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Motivation : We live in an interconnected world ...

-
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> g S | Network Science A.-L. Barabisi

I 7a s Networks are everywhere, from the Internet, to social networks, and the genetic networks that

\ J determine our biological existence. Illustrated throughout in full colour, this pioneering textbook,

® 4 spanning a wide range of topics from physics to computer science, engineering, economics and the

\ , social sciences, introduces network science to an interdisciplinary audience. From the origins of

‘\\."1- V) e the six degrees of separation to explaining why networks are robust to random failures, the author

ol Denie © explores how viruses like Ebola and HINT1 spread, and why it is that our friends have more friends

® : 4°.\’. B than we do. Using numerous real-world examples, this innovatively designed text includes clear
delineation between undergraduate and graduate level material. The mathematical formulas and
derivations are included within Advanced Topics sections, enabling use at a range of levels.
Extensive online resources, including films and software for network analysis, make this a

SCI E N C E multifaceted companion for anyone with an interest in network science.

Albert-Laszl6 Barabasi

The Structure and Dynamics of Networks
A.-L. Barabasi, M. Newman, D.J.Watts

From the Internet to networks of friendship, disease transmission, and even terrorism, the concept-and the
reality-of networks has come to pervade modern society. But what exactly is a network? What different types
of networks are there? Why are they interesting, and what can they tell us? In recent years, scientists from a

The Structure and Dynamics of

NETWORKS

range of fields-including mathematics, physics, computer science, sociology, and biology-have been pursuing
these questions and building a new "science of networks." This book brings together for the first time a set of
seminal articles representing research from across these disciplines. It is an ideal sourcebook for the key
research in this fast-growing field. The book is organized into four sections, each preceded by an editors'
introduction summarizing its contents and general theme. The first section sets the stage by discussing some
of the historical antecedents of contemporary research in the area. From there the book moves to the | ; &n&ﬁma’ﬁ %
empirical side of the science of networks before turning to the foundational modeling ideas that have been the RN i s -
focus of much subsequent activity. The book closes by taking the reader to the cutting edge of network N \‘ L DUNGAN J. wafs

science--the relationship between network structure and system dynamics. From network robustness to the |5y R A N

oo » >
e N

‘.{. e

spread of disease, this section offers a potpourri of topics on this rapidly expanding frontier of the new %'

science.
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Support for the spread of

Information
Opinions
Likes
Viruses

~
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support for the spread of goods

N

 Information

* Opinions
Support for the spread of  + ks

e Viruses
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e Information
* Opinions

Support for the spread of  + ks

e Viruses

N

O Internal Node @ Hub — Cross Edge

support for the spread of signals
(memory, actions, thoughts, ...)




Reductionist approach
(e.g., grand unified theory)

VS.

Holistic approach
(e.g., complex systems)
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» Some basic facts about dynamical systems theory ;

A short introduction about network theory ;
* Networked dynamical systems: main questions and results ;

 Beyond network theory.
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STUDIES IN NONLINEARITY

NONLINEAR Ferdinand Verhulst
DYN éﬁ\ MICS .
anp CHAOS Nonlinear Ordinary ; __Nonlinear

Differential Equations D'fferent'glofquatlpnr;
AN INTRODUCTION FOR SCIENTISTS an ynan“ca
AND ENGINEERS
~ D. W. Jordan
SLp P.Smith
With Applications to Physics, Biology,
Chemustry, and Engineering

STEVEN H. STROGATZ
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Continuous time ¢t € R

7= (x1,...,2,) €.ACR" phase space (state space)

—

f: A—R"
. . Lo di o
Time evolution Z:= = £(2)
) \
L1 %:fl(xla , Tp)
| Cauchy problem
Ty = dj—f:fn(xl,...,mn) )
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Continuous time ¢t € R

- Sufficiently regular to ensure existence and uniqueness

A — R"” L
fiA= of the solution Z(¢; o) of the Cauchy problem
f Lipschitz is enough [Picard theorem]
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Continuous time ¢t € R

FiA R Sufficiently regular to ensure existence and uniqueness
| of the solution 3(¢; Zo) of the Cauchy problem

Linear case if “only monomials in ; are present”

—

f(Z) = AZ A € R™X" B(t; 7y) = erltto) g,

Non-Linear case, all the remaining ones =
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Continuous time ¢t € R

FiA R Sufficiently regular to ensure existence and uniqueness
| of the solution 3(¢; Zo) of the Cauchy problem

Linear case if “only monomials in ; are present”

—

f(Z) = AZ A € R™X" B(t; 7y) = erltto) g,

Non-Linear case, all the remaining ones

Autonomous vs non-autonomous

—

f(Z) (&) explicit dependence on time
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Discrete time n € N
7= (x1,...,2,) €.ACR" phase space (state space)
f: A — R"

Time evolution

—

fn+1 — f(fn)

—

To initial condition
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Discrete time n € N

= (x1,...,2,) € ACR"

j?:A%R”

Time evolution

—

fn—l—l — f _)n‘-

o o o w
NI, condition

O\
W
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Equilibrium point :

—

FTEA: f@)=0=F(t) =7 W
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Equilibrium point :

—

FTEA: f@)=0=F(t) =7 W

Stability of the equilibrium point :

¥ is (locally) stable (or Lyapunov stable) if

\V/€>OE|5(€) >0 :VZg: |f()—f*‘ <0

= |@(t;Zp) — x| < eVt >0
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Equilibrium point :

—

FTEA: f@)=0=F(t) =7 W

Stability of the equilibrium point :

7* is asymptotically (locally) stable if

—>k

35(7*) > 0 : VT : [T — | <8 = @:To), =

t— 400

WWW.unamur.be timoteo.carletti@unamur.be




Linear stability analysis of the equilibrium point :

TreAd: f(T)=0=Z0t) =T Vi
_of

(Zo) be the Jacobian matrix, i.e.,

Jii(To) = 0/

8$j (:EO)
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Linear stability analysis of the equilibrium point :

—

FTEA: f@)=0=F(t) =7 W

_of
- OF

let J(&) (Zo) be the Jacobian matrix, i.e.,

Jii(To) = 0/

8$j (:EO)

let A1,..., A be the eigenvalues of J(Zo) then

it RA; <O0Vi=1,...,n then Z*is asymptotically stable

The case of multiple eigenvalues can be handled as well
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Attention to non-normal matrices

A matrix A € R™*™ is non-normal iff AA" £ A" A

This implies that A cannot be diagonalised with orthogonal vectors
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Attention to non-normal matrices

A matrix A € R™*™ is non-normal iff AA" £ A" A

This implies that A cannot be diagonalised with orthogonal vectors

r -1 10
W _Ax FPE=2 -7 5 A= (3 1)
dt

a(A) =supRo(A)
spectral abscissa

15}

[|z(2)]]

1

AL AT 0.5}
w(A)=supo ( —|_2 )
0 I 2 3 4 5

numerical abscissa (reactivity) time

0 1 1 1 P ————————
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Solution

o € A :

Stability of a solution :

A solution < (; %) is said orbitally stable (or Poincaré stable)

Ve > 03(e) > 0 : V& : |Tg — | < 0

= |B(t; @) — U(t; o) < eVt >0
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T - Periodic solution

o € A :
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T - Periodic solution
To € A

Poincaré map
Let V' be a (n-1)-dimensional manifold transverse fo the flow of the ODE

st 7o € V , then o(T'; Zy) = T € V. Let & € V'close (enough) to 2,

then let ¢’ > 0 the smallest time st P(Z) =" = g(t"; &) € V
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Stability of T - Periodic solution
Ve > 030(e) >0 : VT : |Zg — 2| <6

= |P°™"(Z&') — Zp| < €Vn >0

Note : P(fo) — _)Q

Asymptotically stability

|P™M(Z) — Xy — O
n— 400
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Stability of T - Periodic solution with the Floquet theory

such that Z(t) = S(t)ePta,

Moreover “2 _ AS_ SB
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let C = BT be the monodromy matrix. The eigenvalues p; of C

are called characteristic multipliers and are related to those of B, 1;

characteristic exponents p; = e#*

[Andronov-Witte Theorem] If Ry, <0 vj=2,...,n

then the periodic orbit is stable.
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let C = BT be the monodromy matrix. The eigenvalues p; of C

are called characteristic multipliers and are related to those of B, 1;

characteristic exponents p; = e#*

[Andronov-Witte Theorem] If Ry, <0 vj=2,...,n
then the periodic orbit is stable.

Note 1: 11 = 0

Note 2: there are explicit general ways to compute S(¢)or £;
T
Note 3: P1...Pp = €XP (/ trA(t) dt)
0
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Limit cycles : isolated periodic solutions

To find limit cycles is a difficult task

(Second part of) the 16th Hilbert problem :

Determine an upper bound to the number of limit
cycles in a polynomial planar EDO, as function of
the degree and/or the coefficients.

This number is finite (Yulii llyashenko and Jean Ecalle, 1991-1992)
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To find limit cycles is a difficult task

In the plane one can use the Poincaré - Bendixon theorem.

In general the Brower fixed point theorem can be used.
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van der Pol oscillator

d?x
dt?

dx
,u(l—xz)dt Fx =0

State dependent non linear damping

Small parameter case

p| <2
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van der Pol oscillator

d?x

s w(l—2?)=— +zx=0

dt

Liénard coordinates
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van der Pol oscillator 0 -isocline
3
3 X
iz,u(a: w)—y f(x):,u(a; 3>
y=2x ot
(0,0) is the unique equilibrium ESREEEE I
| o . \\\\ ////*\\\\ ',7 _
The Jacobian matrixis J = (# ') R S as.
whose eigenvalues are S

> "‘.i:.“'.:‘;""}:»‘l"‘l" oo e
M o //1/ Cursc-: position: (—:66, 4.68) . i g 1 ’ ° ‘
)\ —_— — I 1 1 — | —
2 2
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van der Pol oscillator 0 - isocline
3
. $3 B €T
:L‘:,u(x )—y f(x)—,u(a: 3>
Y=

,u<O:>§R)\:g<O

Stable focus
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van der Pol oscillator 0 - isocline
3
. $3 B €T
:L‘:,u(x )—y f(x)—,u(a: 3>
Y=

,u>O:>§R)\:g>O

Unstable focus

WWW.unamur.be timoteo.carletti@unamur.be




van der Pol oscillator 0 - isocline

,u>():>§R)\:g>O

Unstable focus
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van der Pol oscillator

\ . - \\
\ » | \
- _y : V.\'. \ L mu=1
= . N\ - .

A N T I T T
4 - — = v \ ~ = §\~ i e— e— =l . . T < e S S -

) \\ N 2 (S Q ., N b e« . - | = - < e«

[ AR \\ \ \\./u.; - g . | — < ~ E
9 : \  2 = 5 - —~ = o - . = . . A -
\ \\ S ] ] ‘

,u>O:>§R)\:g§
X

Unstuble\g w\ §
=0
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Stuart - Landau oscillator

d |
—=zla+ib—|z) z=2+iyeC acR bERy

complex amplitude
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Stuart - Landau oscillator

d |
—=zla+ib—|z) z=2+iyeC acR bERy

complex amplitude

Real variables
{:i: = ax — by — z(z? + y?)

g =br+ay—y(z®+y°)

(z,y) = (0,0) Equilibrium

Stable it @ < 0, unstableif @ > 0
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Stuart - Landau oscillator

Z —iatib—|:?) z=v+iyeC a€R bER,

complex amplitude

Polar coordinates  2(t) = p(t)e™®

A limit cycle emerges once a passes from negative to positive values
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Bifurcation.

The qualitative behaviour of the system suddenly changes once
a parameter reaches a critical value.
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Saddle - node Bifurcation.

By varying a parameter a saddle equilibrium and a stable node
equilibrium merge and disappear.

e AL AN

(a) r<0 (b) r=0 (c) r>0

& =r+
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Saddle - node (blue sky) Bifurcation.

By varying a parameter a saddle equilibrium and o node
equilibrium appear “out of the clear blue sky”
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Transcritical Bifurcation.

The equilibrium (here x=0) always exits but it changes its character
by varying a parameter.

b) r=0 () r>0
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Supercritical Pitchfork Bifurcation.

By varying a parameter a stable equilibrium (here x=0)
becomes unstable and two new stable equilibria emerge.

3 ' X

.Ci?:T.CE—CC \ \ \

| / (@) r<0 (b) r=0 ) r>0

Stable we——f- - - - - - - — — . UNS table
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Subcritical Pitchfork Bifurcation.

By varying a parameter a stable equilibrium (here x=0) and
two unstable ones, merge and make the original equilibrium to
be unstable

dj’ = 7T —|— ajg unstabig

r
gl
-
-~
-.'._
~

stable e e e - m - - - unstable

‘0
-
-
-
-

unstable

WWW.unamur.be timoteo.carletti@unamur.be




Subcritical Pitchfork Bifurcation.

By varying a parameter a stable equilibrium (here x=0) and
two unstable ones, merge and make the oriainal eauilibrium to

be unstable

i:frx—l—xg

To avoid escaping orbits, one should usually *
introduce high order stabilising terms

x':ra:+a:3—x

WWW.unamur.be timoteo.carletti@unamur.be
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Subcritical Pitchfork Bifurcation and Hysteresis

:i::r:I:—I—m?’—m5

X - -t
- I

0 Ty oo - e
A r
N—
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Hopt Bifurcation.
By varying a parameter, a stable equilibrium becomes unstable
and a limit cycle emerges

{’f = r(p—77)

g =—1
.; AA
S~ —~
A i o
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Chaotic behaviour.

Roughly speaking, high sensitivity to initial conditions, i.e.,
nearby orbits diverge each others.

A= lim lim 11ogH5(t)”

x(t) +o(1) t—00 [|5(0)||—0 T “5(0)”

Maximal Lyapunov exponent
/ 18] = 80 &*

16O x)
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Chaotic behaviour. Two “main” examples

Lorenz system Rdssler system

d
dy
R N % =t tay
dz
d az _ _
\d—:=$y—f3z- dt b+ Z(CB C)
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COMPLEX
NETWORKS

Principles, Methods and Applications

VITO LATORA
VINCENZO NICOSIA
GIOVANNI RUSSO

The Structure and Dynamics of

NETWORKS

Albert-Laszl6 Barabasi

SCIENCE TR

ALBERT-LAS2LO BARABASI
. &
DUNCAN J. WATTS
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Non physical networks : Physical networks :

- Friendships - Power plant

- WWW - Internet

-email / texto / call -road / train / flight
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- mw'y\h

ighf

Probability
of failure

@ <25%

0 25-80%
@ >80%

profeins networks technological networks
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Network = finite set of nodes pairwise connected,
i.e., there is a link (edge) among the two nodes if
there is some inferaction among them

| 0, b and ¢ are human beings

h a and b are friends, they can exchange ideas

a and c are friends, they can exchange ideas
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Network = finite set of nodes pairwise connected,
i.e., there is a link (edge) among the two nodes if
there is some inferaction among them

| 0, b and c are web pages

h a and b are linked, they share hyperlinks

a and c are linked, they share hyperlinks
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}an

A network can be encoded by the adjacency matrix A € {0, 1

A;; =1 it 7 and j are linked

The degree of a node is the number of its neighbours

j=1
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A network can be encoded by the adjacency matrix A € {0,1}"”"

A;; =1 it 7 and j are linked

The degree of a node is the number of its neighbours
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If all the links are reciprocal ones, then we have an undirected network
Aij =A; Y,
Otherwise, we have an direcied network
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If all the links are reciprocal ones, then we have an undirected network

Aij=Aj Vi,
Otherwise, we have an directed network
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If all the links are reciprocal ones, then we have an undirected network
Aij =A; Y,
Otherwise, we have an directed network

The out-degree of a node is ~ ;.our _ S 4;
the number of exiting links !

The in-degree of a nodeis ;.
the number of entering links = Z Aij
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If all the links are reciprocal ones, then we have an undirected network

Aij =A; Y,
Otherwise, we have an directed network

The out-degree of a node is ~ ;.our _ S 4;
the number of exiting links !

The in-degree of a nodeis ~ ,,, _ S, R L
the number of entering links Y

=1 K =0,k =1,k =2
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Links can be weighted A € R™*"

A;; =s 1 ¢ and j have a connection whose weight is s
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Links can be weighted A € R™*"

A;; =s 1 ¢ and j have a connection whose weight is s

The degree is replaced by the notion of strength
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A network can be also encoded by the incidence matrix ™ e {0, 13™*"

m number of links, n number of nodes

let € = (%,35) be link in the network, then

Me,izlaMe,j:_l Mek—O \V/k#l.]
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e=(1,5) Mei=1,M;=—1 My =0 Vk#i,j
TR
1 —1 0 |0
b/\ Aijz 1 0 O Mz’j:<1 0 >
L 0 0 lo.0)
2 1 1
~-M'M 1 -1 0
1 0 -1

—MTM = A — diag(kl, kQ, kg)
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Models of networks.
Erdds-Rényi (random network) c(x, p)

Given n2 nodes, consider all pairs and with probability p € (0, 1) link them.

1) The average number of links is (n)p
2

Erd8s, P.; Rényi, A. (1959). “On Random Graphs”, Publicationes Mathematicae, 6, 290-297
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Models of networks.
Erdds-Rényi (random network) c(x, p)

Given n2 nodes, consider all pairs and with probability p € (0, 1) link them.

1) The average number of links is (n)p
2

2) The probability to have a node with degree k is
P(k) = (n ) 1>pk(1 —p)t i F

3)if » — oo and np = const then
P(k) ~

(np)~e"P

k!
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Models of networks.
Erdds-Rényi (random network) c(x, p)

Given n2 nodes, consider all pairs and with probability p € (0, 1) link them.

(np)Fe"P
!

n— oo  np=const P(k) ~

P(k)
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Models of networks.
Watts-Strogatz (random network with small world property)

¢;; Distance among two nodes = number of “hops” needed to connect them

1
Average shortest path: 4 = (= 1) ;&j

Complete network 4c = 1

d-dimensional lattice (n nodes) ¢c ~ n'/?

logn

Erdos-Rényi (n,p) ¢¢ ~

log(np)
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Models of networks.
Watts-Strogatz (random network with small world property)

Let v be the actual number of links between the neighbours of node i

the (local) clustering coefficient is
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Models of networks.
Watts-Strogatz (random network with small world property)

Yi k, = 4
C; = v
ki(k; —1)/2
Yi = 2
2 1
4x3/2 3

That is, the number of triangles among all the possible ones

the clustering coefficientis Cg = ! Z C;
n 1
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Models of networks.
Watts-Strogatz (random network with small world property)

Regular Small-world _
os[ ° C(p)/ C(0) © ]

Lp)7LO) °

©
I
o
Y
©
I
—A
o
o
o T
=
o
g
o
=
o

Increasing randomness p

Waits, D. J.; Strogatz, S. H. (1998). “Collective dynamics of 'small-world' networks”, Nature, 393 (6684): 440-
442.
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Models of networks.
Watts-Strogatz (random network with small world property)

1 . . ey . e

Regular Small-world o N - :

osf C(p)/ C) © .

I o ]

0.6 |- -

0.4 - . = -

02f HP/HQ :

I * . ., f ]

p=0 » p=1 0.0001 0.001 0.01 0.1 1
Increasing randomness g p y

Small distance but large
clustering (as in lattices)
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Models of networks.
Barabdsi - Albert (random network with scale free property)

Power-law distribution

i 10 3 0 0 F v
- I! . 10 \ 10 \
— _- 2 | A “ B 4; ¢ ’\‘\ C
~ o N RN
— 10 . i O
~ 0.1k 4 __10° “u «
m - B 7 é ! 10"‘ \\ 10-‘2 L .\Q
- A L n v
0.01¢F 1 Bt | 2 4
. i i g . \ &
- - \ -6 \\ -3 L -
0.00LF e 107 = " e 107 ¢ )
- C ] — .‘\\ i ;
I -8 \ 4 7 \
'_ —‘ 10’6 5 1 .......11 ) .......12 . .4.....3 10 0........11... 12........13.m4 10 5 A N .“..11 L\
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Models of networks.
Barabdsi - Albert (random network with scale free property)

1) Start with m nodes connected among them

2) At each time step add 1 new node with a new link to existing nodes

3) Preferential attachement : the new node will select existing nodes
according fo their degree

ks
Zj k;

P(new node — 1) =

Barabési, A.; Albert, R. (1999), “Emergence of scaling in random networks”, Science, 286 (5439): 509-512.
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Models of networks.
Barabsi - Albert (random network with scale free property)

In the limit of large networks one has

1 Power-law distribution
P(k) ~ —
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Models of networks.
Barabsi - Albert (random network with scale free property)

In the limit of large networks one has

1 Power-law distribution
P(k) ~ — o |
kg % 0.1F
0.01F
0.001F
0.00015—
=T oo 1000
R
: 1 .
A network for which P(k) ~ - s called scale free
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Models of networks.
Scale free network  P(k) ~ —

T 2<7<3then (k) < oo and (k?) = oo
It v>3 then (k) < oo and (k?) < oo

kmaa; O
(k) = / kY dE ~ / kP dk
k 1
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Models of networks.
Configuration model

Given the degree sequence ki,...,%, reconstruct the network
that exhibits such degrees

k=3 k=2 k=2 k=1

"seee
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Community detection

Group of node fightly connected among them and weakly
connected with the rest of the network.
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Community detection

Group of node fightly connected among them and weakly
connected with the rest of the network.

Communities allow fo “simplify” the network structure

Communities allow to “better” understand the network dynamics
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