
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Contributing To A Software Factory Framework

An Integrated Domain-Specific Languages Projectional Editing Environment

Müllers, Bastien

Award date:
2021

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/c84d5605-74d0-4466-88f2-2380f09df8a5

Université de Namur

Faculté d'informatique
Année académique 2020�2021

Contributing To A Software Factory

Framework : An Integrated Domain-Speci�c

Languages Projectional Editing Environment

Bastien Müllers

Maître de stage :

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Vincent Englebert

Co-promoteur :

Mémoire présenté en vue de l'obtention du grade de
Master en Sciences Informatiques.

Abstract

Software factories are a promising application of Software Product Line Engi-
neering (SPLE), enabling the mass customisation of software family members
while reducing cost and e�ort.

Despite these promises, software factories haven't really been adopted by
the industry, thanks to a di�cult and costly development, and lack of tools and
frameworks. Software factories also rely heavily on the use of custom-built DSL,
which are still not commonly used due to high development costs.

The present thesis is a contribution to a software factory framework, in-
troducing an editor for several generic internal DSL used to de�ne software
factories. We explore the idea of using Jetbrains MPS, a projectional language
workbench, in the software factory DSL environment. The practical choices, as
the technology and implementation details, will be justi�ed through this thesis,
besides to the programming tactics supported by the developed editors. We
provide a qualitative evaluation of the editor behaviour according to several
assessment criteria from the literature.

Keywords

Software Product Line, Software Product Line Engineering, Software Factory,
Domain-Speci�c Language, Language Workbench, Projectional Editing

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Professor Vincent
ENGLEBERT, for helping me throughout this thesis and putting up with my
erratic work habits.

I would also like to address my sincere thanks to Maouaheb BELARBI for
the invaluable help she has been in proofreading this thesis and guiding me
through the writing process.

I want to thank my friends Hugo DEVILLERS, Jérôme FINK and Guillaume
MAÎTRE for providing me with great tips, guidance and remarks.

Finally, I wish to acknowledge the incredible support from my family, my
mother Anne-Françoise, my sister Justine, and my aunt Sylvie.

1

Résumé

Les usines à logiciels sont une application prometteuse de l'ingénierie des lignes
de produits logiciels, permettant la personalisation de masse des membres d'une
famille de logiciels, tout en réduisant les coût et e�ort d'implémentation.

Malgré ces promesses, les usines à logiciels n'ont pas fait l'objet d'une adop-
tion massive dans l'industrie du logiciel, à cause d'un dévelopment couteux et
compliqué, et d'un mangue d'outils dédiés. Les usines à logiciels font aussi un
usage approfondi de langages à domaine spéci�que (DSL1) spécialisés, qui ne
sont eux aussi que peu répandus, au vu d'un dévelopement assez cher.

Ce mémoire est une contribution à un cadre méthodologique d'usines à logi-
ciels, présentant un éditeur pour plusieurs DSL utilisés pour dé�nir l'usine. Nous
explorons l'idée d'utiliser Jetbrains MPS, un atelier de langages projectionel,
dans le contexte des DSL de l'usine à logiciel. Les choix pratiques, ainsi que
la technologie et les détails d'implémentation, sont justi�és dans ce mémoire,
avec les tactiques de programmation permises par l'éditeur. Nous proposons
une évaluation qualitative de l'éditeur en se basant sur des critères d'évaluation
repris depuis la littérature.

Mots clefs

Ligne de Produits Logiciels, Ingénierie des Lignes de Produits Logiciels, Usine
à Logiciels, Langage à Domaine Spéci�que, Atelier de Langages, Édition Pro-
jectionelle

1En anglais Domain Speci�c Language.

2

Contents

1 Introduction 5
1.1 Mass Customisation Of Software Products 5
1.2 Domain-Speci�c Languages . 6
1.3 Objectives, Motivations and Structure 6

2 State of the art 8
2.1 Software Product Line Engineering 8

2.1.1 Variability Management 8
2.1.2 Software Factories . 10

2.2 Approaches for DSL Implementation 11
2.2.1 External DSL . 11
2.2.2 Internal DSL . 12
2.2.3 Language Workbenches 12

2.3 Projectional Editing . 15
2.3.1 Usability of Projectional Editors 15
2.3.2 E�ciency of Projectional Editors 16

3 Case Study : The �Methodology� Collection Of Languages 17
3.1 Overview . 17
3.2 The FeatSimple Language . 19

3.2.1 Abstract Syntax . 20
3.2.2 Concrete Syntax . 20

3.3 The Tactic Language . 21
3.3.1 Abstract Syntax . 21
3.3.2 Concrete Syntax . 23

3.4 The Strategy Language . 24
3.4.1 Abstract Syntax . 24
3.4.2 Concrete Syntax . 24

3.5 Composition . 26

4 Methods 28
4.1 Technology Used . 28

4.1.1 Documentation and Support 28
4.1.2 Maintenance and Version Control 30
4.1.3 Composability . 30
4.1.4 Auto-completion . 31
4.1.5 IDE Generation . 31

4.2 Changes to the AST Meta-Models 31

3

4.2.1 Changes in FeatSimple . 32
4.2.2 Changes in Tactic . 33
4.2.3 Changes in Strategy . 33

4.3 Projection . 34
4.3.1 The FeatSimple Projection 36
4.3.2 The Tactic Projection . 37
4.3.3 The Strategy Projection 39

5 Evaluation 41
5.1 The Implementation Process . 41
5.2 Criteria-Based Assessment . 42

5.2.1 Usability . 42
5.2.2 Reliability . 42
5.2.3 Maintainability . 43
5.2.4 Integrability . 43
5.2.5 Interpretation . 44

5.3 Outlook . 44

6 Conclusions 46

4

Chapter 1

Introduction

1.1 Mass Customisation Of Software Products

The production of software products is like the production of any other goods.
They can either be hand-crafted, fully customised yet expensive products de-
signed to �t a speci�c customer's exact needs, or they can be mass produced,
cheap products made to reasonably �t the needs of a large customer base. In
the software domain, these are identi�ed as individual and standard software,
respectively. Both have drawbacks, the former being very expensive and the
latter lacking diversi�cation [1].

While customers want individualised products, the producers want to keep
production costs low to increase their pro�t margins. To that end, producers
found a compromise in the use of common platforms. The idea is to view
each product as a combination of mass-producible standard components, and
to assemble the �nal product according to individual customer speci�cations. In
software, we call that production process a software product line (SPL). Just like
in tangible goods production, SPL cover families of products [1]. Each family
can be associated to a speci�c domain, in which di�erent software products
share common behaviours.

In SPL, variability - the way in which members of a software family vary from
one another - is typically handled manually. This is reasonable on a small scale,
but does not follow on a large scale. Complex variability calls for a di�erent
approach. The software factory is such an approach, making use of domain-
driven engineering to specify automate and pilot the SPL [2]. Software factories,
although promising for reducing production costs of many unique but related
software products, are quite costly to develop. The key to the industrialisation
of software is to reduce the cost-bene�t trade-o�, by enabling the cost e�ective
construction and operation of software factories [3].

5

1.2 Domain-Speci�c Languages

One of the ways software factories make use of domain-driven engineering is by
using domain-speci�c languages (DSL). DSL di�er from general purpose lan-
guages (such as Java and C) by sacri�cing some of the �exibility to express any
program for productivity and conciseness of relevant programs in a particular
domain [4].

Programming languages are typically implemented by creating a compiler or
interpreter. While this method may perfectly apply to a DSL, it comes at a high
cost and requires experienced developers to carry out. Such a cost isn't always
justi�able for a typically light-weight, focused solution [5]. Another drawback
to this approach is the lack of reuse from other language implementation. As
an alternative, a DSL can be implemented by extending a given base language.
While this approach is generally cheaper, it comes with its own drawbacks.
The reuse of another language's implementation can often force compromise
in the DSL's syntax. It can also impact the quality of error messages, which
are sometimes limited to the base language's domain and are thus much less
expressive [6]. Because of these drawbacks, DSL don't play the role we would
expect in the software development life cycle [5].

However, more and more tools are being developed to ease the development
of DSL. These tools, commonly known as language workbenches, provide in-
tegrated development environments (IDE) complete with high level tools for
implementing, evaluating and maintaining DSL [5]. They reduce the cost and
knowledge required to implement a DSL, yet have none of the drawbacks usually
encountered when extending a pre-existing language.

1.3 Objectives, Motivations and Structure

The objective of this thesis is to contribute to a software factory framework by
implementing an integrated editing environment for a series of DSL. By doing
this we also wish to evaluate the �tness of a language workbench in the context
of a software factory, and if using it can positively impact the cost of developing
one.

Reducing the cost and e�ort of building software factories could bring about
a new, e�ective and cheap way of producing software. While this is certainly
a long way ahead, we believe it to be possible and a worthwhile investment.
Although this contribution may be small, we hope the insights it brings will
help pave the way for future innovation, in any measure it can.

We will �rst dress a state-of-the-art of SPL engineering, DSL implementa-
tion, as well as projectional editing which is the approach we've taken for this
thesis. Then, we'll present the languages in detail, going through what they
represent, their abstract and concrete syntaxes, as well as the way in which
these languages interact with each other. We will follow by presenting the way
in which we've implemented the editors, with special emphasis on our choices
of technology and implementation approaches.

6

To evaluate our proposed editing solution, we will proceed to a qualitative
assessment. This assessment is based on evaluation criteria taken from the liter-
ature. As the low adoption rate of DSL is mostly in�uenced by high development
costs, we will also re�ect on the development process. Finally, we will explain
and discuss the conclusions we came to from this experiment.

7

Chapter 2

State of the art

In this chapter we will go over some of the most relevant sources available in the
literature to deliver a summary of the key concepts that will be used in the rest of
this thesis. These are divided in three sections, corresponding to three di�erent
domains, yet overlapping in the context of this thesis : Software Product Line
Engineering, Approaches for Domain-Speci�c Language Implementation, and
Projectional Editing.

2.1 Software Product Line Engineering

In [1], Pohl de�nes software product line engineering (SPLE) as : �a paradigm
to develop software [...] using platforms and mass customization.� A software
platform is a set of software subsystems and interfaces that form a common
structure from which a set of derivative products can be e�ciently developed
and produced. In summary, a software product line (SPL) is a family of software
sharing a common software platform. Mass customization is the large-scale
production of goods tailored to individual customers' needs.

Software derived from a common SPL belong to the same domain, and di�er
from each other according to variable aspects.

2.1.1 Variability Management

Instead of understanding each individual system by itself, which is the classical
approach in software development, SPLE views it di�erently. The pillar prin-
ciple behind the SPL paradigm consists in considering the SPL as a whole and
the variations between the systems. Software within a SPL may support many
di�erent individual customers, and therefore managing variability e�ciently is
a key aspect of SPLE. This variability must be de�ned, represented, exploited,
implemented, evolved, etc. This process is called variability management [7].

To fully understand variability, we need to start by stating a few key concepts
[1] :

8

� Variability subject : a variable item of the real world or a variable
property of such an item. A variability subject is, essentially, what varies.
A variability object is a particular instance of a variability subject1. For
instance, let's say a company produces co�ee cups. The cups can be red
or blue. The colour of the cup is a variability subject, while blue and red
are variability subjects.

� Variation point : a representation of a variability subject within domain
artefacts enriched by contextual information. This applies to all kinds
of development artefacts. The contextual information encompasses the
details about the embedding of the variability subject into the SPL, such
as the reason why the variation point was introduced. An example of that
could be the way in which an application stores personal data. The reason
for that variability subject is that di�erent countries have di�erent laws
about personal data protection to which the application must comply, if
the customer chooses to distribute the application in these countries.

� Variant : a representation of a variability object within domain arte-
facts. A variant is a variability object whose subject is a variation point.
Continuing on with the previous example, we can imagine a variant as a
GDPR-compliant personal data storage strategy.

Furthermore, a variability can be described as either internal or external
[1]. The former, external variability, is variability that is visible to the cus-
tomer. The customer can choose the variants they need. The latter, internal
variability, is variability that is hidden from the customer. Resolving the inter-
nal variability is up to the stakeholders representing the providers of the SPL.
External variability can be caused by di�erences between stakeholder needs, as
those would imply having a variant for each speci�c need, left to the customer to
choose. In addition, external variability can be introduced because of di�erences
in laws and standards that apply to the domain of the SPL. Internal variability
often emerges when re�ning external variability. The realisation of the options
proposed to the customer, generally at a high abstraction level, often demands
�ne tuning of several options at a lower abstraction level. Since the customer
is only interested in high-level decisions, these options need not be communi-
cated to the client. Similarly, internal variability realisation can lead to other
lower-level internal variability. Finally, technical issues generally don't have to
be considered by the client, and therefore can cause internal variability [1].

Since managing variability is crucial to ensure e�cient SPL processing, mod-
elling variability is paramount. Pohl introduces an orthogonal variability model
to accurately model the variabilities in a SPL. An orthogonal variability model
is a model that de�nes the variability of a software product line. It provides a
cross-sectional view of the variability across all software development artefacts.
An example of such a model is shown on Figure 2.1.

To complete the variability model, we need a way to describe the relations
between variants that belong to di�erent variation points. For that purpose,
Pohl introduces two types of dependencies : requires dependency and excludes

1This de�nition describes variability in the broader sense, not restricted to the context of
the software product line.

9

Figure 2.1: An example of an orthogonal variability model, taken from [8]

dependency. These dependencies are called variability constraints, and can be
expressed between two variants, two variations points, or between a variant and
a variation point.

The variability model on its own is not able to represent the full meaning of
variability in SPLE. In addition, we need the traditional views on design and
requirements, and the relation between the variability and these views so that
we know how variability will impact these views [7].

2.1.2 Software Factories

The key objective of SPL is to optimise the reusability of software artefacts
across di�erent, yet similar in domain, software products. While achieving this
is an obvious bene�t in the long term, software product lines allow for the real-
isation of something even more interesting : economies of scope. Economies of
scope di�er from economies of scale in that instead of enabling mass production,
they enablemass customisation. In software production, economies of scale hap-
pen quite naturally, in the distribution of copies of a same software. Economies
of scope arise when the same styles and patterns are used to develop multiple
related designs, and the same artefacts are reused for their implementations [3].

To achieve economies of scope in a software product line, we need a factory
to automatically produce these unique software products. A software factory
systematically captures knowledge of how to produce the members of a speci�c
SPL, makes it available in the form of assets, and then systematically applies
those assets to automate the development of the family members [3]. A soft-
ware factory reduces the cost, time, and e�ort for each individual software it
produces, yet designing and implementing a software factory is also very costly
and di�cult.

In [3], the software factory is de�ned as a model driven product line, a SPL
automated by metadata captured by models using DSL. To achieve that, a
software factory developer has to develop DSL tools to edit the models and
translate those models into executables or lower-level speci�cations.

10

2.2 Approaches for DSL Implementation

Implementing a DSL from scratch using common general-purpose language
(GPL) approaches and technologies is not always viable due to the high cost
of development not being worth investing in a specialised solution. For that
reason, there exist several language development approaches most commonly
associated with DSL.

We can classify those approaches under two main categories : internal and
external DSL. Internal DSL are embedded within another language, known as
the base language [5]. External DSL are independent from any base language.

Another way of implementing a DSL consists of using a language workbench,
a term coined by Martin Fowler [9]. Language workbenches are IDE made
speci�cally for the development of languages which provide tools that support
the de�nition and edition of both the syntactic and semantic aspects of the
language in development.

2.2.1 External DSL

Domain-speci�c languages are �rst and foremost programming languages. Any
and all GPL implementation approaches also work for DSL. Therefore, the �rst
approaches to detail when talking about their implementation should be those
commonly associated to GPL.

In the classical GPL implementation process, there are two main approaches
: compilation and interpretation. In compiled languages, the source program
written in a high-level language is fed into a program called a compiler. The
compiler reads and translates the input program from a high-level language into
a low-level language which can then be executed. In interpreted languages, a
program called the interpreter reads the input program and directly executes it.

Both of these approaches require �rst a parser. The parser reads the input
stream and generates an intermediate representation (IR), a series of operations
and operands generally in the form of a parse tree. Then, for the compiler or
interpreter to make use of that data, we need to turn that IR into a tree data
structure, called an Abstract Syntax Tree (AST). By visiting it, the compiler
generates the corresponding low-level code, and the interpreter executes the
corresponding actions [10]. There exist a variety of parser generators, tools
designed to o�er the language developer a fully-functioning parser, simply based
on a grammar de�nition. One of the most commonly used parser generators is
ANTLR2.

This approach, when applied to DSL, gives what is called an external DSL,
a DSL that is not dependant on any base language. The main advantages in
building an external DSL are, �rstly, the total absence of constraints regarding
syntax, primitives and other aspects of the language that could be restricted if
it was embedded within a base language instead. Secondly, this approach o�ers
the ability to do error detection and static analysis at domain level [6].

Both compilers and interpreters are di�cult programs to build and maintain,

2https://www.antlr.org/

11

requiring a great deal of technical knowledge, skill, time and e�ort to achieve.
This drives the cost of these approaches quite high, which, when applied to DSL,
often makes the potential bene�ts of having a specialised solution too small to
justify the cost, even with the advantages it presents [5].

2.2.2 Internal DSL

Implementing a DSL from scratch is costly and requires a lot e�ort. An alterna-
tive to that option is to implement a DSL by extending a pre-existing language.
DSL implemented this way are known as internal languages, and the language
they extend is known as the base language. Several approaches to internal DSL
exist, di�ering from each other in the way the base language's implementation
is reused. The main advantage of the following approaches is their ability to
make use of the features provided by the base language [6] :

Preprocessing : This approach relies on a preprocessor to translate the DSL
constructs into base language constructs. This means that the static analysis
is entirely performed at the level of the base language, which severely decreases
the quality of the error messages who can only be expressed with base language
concepts. However, this approach is very easy [11].

Embedding : Existing mechanisms in the base language are used to build
a library of domain-speci�c operations [6]. The implementation of the base
language's compiler or interpreter is reused as is. This approach can severely
limit the DSL notation in order to �t the base language.

Extensible compiler/interpreter : The base language's compiler/interpreter
is extended to support DSL constructs. This approach supports better type
checking and optimization than the previous two, while requiring less e�ort
than building a compiler or interpreter from scratch, but it is also very hard to
carry out.

Commercial O�-The-Shelf : An existing tool or solution is applied directly
to a speci�c domain, for example XML-based DSL. This approach can be fea-
sible for particular domain problems, like, in the case of XML, processing and
querying documents.

2.2.3 Language Workbenches

Language workbenches are IDE made speci�cally for DSL developers. In prac-
tice, they facilitate the implementation and maintenance of DSL with high-level
tools. Some even apply domain engineering to language development, like Jet-
brains MPS3, which provides high-level DSL designed for language development.

A language workbench must support notation, semantics and an editor for
the language in development. In [12], the authors sum up language workbenches
components in a complete feature model. Each main feature is subdivided in
a variety of sub-features, and the authors provide a complete description of
each, as well as a graph comparing language workbenches and their supported
features.

3https://www.jetbrains.com/mps/

12

Existing language workbenches are described around the 4 following aspects,
as mentioned in [5]. Table 2.1 provides a comparison of several language work-
benches based on the �rst three of these aspects.

Language structure aspect.

The structure of the language in development serves to represent the domain
concepts and their relations. There are two ways in which a language workbench
lets a developer de�ne the language structure : the grammar-driven approach
and the model-driven approach.

The grammar-driven approach is based on a grammar de�nition, in the form
of a Context Free Grammar (CFG). It describes the concrete syntax of the lan-
guage and can be de�ned using meta-languages like BNF4, SDF5, or a custom-
built DSL.

The model-driven approach utilizes meta-modelling for de�ning the language
structure. In this scenario, a program is a model conforming to the meta-model
designed by the developer, which de�nes the abstract syntax of the language.
The concrete syntax is determined by a projection, done by the editor. This
approach is simpler than the grammar-driven approach because the language
developer only de�nes a semantic model.

Language editor aspect.

The language workbench allows the developer to de�ne how the user sees
and edits the programs. The editor should also support other standard features,
like highlighting, error checking and code completion. There are two main
approaches to program editing : parser-based and projectional editing.

The parser-based approach relies on the use of a parser to generate the AST
from a text stream. Users interact with the concrete syntax. This approach
is the main approach used by grammar-driven workbenches. The parser is
generated from the grammar de�nition, in the same way a parser generator
would. In most cases, parser-based workbenches only support textual notation.

Projectional editing uses the abstract representation and allows the user to
edit the AST directly, without parsing. The projection generates a visual repre-
sentation directly from the AST, which allows any type of notation to be used,
as needed. This approach is used by model-driven workbenches.

Language semantics aspect.

This aspect relates to how the language developer de�nes how the programs
are executed. There are two ways to approach this : translational semantics
and interpretive semantics.

In translational semantics, the language is translated into another language,
usually a GPL. This can be performed either via model transformation (model-
to-model) or code generation (model-to-text). The former consists in building
the target AST while traversing the source AST, and the latter in translating
the source AST into the corresponding target language code directly. The main

4Backus-Naur Form
5Syntax De�nition Formalism

13

advantage of model transformation is to support bidirectional mapping between
the source and target AST.

Workbenches using interpretive semantics let the developer de�ne semantic
actions, to be executed while traversing the AST.

Language composability aspect.

DSL are built to express concepts of a single domain, while the problem to
be solved by the language developer might be expressed over several domains.
Language composability is the way several DSL can be composed with each
other. Language composition is described in detail in [13]. The authors identify
four types of language composition : language extension, language uni�cation,
self-extension and extension composition.

A language extension is essentially a language fragment added over a base
language. The extension is dependent on the base language, and makes no
sense by itself. This often implies modifying the base language implementation.
A language-development system is said to support language extension if the
implementation of the base language can be reused unchanged to implement a
language extension.

Language uni�cation of two independent languages means a bidirectional
composition, where elements of each language are free to interact with elements
of the other. It is hard to do in practice, requiring that parts of the languages
be equalized. Often, the uni�cation of the language implementations has to
be done by hand. A language-development system is said to support language
uni�cation of two language if the implementation of both languages can be
reused unchanged by adding glue code only.

Self-extension re�ects the cases where a language is extended by embedding
a DSL into it with a base language program. A language-development system
is said to support self-extension if the language can be extended by programs
of the language itself while reusing the language implementation unchanged.

Extension composition re�ects the ability of a language-development system
to support the composition of language extensions of a base language, that is,
if the extensions can work together. Systems that support language uni�ca-
tion also support uni�cation of their extensions. In systems that support only
language extension, or self-extension, there are three cases : no support for
extension composition, support for incremental extension (where an extended
language can in turn be extended, and so on), and support for extension uni�-
cation (where two extensions can be uni�ed by adding glue code). In addition,
systems that support self-extension support another form of extension compo-
sition : self-application, where a host language extension can be used in the
implementation of another extension.

In parser-based workbenches, composability is supported by merging the
grammars of the languages. In projectional workbenches, language composition
is supported by integration of the abstract representations.

14

Model-driven structure Grammar driven structure
Projectional editor Parser-based editor

MPS Màs MetaEdit+ WholePlatform Xtext SugarJ Ens	o Spoofax Rascal

Supported
notations

textual 3 3 3 3 3 3 3 3
tabular 3 3 3 3
symbolic 3 3 3
graphical 3 3 3

Supported
semantics

model-to-model 3 3 3 3 3 3 3
model-to-text 3 3 3 3 3 3 3 3
interpretive 3 3 3 3 3 3 3

Table 2.1: Various language workbenches supported notations and semantics

2.3 Projectional Editing

Projectional editing allows users to directly edit the AST of the program via a
projection - a rendering of the AST using projection rules. This approach to
program editing allows the use of arbitrary notations, as well as graphical and
textual notations, sometimes all at once.

The suitability of a language for its target audience is guided by many cri-
teria, but among them proper notation is especially important. Another one
of those criteria is composability. Global-purpose languages generally use ei-
ther textual or graphical notation, yet many real-world languages require a
mix of graphical, textual, tabular and symbolic notations. Projectional editing
supports this [14]. Moreover, projection-based language systems support com-
posability more easily since it is based on the integration between the abstract
representations instead of the grammar rules [5].

2.3.1 Usability of Projectional Editors

Despite their advantages, projectional editors haven't seen much adoption in
practice. For projectional editors that use mostly textual notation, users tend
to expect the editor to behave in the same way a parser-based editor would.
This is rarely the case, and users often �nd themselves compelled to know
and understand the structure of the AST they're editing. Projectional editors
also make version control system (VCS) integration more complicated, since
the program isn't stored as text, but rather as a serialized AST [14]. These
problems cause poor editor usability for experienced developers and complicates
the classical VCS-centred work�ow.

In [14], the authors hypothesize that these drawbacks are the main reason
behind the low adoption rate of projectional editors. They conduct a study in
which they evaluate how well MPS performs against traditional parser-based
editors in 3 aspects : e�ciently entering code, selecting and modifying code,
and infrastructure integration.

For e�ciently entering code, their results indicate that, after a learning
phase, MPS lets developers work e�ciently and productively. They also con-
cluded that, except for supporting comments, MPS addresses the issue of se-
lecting and modifying code quite well. Finally, they use the mbeddr6 project
as a professional experience to evaluate the e�ectiveness of MPS infrastructure-

6http://mbeddr.com/

15

integration support. They conclude that MPS supports infrastructure integra-
tion well enough to be usable in practice.

2.3.2 E�ciency of Projectional Editors

The e�ciency of projectional editing has been compared to that of parser-based
editing in [15]. The authors also compared the e�ciency of experienced users of
projectional editing to beginners, and tried to identify the commonalities and
di�erences between projectional and parser-based editors.

They �rst conducted a controlled experiment with students who had no
experience with projectional editing and compared their e�ciencies with the
control group. They found that editing e�ciency was quickly achievable with
a projectional editor. With a short 45-minute training, students were able to
achieve e�ciency comparable to the ones using the parser-based editor.

The second experiment compared the e�ciency of the inexperienced students
with that of professionals with experience using projectional editors. Their
results show that, for basic editing operations, more experience with projectional
editing did not lead to signi�cantly better e�ciency. However, in advanced
editing, more experience with projectional editors lead to signi�cantly better
e�ciency than the inexperienced users, and even the parser-based editor users.

For the last question, they conducted a �ne-grained analysis of editing op-
erations and errors. They found that writing code was not negatively impacted
by projectional editing, but relied on increased use of code completion. Select-
ing code required more experience and attention. Projectional editing showed
a trade-o� between fewer mistakes and an increased complexity of editing op-
erations, yet experience reduced such problems, leading to fewer errors. Pro-
jectional editing fostered a shift from copy-paste strategies towards operations
that work well on the AST, which requires an increased understanding of the
underlying AST.

Conclusion

In this chapter we presented a state-of-the-art of the relevant concepts used
for the rest of this thesis. We gave a presentation of the general context in
which this thesis takes place - the software factory - and explained the relevant
concepts we will be using in the rest of our thesis. We also explained the
available approaches for implementing a DSL, and compared their advantages
and drawbacks. Finally, we discussed the question of projectional editing when
compared to the traditional parser-based approach. In the next chapter, we will
be presenting the languages we implemented editors for.

16

Chapter 3

Case Study : The

�Methodology� Collection Of

Languages

The objective of the present thesis is to implement an editing environment for
several given DSL for a software factory. In this chapter, we will present the
considered software factory DSL, their abstract and concrete syntaxes and the
ways in which these languages are composed together. The �gures and listings
presented in this chapter are all taken from [2].

3.1 Overview

The DSL editor we have implemented in this thesis supports a collection of lan-
guages de�ned in [2]. This collection of languages is a proposal for a methodolog-
ical framework used to describe the behaviour of a software factory. Programs
written in these languages are to be used to orchestrate the assembly of software
product assets into the �nished product. The domain expressed by these DSL is
software engineering, speci�cally within the context of a feature-oriented SPL.

The methodology will be applied to a feature model, using a feature mod-
elling language called FeatSimple. This language is a simpli�ed version of the
FeatAll language described in [2]. The central aim of the methodology is to
describe a strategy with which to implement the features in the model. To
that end, it uses the Strategy language, which describes software product line
implementation strategies, and the Tactic language, which describes speci�c im-
plementation tactics. To describe the orchestration of tactics within a strategy,
the Recipe language is used. In the context of this thesis, the Recipe language is
completely enclosed within the Strategy language. As such, both are considered
together, as one.

The meta-model on Figure 3.1 features the concepts of the 3 languages of
the methodology framework, and their relations. The concepts of each language

17

Figure 3.1: The Complete Methodology Meta-Model

18

Figure 3.2: FeatSimple Language Meta-Model

and their relations will be explained in the corresponding sections, while the
relations between the languages will be explained in the composition section.

These languages use a domain-speci�c primitive type in the form of an enu-
meration, called variantTime. A variant time is the time at which the variant
(i.e. the feature) is to be introduced in the system. The values of this enumer-
ation are therefore directly taken from the software life cycle lexicon. These
values are speci�ed on Figure 3.1.

3.2 The FeatSimple Language

The FeatSimple language is a simpli�ed version of a feature modelling language
called FeatAll1. A program written in this language aims to represent a feature
model and follows the meta-model described in Figure 3.1.

A feature model is composed of features organised in a tree structure, orig-
inating from a single feature called the root. The FeatSimple language distin-
guishes between simple and complex, the former being restricted to the leaves
of the tree. These are the elementary, indivisible features. Complex features act
as the nodes of the tree. They can be made up of several sub-features organised
in groups. Groups correspond to a variation point, and the features in these
groups to variants. The feature model expressed by this language is interpreted
by the methodology as the common thread to the production of any particular
system.

1[2] page 143

19

3.2.1 Abstract Syntax

The root node of the FeatSimple abstract syntax tree is the FeatureModel node,
which is an instance of a feature model. A feature designates a simple con�g-
urable unit of the system or a composed functionality. All the features are rei�ed
from the most abstract feature known as the Root and situated at the highest
level of the tree. A feature model must always have exactly one root. Simple
Features, as opposed to Complex Features, are the leaves of the AST, depicting
the low-level features that cannot be further subdivided. Complex features can
be divided in Groups of features. Note however that complex features don't
have to be subdivided.

A feature model has a name attribute, and so do all features and groups of
features. Features and groups also have a collection of between 0 and 2 variant
times. Groups also have an isClosed boolean attribute. If set to false, this
attributes allows the group to be extended with more features in the future.
On top of that, groups have multiplicity attributes, corresponding to how many
features have to be selected from the group at minimum and maximum. Finally,
multiplicity attributes also exist for the parent-children relation going from a
complex feature to groups. These attributes express how many times the group
can be replicated within the parent feature, at minimum and maximum.

3.2.2 Concrete Syntax

A FeatSimple program starts by declaring a feature model (FeatureModel),
followed by a single feature denoting the root of the model. Those are declared
using the Feature keyword, while bindingTime is used to de�ne their variant
times. Complex features also list a series of feature groups (Group). When
declaring a group, a multiplicity is written in brackets before Group and an-
other in parentheses after the group's name. The former corresponds to the
feature-to-group split-in relation multiplicity attribute and the latter the the
group's own multiplicity. In addition to variant times, groups must also declare
whether they are open or closed (isClosed), and declare the features that make
up the group.

FeatureModel "Tour i s t "
{

Feature "Appl i ca t ion "
bindingTime = Compile . . Runtime . launch

{
one Group " f u n c t i o n a l i t y " any
{

Feature " Po in t sO f In t e r e s t "
Feature " Pos i t i onn ing "
Feature "Quizz"
Feature "ePayment"

bindingTime = Compile
}

}
}

20

Listing 3.1: FeatSimple Program Example

As shown in Listing 3.1, speci�c multiplicities can also be declared using
certain keywords. For the split relation, those are : one for [1-1], many for [0-n]
and optional for [0-1]. For the feature group, those are : xor for (1-1), or for
(1-n), any for (0-n) and all for (n-n).

3.3 The Tactic Language

The Tactic language is used to represent a generic tactic for implementing a
feature at given variant times. Those generic tactics are called tactic types.
A tactic type describes a way to implement a feature. It is described by a
procedure, with typed parameters. The types of these parameters are called
asset types and are described within the tactic program. Asset types are of a
basic type and can be complemented by literals or a constraint. A procedure
can be implemented by an executable script or code asset referenced in the
program, in which case it is considered automatic. Otherwise, a procedure can
also be implemented manually. In that case, it will reference a human-readable
implementation guide that can be expressed as a text �le, pdf, schema, or
sometimes even nothing at all.

3.3.1 Abstract Syntax

The abstract syntax of the Tactic language is given by the meta-model shown
on Figure 3.3. The main component of the AST is the TacticType node which
is de�ned as a collection of Procedures. The Parameters of the procedure are
all linked to an AssetType. Procedures can be further decomposed as child
procedures.

Tactic types are of a certain type, which corresponds to a variability imple-
mentation technique (e.g. Aspect Oriented Programming). Just as the features
in FeatSimple, they too correspond to 0, 1 or 2 variant types. Tactic types are
named, and so are procedures, parameters and asset types. These latter have a
type too, which is expressed as an enumeration whose values can be found on
Figure 3.1. Additionally, asset types can be complemented by a list of literals, or
a constraint. Procedures can point to an implementation, although that doesn't
necessarily mean executable code (e.g. a written procedure, list of instructions,
a pdf, etc...). The isAutomatic boolean attribute tells whether or not the pro-
cedure can be executed automatically, by a computer. Procedures also have
types, which in�uence the way their decomposition into child procedures works.
The types are as follows :

� sequence : the child procedures must be executed in sequence.

� parallel : the child procedures can be executed in parallel.

� equivalent : the child procedures are all equivalent and represent di�erent
alternatives. Only one is executed.

21

Figure 3.3: Tactic Language Meta-Model

22

� optional : the procedure does not have to be executed.

� loop : the procedure can be repeated, but in sequence.

� parloop : the procedure can be repeated, in parallel if necessary.

� simple : the procedure is executed exactly once.

Only the �rst three types of procedures can be rei�ed into child procedures.

3.3.2 Concrete Syntax

A Tactic program �rst begins by declaring the asset types :

d e c l a r e new AssetType Fi leText Filename ;
d e c l a r e new AssetType How St r ing { " be f o r e " , " a f t e r " } ;
d e c l a r e new AssetType F i l eZ ip Filename (* . z ip ; * . 7 z ip) ;

Listing 3.2: AssetType Declarations Example

The declaration begins with the keywords declare new AssetType, fol-
lowed by the name and the type of the asset type and ending with a semicolon.
Optionally, one can declare a constraint between parentheses or add literals be-
tween braces. The developer can declare any number of new asset types at the
beginning of a program. That is followed by declaring a single tactic type :

TacticType ByInser t ion
type = "code mod i f i c a t i on " ;
bindingTime = compileTime ;
{ procedure p a r a l l e l I n s e r t

{
loop procedure A l t e rF i l e (in : F i l eText ;

how : How;
where : S t r ing ;
what : Fi l eText) ;

procedure AppendProject (where : Path ; what : F i l eZ ip) ;
}

}

Listing 3.3: Complete Tactic Program Example

The tactic type is declared with the TacticType keyword followed by its
name. The keywords type and bindingTime are used to set the type and
variant times, respectively. Then, a list of procedures is declared with the
keyword procedure, preceded by the procedure type and followed by the name
and a list of parameters. These are declared as a name, a colon, and the name
of an asset type previously declared. If the procedure type allows it, child
procedures can be declared too, in brackets and separated by semicolons.

23

3.4 The Strategy Language

The Strategy language is used to model a strategy : the way in which to use
tactics to implement the features on the feature model. A strategy is therefore
composed of a set of choices concerning the tactic (concrete or abstract) used
to implement a variant or variation point. The di�erence between concrete and
abstract tactics lies in the valuation of the arguments of the procedure they call.
A concrete tactic must declare a value for each argument, where an abstract one
can set arguments to a special delayed value. This means that other tactics can
reference an abstract tactic and pass values to delayed arguments.

A Strategy program also de�nes a recipe to be followed in order to carry out
the strategy. The recipe utilises the tactics de�ned by the strategy to create an
organised tree-structure.

3.4.1 Abstract Syntax

The abstract syntax of the Strategy language is described by the meta-model
shown in Figure 3.4. The main component of the Strategy AST is the Strategy
concept which will be de�ned by one or several Tactics given by the Choices. A
concrete tactic can pass value to its parameters, while an abstract one cannot
and must therefore delay their valuation. Besides, it can reference other tactics,
and be implemented by a Procedure Call. The latter can have a list of Core
Assets, which correspond to the called procedure's parameters. A procedure
call can also call child procedures calls. The strategy is also de�ned by what
it starts with : an Applied Tactic. Those are the application of a previously
de�ned tactic, to which they are linked, and can be composed of other applied
tactics.

The strategy, tactics, procedure calls and core assets have a name attribute.
The choices all have a rationale attribute, to justify that choice. Tactics also
have a list of values for their procedure call arguments, which can be either
delayed or set to a value (only delayed in the case of an abstract tactic). The
core assets also have a value which can be delayed. The list of values in a tactic
must match the values of its procedure call core assets. Applied tactics are of a
certain procedure type. The possible procedure types are the same as Tactic's
procedure types, only limited to sequence, parallel and simple.

3.4.2 Concrete Syntax

A strategy is declared using the Strategy keyword, followed by its name and
the name of the feature model the strategy is being written for, using the for
FeatureModel keywords, as shown on Listing 3.4.

The developer must then declare the list of tactic choices that make up the
strategy, between braces. Each choice construct speci�es �rst its name and
then which simple feature or feature group it implements using the keyword
implements. Thereafter, the developer speci�es the tactic, which can be either
abstract or concrete. This is carried out using the keywords with (abstract)

24

Figure 3.4: Strategy Language Meta-Model
25

TacticType2 followed by its name, and �nally the rationale behind that choice
(because). In braces, the developer will then declare the procedure calls using
the keyword call, followed by the name of the procedure, previously declared in
a Tactic program. Following that come the arguments and their values. This
process is then repeated for the child procedures, if needed.

Strategy " d e f au l t " f o r FeatureModel "Tour i s t "
{

funct : implements Group Appl i ca t ion . f u n c t i o n a l i t y
with abs t r a c t TacticType "ByInser t ion "
because "Resource f i l e s and Main . java must be patched

to adapt the i n t e r f a c e and the behaviour .
The ad=hoc code must be added to the p r o j e c t . "

{
c a l l A l t e rF i l e (in= " s r c /Main . java " ,

how ="a f t e r " ,
where = "// i n s e r t f e a tu r e here " ,
what = $whatJava) ;

c a l l AppendProject (where= " s r c /" ,
what= $whatProject) ;

}
}
Recipe {

s imple {
funct

}
}

Listing 3.4: Strategy Program Example

The program ends on a "recipe" section (Recipe) where the applied tactic
is declared by writing its type and the name of the tactic it corresponds to (de-
clared in the Strategy program), as well as its child applied tactics if necessary.

3.5 Composition

At the centre of the Methodology is the Strategy language, whose programs are
written for a feature model, and using tactic types. Thus, a strategy imports a
single feature model, as well as several tactic types and is, as such, dependent
on both languages to be able to use their concepts. The other two languages
however don't need to be able to manipulate Strategy constructs. Since the
dependencies only go one way, language uni�cation is not necessary.

Two relations between strategy and feature model concepts exist : one where
the strategy node references a feature model, and one where a choice node
references either a group of features or a simple feature. With tactic types, there
are three : one for the tactic to reference a tactic type, one for the procedure
call to reference a procedure, and one where a core asset references a parameter.

2The abstract keyword here is optional, and by its presence de�nes the tactic as abstract.

26

Several meaningful constraints have to be applied to certain strategy node
attributes to guarantee the model makes sense.

� The features and feature groups referenced in a choice must be declared
in the feature model referenced in the strategy.

� The parameters referenced by a core asset must correspond to one of the
parameters that belong to the procedure called by the core asset's parent
procedure call.

� The procedure referenced in a procedure call must be declared in the tactic
type referenced by the parent tactic node.

Conclusion

In this chapter we have presented the syntactic rules of the three software factory
languages we will be developing an editor for. We have given an overview of their
abstract syntaxes by explaining their meta-models. Several examples were given
for the concrete syntaxes, supported by explanations. Finally, we discussed the
way in which these languages interact, and listed the constraints it implies on
the syntax. In the next chapter, we will detail the implementation of this editor,
as well as the various technology-related choices we made.

27

Chapter 4

Methods

In this chapter we will go over the implementation of the editing environment for
the languages we introduced in the previous chapter. First, we will explain what
approach and technology were chosen to carry it out, along with the reasons
behind this choice. Then, we will detail the changes and adjustments that were
made to the original syntactic rules to �t the technology limitations. We will
conclude this chapter by explaining the projection of the AST.

4.1 Technology Used

We have made the choice to implement this editing environment with Jetbrains
MPS. This choice was motivated by a series of factors which will all be de-
tailed in the following subsections. The �rst three arguments are made from
the language-developer point of view, while the remaining two are set from the
end-user point of view. From the start, we made the choice to use a language
workbench. This was an easy choice to make, as it o�ered the best option for
minimizing both the development cost and e�ort, while not limiting the ex-
pressibility of the syntax. MPS presented itself as the state-of-the-art language
workbench in that regard.

A capture of the entire MPS window is shown on Figure 4.1. It was taken
from the MPS project editor, but the generated Methodology DSL editor is
almost completely identical. The MPS project �les of the implementation can
be found here : https://github.com/bmullers/MethodologyMPS.

4.1.1 Documentation and Support

One of the deciding factors behind this choice was centred around the ease of
learning the technology. Realistically, this is still one of the main reasons behind
the slow adoption of DSL in software development. Besides, since developers
are considered as important stakeholders in the software development life cycle,
they will generally oppose the use of complicated and poorly documented tech-
nologies. To this regard, MPS performs very well, providing extensive online

28

https://github.com/bmullers/MethodologyMPS

Figure 4.1: Screen Capture of the MPS Editor

29

documentation in the form of user guides, tutorials, example projects, videos and
an active technical support forum. MPS is also an active open source project,
with its own bug tracking and reporting tool, as well as all the community
features proposed by Github1.

4.1.2 Maintenance and Version Control

While the objective of this thesis is to implement only the editor aspect of the
DSL presented in the last chapter, we thought it wise to take into account the
potential future incorporation of the semantics aspect as well. Therefore, it is
important to use a technology that facilitates maintenance and version control.
We have already discussed how MPS supports version control well enough to be
usable in practice in section 2.3.1.

MPS utilises a series of DSL, whose respective domains all correspond to
some aspect of DSL engineering. All these DSL depend on the Structure lan-
guage, with which the developer de�nes the AST. Any change in the editor
aspect will not impact the semantic aspect, and vice versa. Changes in the AST
speci�cation however, will a�ect both, but since all the other aspects follow
directly the structure of the AST, changes to be applied to other aspects can
be directly derived from the changes made to the AST. Although this does in
no way provide immunity to breaking changes, we believe this is e�ective in
limiting their frequency and impact.

4.1.3 Composability

The composition of the DSL we implemented is of great importance, as the
Strategy language cannot work independently and neither Tactic nor FeatSimple
provide meaningful information by themselves, in the context of the software
factory methodology. As such, choosing a technology that would facilitate the
proper composition of these languages was worth the investment.

The composability aspect is a special case in MPS. MPS is built around
the idea of modular languages : languages that use a relatively small general-
purpose core and can be extended with smaller domain-speci�c extensions as
need be. These smaller extensions, called language modules, can be imported
and used in a program as needed. Modules have clearly de�ned dependencies
and can reference elements from other modules. Code written in one language
module can be embedded into code written in another. This provides MPS with
language composition very similar to object-oriented programming, supporting
concepts such as inheritance, interfaces, base language generator overriding and
independent language embedding [16]. Such a composability vastly facilitates
the composition of the languages.

It is notable that having such a composability also a�ects the two previous
arguments. Indeed, the language composition is done so intuitively that no
extensive documentation or training on that subject has to be followed, which in
turn facilitates maintenance over long periods of time with di�erent developers
and teams of varying skills and expertise levels.

1https://github.com/

30

4.1.4 Auto-completion

The �rst and most important end-user-side feature that we identi�ed was auto-
completion. This feature is a staple of IDE and has a signi�cant impact on
productivity. We've also discussed earlier in section 2.3.2 that projectional edi-
tion particularly relied on code completion. Hence, this makes it an essential
feature for a projection-based language workbench.

MPS does provide code completion, albeit not in the same way most parser-
based editors do. The auto-completion menu does not pop up by itself as the
user writes a word, but rather requires the user to use a combination of keys to
open the menu. That menu, however, does not require any text to be entered
beforehand on which to base the suggestions. In fact, the projectional approach
to edition allows the completion menu to provide context-speci�c suggestions,
which can be further reduced by ways of constraints such as scope limitations.
This essentially means a user will be using code completion any time it can
be used, and as such the key combination is not as negatively impacting as it
seems.

4.1.5 IDE Generation

Over the years, IDE have become the gold standard of software development
tools. There are IDE for every GPL there is, and Jetbrains provides some of the
most popular of them, like IntelliJ2, PyCharm3 or CLion4. All of the Jetbrains
IDE are built on the same engine, and MPS is no di�erent. MPS does, however,
provide the option of generating your own IDE, built speci�cally for the chosen
language modules. Although having a completely dedicated IDE is already a
strong argument in itself, it comes with the added bene�t of being made with
an engine that most developers are already familiar with, and for which they
can import their preferences.

In our use-case, the end-user will be asked to solve internal variability, using
DSL tied to software engineering concepts. Hence, we can convene that the
end-user will be trained in software engineering and development. This makes
providing a dedicated IDE a very strong argument for MPS, since the end user
will most likely expect to use such a tool.

4.2 Changes to the AST Meta-Models

Several changes had to be applied to the meta-models presented in the previous
chapter. These changes stem from the fact that they make use of constructs
that aren't present in the MPS Structure language. The use of projectional
edition, however, allowed us to limit the e�ects of these changes in the concrete
syntax.

2https://www.jetbrains.com/idea/
3https://www.jetbrains.com/pycharm/
4https://www.jetbrains.com/clion/

31

1

*

1

*

�root�
FeatureModel

RootFeature

�interface�
INamedConcept

name : string

Feature

bindingTime1 : variantTime
bindingTime2 : variantTime

ComplexFeature SimpleFeature

Split

min : int
max : int

Group

isClosed : boolean
bindingTime1 : variantTime
bindingTime2 : variantTime
min : int
max : int

Figure 4.2: The FeatSimple Language Structure

4.2.1 Changes in FeatSimple

There are three signi�cant changes performed in FeatSimple. First, all the
attributes expressing a name have been removed, and the concepts of which they
were an attribute implement the MPS core language INamedConcept interface
instead. This change has also been carried out on the other two languages.
The intent was to allow the MPS editor to display the value given to the name
attribute instead of the concept's name in the auto-completion menu.

The second change is the addition of the Split concept, which didn't exist in
the original meta-model, but was rather expressed as the split-in relation. We
had to add it because MPS does not support adding attributes to relations. The
original multiplicity of the relation has been applied to the ComplexFeature-to-
Split relation, and the Split-to-Group relation has been set to a 1-1 multiplicity,
therefore keeping the original meaning.

Finally, the array of variant times has been replaced by two attributes in-
stead. This was changed primarily because MPS does not support arrays of
attributes, but also because the parent-child relation could not have expressed
that either, due to the relation multiplicities not permitting 0-2. The same
reasoning has been applied to the other occurrences of variant time array at-
tributes in the other languages. The updated meta-model, following the rules
of the MPS Structure language, can be seen in its entirety on Figure 4.2.

32

�implements� �implements�

* 0..1

*

1..*

* �references�

Parameter

�imported�
Regexp

�interface�
INamedConcept

name : string

�root�
TacticType

type : type
bindingTime1 : variantTime
bindingTime2 : variantTime

Procedure

type : procType
isAutomatic : boolean
implementation : string

AssetType

type : assetType

Literal

literal : string

Figure 4.3: The Tactic Language Structure

4.2.2 Changes in Tactic

The only changes applied to the Tactic language, apart from the changes made
to names and variant times, concern the AssetType concept. We've replaced the
array of literals with a one-to-many parent-child relation with a new concept,
called Literal, only comprised of a literal argument. For the sake of brevity, we
also limited the possible constraints to regular expressions only, which we added
by importing a concept from the MPS Regex language and attaching it to the
AssetType concept with an optional parent-child relation. The relation between
the Parameter concept and AssetType has been set to a reference relation, which
is the only way to express an horizontal relation in the AST in the Structure
language. The modi�cations applied to the meta-model are illustrated in Figure
4.3.

4.2.3 Changes in Strategy

More substantial changes were carried out in Strategy. In order to simplify
the meta-model, we removed the original Choice concept and instead placed
its attributes and relations directly in AbstractTactic. This isn't problematic,
since both concepts were related through a one-one correspondence, and as such

33

made no semantic di�erence to have two distinct concepts.

As mentioned for the previous languages, array attributes are systematically
replaced by a new concept related to the original concept with a one-to-many
parent-child relation. This applies in this case of AbstractTactic's valuation
attribute, replaced by the new Valuation concept.

In several instances, a single reference or relation could apply to either one
of two di�erent concepts. That is the case in AbstractTactic, which can either
reference a FeatSimple feature or group5, whose valuation can be either delayed
or a value, and who can either correspond to a Tactic language TacticType or
an AbstractTactic. MPS does not support xor relations, but by making use
of the MPS modular language architecture, we replaced those with interfaces
implemented by two di�erent concepts, corresponding to each option.

These changes are visible on the �nal MPS Structure meta-model of the
Strategy language, on Figure 4.4.

4.3 Projection

Although several refactors were applied to the meta-models of the three con-
sidered languages, the projections were made to accurately respect the concrete
syntaxes presented in the previous chapter. Actually, the concrete syntax was
originally designed as a part of a free text, parser-based editing environment.
However, the MPS Editor language supports textual notation and its features
allowed us to translate that concrete syntax into projection rules without en-
countering major obstacles.

The projection is made to resemble conventional programming parser-based
editors. Hence, special attention has been paid to syntactic highlighting, which
in the context of the projectional editor takes the form of text colouration. This
has been achieved using a style sheet, a particular feature of the Editor language.
Since each cell of the editor either has to declare its style individually, or inherit
its style from its parent cell, using a style sheet allowed us to easily apply
colouration, and sometimes underlining as well. These styles were allocated
to keywords, strings, references, boolean values, enumeration values, integers
and other more speci�c aspects of the editor. This gave us the added bene�t of
facilitating changes in the color palette since everything is declared in one place.

The MPS editor is built in the Jetbrains IDE engine, which like any other
IDE engine uses sub-windows to display the important information. One of
those is the object inspector window, which in the case of MPS is used to edit
hidden values that aren't displayed on the code window. The interesting part
is that the generated editor also supports the use of that window, which the
Editor language allows us to utilize as we please. In our use-case, there aren't
any hidden parameters to �ne tune using the inspector. However, this allowed
us to provide a solution to one of the common problems of editing a program
with a projectional editor : the programmer has to know and understand the
structure of the AST. In our editor, the inspector window has been used to
display documentation about the current AST node. On it is featured a brief

5This was originally supposed to be in the Choice concept.

34

�references� �references��references�

�references�

�references�

�references�

�references�

11

*

*

*

1

*

*

*

*

�imported�
Feature

�imported�
Group

FChoice GChoice

�interface�
ChoiceRef

�imported�
Parameter

CoreAsset
�imported�
Procedure

�interface�
Valuation

CallProcedure

ConcreteTactic

�imported�
FeatureModel

TacticRef TacticTypeRef

�interface�
Ref

�root�
Strategy

AppliedTactic

�interface�
INamedConcept

name : string

AbstractTactic

rationale : string

Delayed

value : MetaVariable

Value

value : string

�imported�
TacticType

Figure 4.4: The Strategy Language Structure

35

description of the concept, its attributes and children. This window can be
opened at any time without needing to close the editor window. The concept
documentation it displays depends on the position of the cursor in the editor
window. This was added as a test feature, and is currently only available for
the Tactic language. We believe this will help inexperienced users learn our
languages faster, while not negatively impacting the more experienced users.

4.3.1 The FeatSimple Projection

The following listing shows the editor on an empty FeatSimple program. On this
example, we can see the �rst bit of syntax highlighting we added : the keywords
are in orange. By default, any non-editable text in MPS is bold, and empty text
cells display either a red or grey message depending on if they're required or
can be left empty, respectively. Empty sections with one pair of angle brackets
correspond to a single item, while those with two pairs represent an empty list.
On this example, we can observe the structure of an invalid FeatSimple AST
where both the Feature Model and root Feature have no name, the root feature
has no binding time and isn't split in groups of sub-features. If we were to name
the model and feature, the program would be valid.

Feature Model <no name>
{
Feature <no name>
bindingTime = <binding time>

{
� ... �

}
}

Listing 4.1: FeatSimple Empty Program

An example of a valid, more complex FeatSimple program can be found in
Listing 4.2. We can observe more colors used for highlighting in this example,
denoting between integers, booleans and values picked from an enumeration.
This example also shows how the projection has been designed with clear in-
dentation in mind. The feature model and root feature have been named6 and
the root feature has been split into two groups. Values have been passed to
the binding time attributes, which appear in the projection as a single variable,
in respect to the original concrete syntax. The features declared in the groups
shown in this example are simple features, which we can determine by the ab-
sence of an empty list of groups in brackets. The latter three, declared in the
second group, have been collapsed. The editors support the collapsing of many
of the language elements. When collapsed, the projection is reduced so they
�t in a single line, which allows the user to navigate the bigger programs more
easily.

6Note that the MPS INamedConcept interface allows any format of name. We chose to use
it for simplicity's sake but this can be easily adapted to �t the Java naming format by making
our concepts implement another interface, if the semantics implementation were to require it.

36

Feature Model CoffeeMachine
{
Feature Cof f ee Machine
bindingTime = compile <binding time>

{
[1=1] Group Power (1=2)

bindingTime = assembly . . compi le
isClosed = true

{
Feature Socket
bindingTime = assembly <binding time>

Feature Battery
bindingTime = <binding time>

}
[1=2] Group Brew (2=6)

bindingTime = runtime . i n i t . . runtime . run
isClosed = f a l s e

{
Feature Espresso
Feature Soup
Feature Long

}
}

}

Listing 4.2: FeatSimple Example Program

4.3.2 The Tactic Projection

Listing 4.3 shows an empty Tactic program. We can see the empty list of asset
types on top. The �rst empty procedure of the list of procedures is already
instantiated, since that list cannot be empty. The example also shows that
procedures are by default of the simple type, and set as not automatic. The
list of procedure parameters, located after the name of the procedure, is empty
by default. For the sake of respecting the original syntax, we have wrapped
all the string cells with quotation marks. The strings and quotation marks are
coloured green, and the grey empty text has been removed since the marks were
enough to signify an empty string cell to the user.

� ... �

TacticType <no name>
type = <no type> ;
bindingTime = <binding time> ;

{
procedure s imple <no name> � ... �
{
automatic = f a l s e ;

37

implementation = "" ;
}

}

Listing 4.3: Empty Tactic Program

We can �nd an example of a complete Tactic program on Listing 4.4. In
this example we see two asset types being declared, one with literals and the
other with a regular expression constraint. These are further referenced in the
procedures arguments. The references are coloured blue and underlined. Being
imported from another language, the colouration of the regular expressions is
as de�ned in the language's own editor.

declare new AssetType vote boolean <no constraint> { "yay" ,
"nay" } ;

declare new AssetType cha rac t e r s t r i n g (.) � ... � ;

TacticType Bas i cTact i c
type = MetaProgramming ;
bindingTime = l i n k . . assembly ;

{
procedure s imple emptyProc � ... �
{
automatic = f a l s e ;
implementation = "" ;

}
procedure sequence baseProc (c : character)
{
automatic = f a l s e ;
implementation = "~/procedures /BaseProcedure . txt " ;
{
procedure s imple sub1 (r e s u l t : vote)
{
automatic = true ;
implementation = " ./ subP1 . py" ;

}
procedure loop sub2 � ... �
{
automatic = true ;
implementation = "" ;

}
}

}
}

Listing 4.4: Example Of A Tactic Program

38

4.3.3 The Strategy Projection

An empty Strategy program can be found in Listing 4.5. We can clearly see the
division between Strategy and Recipe. What we notice immediately is also how
a strategy references a feature model immediately. Both strategy and recipe
clauses can be left empty while keeping the program valid.

Strategy <no name> for FeatureModel <no featureModel>
{

� ... �
}

Recipe {
� ... �

}

Listing 4.5: Empty Strategy Program

Listing 4.6 shows a valid Strategy program. In it, we can see the tactics ref-
erencing tactic types, and later procedures from that type and parameters from
that procedure. All these references are constrained by logical rules expressed
in the Constraint module. For instance, a strategy for a certain feature model
can only declare tactics that implement a feature or group from that speci�c
model. We could not, however, �nd a way to invalidate a program in which a
procedure call did not reference all the parameters of the procedure, or a way
to remove already referenced parameters from the auto-completion menu. In
fact, the constraints aspect of the Strategy language could be improved in many
aspects, but the editor is still usable in practice.

Strategy General for FeatureModel Co�eeMachine
{

Powerl ine : implements Socket
with abstract TacticType BasicTactic
because ""
{

ca l l baseProc (c = "A")
}
Cof f ee : implements Brew
with abstract TacticType BasicTactic
because " t h i s i s a r a t i o n a l e "
{

ca l l sub2 (� ... �)
}

}

Recipe {
s imple Powerline {

sequence Co�ee {
� ... �

}
}

39

}

Listing 4.6: Empty Strategy Program

Conclusion

In this chapter we described the way in which we undertook the implementation
of the editor for the languages described in the previous chapter. We �rst
explained our reasoning behind the choice of MPS as our technology of choice.
Then we explained and justi�ed the few refactors we applied to the original AST
meta-models. Finally, we took a look at the projections of some example AST
for each language, and commented those. In the next chapter we will evaluate
the editor, as well as its development process.

40

Chapter 5

Evaluation

This chapter is dedicated to show how well our implementation strategy per-
formed. Our analysis tackles, at �rst, the implementation process. Then, it
assesses the end product using some relevant evaluation criteria taken from the
literature.

5.1 The Implementation Process

As expected from using a language workbench, the suite of tools and DSL
o�ered by MPS reduced greatly the e�ort required to build the editors, compared
to implementing them from scratch. In fact, the editors were implemented
in little over a week by one developer. Learning the technology needs some
more time, since we have to get familiar with every MPS language, which also
required training in the projectional editing of those languages. MPS, however,
does provide enough documentation, tutorials and sample projects to e�ectively
mitigate that learning period. Overall, in the entire implementation process, we
encountered only one major error, caused by a bug when trying to generate the
IDE, which we resolved relatively quickly and without necessitating technical
assistance. Still, we did spend some time on the implementation of the reference
scopes, due to somewhat poor documentation of the Scope language.

All in all, we consider the implementation process to be relatively easy,
especially once reasonably experienced with the MPS environment. We did
however note the absence of support for comments in the code, which is likely
to be expected by any developer and can also negatively impact maintainability
by not allowing the developers to leave documentation and important messages
in the code. With that said, we consider it a minor inconvenience, especially
since, MPS being an active open-source project, this is still subject to a potential
future addition.

41

5.2 Criteria-Based Assessment

In [17], the authors describe a framework for assessing DSL qualitatively. This
framework is organised around a list of quality characteristics that concern ev-
ery aspect of a DSL. Although this framework is mostly angled towards DSL
design, we can identify the relevant ones for our use case (i.e. criteria impacted
by the implementation) : usability, reliability, maintainability, reusability and
integrability. Each can be further divided into more speci�c sub-characteristics,
not all of which necessarily relevant to our evaluation.

By assessing each of these characteristics and ranking them according to
their importance, we realise a qualitative assessment of our DSL implementation,
stating its strong and weak points. Considering the similarity of our languages
in their implementation, we assess these characteristics for all 3 DSL at once.

5.2.1 Usability

Usability is de�ned as the degree to which a DSL can be used by speci�ed users
to achieve speci�ed goals. Usability in [17] is mostly approached from a DSL
design and documentation point of view, but we recognise attractiveness as a
relevant sub-characteristic in the context of the implementation.

Attractiveness is de�ned as the DSL having symbols that are good-looking.
Although still mostly dependant on design, this is obviously impacted by the
notations supported by the approach used to implement the DSL. Considering
our typical end-user, we set the minimal level to be similar to common code
syntax and basic editor highlighting, which is what a programmer would expect.

In that regard, our DSL performs as expected, providing basic syntax high-
lighting, and utilizing common code edition concepts such as collapsing of ele-
ments and indentation. Hence, we mark it as satisfactory. Due to the limited
e�ect of implementation on overall usability, we judge it to be of relatively low
importance.

5.2.2 Reliability

The reliability of a DSL is the property of that DSL to aid producing reli-
able programs. This characteristic is observed through two sub-characteristics :
model checking and correctness. Model checking reduces error rates, while cor-
rectness prevents unexpected relations between language elements. We consider
this aspect to be very important, since this is one of the primary functions of
program editors, and depends on the implementation alone.

We assume our DSL to be performing well in model checking, thanks to
our use of projectional editing, which allows the user to directly edit the AST
and therefore not only detects but prevents any inconsistency in the AST. For
correctness, MPS let us declare constraints over the de�nition of the language
structure. These reduce the scope of the potential nodes to be referenced in
some places. For example, a strategy written for a speci�c feature model cannot
declare a tactic for a feature that is declared on another feature model. Still, as

42

mentioned earlier in section 4.3.3, these constraints are still incomplete. Thus
we consider the correctness to be good.

5.2.3 Maintainability

Maintainability, the ease of maintaining a language, is declined into modi�a-
bility, low coupling and reusability. Modi�ability is the ability of the DSL to
be modi�ed to add new functionality without degrading existing functionality.
Low coupling is the extent to which the DSL is composed of discrete components
such that changing one component has minimal impact on other components.
We consider maintainability to be of medium importance, as maintenance is
inevitable in the software life cycle.

Low coupling is especially good in MPS thanks to its modular language
approach. The MPS modular language approach separates each aspect of the
language into distinct modules, whom all share a dependency with the language
structure module. A change in the structure might cause errors in the other
modules, but a change in any other module will not. Following that logic, we
can determine that it is also reasonably easy to add functionality to a MPS
language without causing breaking changes.

Reusability is the degree to which language constructs can be used in more
than one language, where symbols and other elements of the DSL can be used
in more than one DSL. This is clearly the case in MPS, as our DSL shows :
we used a concept from the MPS Regex language, called Regexp, directly into
our structure, by simply importing it to the program. This can also be done
with any and all concepts of our DSL, but not only concepts. For instance, the
editor style sheet declared in the Tactic language was imported and used in all
3 languages. Based on this observation, we conclude that the reusability is well
supported in our DSL implementation, as long as it is conducted within MPS.
The authors of [17] speci�ed reusability as a distinct characteristic separate
from maintainability, while explaining that it is in fact directly linked to it.
They justify it not being a sub-characteristic of maintainability because it needs
special attention in the assessment process. However, since we did not follow
their assessment process, we put it back in the maintainability characteristic.

5.2.4 Integrability

Integrability is the degree to which the language can be integrated with other
languages. Let's say in our case, a vaster array of languages is developed to auto-
mate the entire variability management, external and internal. We could easily
imagine the need to integrate some of our DSL concepts into other languages, or
even integrate other languages into these ones. Thanks to its modular language
approach, MPS makes language composition quite easy, and this applies to in-
tegrability too, as long as the other languages are also implemented using MPS.
For the integration with the rest of the software factory framework however,
this would depend on the model transformations in the semantics aspect, which
isn't part of this thesis. Since we did not consider composing this language with
more languages in the future, we rank this characteristic as of low importance.

43

Characteristics Importance Sub-Characteristics Assessment
Usability + Attraction satisfactory

Reliability
+++ Model Checking good

Correctness good

Maintainability
++ Modi�ability good

Low Coupling very good
Reusability good

Integrability + Integrability good

Table 5.1: Criteria-Based Qualitative Assessment Of DSL Implementation

5.2.5 Interpretation

These assessments seem to indicate that the implementation provides a suitable
solution to the problem, but it is necessary to take these results with a grain of
salt. These characteristics were picked from a much larger set, which is originally
designed for assessing every aspect of a DSL. From the framework presented in
[17], we only used some of the characteristics, and did not follow the proposed
assessment methodology, preferring a simpler approach. Therefore, this assess-
ment is quite limited, and fails to bring up the topics of user-experience and
productivity.

5.3 Outlook

The work presented in this thesis is still incomplete. Much still needs to be
done in the way of program validation. Some behaviours, like the asset type
constraints, were left incomplete too for the sake of simplicity. However, we've
already explored these aspects, even if only brie�y, in the current state of the
implementation. We use this experience to assert that MPS is fully capable of
supporting, as well as providing tools for, these aspects. As we've seen, little
work is required to build a functional editor. We believe that, with a reasonable
amount of additional work put in the editor, we could e�ectively transform it
from a simple to a very capable and e�cient editor.

The other, most important missing part of the work is the semantics aspect
of the languages. Although this wasn't the objective of this thesis, we would
like to discuss on this aspect. It seems to us that, after limited experience with
the semantics aspect, the most interesting approach supported by MPS is the
model-to-model transformation. We believe that approach to provide the best
maintenance and testing capabilities since it allows the full code generation of all
languages to be concentrated in a single language module. The MPS Generator
language supports having several generation approaches. This is interesting in
our context, since we could easily imagine the methodology being translated into
a chosen output language. We could also imagine choosing between di�erent
con�gurations of the same target language according to the hardware platform
that will run the generated code.

The one drawback of model-to-model transformation is that it requires to
completely de�ne the target language's structure, projection rules and model-

44

to-text transformation rules. This can however be mitigated by the speci�c use
we make of that language. For example, we may need to output C++ code, yet
only a limited subset of the C++ syntax is required. In that case, we wouldn't
need to add support for the entire C++ syntax and code generation, but only
the necessary one. There also is the option to import other languages that aren't
de�ned within the project. MPS, being used by Jetbrains internally, o�ers up-
to-date, maintained, Java and XML languages that can be easily imported and
used in any project, and feature complete model-to-text translation rules. Other
languages have also been implemented by MPS users, and some can be found
on Github. These can prove useful, yet unreliable.

Overall, we believe MPS to be capable of providing the required environment
to handle the semantic aspects of the software factory methodology.

Conclusion

In this chapter we presented qualitative evaluations of the implementation pro-
cess and �nished product. Our overview of the implementation process shows
that MPS succeeds in reducing both the cost and e�ort required to implement
a DSL, when compared to classical approaches. Our assessment of the editor
seems to support our choices of implementation tactics and we consider our
implementation to be successful. In the next chapter, we will present the con-
clusions we came to.

45

Chapter 6

Conclusions

Implementing the aforementioned language editors in MPS allowed us to con-
duct several observations. The �rst remark is that the composition of the
languages was achieved without requiring extensive understanding of the four
composability approaches. In fact, for any language developer familiar with the
object-oriented paradigm, the composability o�ered by the MPS modular lan-
guages approach comes quite naturally. This is interesting in the case the DSL
suite has to be extended later on, possibly by another developer, and software
factories, which are heavily DSL-dependant and designed to be maintained over
long periods of time, �t that description. Judging from this and our evalua-
tions presented in the previous chapter, we can deduce that our implementation
strategy supports maintainability quite well, while providing a generally reliable
editor.

The editor we've implemented gives us no reason to doubt the potential of
projectional editors in terms of e�ciency. Although it does require some getting
used to, as navigating the AST directly is quite a di�erent process than free-
text editing, we believe it should pose no problem in our particular use-case.
The intended user of our language editors being an engineer of the software
factory, and therefore a trained developer, we assume learning the AST of the
languages will not be problematic. Besides, the transition period from parser-
based to projectional editing would not present a concern in the long run. This
is obviously aided by the availability of a custom generated IDE, with VCS
support.

At the end, these observations allow us to deduce that language workbenches
using the modular language approach such as MPS can be an acceptable option
to integrate DSL into software factory frameworks.

46

Bibliography

[1] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line engi-
neering: foundations, principles, and techniques, vol. 1. Springer, 2005.

[2] V. Englebert, Ingénierie d'usines à logiciels � version préliminaire 0.51.
University of Namur, Aug. 2021.

[3] J. Green�eld and K. Short, �Software factories: assembling applications
with patterns, models, frameworks and tools,� in Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pp. 16�27, 2003.

[4] M. Voelter, DSL Engineering. 2013.

[5] E. Negm, S. Makady, and A. Salah, �Survey on domain speci�c languages
implementation aspects,� International Journal of Advanced Computer Sci-
ence and Applications, vol. 10, no. 11, pp. 624�633, 2019.

[6] A. Deursen, P. Klint, and J. Visser, �Domain-speci�c languages: An anno-
tated bibliography,� SIGPLAN Notices, vol. 35, pp. 26�36, 01 2000.

[7] F. J. Van der Linden, K. Schmid, and E. Rommes, Software product lines
in action: the best industrial practice in product line engineering. Springer
Science & Business Media, 2007.

[8] K. Petersen, J. Zaha, and A. Metzger, �Variability-driven selection of ser-
vices for service compositions,� pp. 388�400, 09 2007.

[9] M. Fowler, �Language workbenches: The killer-app for domain speci�c lan-
guages,� 2005.

[10] T. Parr, Language Implementation Patterns. The Pragmatic Bookshelf,
2010.

[11] T. Kosar, P. E. Mart�´nez López, P. A. Barrientos, and M. Mernik, �A
preliminary study on various implementation approaches of domain-speci�c
language,� Information and Software Technology, vol. 50, no. 5, pp. 390�
405, 2008.

[12] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and J. van der

47

Woning, �The state of the art in language workbenches,� in Software Lan-
guage Engineering (M. Erwig, R. F. Paige, and E. Van Wyk, eds.), (Cham),
pp. 197�217, Springer International Publishing, 2013.

[13] S. Erdweg, P. G. Giarrusso, and T. Rendel, �Language composition untan-
gled,� in Proceedings of the Twelfth Workshop on Language Descriptions,
Tools, and Applications, LDTA '12, (New York, NY, USA), Association for
Computing Machinery, 2012.

[14] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, �Towards user-friendly
projectional editors,� in Software Language Engineering (B. Combemale,
D. J. Pearce, O. Barais, and J. J. Vinju, eds.), (Cham), pp. 41�61, Springer
International Publishing, 2014.

[15] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund,
�E�ciency of projectional editing: A controlled experiment,� in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, (New York, NY, USA), p. 763�774,
Association for Computing Machinery, 2016.

[16] M. Voelter and K. Solomatov, �Language modularization and composition
with projectional language workbenches illustrated with mps,� Software
Language Engineering, SLE, vol. 16, no. 3, 2010.

[17] G. Kahraman and S. Bilgen, �A framework for qualitative assessment of
domain-speci�c languages,� Software & Systems Modeling, vol. 14, no. 4,
pp. 1505�1526, 2015.

48

