electron Fock operators defined in Eq. (3.12). This turns out to be the difference
between the two-electron operators, so that:

H, = Zf(r ), and V = Z ™ —VHE(r). (3.39)

i<j

From the corrections defined in Eq. (3.38), one recognizes that EFf = E©@ + EMW . The first
correction to the HF energy is therefore coming from order 2, where:

0CC unocc

2 _ TSHClb
E, 3.40
GZ; ,Zs: g, —€E,te—¢€ ( )
in which:
(rs|lab) = (ab|rs)—(ar|bs) (3.41)

is a shortand notation for two-electron integrals on occupied spinorbitals a and b and unoccu-
pied spinorbitals r and s (of energy ¢, and ¢,). It can thus be interpreted as the contribution
of doubly-excited configurations. The MP2 energy of the ground state is given by:

EMP2 = gHF 4 g2, (3.42)

MP2 is an important step towards including dynamic electron correlation: although more cost-
intensive compared to HF (K° versus K2), it may be used on moderate-size systems (nowadays,
up to 100 atoms), so it will be used as a reference when Coupled Cluster (see next subsection)
is not possible. Moreover, unlike variational methods, the convergence of MPn with respect to
the exact energy is not guaranteed, so one will limit ourselves to the second-order correction.

Coupled Cluster (CC) theory

To push further the quest for an accurate description of the exact wavefunction in terms
of one electron wavefunction, Cizek?® later proposed to express the wavefunction as the ex-
ponential ansatz (educated guess) of a reference wavefunction, here the Hartree-Fock one:

WeC = T gHF (3.43)

where T is the so-called cluster operator:

T = i T, (3.44)

i=1
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in which T; is the operator of all i-tuple excited configurations. This operator is often trun-
cated: for example, if the excitations are limited to the single and double ones®° (this is
referred to as the CCSD level),

0CC unocc 0CC unocc

f,=> > tlald, and T, = Z Z trsatala,ay, (3.45)
a r

which consists in a sum over occupied (unoccupied) spinorbitals a and b (r and s) where,
from second quantization, one recognizes @' and d as the creation and annihilation operators
(of spinorbitals), respectively. For example,

0CC unocc

7w = Z Z e, (3.46)

where ¥’ is obtained by moving (annihilating) an electron from the occupied spinorbital a
to the unoccupied spinorbital r. The t’s are therefore the amplitudes for each corresponding
excited configurations or Slater determinants, which are the unknowns of the method. Note
that, by virtue of Taylor series, truncating the cluster operators to double excitation does
not only include the so-called connected single and double excitations (Tl and Tz), but also
combinations of them: the disconnected doubles (le), triples (Tl Tz), quadruples (TZZ), and so
on:

elitTz — 1+(T1+T2)+%(T12+T22+2T1T2)+... (3.47)

The CC energy is given by:
ECC = (WHF |~ T feT |@wHFY | (3.48)

which, using the Baker-Campbell-Hausdorff (BCH) expansion, gives:

1

ECC = EMF 4 (WA, T,]197F) + > (WA, 1,0, T 1) (3.49)

Indeed, cluster operators higher than double do not contribute to energy, because of Bril-
louin’s theorem.?! To determine the amplitudes, the variational principle (through Lagrange’s
multipliers, see below) is used: it results in a set of equations of the form:

Vi>O0: (Mile_TPAIeTI\IJHF) =0, (3.50)

where {u;} is the set of all possible i-tuple excited Slater determinants. For example, intro-
ducing the Tl transformed Hamiltonian as H = e 1K e1, the CCSD amplitudes (i = 1,2) are
determined by solving

(ui|H +[H, T,]|97F) =0, (3.51)

2 A A 1 2 A n
(us|H +[H, To] + 5[[H, T,1, T,][¥"F) = 0. (3.52)
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CCSD allows obtaining very accurate energies and properties, but is very cost demanding (K°
in its iterative version). In order to get an approximation of the impact of double excitations,
the second-order approximate coupled cluster single and double model (CC2) may be used
instead:®? the idea is the same as in MP theory, which uses the same partition as in Eq. (3.39)
(here, the “perturbation” operator V is also referred to as the fluctuation operator). Therefore,
instead of Eq. (3.52), the following set of equations are solved together with the ones of
Eq. (3.51) to give the CC2 amplitudes:

(ol H +[f, Ty]) =0, (3.53)

in which only connected doubles are considered. This gives results of similar quality as MP2
for the energies (both method includes only parts of the double excitations), while it allows
using the response function framework, developed later in Section 3.3.

The same idea is found behind CC3,3? which adds to Egs. (3.51) and (3.52) terms and
equations to account for the impact of (connected) triples to the amplitudes. This results in
the hierarchy of CC methods used in this work:

CCS < CC2 < CCSD < CC3.

Note that if only single excitations are considered, Eq. (3.49) reduces to E¢¢S = EFF,

Section 3.2

The density functional theory (DFT) approach

In opposition to the wavefunction approach, the one-electron density p(r;) is used instead
of W. It is obtained from the integration of the square of the norm of the wavefunction over
all position and spin coordinates, except one spatial, ry:

p(r;))=N f J dw, dx,...dxy |¥({x;})|?, with N = f drp(r). (3.54)

where N is, again, the number of electrons. Even within the Born-Oppenheimer approxima-
tion, solving the Schrodinger equation with the electron density requires some guarantees.
They are provided, for the ground state, by the two theorems of Hohenberg and Kohn:3*

1. The external potential, V,,.,, which, in the absence of electromagnetic field, corresponds to
nuclei-electron interactions, is uniquely defined (within a trivial additive constant) by the
electron density. Thus, the electronic energy is a functional of the density, written E[p ],
and all properties depend on the electron density as well ;

2. The energy variational principle is valid for any electron density, so for a trial density p,

E[p]= E[po] (3.55)
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where, similarly to Eq. (3.10), p, is the exact ground-state density (with ground-state
energy E[py]). Again, this principle paves the way towards getting the density and,
subsequently, the properties of the system.

Main ideas

The energy is therefore decomposed into different contributions:

E[p]=Eyn + Vexilpl+ Fuxlpl, with Fgp[p]l=T[p]+ E.[p], (3.56)

where Eyy is the nuclei-nuclei potential energy, while T is the electron kinetic energy and
E,., the electron-electron potential energy. The last two terms are grouped in the Hohenberg-
Kohn functional, Fy. In fact, while Eyy is readily available (see above) and V,,.[p] can be
obtained from:

Vexelp]= f dr; Vy(r1) p(ry), (3.57)

the explicit form of Fy; remains unknown. One of the issues is T[p ], for which there is no
exact expression, except if one splits the term into a “non-interacting limit” case (electrons
described by a Slater determinant), Ts[ p ], and the remainder. This was the idea of Kohn and
Sham,*> which thus reintroduced the concept of spinorbitals into DFT, so that the density of
Eq. (3.54) is redefined as:

p(r) = ZJ dew; |0;(x;)I?, (3.58)

so that:

Tlp]=—3 Y (0x)] v*[0,x)). (3.59)

1

The, now Kohn-Sham (KS) functional is therefore rewritten:

Frslpl=Ts[pl+Jlpl+Exclp], (3.60)

where J[p] is the Coulomb energy,

[r; — 15|

1

Jlpl= Y {(0x) |J(r)|©:(x))), with J(r,) = J ar, 22 (3.61)

and Ey. gathers the unknown parts of the kinetic and potential terms. The set of KS equations
to be solved is therefore:

hies(r1) ©:(x1) = £;,0;(xy), (3.62)
with: )
fle(l'l) =73 V% +YNe(r1) +J(r) + VXC(rll: (3.63)

~"

Veff(rl)
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where V, ¢ is the effective potential and Vyc is the exchange-correlation (XC) potential, de-

fined as:

A %,
Vxc(ry) = —aE;EIFS] .

The expression of Ex. is computed from one of the so-called XC-functionals (XCF), which are
the cornerstones of DFT. Since this theory can be readily expanded to encompass the LCAO

(3.64)

principle, the equations can be expressed in a matrix formalism, similarly to Eq. (3.23), as:
FrsC=SCe. (3.65)

Since it shares similarity with HE the quantum chemistry codes can be easily extended to
include DFT, for a similar cost (computer-wise). Another reason for the popularity of DFT is
that it can give better results than HF if the XCF is well chosen, since, contrary to HE, some
electron correlation is included.

XC functionals

Since the beginning of DFT as a quantum chemistry method, many different XCFs have
been developed, based on different underlying principles. In fact, for some functionals, the
exchange and correlation functionals may have been developed separately and the XCFs are
constructed by mixing the two parts together. For example, the BLYP functional is composed
of the Becke3® (B, or more precisely B88) exchange part and the Lee-Yang-Parr®” (LYP) corre-
lation part. All XCFs can be categorized into:38

1. Local density approximation (LDA) functionals, that are based on the uniform electron
gas as a model, and thus only consider the electron density at a given point to compute
the contribution of that density to the XC potential, and energy. An example is the SVWN
functional, which combines the Slater3* (S, also referred as “LDA”) exchange functional
with the Vosko-Wilk-Nusair3® (VWN) correlation functional;

2. Generalized Gradient Approximation (GGA) functionals, which go one step further,
by also considering the gradient of the density at point r to evaluate the potential energy
density. Both parts of BLYP are GGA functionals;

3. Meta-GGA (m-GGA) functionals, which improve over GGA by including the Laplacian
of the density (or kinetic energy density). Among others, M06-L% is a pure m-GGA
functional;

4. Hybrid functionals, which include a certain amount of (exact) HF exchange to correct

the exchange part. The simplest examples are inspired by the adiabatic connection

41,42

principle, which relates the KS and physical systems by:

1
Exc =Eq + J dAE} ~ ESIOOM 4 A (ERF — ETVOOM), (3.66)
0
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so that, if Ey is linear in A, A = O corresponds to the KS (non-interacting) system, while
A =1 corresponds to the fully correlated system (for which the HF exchange is exact).
Due to the unknown nature of E., the actual value depends on the (m-)GGA that is
chosen and thus lies between 0 and 1.

For example, BHandHLYP is based on BLYP with 50 % of HF exchange (A = 0.5). Other
examples used in our work include some members of the Minnesota family*® with M06
(27 % of HF exchange) and M06-2X (twice that amount, so 54 %). Finally, the (in)fa-
mous B3LYP functional® relies on 3 parameters to combine one LDA (S-VWN) and one
GGA (BLYP) XCF together with HF exchange:

ERXMP =B +a) (EJf —ES) + ap ER%% + ag (LT —EZ™M), (3.67)

with, in Gaussian, a; = 0.2 (20 % of HF exchange), a, = 0.72, and a; = 0.81. B3P86
uses the same parametrization with P86** instead of LYP;

5. Range-corrected hybrid functionals, which also include HF exchange, but with a vary-
ing percentage that depends on the distance r;, = |r; —r,|. In practice, the two-electron

operator is splitted into a short- and long-range part, as: *°

1  1—-[a+perf(wry)] N a+p erf(wryy)

- = (3.68)
2 2 2
~ TV - ~ TV
short range long range

where w (written u in LC-BLYP) is the division parameter. The first part (short range)
is associated to the evolution of the DFT exchange, the second part (long range), to the
evolution of the HF exchange. Thus a corresponds to the amount of HF exchange at
r1, = 0, while a + f to the one at r;, = 00. In our work, the CAM-B3LYP* (a = 19 %,
a+ B =65%, w=0.33a,"!) and LC-BLYP*® (a = 0%, a+ 8 =100%, w = 0.47a, )
functionals were used. The evolution of the DFT exchange with the distance for those
two XCFs is compared in Fig. 3.1 to the BHandHLYP case;

6. Finally, double hybrid functionals use the KS orbitals to include a MP2 correction to
the energy, using Eq. (3.40). B2-PLYB*” which is based on B3LYP with 27 % of MP2
correction, is probably the most famous example of this last category.

As an additional refinement which can be applied to any category, the van der Waals (vdW)
interactions are not well accounted for in the DFT energy (except with double-hybrids). An
empirical correction is possible, like with the DFT-D2, -D3, and -D4 schemes.**>! One exam-
ple is the wB97X-D functional,>* which is also used in our work. It is a range-corrected hybrid
(a=16%, a+ 3 =100%, w = 0.2a,~1), in which the dispersion is described by the DFT-D2
scheme in Gaussian:>3

Ny AB

6 .
Edisp =—56 Y . ———— Faamp([ta—T5]), With figmy(r) =
= [ty —rp]

1
1 + e—d (r/RB-1)’

(3.69)
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Figure 3.1: Evolution of the percentage of HF exchange with the distance r;, for the
BHandHLYB, LC-BLYE and CAM-B3LYP functionals. The percentage tends to a+ f3 for r — oo.
A larger w parameter makes the function increasing more rapidly.

where s¢ is a global scaling factor, Cg, a dispersion factor that depends on the AB pair of nuclei,
fdamp> @ damping function, d controls the strength of the dispersion (equal to 6), and R is
the sum of the vdW radii of atoms A and B.

Tight-binding approximation of DFT (DFTB)

While it is possible to study many small- to medium-size systems (< 500 atoms) with DFT,
some interesting problems would require techniques that handle at least one order of magni-
tude more atoms. In our case, in Chapter 10, our focus turns to be the first hyperpolarizability
of fluorescent proteins, which contain (for the smallest system) about 2000 atoms. This is
currently out of reach of conventional DFT, even with the constant improvement of modern
hardware. Semi-empirical methods are therefore an alternative. In the following, one details
the second version (GFN2-xTB>%) of the tight-binding DFT GFN-xTB methods developed by
Grimme’s group.>+>¢

Any tight-binding formulation of DFT is based on a separation of the density p = py+ Ap,
where p, is a reference density and Ap is a density difference (or fluctuation).>” The xTB
methods add an additional term, Ej;, to the total energy given by Eq. (3.56) to account for
non-local correlation. This results in:

Ewoclpl=Eprlpol + AEyr[Apl+ Excl[pl+Enilp,p'], (3.70)
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where Ep; is the (Huckel-Type) energy of the reference density p, (including the nuclei-
nuclei potential Eyy) and AEy, the energy difference due to fluctuations. As it is customary
in DFTB, the reference density is taken to be the superposition of (neutral and spherical)
non-interacting atomic reference densities:

po(r) = Zp (x). (3.71)

Note that in xTB, as in many other DFTB formulations, only the valence part is taken into
account: so, within the LCAO framework, the atomic densities are defined from a minimal set
of valence atomic orbitals {v,}. If one Taylor-expands the density around 5p = 0, Eq. (3.70)
is rewritten as:

Elpo+ Ap]l=E9po]+EW[pg, 5p]1+EP[po, (6p)° 1+ EP[py, (6p)°1+...  (3.72)

where, for example,

J2%E[p]
2) 2 (o /
E@[p,, (50)*] fdrl Jd N P P o 5p(r1) 50 (ry). (3.73)

The GFN2-xTB method is a so-called DFTB3°® formulation, which means that the energy
expansion is truncated after the third order term. Thus:

EO[po] = Eprlpol + E((i?s)p[Poa Pyl (3.74)

d
EM[py, 6p] = %(AEHT[AP] +Exclpl+Enilp,p' 1) 6p = Efﬁs)p +ESD, (3.75)

82
55/ (AEur[Ap]1+ Exclp]+ Eillp,p'D3p 6p" = ES) +Ege +Efg,

E?[po, (6p)%] =
(3.76)

Fpo, (5p)°] = —2xcLP]

/ 1 =(3)

Grouping the terms of the same kind together finally gives the following expression for the
DFTB3 energy:

_ (0),(1) (0) (0),(1),(2) (2) (3) (2)
Eppres = Byt B, T Egypy 7 Exe ™ + B,

= Eyr +E.op + Egisp + Egs_xc + Ers

rep

where Ey. comes from the derivatives of the XFC, Eps are the electrostatic (Coulomb) in-
teraction energies, and Eg;, (specific to GFN2-xTB) arises from derivatives of the non-local
interactions. The second-order electrostatic and XC terms are customarily grouped together

as Egg_yc = B + B

+¢» While the third order XC energy term is generally written Ep = E)((Bc).ss
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The GFN2-xTB method

In GFN2-xTB,
* The XCF is a hybrid functional, containing 50 % of HF exchange.

* The (extended) Huckel-Type (HT) energies are given, within the LCAO approximation
[Eq. (3.21)], by:

Nyo

EHT _Zzn'ciu CivaW ZDvu uvs (378)
i

where Sy = SISOB + SDW is a density matrix element [Eq. (3.24)], defined from the
fluctuation of the density, while H,,, is a Hamiltonian matrix element, constructed out
of shell- and atom-specific parameters. It is the crucial ingredient to describe covalent
bonds in all the GFN-XTB methods.

Note that n; = n;, + n;, the occupation of the MO i, is allowed to be fractional to
handle open-shell structures and nearly degenerate states. To do so, an additional finite
temperature treatment term is added to the energy Ey;:

NMO a>ﬁ

Grormi = ks Tt Y > My In () + (1 —n,) In(1—ny,), (3.79)

where kj is the Boltzmann’s constant, T,;, the electronic temperature (300 K by default)

and n;,,, the fractional occupation of the corresponding spinorbital, computed from:
foep] )T (3.80)
M, = | €X - , .
lw p kB Tel
where ¢;, the energy of the spatial orbital i and e’ = 5 (8HOMO + €[ Umo)» the Fermi level
of the w = a or f set of spatial orbitals.
* The repulsion energy is an atom-pairwise expression:
Ny ZA ZB
E© _ Z S T =y Ras)T (3.81)
rep h RAB
<B

where Z,¢; (roughly corresponding to effective nuclear charges screened by the refer-
ence density) and a are element-specific parameters that define the magnitude of repul-
sion energy. k; = % is a global parameter, except when A and B are first-row atoms (H
or He) for which ke =1.

* The dispersion is treated with a modified DFT-D4 scheme,>! defined as:

(n)
Edisp Z ZRH fdamp( AB)

n A<B
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oy (308 O COS Oy COS Oy + 1) CLBC
=5 2,

A<B<C (Rap Rac Rpc)? fd(sgnp’o(RAB’RAC’RBC)’ (3.82)
where R 3 is, again, the distance between atoms A and B, 0,5, the angle between atom
A, B, and C (in that order) and, similarly to Eq. (3.69), C/* and C3"¢ are dispersion
coefficients and fg,,, is @ damping function. It is important to notice that the DFT-
D4 scheme, compared to D2 [Eq. (3.69)] or D3, also requires a self-consistent scheme,
since the C,, parameters are computed from the atomic (partial) charge and coordination
numbers.

* The second-order energy is rewritten as a multipole expansion, as:
Egs xc = E, + Epgs + Eaxcs (3.83)

where E, is identified as the isotropic XC-ES potential. Basically, E, is a monopole term
in the multipole expansion of the second-order energy, while E,x. and E,zs are the
(anisotropic) higher-order terms up to order 2, that thus involve the atomic dipole and
quadrupole moments.

E., common in DFTB2 and 3 other formulations, is here expressed in a shell-specific

Yo
Ny
EY = ZZZCIH quAB,uw (384)

form:

A<B u€A veB
where g, and g, are the (partial) Mulliken shell charges, and the notation u € A (v €
B) indicates the shells of atom A (atom B). Yap v are short-range damped Coulomb
interactions: for large distances, v ,5 reduces to |r, —rz|~!, while, at short range, the
expression involves the chemical hardness, 1), of the two atoms and element-specific
scaling factors for the individual shells (k:). The resulting expression is:

1

\/|1'A_ 1512 + M35 1y

. 1
}/AB,,LH/ = > Wlth T)AB,‘U,V = 5 [nA(]- + kz) + NB (1 + kg)] (385)

* Finally, the third-order energy is also an (isotropic) on-site term, formulated in a shell-

specific form:
Ny

1
Ep =1 > EKT,, (3.86)
A uU€A

where K E is a global shell-specific parameter, while T, is an element-specific parameter.

More details for the different expressions are found in Refs. 54 and 56. The main specificity of
GFN-xTB methods is to avoid as much as possible pair-specific parameters, which would make
the parametrization of the method much more complicated. More particularly, GFN2-xTB does
not require H- and halogen-bond specific parameters (and thus no atom-pair parameters), due
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to the inclusion of E,x. and E,p¢ (it was not the case for GFN-xTB) and features the D4 auto-
coherent scheme for the dispersion.

The xtb program (https://github.com/grimme-lab/xtb), which implements the SCF-
LCAO-KS scheme for the method, also includes a geometry optimizer (based on approximate
normal coordinates, ANC>?). As reported by Schmitz et al., it very quickly results in accurate
optimized geometry for proteins, starting from their crystal structure. It is the basis for the
procedure considered in Chapter 10.

Section 3.3

Molecular properties

Even though solving the Schrodinger equation (Sections 3.1 and 3.2) is the first important
step in all quantum chemistry calculations, one is generally interested in quantities related
to physical phenomena. When they are not directly obtainable from the expectation value of
certain operators, molecular properties are defined as the response of the molecular system
with respect to an external perturbation (or several). For example,

* A change of molecular geometry (Ax) is related to the molecular gradient (first-order
term), to the harmonic vibrational frequencies (from the molecular Hessian, second-
order), etc:

Nq

N
S OF 1 J°E

E(xn+ AX)=E,+ —| x4+ — O0X,0Xp +... 3.87

(%o ) 0 ;aon A 2;8XA8XBO AZTB ( )
gradient Hessian

where x, is the change of geometry of nuclei (atom) A.

* From the first chapter, the application of an external electric field (F) is related to the
electric dipole moment (u), the polarizability (a), etc:

F Xyz Xysz )
JE 1 J°E
E(AF)=E,— | dF wW(F)=E,— » —| 6F,—— OF;8F;—... (3.88
o0 == | ar ey =£-3 S| r—3 > ST smon .. o
1 1]
i a;j

ij
* The application of an external magnetic field gives rises to the NMR shieldings, etc.

From the computational point of view, two methods are available to compute such derivatives
of the energy: finite field differentiation or analytical derivatives. While the first comes in
handy when no implementation of analytical derivatives exists in the target quantum chem-
istry program (for example for post-HF methods), the latter is useful since it is more precise,
generally less computer-intensive, and it can provide time-dependent molecular properties.
Let us present these different methods and discuss some of their key aspects.


https://github.com/grimme-lab/xtb
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Finite field (FF) method and the Romberg scheme

The Mac-Laurin series expansion of a function f (x) is given by:

0 n anf
—SN'pWX withpw=21] 3.8
f(x) Z}O -, wi e (3.89)

x=0

A finite difference approach allows recovering a derivative at order £, D). It employs a finite
change of parameter x, called here h so that h € Ry

th

oo
DO D(If)(h) =pW® 4 ZD(€+n) ——  —p®4 ﬁ(h€+1), (3.90)
=1

(€ + n)!

where DY(h) is an approximation to D). Such finite difference formula is based on the
following equality:

—D“)(h)— Z C, f (ih), (3.91)
which holds by selecting the correct {C;} coefficients, with i € [i,,in, Imax ] min < Imax)- NOte
that instead of an arithmetic progression in h, a geometric progression is also possible. To find
the coefficients, the procedure is straightforward: given Eq. (3.89), the previous equation is
rewritten:

max

i D“)(h) —Z D(”) Z C,i" (3.92)

from which it is visible that Eq. (3.91) only holds if:

& 1 ifn=¢,
Z Ci"= (3.93)

= 0 otherwise.
min

This defines a set of N + 1 equations with i,,,, —i,,;, + 1 unknowns. The values of i,,;,, and
i, May therefore be arbitrarily chosen to give a solution, and to provide forward-difference
(inin = 0), backward-difference (i,,,, = 0) or centered-difference (i,,;;, = —iq,) derivatives.
It is then possible to know the value of D¥ from Eq. (3.91). For example, the polarizability
(second-order derivative of the energy) defined in Eq. (3.88) can be computed with a forward-
difference derivative formula as:

_ E(0)—2E(F,) + E(2F,)
xx ™~ F)zc

+0(F3), (3.94)

while the following centered-difference derivative formula may also be used:

a,.,
XX F)ZC

+ O0(F?) (3.95)
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where, in this case, F,. is a x-oriented electric field (in the molecular frame). The latter formula
should be preferred, since a centered-difference formula gives a better precision. Note that
this procedure is easily adapted for multivariate functions.

The quality of the approximation thus depends on the intensity of h: i) if it is too small, it
gives rise to computational (numerical) errors, while ii) if too large, @(h'™) gets important,
which gives rise to precision errors. To circumvent the latter, the Richardson procedure®! (also
called Romberg’s scheme) may be employed. Defining a geometric progression with h = a*h,,
where a is the common factor (generally defined as +/2 with n > 0) and h, is the minimal
field and using Eq. (3.90),6%03

oo
rm rm n (akh )n rm n
a"™ DO (a* ko) — D@ hy) = (a —1)D(”+ZD(Z+)(HT(Z))!(G —a"),  (3.96)

n=1

it is possible to remove the n'-term of the contamination by choosing rm = n. m is the
number of refinement steps or Romberg iterations. Thus, a recurrence relation is defined:

a ™ DOk, m)—DO(k +1,m)

Dl(k,m+1)= arm—1

+ 0(hy,"™), (3.97)

starting by m = 0. In general, r should be equal to 1 to remove the m,-power contamina-
tion, but in the case of centered derivatives, every odd-power term vanishes from the series
expansion, so that r = 2. The result is a Romberg triangle (Fig. 3.2).
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Figure 3.2: Scheme of a Romberg triangle for the Romberg procedure. The ¢, and ¢,, are the
amplitude and iteration errors, respectively (see text).

If the value of hj and k., are chosen well enough, the final value should be the rightmost
one [DD(0,k,,,.) in Fig. 3.2]. However, without a priori knowledge of the ideal window
for h, it is necessary to carry out an analysis of the triangle to select the “best” value.®® Two
quantities are useful:

e,(m) = DO(k +1,m)— DO (k, m), (3.98)
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e,(k)=DW(k,m+1)—DWV(k,m), (3.99)

where ¢, is the amplitude error at iteration m and ¢, the iteration error for an amplitude k.
The best value is chosen according to the flowchart given in Figure 3.3. Such procedure has
been implemented in the home-made nachos program to automatically compute the geomet-
rical derivatives of electrical properties up to any order, used in Chapter 6.

[ Start with m=0 J

* tis a preselected threshold value.

Yes Select DO(k,m) —tnd

A

No

Select the largest
stability region(s) Select first DO(k,m)
(increasing ek(m) of in region
same sign), set
em = first ek(m) as
amplitude error for this
region. Select the

region with lowest em. Yes
m>0? Yes > em>em-17?
No
No [
Restrict analy3|s to | Yes Size of _ No Select
this region and |« stability region 0
) DO(k,m+1)
increment m >1?

Figure 3.3: Flowchart to select the “best” value in a Romberg triangle in nachos, adapted
from the text in Ref. 63.

Static Response Functions (RF)

The analytical expressions for both time-independent and dependent molecular properties
rely on the RS perturbation theory, developed above. In the first case, it is a straightforward
application, slightly recast to help with the time-dependent theory developed below. A general
expression for the electronic energy for a given geometry is:

E({x;},2) = (¥({x;})

where {x;} is the set of electronic (wavefunction) parameters (e.g., LCAO parameters) and A,
the strength of the perturbation, as in Eq. (3.28): H(A) = Hy,+ AV. The {x;} thus depends on

H) | ¥({x:}), (3.100)
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the perturbation. Note that if they are determined variationally, then:

Vik;: w =0. (3.101)
oK, 0
The first-order derivative is therefore given by:
d_E BE({K} A) 5’E({K} A) 9k; dH(A)
= Z = <¢({ l})‘ \v({xi})> (3.102)

=0

which is, again, the Hellmann-Feynman theorem.?” The second-order derivative is obtained
from differentiating the previous expression, yielding:

dz_E_Z ’E({x;},A) 9k,
drz NIk, oA’

perturbed electronic gradient

(3.103)

or, in a simplified notation {((V;V)) = (x*)T n*, where ((V;V)) is the linear RE and «*, the
first-order response vector to A, containing all d«;/Jd A. It is obtained from the derivatives of
the stationary condition Eq. (3.101), which results in a set of equation of the form:

). 2) 2%, SE(Ixi). )

= , 3.104
5 Ok;0x; OA OAOK; ( )
| S —
electronic Hessian
or, in a simpler form, E* k* = —n*. Therefore, after getting the response vector, one is finally

able to compute the static linear response to perturbation with Eq. (3.103).

In the case where the perturbation is a geometrical modification, for example a geometry
optimization, the geometric gradient is generally sufficient. The static linear RF gives access
to the geometric Hessian, H [see Eq. 3.87]. The diagonalization of the mass-weighted Hessian
H™, defined as:

H™ =m”*Hm™7?, with myg = m, 5 43, (3.105)

gives access to the 3N—6 (or 5 if the molecule is linear) vibrational frequencies of the molecule.
The absence of imaginary frequencies is the sign that the geometry sits in a (local) energetic
minimum, so a frequency calculation is mandatory after each geometry optimizations. It is
also required, together with the electronic energy, to evaluate the thermodynamical properties
(e.g., enthalpy, entropy or free Gibbs energy) of a molecule.®*

RF for non-variational wavefunctions

If the wavefunction depends on non-varational parameters (for example, the CC ampli-
tudes), the Lagrange’s method of undetermined multipliers has to be used. In practice, if the
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Lagrangian L({c;}, {C;}) depends on a set of non-variational parameters {c;}, the {¢;} are the
Lagrange’s multipliers, used to constraints the Lagrangian:

L({c;}, {&H=E({c;}) + Z ¢;le({c;}) —0], (3.106)

where e({c;}) = 0 is a constraint. The set of parameters and multipliers are found by imposing
the stationary conditions:

yo 2Ued (@) _ o FUa)) ,  delled) _ 5107
aCi 8Ci aci

ve, . Ldah &) (3.108)
ac¢;

The first one allows determining the multipliers, while the second one is used to get the pa-
rameters. The Lagrangian, for which the two stationary conditions together are equivalent
to Eq. (3.101), can be used instead of the energy in the previous expressions, (3.103) and
(3.104), to get the response functions. Such framework is also readily applicable to the dy-
namic responses (see below).

Dynamic response functions

This time, let the Hamiltonian be time-dependent, such that:
H(A, t)=Hy+V(A,t), (3.109)

where only the perturbation V(A t) is time-dependent (TD). Thus, one can assume that, in
the absence of a perturbation, the TD wavefunction reduces to the time-independent wave-
function ¥,. The development of such wavefunction is now governed by the TD Schrédinger
equation [Eq. (3.1)]. Different approaches to solve this problem exist. Following the Floquet

65-68 it is proposed to extract a (position independent) phase factor F(t) from the ¥(t)

theory,
wavefunction so that:

U({x;},t) = e FOG({x;}, 1), (3.110)

where ¥ is the phase isolated wavefunction, which is again assumed to depend on the {;}
parameters. Inserting ¥ into Eq. (3.1) results in:

[m, - l%] Bk, ) = QO F({x}, 1),

with Q(t) = 3g(tt) = <\TJ({K1~}, t)

A, t)—i%‘\f/({xi},t)>. (3.111)

This equation reduces to Eq. (3.2) in the time-independent limit. As a result, Q(t), a real
quantity, is called the TD quasienergy since it reduces to the energy E, in the time-independent
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case. In Floquet theory, the perturbation is assumed to be periodic in time, of period T and

frequency w:

A ) 2
V(A t+T)=V(At), and wy = ?ﬂ (3.112)

which means that V (A, t) oscillates at a multiple of the fundamental frequency w;. Note that
this implies, since the Hamiltonian becomes periodic, that ¥ oscillates with the same period.
Introducing the time average of a given periodic function g(t) as {g},

T
1
{g}r== f dt g(t), (3.113)
T Jo
the (time-averaged) quasienergy £ is given by:
- A L0 | =
T
Since g
{ g(t)} —0, (3.115)
dt )7
the TD variational principle is:
02
— =0, (3.116)
3Ki
and the TD version of the Hellmann-Feynman theorem is:
d2 - JH(A,t) | - >
— = (V({x;}, )| ——— | ¥({k;}, t . 3.11
3 = (0.0 | 220 waw o)} (3117

In a more general case, one uses the Fourrier series of the perturbation operator,®’ given
by:
N
VA, 6)= D aexletiont (3.118)
k=—N
where w; is a multiple of the fundamental frequency w; and A(w;) are the perturbation
strengths. V is a time-independent operator. To ensure that the Hamiltonian remains hermi-
tian: 1) w_; = —wy, i) V¢ is hermitian [V = V7], and iii) A~ = (1%)*. Thus, the w,; always
come in pair, £w,. Furthermore, differentiating V(t) with respect to one strength parameter
A®k results in a single periodic perturbation:

OVALE) o i
Hence, Eq. (3.117) takes the form:
dQ ~ N ~ .
= {(T{xi}, O |V [ F({x},00) e} (3.120)

d Ao
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Given that if w, is a multiple of the fundamental frequency w+, then:
{ef“0t} . = 5(wy), (3.121)

where 6(w,) is the Dirac delta function (its value is non-zero if the argument, here w,, is
zero), Eq. (3.120) is finally rewritten (after expending the bracket in terms of the perturbation

strength) as: 66-68

d2
dA«o

= (‘I’o({Ki})|‘A/|‘I’o({Ki})> 6(wo)

A A

+ Z A% ((V;V)) 5(w0+wkl)
k,=—N

N
]. L() N N N
+ > E AP A%k ((V;V, V>>wk1,wk2 6(wo + Wi, +wi, )+ ... (3.122)
kl,k2=—N

where ¥, is the time-independent wavefunction. The Dirac functions only allow frequency

combinations that sums up to zero : wy = — .. wy,, which ensures energy conservation.
Therefore: )
Ao d-2
A;B = — 3.123
(8o, = oo (3.123)

is the linear RF at frequency wj, and:
B d’2
“wc T dA-wed Aosd A@c |, _,

((A;B,C)) (3.124)

is the quadratic response, evaluated at frequency w, = wg + w¢.

The actual analytical expressions are found in a similar manner to the time-independent

case.®©®® Recognizing that the {x;} are time- (and perturbation-) dependent, they are ex-

pended as:
k(A 6) =59 +xWB, 0) + (3.125)
l b _— l' i F) o o 0 .
where, for example,
N
Kgl)(A, t) = Z K:‘)Iq APk o0k t’
ky=—N

and so on. Again, this implies that k;* = (x{)*. Deriving Eq. (3.120) with respect to another
perturbation gives:
a)

— = i 3.126
51 w&'k‘*’ Z&'A @dK oA’ ( )

or, in a simplified notation, ({(V;V)), = (n7*)" k.57 On the other hand, the derivation
Eq. (3.116), gives a set of equation for the first-order response vectors:

> 2’2 0K ___ %2 (3.127)
OK;“OK? OA®  gx; oA’ -
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or, in a simplified notation, J* k® = —n®.%” J is the Jacobian matrix, so that J* = E® — w S,
since:
32 (B({x: )| Ho | ¥({x:}) " o2 (V({x P | % [ ¥({x: D)
— =E®, and — =—wS§,
3Kl.‘“81<;:° r ok, ‘*’8K;” .

(3.128)
where E® is, again, the electronic Hessian, while S is an overlap matrix.

Applications to the TDHE TD-DFT, and nRF-CC level of approximations

On the one hand, the response function framework is readily applicable to the HF level to
give the linear (LR), quadratic (QR), etc, response function HF (e.g., LR-TDHF) methods. ®° For
example, given a monochromatic electric field perturbation V(t) = (i (F® e7i®t 4 F~© ¢~i®t),
where [i is the dipole moment operator, the dynamic polarizability a is defined as:

a;j(—w; w) =—((u; u5)) - (3.129)

The {k;} parameters of the HF method are the LCAO coefficients, {C,,}, and I-AIo is the HF
Hamiltonian (the sum of one-electron Fock operators). Given the Hermicity of E“ and 1,

Eq. (3.127) is written:
A B 1 O @ .
—w = (M, (3.130)
B* A 0 —1 ye w

where x;" and y;.” are the frequency-dependent linear response vectors (to be determined) in

the Cartesian direction j, and:

02yr
ar = = — (W3,
ll'l’l,ar 8F_wacc(;; < a“’"ll O))
o2 (I(0)|Ho —E"FII(2)) _ o .
Aar,bs = aC;wanL; = (WalHO_EO|qlb> :(8r_8a) 6ab5r5+ (I”S”Clb),
3% (U(t)|Hy— EFF (¢ .
Bups = M BTV _ s 1) = (rbllas) (3.131)

(8C.»)aCe

where the intermediate integrals for A and B are therefore evaluated thanks to the Slater-
Condon rules. Then, Eq. (3.129) becomes:

‘LL- T Xw ocC unocc.
oty (—w; @) = — (ui) (yﬂu ) ==2 > > b (X2, +¥2,) (3.132)
i j a r

which is the LR expression of the polarizability. An equivalent expression was obtained by
Gerrat and Mills,”? based on a pure matrix formalism and starting from the second-order
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derivative of Eq. (3.25). This leads to the (standard) TDHF method (implemented in different
QM codes’!7?). An iterative cycle is used to compute the derivatives of the density matrix,
which is equivalent to solving Eq. (3.127).

On the other hand, this should normally not apply to DFT since the Hohenberg-Kohn and
Kohn-Sham theorems are only valid for stationary cases (see Section 3.2). Hopefully, Runge
and Gross”® extended DFT to the time-dependent realm by showing that the (now TD) density
still determines uniquely the TD external potential, and hence the properties, which is the
extension of the first HK theorem. Furthermore, van Leeuwen’* later proved that KS orbitals
satisfy the TD Schrodinger equation. Finally, the adiabatic approximation can be employed,
which in this context refers to the use of the (time-independent) XCE together with the TD
density, to approximate the actual time-dependent XCF:

dExclp]
ap(rlz t)‘

Assuming the periodicity of the perturbation, Eq. (3.132) remains valid, though the expression

Vyc(ry, t) & (3.133)

of the A and B matrices are adapted to include the XC kernel (response of the XCF to the
perturbation). In particular, for the hydrid functional:

Aar,bs = (8r - 8a) 5ab5rs + 2(Cll”|b5) —ay (ablrs) + (1 - ax)(ar|fXC|bS):
B, s = 2(ar|sb)—a, (as|rb) + (1 —a,) (ar|fxclsb), (3.134)

where a, is the amount of exact HF exchange, and (ar|fy|bs), the XC kernel contribution.
This is the LR-TD-DFT expression of polarizability. Again, a totally equivalent formula is ob-
tained starting from the DFT equivalent of the Roothaan-Hall equation, which leads to the
coupled-perturbed KS (CPKS) method.”>76

Finally, the CC response (nRF-CC) uses the time-averaged Lagragian, ¥ = {L}, instead
of the quasienergy, but the derivation of the linear response is similar. The parameters are
the TD cluster amplitudes, {t’}, and the corresponding Lagrange’s multipliers are denoted
{t’}, determined with the TD version of the cluster amplitude equations [e.g., Egs. (3.51)
and (3.52)] as constraints. Defining the perturbed Lagragian gradients as:

%% 0%«

o_ T2 nare=-22 3.135
M= Feane MG = Gieane (3135

the set of equations to get the response vectors [equivalent to Eq. (3.127)] is:
(E®° + w1)t® = —“ and t* (E® + w1) + Rt® = —n®, (3.136)

where the first equation determines t®, the first-order response vector and the second deter-
mines t*, the first-order multipliers. The E® and E® electronic Hessian matrices are required:
_ 2% 0°%

EY = ——and E¥ = ———. 3.137
U at;wa t]‘." y at;wa t]‘f’ ( )
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The polarizability is then:

1 _
aj(~w; ) =~ >i[nere+ie ], (3.138)
4

where the Z,@ is a sum over the 2 permutations of the Cartesian indices (and corresponding
frequencies).

The Wigner 2n + 1 rule’””® states that for variational wavefunction, the derivatives of the
wavefunction to order n determine the derivatives of the energy to order 2n + 1. Therefore, the
expression of the quadratic response function (QRF) may be expressed only in terms of the
linear response vectors k, thus not requiring to solve another set of equations. The expression
for the variational QRF is:

((AB,C)) w0, = Z [5 J “o + € H®1@2 K_w”] KO K®2, (3.139)

where w, = w; + w,, Z,@ is a sum over the 6 permutations of the Cartesian indices (and
corresponding frequencies) and:
0°2

H®v®2 = ) 3.140
OK~@o dK®10 K®2 ( )

For TD-DFT, Eq. (3.139) is rewritten as:”°
Bijk(—wg; w1, we) = Ajji(—we; w1, w3) = Biji(—we; w1, W) + Cijp(—we; wq, w,), (3.141)

with:

0oCcC unocc. B OCC. unocc

. — —We wq w7 )
Aijk(_woa w1, 61)2) =2 E : E : Xi,ar _:uj,ab E : E : fab,sc (Xj,cs + yj,cs)] yk,br’
ab r c s

occ unocc. B occ. unocc
. — —w w1 w7 Wy
Bijk(_wo" W1, wz) =2 : : : : Xi,arg Hjrs : : : : er,fb (Xj,bt + yj,bt) yk,as’
a rs | b t

0CcC unocc.

Ciit(— 03 1, 0) =P D7 " Graghic Ko +¥,00) K2 +y) (2, +y12), (3.142)

abc rst

where f,;, ;. is the Hartree XC kernel (related to J) and g, (., the third-order derivative of
the XC functional (related to H).

While the HE DFT, and CC response functions (up to cubic) are available in the Dalton
code,® the TDHF and CPKS approaches are also implemented in Gaussian 16. In particular,
the QRF- and CRF-CC approaches to compute precise gas phase hyperpolarizabilities of small
molecules are featured in Chapters 4-6.
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Simplified TD-DFT (sTD-DFT) for the first hyperpolarizability

In sTD-DFT,”?8182 starting from the 2n + 1 equations [Eq. (3.142)], simplifications are
introduced:

1. The response of the XCF is neglected in the A and B matrices of Eq. (3.134) and in
the A and B terms of Eq. (3.142). The C term of Eq. (3.142) is also dropped. These
approximations, though drastic, alleviate the need to evaluate new (XCF dependent!)

integrals.”*8!

2. The Coulomb and exchange integrals are approximated by short-range damped Coulomb
interactions:

Ny
(palrs) = >, &5 T, (3.143)
AB

where q? g 1 the transition charge density (determined through a Léwdin population
analysis) and Tz, the Mataga-Nishimoto-Ohno-Klopman damped Coulomb operator,

namely:
oo 1 ]%
B Leg =1+ (aym)o ]
1
[ 1 73
K = , 3.144
A _|1'A_1‘B|y’<+77_y’<] ( )

for the Coulomb and exchange integrals, respectively, with 1 the chemical hardnesses
of atom A and B and a, the amount of HF exchange. As seen in Chapter 10 y; and yy
need to be chosen carefully in order to get accurate results.

As a result, instead of Eq. (3.134),

Aar,bs = (Er - Ea) 5ab5rs +2 (ar|bs)§< - (ab|rs)3 and Bar,bs =2 (ar|5b);< — Ay (a3|rb);<
(3.145)

are used in Eq. (3.130) to get the first-order response vectors.
3. The 3-centers integrals are not evaluated.

4. A threshold value, E;,.., truncates the configuration space (for both occupied and
unoccupied orbitals).

The sTD-DFT was designed to work with any hybrid XCF wavefunctions. Therefore, it may be
combined with a modified version (including a more complete basis set) of the xXTB scheme
to give the sTD-DFT-xTB method, which has provided the first hyperpolarizability of systems

up to 3000 atoms. 82
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The stda program (https://github.com/grimme-lab/stda) implements the sTD-DFT
method for the first hyperpolarizability (as well as UV-VIS spectra,® ...). It also features
optional simplifications due to the Tamm-Dancoff (TDA) approximation (see below). The
xtb4stda program (https://github.com/grimme-lab/xtb4stda) provides the modified
xTB wavefunction for sTD-DFT-XTB calculations (see Ref. 82 for more details).

Excitation energies as the pole of the linear RF

When rewriting Eq. (3.130) into a generalized eigenvalue equation,

o x) ()= o 5 ()
= w, , (3.146)
B A*) | Y~ 0 —1/\y*

the eigenvalues of this equation, {w,;}, appears as the poles of the linear RF: the vertical
excitation energies. This is known as the Casida equation® in the context of TD-DFT, but it
also provides access to the excitation energies for other methods as well, such as HF or CC.
Furthermore, the excitation energies may be approximated by setting B = 0, which corre-
sponds to the TDA approximation,*® leading to a (true) hermitian eigenvalue equation:

AX® = W) X, (3.147)

It is comparabl/e to the one giving the Configuration Interaction Singles (CIS) excitation en-
ergies. The Xflorl are, in this case, the coefficient for the single orbital excitation a — r, whose
square gives the participation of the transition to the excitation. For example, for 7t-conjugated
molecules, the first excitation (with the lowest w;) is generally dominated by a HOMO—LUMO
transition.

Section 3.4

Effects of the surroundings

Until now, it has been assumed that there is no interaction between the system (described
by ¥) and its surroundings. When compared to experiment, it is useful to include some of
these effects, for example when checking against results in solution phase. Although one
could fully include the surrounding in ¥, the computational scaling of the different methods
generally prevents such approach. Three levels of embedding are then possible:

1. The mechanical embedding: the model system is only influenced by the positions of
the atoms in the surrounding, and thus their van der Waals forces.

2. The electronic embedding: the charges of the surrounding influence the electronic
structure of the model system. It is also refereed to as charge embedding, where the
(unmodified) charges from a previous calculation are used in further ones.


https://github.com/grimme-lab/stda
https://github.com/grimme-lab/xtb4stda
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3. The polarizable embedding: the model system also polarizes the charges (and the elec-
tronic structure, if treated at a QM level) of the surrounding.

Among the different alternatives, two will be presented: continuum models (GBSA and PCM)
and partition methods (ONIOM).

Continuum models

This first approach is dedicated to include the electrostatic effects of the solvent in a
“cheap” formulation. The Gibbs free energy of solvation may be decomposed in three terms:

AG,,, = \AGcav + AGVdMC—i-AGpOZ, (3.148)

~
AG 4

where AG,,, is the energy to create a solute cavity in the solvent continuum, AG, 4, accounts
for the solute-solvent vdW interactions (dispersion), and AG,; is coming from the electro-
static solute-solvent interactions. The first method, the Generalized Born/Surface Area%®
(GBSA), proposes to group the first two terms together into a single one, AG_4, proportional

to the solvent-accessible surface (SAS, Fig. 3.4) area (SASA):

N,
AGy =Y 04h (3.149)
A

where A, is the SASA of atom A and 0,4, a parameter for atom A (also referred to as accessible
surface tension). On the other hand, the polarization is estimated by a simple function, which
interpolates between the short-range Born expression®’ (solvation of a spherical ion) and the
long-range Coulomb behavior (described by the Poisson-Boltzmann equation):

1 1) & daq
AG lm——(l——) ALB ,
r 2 &s) 4 fop(lta—15|,R4, Ryp)
2 12
. _ 2 "B
with fep(rag,Ra,Rg) =| 15 + RiR;j exp| — (3.150)

where ¢ is the dielectric constant of the solute, and R, and Ry are the effective Born radii,
which accounts for the burial of the atoms w.r.t. the solute. It has thus to be computed for
every atom. %8

This GBSA model is featured in the xtb and xtb4stda programs to account for the impact
of solvation on the wavefunction. Note that it is not fully accounted in stda, so that the
computed 3 values miss the dynamic solvent effects. 5

On the other hand, the Polarizable Continuum Model®'*2 (PCM) proposes, again, to ap-
proximate the system by a solute placed in a cavity. This time, the procedure is self-consistent:

indeed, the charge distribution of the solute polarizes the continuum (represented charges on
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Figure 3.4: Definition of the surfaces for the solvent models in the case of a two-atoms (A and
B) molecule: solvent excluded surface (SES, thick lines) and solvent accessible surface (SAS,
dotted lines). The latter is traced out the center of a probe representing the solvent (gray
circle), using the vdW radii of the atoms. Adapted from Ref. 90.

the surface of the cavity formed by the solvent excluded surface, see Fig. 3.4), which in re-
turn polarizes the charge distribution, and so on until convergence. The charge density at the
surface, which depends on the potential V(s) at a given point of the surface s, is given by:°

—19V(s)
47'5 g Jn

o(s) = , (3.151)

where n is a normal vector to the surface that points towards the solute. V(r) may be par-
titioned into two contributions, v, which comes from the charge distribution (electrons and
nuclei) of the solute and V,, which comes from the charge at the surface of the cavity. The
latter is approximated by discretizing the surface of the cavity into k tesserae of area Ay, so

that:
V.(r) = J o(s) ZO(S")Ak (3.152)

|1 — 5|

In practice, V, is added to the Hamiltonian, and a second iterative cycle (self-consistent reac-
tion field, SCRF) inside each SCF cycle is dedicated to the evaluation of o(s;). Approximate
formulas are then used to evaluate AG.; at the end, which depends on the implementation.
An integral equation formalism (IEF) version®® of this procedure is available in Gaussian 16
at the HF or DFT levels (among others). The formalism is also extended to fully account for

dynamic solvent effects on the different time-(in)dependent properties.°*

The ONIOM method

Another approach to reduce the computational cost while accounting for the surroundings
is to partition the system into different layers, treated at different levels of theory. It is the basis
of the ONIOM (“our Own N-layered integrated molecular Orbital and molecular Mechanics”)
approach, ®® which provides a convenient framework for such calculations in Gaussian 16. In
particular, a two-layer approach partition the full (real) system into a region of interest (the
model system), which will be treated at a high level of theory and the surroundings, which
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will be treated at a lower level of theory. For a property P (such as the energy), the resulting

value will be:
PONIOM(rea]) = Plo¥(real) — P°(model) + PM&"(model), (3.153)

which requires three calculations: at the low level on both real and model systems (P} and
at the high level on the model system (P""). Theses calculations are sometimes referred to
as QM:MM or QM:QM, where the left and right side of the colon refers to the treatment of
the model and real systems, respectively. Indeed, the real system may be treated at the QM
or molecular mechanics (MM) level (Newtonian mechanics).

Since the geometry has a large impact on the first hyperpolarizability, a QM:QM scheme
(DFT for the chromophore and its surrounding amino acids within a 4 A distance, GFN2-xTB
for the rest) was used for the geometry optimization of the proteins in Chapter 10. This
scheme include the polarization effects, missing in QM:MM approach.
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Abstract

The static and dynamic first () and the second (y|) hyperpolarizabilities of water,
methanol, and dimethyl ether have been evaluated within the response function approach
using a hierarchy of coupled cluster levels of approximation and doubly-augmented cor-
relation consistent atomic basis sets. For the three compounds, the electronic 3, and ¥
values calculated at the CCSD and CC3 levels are in good agreement with gas phase elec-
tric field-induced second harmonic generation (EFISHG) measurements. In addition, for
dimethyl ether, the frequency dispersion of both properties follows closely recent exper-
imental values [V. W. Couling and D. P Shelton, J. Chem. Phys. 143, 224307 (2015)]
demonstrating the reliability of these methods and levels of approximation. This also sug-
gests that the vibrational contributions to the EFISHG responses of these molecules are
small.

> Supporting information are available at https://doi.org/10.1063/1.4958736.
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Section 4.1

Introduction

The evaluation of the first () and second (y) hyperpolarizability tensors remains a chal-
lenge for modern quantum chemistry. Besides the electronic contribution, the vibrational
counterpart can be non-negligible and the evaluation of both contributions as well as the de-
scription of their frequency dispersion require treatments including electron correlation.!™
During the last 30 years that have witnessed the elaboration of high-level electron-correlation
methods, the comparisons between calculation and experiment have turned out to be prof-
itable for increasing the accuracy and precision of both types of methods as well for under-
standing the origin of the nonlinear optical (NLO) responses. 18

A recent publication due to Couling and Shelton!® reports measurements of both the first
and the second hyperpolarizabilities of dimethyl ether (DME). These measurements have been
carried out in gas phase at different frequencies by using the electric field-induced second
harmonic generation (ESHG) technique. This new set of data as well as the comparison with
water and methanol gives a new opportunity to assess state-of-the-art quantum chemistry
methods for predicting the hyperpolarizabilities. Indeed, on the one hand, their small num-
ber of atoms allows the use of large basis sets together with high-level post Hartree-Fock
methods. On the other hand, these gas phase data prevent from having to account for solvent
or surrounding effects, which might be cumbersome. 2%

Following Couling and Shelton, this article is focusing on the two quantities accessible
through ESHG experiment, the projection of the vector part of  on the permanent dipole

moment (1), 3, and the isotropic second hyperpolarizability, y|,, which are defined as:

x’yiz X’y’z

1 U
By :g Z m Zﬂinn"'ﬂnln"'ﬁnnl (4.1)
¢ n
1 X,Y,%
Y=g DL Yeem * Yeung + Yengn: (4.2)
]

where {, 7, ... are Cartesian coordinates, u, is the { component of the permanent dipole mo-
ment vector and ||| its norm. fB,,- and y,,, are elements of the first and second hyperpo-
larizability tensors, respectively.

In this contribution, only the electronic hyperpolarizabilities are calculated. They are eval-
uated by adopting a hierachy of Coupled Cluster (CC) response function methods, suitable to
evaluate the static values as well as their frequency dispersion. The vibrational contributions

to 3 and y have already been addressed for water?®2® and methanol,?*%° at different levels
of approximation, showing that, at optical frequencies, the vibrational contributions amount

to only a few percents of the electronic SHG values.
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This paper is organized in three parts: after describing the theoretical frame and the com-
putational details in Section 4.2, the main results for water, methanol and dimethyl ether are
presented and discussed in Section 4.3. First, the effects of basis set and electron correla-
tion on the static and dynamic responses are analyzed. This allows selecting “best" values
for performing comparisons. Besides comparison with the experimental data of Couling and
Shelton, ** Kaatz et al.,?! and Ward and Miller,®' comparisons are made with previous theo-
retical values for water and methanol. To our knowledge, this is the first report on calculated
first and second hyperpolarizabilities for DME. The conclusions are drawn in Section 4.4.

Section 4.2

Theoretical methods and computational procedures

The frequency-dependent first and second hyperpolarizabilies are the expansion coeffi-
cients of the molecular induced dipole moment as a function of external electric fields, F,
applied along the 7, &, ...directions and oscillating at frequencies w;, w,, ...:

X,Y,2

Ape(F) =D agy(—wg; 1) Fy (@)
n

x’y:Z
1

o7 2 Bene (5 01, 02) Fy (1) Fe (2) + ..
" g

X,),
37 D Tenen (-0} 1, 0o, ) Fy (1) Fi (@3) Fy (g) + ... (4.3)
.8,
where w, = Y. w; and @y, is an element of the polarizability tensors. Depending on the ex-
perimental setup and the combination of the static and dynamic electric fields, different NLO
processes arise. For the first hyperpolarizability, one distinguishes the linear optoelectronic ef-
fect [dc-Pockels, 3(—w; w,0)] and the second harmonic generation [ SHG, (—2w; w; w)]. For
the second hyperpolarizability, usual processes encompass the Kerr effect [ dc-Kerr, y(—w; w, 0,0)],
the degenerate four wave mixing [DFWM, y(—w; w,—w, w)], the electric-field induced sec-
ond harmonic generation [ESHG, y(—2w; w, w,0)], and the third harmonic generation [ THG,
7(—3w; w,w,w)].!
According to Eq. (4.3), the hyperpolarizability tensor elements can be evaluated as the
second- and third-order responses of the dipole moment to these fields. Typically, these can be

32,33

obtained by using response function methods and/or partial finite field numerical deriva-

tive techniques.®* Within perturbation theory, 3 and y can also be expressed in the form of

summations over excited states, 3>

e, B
0a; Mayay
e (—Wg; 01, ) =Py Z (wal_wa)(waz—wg-l-wl)... (4.4)

a,,ds,...
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where P =a, 8,y. w, =fiw, = E; — E is the vertical transition energy between the ground
state (0) and the i™ excited state, @ is the permutation operator over the pairs of coordinates
and frequencies, (w,, {), (w;, ), ... The quantity fi, 4, is equal to (ilalj) — 6;; (0|a]0). As a
result, the magnitude of the hyperpolarizabilities is inversely proportional to the square (cube)
of the excitation energies for 3 (y).

363839 and, later on, Hittig*® demonstrated

Following experimental evidences,’ Bishop
that the frequency-dependent hyperpolarizabilities [ EqQ. (4.4) ] can be rewritten under the form

of a product between the static hyperpolarizabilities, P(0), and a w? polynomial:
P(—wg;wq,...)=P(0)[1 +Aw%+Bwi‘+~-] (4.5)

where A, B, ...are the expansion coefficients, and

o,1,2,...

w? = Z w?. (4.6)

They proved that A is the same for all second-order (third-order) NLO processes but it depends
on the molecule. Moreover, B is the same for both ESHG and dc-Kerr processes.>**° Thus, for
typical NLO processes with only one optical frequency (w), co% is an integer (k) multiple of
w?. For instance, for the SHG and the ESHG processes, k is equal to 6, whereas it amounts to
2 for dc-Pockels and dc-Kerr. This allows defining a frequency dispersion factor, D(w%):

P(wg; wq,...)
P(0)

D(w?) = —1=Aw?+Bwi+--- (4.7)
These expressions and relationships are valid for average quantities (3 and ) as well as for
the diagonal tensor elements (/3“5 and Yeooo)-

The geometries of the three molecules were optimized at the M06/6-311G(d) level of
theory. At first, SHG/ESHG first and second hyperpolarizabilites were evaluated for a range
of wavelengths (energies), i.e. 0o (0), 1064 (9400), 694.3 (14400), 611.3 (16360), 590
(16950), 514.5 (19440) and 488 (20500) nm (cm™'). These hyperpolarizabilities were eval-
uated at the time-dependent Hartree-Fock (TDHF) level,"! as well as with a hierarchy of
CC models with quadratic and cubic response functions.>*334%43 Unrelaxed orbitals were as-
sumed. The CC hierarchy, given in increasing order of electron correlation treatment is CCS,
CC2, CCSD and CC3.32:33:4243 Those calculations were performed with doubly-augmented cor-
relation consistent polarized valence basis sets, d-aug-cc-pVXZ** (X=D, T, Q, and 5 for water,
X=D and T for methanol and DME). X determines the splitting level of the valence shell atomic
orbitals and also the highest angular momentum quantum number (l,,,,) of the polarization
functions. So, for the O atom, if X =T (3), there are three sets of valence s and p functions and
l.ax = 3, corresponding to f polarization functions whereas for X = Q(4), there are 4 valence
s and p sets and g polarization functions (l,,,, = 4). This choice of doubly-augmented basis

sets is consistent with previous investigations on reference molecules for nonlinear optics. *1®
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In a second step, 3 and y values for additional NLO processes were calculated. For the latter,
the calculations were performed at the [Q,C]RF-CCSD/d-aug-cc-pVDZ level with co% values
ranging from 0 to 30 x 108 cm™2 by step of 2 x 108 cm™2. All reported 3 and y values are given
ina.u. [lau of B =3.6212 x 107 ¥ m* V! =3.2064 x 1072 C3*m>3J 2 = 8.639 x 10733 esu;
lau of y =7.423x107°*m° V2 = 6.2354 x 107 C*m*J 2 = 5.0367 x 10~*° esu] within
the T convention.! Geometry optimization and TDHF calculations were carried out with the
Gaussian 09 D01 package*® while response functions at the different coupled-cluster levels
were obtained with Dalton 2016.4°
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Section 4.3

Results and discussions

Basis sets and electron correlation effects on 3 and y of water

The small water molecule enabled a detailed investigation of electron correlation effects by
using basis sets ranging from d-aug-cc-pVDZ to d-aug-cc-pV5Z. The complete data are listed
in Tables 4.1, 4.2 for the static and dynamic, quadratic and cubic, responses (their frequency
dispersion factors are given in Table S1), respectively. They are summarized in Fig. 4.1. For
all properties, static and dynamic 3 and y, at any level of approximation, the convergence of
the responses with respect to X is fast. Still, it is the fastest at the HF and CCS levels so that
differences between the X = Q and X = 5 are smaller than or equal to 0.1 (0.3) % for B (y)-
These differences are larger at the CC2 and CCSD levels but they remain smaller than 1 and 2
%), respectively. Looking at the X = D, T, Q sequence, the differences between X = Q and X =
T are smaller than 3 % whereas between X = T and X = D the differences attain 15 % for f§
but range between 5 and 9 % for y),. Similar effects are observed for the frequency dispersion
factor, D(w%), evaluated at 694.3 nm. Then, for any property and basis set, the magnitude of
the responses follows the same ordering:

HF < CCS < CC3 ~ CCSD < CC2 (4.8)

When considering the quasi-converged d-aug-cc-pVQZ results, the CCSD f3(0) value is over-
estimated by less than 3 % in comparison to the CC3 results, highlighting the small impact of
including triples in the CC expansion. On the other hand, the CC2 level overestimates f3;,(0)
by about 45 % whereas the HF and CCS methods underestimate the quadratic response by
47 % and 18 %, respectively. In the case of the cubic y(0) response, the CCSD method over-
estimates slightly (1 %) the CC3 value and, again, CC2 provides overestimated values (by
38 %) while the HF and CCS methods underestimate it by 41 % and 32 %, respectively. At
a wavelength of 1064 nm, the above analysis is confirmed whereas the overestimations and
underestimations are typically enhanced by a few percents. Turning to frequency dispersion,
the amplitude ordering is CCS < HF < CC3 ~ CCSD < CC2, highlighting an inversion between
the HF and CCS methods with respect to the responses ordering as well as between CCSD and
CC3, though for the latter the dispersion factors and properties are very similar.

The frequency dispersion factors as well as the amplitudes of the hyperpolarizabilities are
determined by the relative values of the lowest excitation energies as well as by the transition
dipole moments. Though for molecules like water (and also methanol and DME, vide infra)
many excited states contribute to Eq. (4.4) and the two-state approximation'® cannot be in-
voked, the amplitude ordering of the lowest excitation energies in Table S2 is inverse with
respect to the hyperpolarizabilities magnitude:

CCS ~ HF > CC3 ~ CCSD > CC2 (4.9)
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Table S2 also demonstrates the good agreement between the theoretical excitation energy
values and those obtained from electron impact data, at both the CCSD and CC3 levels but
also using the CC2 method.

Table 4.1: Basis set and electron correlation effects on the static By (a.u.) and v (a.u.) of
water. Relative differences (in %) with respect to d-aug-cc-pV5Z are given in parentheses
(except fo CC3 for which the comparison is made with d-aug-cc-pvVQZ).

HF CCS CC2 CCSD CC3

$3,(0)
d-aug-cc-pVDZ -9.04 (-19.1) -12.12 (-16.3) -21.28 (-17.1) -15.03 (-17.2) -14.13 (-20.3)
d-aug-cc-pVTZ -10.85 (-2.8) -14.16 (-2.2) -25.46 (-0.8) -17.90 (-1.4) -17.22 (-2.9)
d-aug-cc-pVQZ -11.17 (0.1) -14.48 (0.03) -25.81 (0.6) -18.25(0.5) -17.74
d-aug-cc-pV5Z -11.17 -14.48 -25.66 -18.16 —

711(0)
d-aug-cc-pVDZ 907 (-9.1) 1063 (-8.7) 2294 (-1.2) 1705 (0.6) 1630 (-4.7)
d-aug-cc-pVTZ 999 (0.2) 1165 (0.1) 2429 (4.6) 1773 (4.6) 1744 (2.0)
d-aug-cc-pVQZ 1001 (0.3) 1167 (0.24) 2366 (1.8) 1722 (1.6) 1710
d-aug-cc-pV5Z 998 1164 2323 1694 —

Table 4.2: Basis set and electron correlation effects on the dynamic (at 1064 nm) By (a.u.)
and 7) (a.u.) of water. Relative differences (in %) with respect to d-aug-cc-pV5Z are given in
parentheses (except fo CC3 for which the comparison is made with d-aug-cc-pVQZ for 8, and
d-aug-cc-pVTZ for vy)).

HF CCS Cc2 CCSD CC3

B (—2w; w, w)
d-aug-cc-pVDZ -9.67 (-18.7) -12.83 (-16.1) -23.61 (-15.8) -16.50 (-16.1) -15.54 (-19.9)
d-aug-cc-pVTZ -11.57 (-2.8) -14.96 (-2.2) -27.94(-0.4) -19.45(-1.1) -18.77 (-2.6)
d-aug-cc-pvVQZ -11.91 (0.1) -15.30(0.0) -28.23(0.7) -19.77 (0.6) -19.28
d-aug-cc-pV5Z -11.90 -15.30 -28.04 -19.66 —

7(—2w; w, w,0)
d-aug-cc-pVDZ 985 (-9.0) 1149 (-8.7) 2607 (-0.2) 1906 (1.5) 1821 (-15.1)
d-aug-cc-pVTZ 1084 (0.1) 1259 (0.1) 2738 (4.9) 1969 (4.9) 2147
d-aug-cc-pVQZ 1086 (0.3) 1261 (0.3) 2662 (1.9) 1909 (1.7) —
d-aug-cc-pV5Z 1083 1258 2611 1877 —
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Basis sets and electron correlation effects on 3 and y of methanol and DME

The results on the first and second hyperpolarizabilities of MeOH (Tables 4.3) and DME
(Tables 4.4) confirm to a large extent the analysis made on water. In the case of methanol, the
differences between X = T and X = D is much smaller than for water, highlighting coopera-
tion effects between basis functions on different atomic centers. Qualitatively, the differences
between the various CC levels are consistent with water: the CC3 and CCSD methods provide
similar values (the effect of the triples is small), the HF and CCS levels underestimate them
while CC2 overestimates them.

Table 4.3: Basis set (X = D, T) and electron correlation effects on the static and dynamic
(at 1064nm) B (a.u.) and y (a.u.) of methanol as well as on their frequency dispersion
factor [D(w%)] at 694.3 nm. Relative errors (in %) with respect to X = T values are given in
parentheses.

X HF CCS CC2 CCSD CC3
[3||(O) D -24.86 (-1.1) -30.40 (-0.8) -38.46 (0.5) -31.11 (-0.1) -29.93
T -25.13 -30.63 -38.26 -31.14 —
/3||(—2a); w, w) D -26.59 (-1.0) -32.29 (-0.7) -42.01 (1.0) -33.73 (0.3) -32.53
T -26.86 -32.54 -41.60 -33.64 —
D(w?) of B (—2w;w,w) D 0.177(0.9) 0.159 (0.7) 0.242(5.9) 0.219 (5.3) 0.226
T 0.176 0.158 0.228 0.208 —
YH(O) D 2184 (-4) 2592 (-3.5) 4538 (1.8) 3554 (1.8) 3426
T 2274 2686 4456 3491 —
yi(—20; @, ,0) D 2381 2813 5149 3968 —
D(a)i) of y(—2w; w,w,0) D 0.235 0.221 0.374 0.316 —

In the case of DME, differences between X = T and X = D are slightly larger than for
methanol but remain smaller than 10 %. The impact of successive improvements of the elec-
tron correlation treatment is very similar, qualitatively and quantitatively, to what was ob-
served for water and methanol. Moreover, contrary to water and methanol, enlarging the
basis set leads to a decrease of the 3, and y|; amplitudes rather than an increase as in the case
of the former.

Comparison with experiment and other theoretical results

Gas phase experimental 3 and y | values for water and MeOH, 213! as well as for DME, **
are collected in Table 4.5 together with our best theoretical estimates. These are defined as
the values obtained with the highest level of approximation, usually CC3, and then the most
extended basis set. Note that previous experimental values have an uncertainty of about 5%
while for the recent values due to Couling and Shelton for DME the uncertainty is improved
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Figure 4.1: Effect of the basis set (d-aug-cc-pVXZ) and of the level of approximation on the
first (), a.u., left) and second (y|;, a.u., right) hyperpolarizabilities of water. Top and middle
panels give the static and dynamic (SHG or ESHG at 1064 nm) responses while the bottom
panels report the frequency dispersion [D(co%)] for SHG or ESHG at 694.3 nm.
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Table 4.4: Basis set (X = D, T) and electron correlation effects on the static and dynamic
(at 1064nm) B (a.u.) and y| (a.u.) of DME as well as on their frequency dispersion factor
[D(w%)] at 694.3 nm. Relative errors (in %) with respect to d-aug-cc-pVTZ values are given
in parentheses.

HF CCS CC2 CCSD CC3

-54.20 (1.1) -66.85 (1.2) -131.32 (7.8) -93.65 (7.2) -90.65
-53.60 -66.08 -121.77 -87.39 —

3, (0)

By (—2w; w, w) -58.93 (1.2) -72.20 (1.2) -150.67 (8.6) -105.43 (7.8) -102.18

-58.26 -71.34 -138.76 -97.83 —

0.226 0.206 0.389 0.324 —

4053 (-1.2) 4897 (-0.9) 10147 (7.4) 7313 (6.2) 7033
4101 4941 9450 6886 —

4480 5386 12025 8417 —

7,1(0)

7(—2w; w, w,0)

X
D
T
D
T
D(w?) of f(—2w; ®,w) D 0.227 (0.5) 0.207 (0.5) 0.416 (6.9) 0.344 (6.3)  0.348
T
D
T
D
D

D(w?) of v (—2w; w, w,0) 0.279 0.263 0.553 0.429 —

by one order of magnitude. For the three compounds, a very nice agreement is achieved, in
particular for water and methanol. For DME, the deviations attain about 8 %, which might be
due to the lack of CC3 values with X = T or due to missing vibrational contributions. Then,
for DME, the frequency dispersion factors are compared in Fig. 4.2 to those of Ref. 19. For the
whole range of wavenumbers, the agreement between the CCSD and CC3 calculations and
experiment is very good and even excellent in the case of y|.. Of course, as already discussed,
consistently with the excitation energies, the optical dispersion is overestimated at the CC2
level while underestimated by the HF and CCS methods (Tables S2 and S3).

Now, comparisons with selected previous calculations are made for 3 and v, of each com-
pound. For f of water (Table 4.6), these highlight i) the consistency between our QRF-CC
results and those of Christiansen et al.,*® though slightly different geometries are employed,
ii) the reliability of the QED-MP2 method, iii) the performance of the modified POL basis
set with respect to doubly-augmented correlation consistent basis sets, iv) the underestima-
tion due to using the QRF-CAS approach, and v) overestimations when employing DFT with

conventional exchange-correlation functionals.

The analysis of the y), values of water (Table 4.7) shows the good agreement between our
results and the CCSD and CCSD(T) static values of Sekino and Bartlett? as well as with the
static and dynamic QED-MP2 values of Kobayashi et al.>® These comparisons confirm also the
underestimations of the HF method with a complete basis set and the overestimations of DFT
with a functional missing the long-range behavior.

In the case of methanol, the POL basis set gives RPA30 (i.e. HF) and CCSD® By and v
values that are consistent with our TDHF and QRF-CCSD results, respectively. Moreover, all
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Figure 4.2: Comparison between experimental and calculated frequency dispersions [D(w%)]
of the (a) first and (b) second hyperpolarizabilities of DME. The calculations were performed
at different levels of approximation using the d-aug-cc-pVDZ basis set.
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Table 4.5: Experimental ﬁll (a.u.) and 7) (a.u.) of water, methanol, and DME
in comparison with our “best" theoretical values.

Water Methanol DME
A 1064nm! 694.3nm? 1064nm*> 694.3nm? oo0%° 1064%

Experiment
By -19.2+0.9 -22.0+£0.9 -31.2+1.6 -35.0+2.1 -83.5 -94.0+0.25
v 1800£150 2310+120 3730+190 4590+130 7624 8591+34

Theory
B -19.28 -21.77 -32.53 -36.69 -90.65 -102.19
el 2147 2266 3968 4677 7033 8417
I Ref. 21.
2 Ref. 31.

3 Value for CH,0D instead of CH;OH.
4 Ref. 19, additional frequencies available (see text).
> Static value extrapolated from experimental data using Eq. (4.5).

the CCSD and CC3 results agree with experiment, considering the error bars on the measure-
ments. On the other hand, the dynamic v, evaluated at the Restricted Active Space (RAS)
level underestimates experiment by about 30 %.

Comparison of the frequency dispersion for different NLO processes

The frequency dispersion of 3 and v, was then investigated by considering several second-
and third-order NLO processes. This is achieved by plotting the D(w%) functions (Eq. (4.7))
as a function of w% (Figs. 4.3-4.5). As shown, for the three compounds, the D(w%) curves
of the different NLO processes (of a given order) are superimposed over a broad range of
wavenumbers so that values obtained for a given NLO process can easily be converted into the
corresponding values for another NLO process. Though these relationships only apply to the
electronic contributions to the first and second hyperpolarizabilities, they open possibilities for
comparison with new experimental data. These D(w?) dispersion functions were evaluated
at the CCSD/d-aug-cc-pVDZ level of approximation. Polynomial fits including terms up to
7™ order in w? were also performed in order to compare the A coefficients, describing the
dispersion at small wavenumbers. Data included in Figs. 4.3-4.5 show that the A coefficients
for )| behave inversely to the lowest excitation energies (Tables S2 and S3). On the other
hand, for y, the A coefficients for water and methanol are similar and smaller than for DME.
Note that the A coefficients are systematically larger for y|, than for 3. Finally, the amplitudes
of frequency dispersion were compared among the NLO processes of a given order. It is noticed
that D(co%) of methanol and DME is larger for DFWM v, than for the other processes, for which
the dispersion functions are little different over the probed range of wavenumbers. For water,
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Table 4.6: Comparison between experimental and calculated
static and dynamic (at 694.3nm) f3 values (a.u.) of water.

Method Basis set Static Dynamic
Experiment — —  -22.0+0.9 Ref. 31
QRF-CCSD d-aug-cc-pV5Z -18.16 -22.08 This w