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Intermezzo
(warmup example)

Random walk on network
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Consider a connected and undirected network.

Consider a walker sitting on a node and each time step, she jumps
to one neighbouring node, chosen with uniform probability.

Let p:() be the probability o find the walker at fime t on node |
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Consider a connected and undirected network.

Consider a walker sitting on a node and each time step, she jumps
to one neighbouring node, chosen with uniform probability.

Let p:() be the probability o find the walker at fime t on node |

What can be said about 2:(t) ?

ls it somehow related to the network structure?
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Adjacency matrix: A;; = A;; =1

Nodes degree: . = ZA,L-J-
J
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Transition probability to jump formito j:
ki

T(ilg) =
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Transition probability to jump formito j:
ki

T(ilg) =
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Py =p. T

Px. i ™ kz

L=I-T Random walk Laplace matrix
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Assume to have n copies of the same dynamical system

—

;= f(Z)
How to couple them?

What can be said about the global behaviour?

Are there some new emergent properties?
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Assume to have n copies of the same dynamical system

—

;= f(Z)
How to couple them?

( Coupling means interaction and interaction implies exchange.

Agents can thus move around the network (i.e., diffuse)

. or they can stick on nodes and exchange “signals”.
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Assume to have n copies of the same dynamical system

—

z; = f()
Agents can thus move around the network (i.e., diffuse)

Diffusive (like) coupling

or they can stick on nodes and exchange “signals”.

Adjacency coupling
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Assume to have n copies of the same dynamical system

—

;= f(Z)
How-te-couple them?
What can be said about the global behaviour?

Are there some new emergent properties?
Assuming the isolated systems

do synchronise / converge to some equilibrium value,
does the coupled system do the same?
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How the Leopard Gets Its Spots

A single pattern-formation mechanism could underlie the wide
variety of animal coat markings found in nature. Results from
the mathematical model open lines of inquiry for the biologist

by James D. Murray

MATHEMATICAL MODEL called a reaction-diffusion mecha- the leopard (Zeff), the jaguar and the cheetah {middle) and the
nism generates patterns that bear a striking resemblance to
those found on certain animals. Here the patterns on the tail of

genet (¥ight) are shown, along with the patterns from the model
for tapering cylinders of varying width (vight side of each panel).
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Diffusive coupling

COMPLEX NETWORKS

Patterns of complexity

The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion
systems. A framework that describes Turing-pattern formation in the context of complex networks should provide
a new basis for studying the phenomenon.

Romualdo Pastor-Satorras and Alessandro Vespignani

W e live in the age of networks. The
Internet and the cyberworld are
networks that we navigate and
explore on a daily basis. Social networks,
in which nodes represent individuals and
links potential interactions, serve to model
human interaction. Mobility, ecological, and
epidemiological models rely on networks
that consist of entire populations interlinked
by virtue of the exchange of individuals.
Network science, therefore, is where we
can expect answers to many pressing
problems of our modern world, from
controlling traffic flow and flu pandemics
to constructing robust power grids and
communication networks. But there is
more than nodes and links. An important
development of recent years has been the
realization that the topology of a network
critically influences the dynamical processes
happening on it'. Hiroya Nakao and
Alexander Mikhailov have now tackled the
problem of the effects of network structure
on the emergence of so-called Turing
patterns in nonlinear diffusive systems. With
their study, reported in Nature Physics?,
they offer a new perspective on an area that
has potential applications in ecology and
developmental morphogenesis.

In the past decade the physics
community has contributed greatly to
the field of network science, by defining
a fresh perspective to understand the
complex interaction patterns of many
natural and artificial complex systems. In
particular, the application of nonlinear-
dynamics and statistical-physics techniques,
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boosted by the ever-increasing availability
of large data sets and computer power

for their storage and manipulation, has
provided tools and concepts for tackling
the problems of complexity and self-
organization of a vast array of networked
systems in the technological, social and
biological realms®*. Since the earliest
works that unveiled the complex structural
properties of networks, statistical-physics
and nonlinear-dynamics approaches have
been also exploited as a convenient strategy
for characterizing emergent
macroscopic phenomena

in terms of the dynamical
evolution of the basic elements
of a given system. This has
led to the development of
mathematical methods that
have helped to expose the
potential implications of
the structure of networks
for the various physical
and dynamical processes
occurring on top of them.

A complex beast. The markings
on leopards and other animals
might be a manifestation

of Turing-pattern formation
during morphogenesis®®. A new
framework for studying the Turing
mechanism on complex networks
should deepen our understanding
of the process and its
consequences. Image credit: ©
iStockphoto / Eric Isselée

It has come as a surprise then to discover
that most of the standard results concerning
dynamical processes obtained in the
early studies of percolation and spreading
processes in complex networks are radically
altered once topological fluctuations and
the complex features observed in most
real-world networks are factored in'. The
resilience of networks, their vulnerability to
attacks and their spreading-synchronization
characteristics are all drastically affected by
topological heterogeneities. By no means can

such heterogeneities be neglected:
‘complex behaviour’ often implies
a virtually infinite amount of
fluctuations extending over several
orders of magnitude. This generally
corresponds to the breakdown of
standard theoretical frameworks
and models that assume
homogeneous distributions of
nodes and links. Therefore
systematic investigations
of the impact of the
various network
characteristics on
the basic features of
equilibrium and
non-equilibrium
dynamical
processes are
called for.
The work
of Nakao and
Mikhailov?,
in which they
study the Turing

NATURE PHYSICS | VOL 6 | JULY 2010 | www.nature.com/naturephysics




metapopulation model
-- macro scale
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Metapopulation models

e.g. in the framework of ecology:

May R., Will a large complex system be stable?
Nature, 238, pp. 413, (1972)

Interactions occur at each node. Ditfusion occurs across edges.
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Assume each isolated system converges to the same stable
stationary equilibrium

tlg]élo Ti(t) =2 Vi

Assume a diffusive coupling

T~y Ayl(E; — )
J
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Assume each isolated system converges to the same stable
stationary equilibrium

Assume a diffusive coupling

fl.?i ~ ZAz'j(fj —T;) = ZAijfj — k;x; =
J
=) (Aij — kidij) Zme]
J

L = A —diag(k1,...,kn) isthe (combinatorial) Laplace matrix

WWW.unamur.be timoteo.carletti@unamur.be




Some properties of L = A — diag(ky, ..., ky)

Li; = Lj; = Diagonalisable and with real eigenvalues
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Some properties of L = A — diag(ky, ..., ky)

Li; = Lj; = Diagonalisable and with real eigenvalues

» Liy=0 Vi = AW—g ¢W=,....1)T/V/n
J
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Some properties of L = A — diag(ky, ..., ky)

Li; = Lj; = Diagonalisable and with real eigenvalues

» Liy=0 Vi = AW—g ¢W=,....1)T/V/n
J

Non-positive definite —M ™M = A — diag(ky, k2, k3) = L

(6, Lo()) = —(¢(), M Mg(*)
= —(M "¢, Mg!?) = —||[Mg!®||> < 0

WWW.unamur.be timoteo.carletti@unamur.be




—

Z; = f(Z)+D>» Lyz; Vi Diffusion coefficients D
J

Under which conditions on the network i.e., on L, we can
destabilise the equilibrium z* ?

Let us observe that z* s also a solution of the coupled systems
because Y Lij@ =0 Vi
j
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—

Z; = f(Z)+D>» Lyz; Vi Diffusion coefficients D
J

Under which conditions on the network i.e., on L, we can
destabilise the equilibrium z* ?

Let us observe that z* s also a solution of the coupled systems
because > " L;;@* =0 Vi
j

This is the celebrated Turing instability phenomenon
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We have to show that

—

7* is stable for @ = f(z;) Vi (decoupled systems)

—

7" is unstable for z; = f(&) + D) L;;& Vi (coupled systems)
j
under suitable assumptions on L and D

Following the instability, the system will (possibly) reach a new
equilibrium, in general not homogeneous, i.e., the patchy solution.

Nakao, H, Mikhailov, AS, 2010 Turing patterns in network-organized activator-inhibitor systems. Nature Physics, 6, 544
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A relevant example : the Brusselator

V1

u; =1— (b -+ 1)uz -+ cu?vi + D, Zj Liju]'
v; = bu; — cufv; + D, Zj L;;v;

(u*,v*) = (1,b/c) equilibrium isolated system
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A relevant example : the Brusselator

. 0
v; = bu; — cufv; + D, Zj L;;v;
(u*,v*) = (1,b/c) equilibrium isolated system
Ti=U; — U Y =V; — U
t; = (0—1zi+cyi+ Dy ; Lijz;
Gi = —bxi —cyi+ Dy Y, Ligy, linearised system
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The stability of (u*,v™) = (1,b/¢) can be stated by looking at
the spectrumof  J, = (b e )

M —Ab=1—¢c)+c=0

) — (b—1—¢)

||
[ 1
ol
S
|
-
|
)
N——"
\V)

|
N
o
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The stability of (v, v*) =

(1,6/c) can be stated by looking af
the spectrumof  J, = (b e )

(b—l—c)::\/(b—l—c)2—4c

Note

&ug aug) A — )\tr(JO) T det(JO) =0

tr(Jo) < 0 and det(Jo) >0  imply stability
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d X; B b—1 C X Du 0 xL;
i) == 2) Gz (B 5)0)
Let us decompose x and y on the eigenbasis of L

v =Y &dy and yi=> n.o®

Z Lijr; = Z: Z: Lijfa€b§a) — Z A(a)€a¢§a)
j - :
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d X; B b—1 C X Du 0 xL;
i) = (= 2 G2 (e 5) ()
Let us decompose x and y on the eigenbasis of L

v =Y &dy and yi=> n.o®

Z Lijr; = Z: Z: Lijfa§b§a) — Z A(a)€a¢,§a)
j -

84

Project on each eigenvector

i Ea o b—1 C Ea (o) D, 0 Ea
dt <77a> h ( —b _C> (77&) A ( 0 DU) (77@>
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Growth ansatz

det

C () Du 0
c> +A ( 0 D,

Ea(t) ~ et and Na () ~ et

c (@) (Pu
(s

timoteo.carletti@unamur.be

0
D,

) =Jo+AYD

Ao = Ao (A

) =l

= (
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o b—l C (a) Du 0 o (a)
Ja.—<_b _C>—|-A (O Dv>_JO—|—A D

Growth ansatz ~ €a(t) ~ e*? and 1, (t) ~ etet Ay = Ao (A1)
_ b—1 C () Du 0 ) B
a0 2)ene (B 8 ] <o

A2 — Aotr(Jo) +det(Jy) =0
instability ~ tr(J.) > 0 or det(J,) <0 forsome a

but  tr(Ja) = tr(Jo) + A(D, + D,) < tr(Jo) <0
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Jov st detJ, <0 instability
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Jov st detJ, <0 instability

2
det(J,) = Dy D, [A(O‘)] + A (D8 f + Dudyg) + det(Jo)

| P \_ _y L\ _J
— e "

positive negative positive

D,o,f+ D,0,g >0
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Jov st detJ, <0 instability

2
det(J,) = Dy D, [A(O‘)] + A (D8 f + Dudyg) + det(Jo)

| P \_ _y L\ _J
—— e "

positive negative positive
\
DyOuf + Dudug >0 Ouf and O»g should have
but » opposite sign, i.e., should be
tr(Jo) = Ouf +9u9 <0 | qctivator and inhibitor
J

Ouf >0 0vg < 0
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Note : the inhibitor should diffuse faster than the activator

D, >D,

Gierer A, Meinhardt H. 1972 A theory of biological pattern formation. Kybernetik 12, 30
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Jov st detJ, <0 instability

2
det(J,) = Dy D, [A(O‘)] + A (D8 f + Dudyg) + det(Jo)

1 (DyOuf + Dy0yg)?
4 D.D.

| det(Jo) < 0
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Turing conditions
tr(Jo) = Ouf + 0,9 <0

det(Jo) = 0y f0pg — Oy fOLg > 0
D,o,f+ D,0,g >0

1 (DyOuf + Dy0yg)?
4 D,D.,

| det(J()) < 0

Turing AM. 1952 The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37
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Turing conditions for the Brusselator model

10

9_
tr(Jg) =b—1—¢c<0 8
7L
6_
det(Jp) =c >0 |
3l
2_
Dv(b—l)—DuC>O 1}
% > 4 6 8 10

D, ' (b—1)2
—(b+1) |1 —4/1
c<p, bt \/ (b+1)2
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Growth ansatz =~ €a(t) ~ e*ot and no () ~ et Ny = Ao (A®)

0.5 10
. . ol
0 8r
7_
—~-0.5 o
6 o 5¢
&= -] ar
3_
15 o1
11

y | l l . % > 4 6 8 10

0 5 10 15 20 b
L _A(a) y

b=4]c=5,D,=007,D, =05
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Growth ansatz =~ €a(t) ~ e*ot and no () ~ et Ny = Ao (A®)

0 10
9_
-0.5 )
7_
I - di
fj o 5¢
£ 15 i
3_
) 2T
1_
0

25 ' ' ' 0 2 4 6 8 10

] 5 10 15 b
_Ala)
A\ Y.

(b=2]c=5,D,=007,D, = 0.5
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s Adjacency coupling

ARTICLE
Received 28 Oct 2014 | Accepted 19 Mar 2015 | Published 11 May 2015 OPEN

Pigment cell movement is not required for s
generation of Turing patterns in zebrafish skin

Chaos, Solitons and Fractals 134 (2020) 109707

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

e TN A RS
D. Bullara" & Y. De Decker' ELSEVIER journal homepage: www.elsevier.com/locate/chaos

The zebrafish is a model organism for pattern formation in vertebrates. Understanding what
drives the formation of its coloured skin motifs could reveal pivotal to comprehend the

Generalized patterns from local and non local reactions )

mechanisms behind morphogenesis. The motifs look and behave like reaction-diffusion

. . i ; : . Giulia Cencetti? Federico Battiston® Timoteo Carletti€, Duccio Fanelli®*
Turing patterns, but the nature of the underlying physico-chemical processes is very different,

and the origin of the patterns is still unclear. Here we propose a minimal model for such 3 MobsS Lab, Fondazione Bruno Kessler, via Sommarive, 18 38123 Povo (TN), Italy

b Department of Network and Data Science, Central European University, Budapest 1051, Hungary

¢naXys, Namur Institute for Complex Systems, University of Namur, Belgium

tions. This model is able to produce patterns with intrinsic wavelength, closely resembling the 4 Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze, INFN and CSDC, Via Sansone 1, Sesto Fiorentino 50019, Firenze, Italy

pattern formation based on a regulatory mechanism deduced from experimental observa-

experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring

despite the absence of cell motion, through an effect that we call differential growth. This

mechanism is qualitatively different from the reaction-diffusion originally proposed by Turing, ARTICLE INFO ABSTRACT

although they both generate the short-range activation and the long-range inhibition required Article history: A class of systems is considered, where immobile species associated to distinct patches, the nodes of a

to form Turing patterns. Received 5 February 2020 network, interact both locally and at a long-range, as specified by an (interaction) adjacency matrix. Non
Accepted 19 February 2020 local interactions are treated in a mean-field setting which enables the system to reach a homogeneous
consensus state, either constant or time dependent. We provide analytical evidence that such homoge-

20 2t ords: neous solution can turn unstable under externally imposed disturbances, following a symmetry breaking

n formation mechanism which anticipates the subsequent outbreak of the patterns. The onset of the instability can be

m ' '9rk o traced back, via a linear stability analysis, to a dispersion relation that is shaped by the spectrum of an

15 i ion diffusion systems unconventional reactive Laplacian. The proposed mechanism prescinds from the classical Local Activation

= 1 stability analysis and Lateral Inhibition scheme, which sits at the core of the Turing recipe for diffusion driven instabilities.

‘ L Examples of systems displaying a fixed-point or a limit cycle, in their uncoupled versions, are discussed.

10 : Taken together, our results pave the way for alternative mechanisms of pattern formation, opening new

- - possibilities for modeling ecological, chemical and physical interacting systems.

5 © 2020 Elsevier Ltd. All rights reserved.
Figure 1 | Stationary striped patterns observed in MC simulations. The
simulations are performed with a 100 x 100 square lattice with periodic

boundary conditions and byy=dx=duy=0, bx=sx=sm=1, Ix=2.5 and Ix
h=16. They ran for 1x 10° Monte Carlo steps, starting from an uniform 0 1 2 3 4

initial condition without xantophores and melanophores. Yellow, black and  Figure 2 | Comparison between the mean-field analytical bifurcation
white boxes represent X, M and S. (a) The pattern formation evolves freely. ~ diagram and the MC simulations. The values of the parameters are

(b,c) We simulated the presence of an initial horizontal band of iridophores,  byy=dx=dm =0, bx =sx=su=1, h={5,10,15} and Ix ={0.5,1.5,2.5,3.5}.
which inhibit the growth of melanophores on top of them. The iridophores ~ The blue curve marks the critical values hy, while the red curve is half of the
appear as a shaded band, the size of which is 1 cell (b) and 10 cells (¢) wide.  critical wavelength A.

WWW.unamur.be timoteo.carletti@

Namur Center for Complex.



metapopulation model
-- macro scale
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Metapopulation models

e.g. in the framework of ecology:

May R., Will a large complex system be stable?
Nature, 238, pp. 413, (1972)

Interactions occur at each node and among nearby ones
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Assume each isolated system converges to the same stable
periodic solution

lim 7 (t) = 5(t) Vi

{— 00

Assume a adjacency coupling

| Lo
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Assume each isolated system converges to the same stable
periodic solution

lim 7 (t) = 5(t) Vi

{— 00

Assume a adjacency coupling

WWW.unamur.be timoteo.carletti@unamur.be



Ai j
ki

Lij = di; s the (consensus or reactive) Laplace matrix

L=D7'A -1 [tisnot symmetric, however
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Az’ j
ki

Lij = di; s the (consensus or reactive) Laplace matrix

L=D7'A -1 [tisnot symmetric, however

L™ =D '?(A-D)D /7
is symmetric and non-positive definite
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Ai j
ki

Lij = di; s the (consensus or reactive) Laplace matrix

L=D7'A -1 [tisnot symmetric, however
L™ =D '?(A-D)D /7
is symmetric and non-positive definite

[ = D—1/2L3ymD1/2
hence they have the same eigenvalues
—2 < A <

Sgiy=0 AV=0 ¢MV=(1,...,1)"/Vn
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A second relevant example : the Stuart-Landau

d : :
d—::az—6|z|22 o=o0ox+iog [ =Pr+10s

o Jo o : o)
Periodic solution  5(4) = /;_%em W= og — 565_9?
¥ ¥
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A second relevant example : the Stuart-Landau

d : :
d—::az—6|z|2z o=o0ox+iog [ =Pr+10s

o« o . . o)
Periodic solution  5(4) = /;_%em W= 0g — By R
R

Stability — 2(¢) = 2(t) (1 + p(t)) €™

()] < 1 i(
() <1 dt
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A second relevant example : the Stuart-Landau

dz; . .
o =0 —Blzl*z o =ontios B=Pfr+ibs
: dz; o 2
Coupllng d_t] — k—j%:Ajeze —52j|zj|
dz;
d_tj ZUZ,ngZg—FOZj—ﬂZj‘Zj‘Q
¢
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A second relevant example : the Stuart-Landau

dz; . .
o =0 —Blzl*z o =ontios B=Pfr+ibs
: dz; o 2
Coupllng d_t] — k—j%:Ajeze —5Zj|zj|
dz;
d_tj IO'Z,ngZg—FO'Zj—ﬂZj‘Zj‘Q
¢

2(t) =/ 50¢™" isalso a solution of the coupled
By IS also a solufion of the coupled system
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Smblll’[y zi(t) = 2(t) (L 4 p;(t)) o105 (1)

p;(t)] < 1 0,(t)] < 1

d /0] —20'3% 0 p] OR —0g 1y,
_ __ r
at (‘9) ( 203 5y O> («9) i %: e (03 OR 6,
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Siﬂblll’[y zi(t) = 2(t) (L 4 p;(t)) o105 (1)

pi ()] <1 6;(t)] <1
d(pi\ _( —20% 0\ (p; - [oR  —Og ) [ Pe
ilo) = (ke o) () 2 (2 0) ()
Use the Laplace eigenbasis p; =" p2ol™ 0, =3 " 62pl®

d [ pa - —20% 0 oR —0G j
e _ " A(a) R
o) = [(n o) (32 30)

Wy, >
B

J,=Jy+A®],
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J,=Jg+ A@]J, A2 — Aatr(J,) +det(Jy) =0

instability  tr(J.) > 0 or det(J,) <0 forsome «
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J,=Jg+ A@]J, A2 — Aatr(J,) +det(Jy) =0

instability  tr(J.) > 0 or det(J,) <0 forsome «

hut tr(Jy) = tr(Jo) + Al 205 < tr(Jo) < 0
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Cencetti G et al. 2020 Generalized patterns from local and non local reactions, Chaos 134, 109707
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Synchronous chaos in coupled oscillator systems

J. F. Heagy, T. L. Carroll, and L. M. Pecora
Material Science Division, Naval Research Laboratory, Washington, D.C. 20375-5000
(Received 28 March 1994)

oiic |
ehaviour

We investigate the synchronization of chaotic oscillations in coupled oscillator systems, both theoreti-
cally and in analog electronic circuits. Particular attention is paid to deriving and testing general condi-
tions for the stability of synchronous chaotic behavior in cases where the coupled oscillator array
possesses a shift-invariant symmetry. These cases include the well studied cases of nearest-neighbor
diffusive coupling and all-to-all or global coupling. An approximate criterion is developed to predict the
stability of synchronous chaotic oscillations in the strong coupling limit, when the oscillators are cou-
pled through a single coordinate (scalar coupling). This stability criterion is illustrated numerically in a
set of coupled Rossler-like oscillators. Synchronization experiments with coupled Rossler-like oscillator
circuits are also carried out to demonstrate the applicability of the theory to real systems.

PACS number(s): 05.45.+b, 84.30.Wp

Master
Stability
Function

VOLUME 80, NUMBER 10 " PHYSICAL REVIEW LETTERS 9 MARCH 1998

VOLUME 64, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY 1990

Synchronization in Chaotic Systems

Louis M. Pecora and Thomas L. Carroll

Code 6341, Naval Research Laboratory, Washington, D.C. 20375
(Received 20 December 1989)

Certain subsystems of nonlinear, chaotic systems can be made to synchronize by linking them with
common signals. The criterion for this is the sign of the sub-Lyapunov exponents. We apply these ideas
to a real set of synchronizing chaotic circuits.

Master Stability Functions for Synchronized Coupled Systems

Louis M. Pecora and Thomas L. Carroll

Code 6343, Naval Research Laboratory, Washington, D.C. 20375
(Received 7 July 1997)

We show that many coupled oscillator array configurations considered in the literature can be
put into a simple form so that determining the stability of the synchronous state can be done by
a master stability function, which can be tailored to one’s choice of stability requirement. This
solves, once and for all, the problem of synchronous stability for any linear coupling of that oscillator.
[S0031-9007(98)05387-3]
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Assume a diffusive coupling

T ~ Z Aij (T Z Ay — z(m)f%
— Z(Aijfj B k(m)5m Z me]

is the (combinatorial)
directed Laplace matrix

It is not symmetric, thus the eigenvalues can be complex numbers
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stability of the homogeneous equilibrium decoupled systems
A — Atr(Jg) + det(Jg) = 0

tI‘(Jo) < 0 and det(Jo) > ()

instability of the homogeneous equilibrium coupled systems

A2 — Aatr(Jo) + det(Jy) =0

tr(Jo) > 0 or det(Jo) <0 forsome «

Asllani M et al. 2014 The theory of pattern formation on directed networks. Nature Communication 5, 4517
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Figure 3 | Instabilities on WS networks. (a) Spectral plot of three Laplacians generated from the WS method for p=0.1, p=0.2 and p=0.8 (blue
triangles, red circles and green diamonds, respectively). In all cases, the network size is Q =100. The coloured area indicates the instability region for the
Brusselator model. (b) The real part of the dispersion relation for three choices of WS networks for p=0.1, p=0.2 and p=0.8 (blue triangles,

red circles and green diamonds, respectively), and network size Q=100. The reaction parameters are b=9, c=30, Dy=1and D, =7.

Asllani M et al. 2014 The theory of pattern formation on directed networks. Nature Communication 5, 4517
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FIG. 2. (Color online) Main: A™* is plotted vs D32, starting from
a condition for which the instability cannot occur when D!* = 0.
Circles refer to a direct numerical computation of A™**. The dashed
(respectively solid) line represents the analytical solution as obtained
at the first (respectively second) perturbative order. Upper inset: the
dispersion relation A is plotted versus the eigenvalues of the (single
layer) Laplacian operators, L' and L2. The circles (respectively red
and blue online) stand for D!*> = D!? = 0, while the squares (green
online) are analytically calculated from (5), at the second order, for
D)* =0 and D!* = 0.5. The two layers of the multiplex have been
generated as Watts-Strogatz (WD) [23] networks with probability
of rewiring p respectively equal to 0.4 and 0.6. The parameters
are b=28,c=17, D! =D?>=1, D! =4, D? =5. Lower inset:
asymptotic concentration of species u as function of the nodes index
i. The first (blue online) 2 = 100 nodes refer to the network with
p = 0.4, the other Q2 (red online) to p = 0.6.
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PRL 119, 148301 (2017) PHYSICAL REVIEW LETTERS 6 OCTOBER 2017

Theory of Turing Patterns on Time Varying Networks

Julien Petit,"2 Ben Lauwens,2 Duccio Fanelli,3 4 and Timoteo Carletti""
'naXys, Namur Institute for Complex Systems, University of Namur, BS000 Namur, Belgium
2Department of Mathematics, Royal Military Academy, B1000 Brussels, Belgium
*Dipartimento di Fisica e Astronomia and CSDC, Universita degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
*INFN Sezione di Firenze, 50019 Sesto Fiorentino, Italy
(Received 22 May 2017; published 4 October 2017)

The process of pattern formation for a multispecies model anchored on a time varying network is
studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be
amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By
properly tuning the frequency of the imposed network evolution, one can make the examined system
behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed
analytical prediction for the onset of the instability in the time dependent framework. Continuously and
piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed
approach. The extension to nonperiodic settings is also discussed.

DOI: 10.1103/PhysRevLett.119.148301
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PRL 119, 108301 (2017) PHYSICAL REVIEW LETTERS 8 SEPTEMBER 2017

Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

Tomokatsu Onaga,"2 James P. Gleeson,2 and Naoki Masuda®"
'Department of Physics, Kyoto University, Kyoto 606-8502, Japan
*MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
3Departmem of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS8 1UB, United Kingdom
(Received 16 February 2017; revised manuscript received 13 June 2017; published 6 September 2017)

Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The
spreading of infections on such temporal networks can differ dramatically from spreading on static
networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has
at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics
on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher
epidemic threshold) when the node’s concurrency is low, but can also enhance epidemics when the
concurrency is high. We analytically determine different phases of this concurrency-induced transition, and
confirm our results with numerical simulations.

DOI: 10.1103/PhysRevLett.119.108301
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u;(t) = f(u;,v;) + D, Z Lij(t/e)uj(t)’

vi(t) = g(u;, v;) + D, Z_:Lij(t/e)”j(t),

u;(t) = f(u;,v;) + D, Y (Lj)u;,

-

j=1

N
v;(t) = g(u;, v;) + D, Z(Lij>vj'
Jj=

1

Theory of average

Petit J et al. 2017 Theory of Turing patterns on time varying networks.
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FIG. 1. Twin network. (a) T-periodic network built from two
static networks, of adjacency matrices A; and A,. Each network
in this illustrative example is made of N = 6 nodes. In the
network stored in matrix A |, symmetric edges are drawn between
the pairs (1,2), (3,4), and (5,6). The second network, embodied in
matrix A,, links nodes (6,1), (2,3), and (4,5). For ¢ € [0,yT), the
T-periodic network coincides with A;, A(¢f) = A,, while, in
[yT,T), we set A(t) = A,. The time varying network is then
obtained by iterating the process in time. (b) The ensuing time
averaged network (A)=yA,+(1-y)A,. (c) Dispersion relation
(max Re4, vs —A,) or the averaged network (the red circles), for
each static twin network (the black stars) and for the continuous
support case (the blue curve). Here, the networks are generated as
discussed above, but now N = 50. (d) Patterns in the averaged
network. Nodes are blue if they present an excess of concen-
tration with respect to the homogeneous equilibrium solution
([u;i(00)—u]>0.1) and red otherwise ([u;(c0)—u]<—0.1). The
outer drawing represents the entries of v, the eigenvector of the
Jacobian matrix J associated with the eigenvalues that yields
the largest value of the dispersion relation. The black ring
represents the zeroth level; red and yellow areas are associated
with positive entries of 7, while blue and light blue regions refer
to negative values. The reaction model is the Brusselator with
b=8,c=10, D, =3, and D, = 10. The homogeneous equi-
libriumis # = 1 and ¥ = 0.8. The remaining parameters are set to
y=03,T=1,D,=3, and D, = 10.




Simplicial complexes

d-simplex = d+1 nodes
(all linked together)
1-simplex = link
2-simplex = triangle
3-simplex = tetrahedron
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Simplicial complexes Hypergraphs

d-simplex = d+1 nodes
(all linked together) hyperedge = set of nodes

1-simplex = link
2-simplex = triangle

3-simplex = tetrahedron
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|Ea2‘ =3

ensemble of nodes

hyperedges = set of nodes
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Random walks on hypergraphs
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Figure 5. Turing patterns on hypergraphs. Main panels: the dispersion relation for the Brusselator model defined on the
hypergraph—panel (a)—and the projected network—panel (b). One can observe that in both cases there are eigenvalues for
which the dispersion relation is positive (red dots); the blue line represents the dispersion relation for the Brusselator model
defined on a continuous regular support. Being both Laplace matrices symmetric, the dispersion relation computed for the
discrete spectra lies on top of the one obtained for the continuous support. Insets: the Turing patterns on the hypergraph (panel
(a)) and the projected network (panel (b)). We report the time evolution of the concentration of the species u;(f) in each node as a
function of time, by using an appropriate colour code (yellow associated to large values, blue to small ones). In the former case,
nodes are ordered for increasing hyper degree while in the second panel for increasing degree. One can hence conclude that nodes

associated to large hyper degrees display a large concentration amount for species u;. This yields a very localised pattern. The
WWW.unamur.be hypergraph and the projected network are the same used in figure 2.
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Random walks and community detection in hypergraphs

Timoteo Carletti>* ', Duccio Fanelli*® and Renaud Lambiotte’
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Abstract

We propose a one-parameter family of random walk processes on hypergraphs, where a parameter
biases the dynamics of the walker towards hyperedges of low or high cardinality. We show that for
each value of the parameter, the resulting process defines its own hypergraph projection on a
weighted network. We then explore the differences between them by considering the community
structure associated to each random walk process. To do so, we adapt the Markov stability
framework to hypergraphs and test it on artificial and real-world hypergraphs.
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Hopping in the Crowd to Unveil Network Topology

Malbor Asllani,"" Timoteo Carletti,' Francesca Di Patti,” Duccio Fanelli,” and Francesco Piazza’
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3University of Orléans and Centre de Biophysique Moléculaire (CBM), CNRS UPR 4301, Rue C. Sadron, 45071 Orléans, France

® (Received 29 November 2017; published 9 April 2018)

We introduce a nonlinear operator to model diffusion on a complex undirected network under crowded
conditions. We show that the asymptotic distribution of diffusing agents is a nonlinear function of the nodes’
degree and saturates to a constant value for sufficiently large connectivities, at variance with standard
diffusion in the absence of excluded-volume effects. Building on this observation, we define and solve an
inverse problem, aimed at reconstructing the a priori unknown connectivity distribution. The method gathers
all the necessary information by repeating a limited number of independent measurements of the asymptotic
density at a single node, which can be chosen randomly. The technique is successfully tested against both
synthetic and real data and is also shown to estimate with great accuracy the total number of nodes.

DOI: 10.1103/PhysRevLett.120.158301
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Classes of random walks on temporal t®
networks with competing timescales

updates
Julien Petit!2* ®, Renaud Lambiotte3 and Timoteo Carletti?

*Correspondence:

julien.petit@unamur.be Abstract

J‘D@-lan:trment of Mathematics, Royal Random walks find applications in many areas of science and are the heart of essential
g’g'r"t;z ﬁj‘;’gﬁ&‘?g:‘&:ﬁg network analytic tools. When defined on temporal networks, even basic random walk
Belgium models may exhibit a rich spectrum of behaviours, due to the co-existence of different
?Department of Mathematics and timescales in the system. Here, we introduce random walks on general stochastic
gjs)zsr;]':aézr‘:ggiig‘;tfaf\‘j{efgg‘g‘ﬂfx temporal networks allowing for lasting interactions, with up to three competing

5000 Namur, Belgium timescales. We then compare the mean resting time and stationary state of different
Fulllist of author information is models. We also discuss the accuracy of the mathematical analysis depending on the

available at the end of the article

random walk model and the structure of the underlying network, and pay particular
attention to the emergence of non-Markovian behaviour, even when all dynamical
entities are governed by memoryless distributions.

Keywords: Random walk, Temporal network, Memory PHYSICAL REVIEW E 98, 052307 (2018)
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Random walk on temporal networks with lasting edges

Julien Petit,’»>" Martin Gueuning,>* Timoteo Carletti,> Ben Lauwens,' and Renaud Lambiotte*
'Mathematics Department, Royal Military Academy, Brussels, Belgium
2naXys, Namur Institute for Complex Systems, Namur, Belgium
3ICTEAM, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
*Mathematical Institute, University of Oxford, Oxford, United Kingdom

® (Received 10 September 2018; published 20 November 2018)

We consider random walks on dynamical networks where edges appear and disappear during finite time
intervals. The process is grounded on three independent stochastic processes determining the walker’s waiting
time, the up time, and the down time of the edges. We first propose a comprehensive analytical and numerical
treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may
emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless

. . Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks
WWW.unamur. be tl m Oteo .Cd rl ettl and validate our findings with numerical simulations.
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NETWORK SCIENCE

Structure and dynamical behavior
of non-normal networks

Malbor Asllani’2, Renaud Lambiotte’, Timoteo Carletti**

We analyze a collection of empirical networks in a wide spectrum of disciplines and show that strong non-normality is
ubiquitous in network science. Dynamical processes evolving on non-normal networks exhibit a peculiar behavior, as
initial small disturbances may undergo a transient phase and be strongly amplified in linearly stable systems. In ad-
dition, eigenvalues may become extremely sensible to noise and have a diminished physical meaning. We identify
structural properties of networks that are associated with non-normality and propose simple models to generate net-
works with a tunable level of non-normality. We also show the potential use of a variety of metrics capturing different
aspects of non-normality and propose their potential use in the context of the stability of complex ecosystems.

Journal of Theoretical Biology 480 (2019) 81-91

Topological resilience in non-normal networked systems

Malbor Asllani” and Timoteo Carletti
Department of Mathematics and naXys, Namur Institute for Complex Systems,
University of Namur, rempart de la Vierge 8, B 5000 Namur, Belgium

® (Received 11 October 2017; revised manuscript received 19 January 2018; published 4 April 2018)

The network of interactions in complex systems strongly influences their resilience and the system capability to
resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests
itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made
networks. Understanding the topological features of the networks that affect the resilience phenomenon remains
a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal
networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show
that such a feature can drastically change the global dynamics through an amplification of the system response to
exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce
the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a
new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application
of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of
virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.
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OPEN Turing Instabilities on Cartesian
product networks

© Malbor Asllani?, Daniel M. Busiello?, Timoteo Carletti3, Duccio Fanelli4 &

. Gwendoline Planchon**
Received: 26 January 2015 :

Accepted: 10 July 2015 The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian

Published: 06 August 2015 : product network is considered. To this end we operate in the linear regime and expand the time
dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete
Laplacian operators, associated to each of the individual networks that build the Cartesian product.
© The dispersion relation which controls the onset of the instability depends on a set of discrete
wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the
. Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex
. networks are also obtained under specific prescriptions. In this case, the criteria for the instability
© reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray
© reaction kinetics confirm the adequacy of the proposed theory.
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Turing instability in nonlinear relativistic heat equations on networks

Timoteo Carletti* & Riccardo Muolo
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We hereby develop the theory of Turing instability for relativistic reaction-diffusion systems de-
fined on complex networks. Extending to networked systems the framework introduced by Cattaneo
in the 40’s, we remove the unphysical assumption of infinite propagation velocity holding for reaction-
diffusion systems, thus allowing to propose a novel view on the fine tuning issue and on existing
experiments. We analytically prove that Turing instability, stationary or wave-like, emerges for a
much broader set of conditions, e.g., once the activator diffuses faster than the inhibitor or even in
the case of inhibitor-inhibitor systems, overcoming thus the classical Turing framework. Analytical
results are compared to direct simulations made on the FitzHugh-Nagumo model, extended to the
relativistic reaction-diffusion framework with a complex network as substrate for the dynamics.
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