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Ethical Adversaries: Towards Mitigating
Unfairness with Adversarial Machine Learning

No Author Given

Abstract. Machine learning is being integrated into a growing num-
ber of critical systems with far-reaching impacts on society. Unexpected
behaviour and unfair decision processes are coming under increasing
scrutiny due to this widespread use and also due to theoretical consid-
erations. Individuals, as well as organisations, notice, test, and criticize
unfair results to hold model designers and deployers accountable. This
requires transparency and the possibility to describe, measure and, ide-
ally, prove the ‘fairness’ of a system. While this involves concepts such
as fairness, transparency and accountability that have been contested for
a long time, progress has been made on the way towards (partial) for-
malisations and proofs that will hopefully make machine learning more
amenable to criticism and improvement proposals towards the fulfilment
of societal goals. We concentrate on fairness, taking into account that
both the transparency of the neural networks and accountability of ac-
tors and systems will require further methods.

We offer a new framework that assists in mitigating unfair represen-
tations in the dataset used for training. Our framework relies on adver-
saries to improve fairness. First, it evaluates a model for unfairness w.r.t.
protected attributes and ensures that an adversary cannot guess such
attributes for a given outcome, by optimizing the model’s parameters
for fairness while limiting utility losses. Second, the framework lever-
ages evasion attacks from adversarial machine learning to perform ad-
versarial retraining with new examples unseen by the model. These two
steps are iteratively applied until a significant improvement in fairness
is obtained. We evaluated our framework on well-studied datasets in
the fairness literature—including COMPAS—where it can surpass other
approaches concerning demographic parity, equality of opportunity and
also the model’s utility. We also illustrate our findings on the subtle diffi-
culties when mitigating unfairness and highlight how our framework can
help model designers.

Keywords: Adversarial machine learning, fairness, neural networks

1 Introduction

Machine learning eases the deployment of systems that tackles various tasks:
spam filtering, image recognition, gesture recognition, etc. One of the most
trendy applications is decision support. After collecting data on people and their
context, these systems give recommendations on who should get a loan, predict
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who may commit subsequent offences, etc. However, this support can have detri-
mental consequences. Well-studied examples include the COMPAS system that
predicts the recidivism of pre-trial inmates [2, 9] or accepting credit applications,
or more recently the issues with Apple’s credit card that resulted in vastly lower
spending limits for women. Such systems may amplify the prevalent situation
by imposing more expensive loans to African-American people, who then fail
to repay them more often [17, 27]. These “positive” feedback loops should be
detected and mitigated.

Training a machine learning model can be costly, is sensitive to the data
quality, and may result in a complex model. Hence, the decision process may
fail to be transparent, which ushers in discrimination or unfair treatment for
protected groups. But how to perform this assessment when decisions are often
neither interpretable nor intuitive? Researchers have focused on providing quan-
titative assessments (e.g. demographic parity [14], equalized odds [22], statistical
parity [18, 36], disparate impact [9, 18], Darlington criterion [11], threshold test-
ing [31]) all covering a specific fairness aspect.

To tackle this problem, researchers assume that a protected attribute A (e.g.,
race or gender) exists while it should not be predictable, despite existing depen-
dencies between this attribute and others (ZIP code, . . . ). Thus, only removing
the protected attribute, sometimes referred to as fairness through unawareness,
is known to be insufficient [7, 30].

Because of the far-reaching consequences—being encoded in legal obligations—
of these machine learning systems, state-of-the-art methods employ more ad-
vanced approaches to mitigate unfairness issues with these models inspired by
other machine learning domains, like domain adaptation. One technique is not
enough to harness this complex problem. Here, we propose to use two kinds of
adversarial machine learning techniques, which we motivate through the follow-
ing scenarios.

1.1 Motivating Scenarios

Our goal is to develop a notion of ethical adversaries based on adversarial ma-
chine learning techniques, initially designed to fool machine learning classifiers,
to improve their fairness. Our scenarios take place in the context of an ethics
assessment activity while designing a new machine learning-based system for a
fictional company called “Fancy-Fair AI”.

The Feeder: Black-box External Attacks. Alice is a specialist in adversarial
machine learning (advML) attacks. She is hired for a mission at Fancy-Fair AI
to assess and improve the dataset to increase the performance of the trained
machine learning model, later on. However, she is only given the dataset and
not the inner details of the already trained black-box machine learning model.
Therefore, she has to train a surrogate classifier on the dataset and will feed
the machine learning model with new instances. This process, known as evasion
attacks [4], starts from an existing instance and create a new one by modifying
feature values along the gradient in yet unseen zones of the feature space (i.e.,
where the prediction confidence is low) through successive displacements. Alice
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ensures the validity of modified features and tunes the attacks’ parameters to
improve the system via retraining. Alice crafts examples that are also black-box
for fairness evaluation as they are not tuned to optimise a particular metric. Yet,
such examples can help the Reader to alleviate misrepresentations as they will
provide new feature value combinations.

The Reader: White-box Adversarial Fairness. Bob is an ethics assessment
officer at Fancy-Fair AI. He leans on a set of carefully selected fairness metrics
assuming that fair decisions should not depend on some protected attributes
(race, gender, etc.). Therefore Bob wants to ensure that an insider adversary,
striving to predict the value of a protected attribute (e.g., gender) given an
outcome (e.g., credit limit), fails to do so. This approach, called adversarial
fairness, has been applied for autoencoders [15, 25, 26] and for both classification
and regression networks [1, 32, 37]. It relies on a gradient reversal [19] to update
the weights of the adversary so that the chance of predicting the protected
attribute is no better than random. This relies on diminishing the dependencies
between the protected attribute and the other attributes by backpropagating
the gradients with gradient ascent.

Feed, Read and Fix: Grey-box Fairness. This last scenario, which illustrates
the main contribution of this paper, reunites Alice and Bob approaches as de-
picted in Figure 1. This integrated architecture thus works both at the data
level (by providing new instances) and at the model level (by preventing it from
guessing protected attributes). Fancy-Fair AI monitors the effectiveness of the
integrated solution by monitoring demographic parity and equal opportunity
and the impact on the utility (accuracy, F1) of the decision system.

…

Target label

External
adversary

…

Protected attribute

Feeder Reader

Fig. 1: Our ethical adversaries framework: the feeder (Alice) improves the target
Y by creating new instances X, while the reader (Bob) prevents from guessing
A. The modified prediction due to model adaptation is shown bottom-right.

1.2 Contributions and Organisation

In this paper, we propose a new framework implementing the grey-box fairness
scenario. We make the following contributions:
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– The definition of the behaviour of our ethical adversaries in terms of evasion
attacks and gradient reversal analyses;

– Demonstration of an undesired side-effect of gradient-based fairness models;
– An implementation of our framework in Python1;
– Evaluation on three datasets: COMPAS, German Credit and Adult; showing

state-of-the-art level results in demographic parity and equal opportunity
metrics while globally improving the model’s utility.

This paper is organised as follows: Section 2 discusses related work on ad-
versarial machine learning techniques as well as on measuring and mitigating
unfairness. Section 3 investigates a problem of gradient reversal methods. Sec-
tion 4 presents our new framework, followed by its evaluation on the COMPAS,
German Credit and Adult datasets in Section 5. Section 6 concludes and gives
an outlook on future work.

2 Background and related work

2.1 Adversarial machine learning

Adversarial machine learning aims at finding or creating examples that are prob-
lematic for a machine learning model, e.g., [4, 28, 29]. Biggio and Roli [5] syn-
thesised a decade of research in adversarial machine learning. These techniques
follow the same process: probe an existing target machine learning based system
to gain information about it, copy an existing example, apply an adversarial
technique that will modify the example depending on the desired goal. Modified
examples show an interesting behavior: they remain similar to the original ones
while being misclassified by the trained model. Various models can be attacked
including support vector machines (SVMs), linear models or even (deep) neu-
ral networks (NNs). While adversarial machine learning begins with a model of
attackers’ possibilities, it also enables the design of defenses against attacks. In
particular, adversarial retraining has been very popular with the emergence of
generative adversarial nets (GANs) proposed by Goodfellow et al. [20]. Other
approaches to robustify neural networks exist and use existing examples: e.g.,
Edwards and Storkey [15] used an adversary to force an encoder-decoder network
to learn domain-independent representations [15, 26, 37].

2.2 Fair Representations with Neural Networks

Several works [1, 19, 26, 32] aim at training models to obtain internal represen-
tations that are fair. The embeddings produced by these models cannot be used
to predict the protected attribute A. Such works integrate an adversary with a
new goal: trying to predict the protected attribute A (and not degrading the
model’s performance anymore).

1 Available at http://<url removed for double blind review>
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A new model is created but with two goals: (i) predicting the main attribute
Y (which we will refer to as the utility of the model); (ii) not being able to predict
the protected attribute A. They can be formally defined using minimax [15]:

min
θ

max
φ

L (θ, φ) , (1)

with an adversary φ and an encoder with parameters θ. We use this representa-
tion to predict both Y and A via an adversarial network. Adel et al. [1], Ganin
et al. [19], Raff and Sylvester [32] all proposed to optimize a variant of the
following loss function:

L(θ, φ) = Eθ,φ(X,Y )− λDθ,φ(X,A), (2)

with Dθ,φ the loss for predicting A from X, and Eθ,φ the loss for the target
prediction Y also from X and λ a hyper-parameter.

Zemel et al. [36] learn fair representations X∗ of the original input features
X. The idea is to remove existing dependencies between the representation X
and the protected attribute A, making its prediction impossible for adversaries.
This would make the practice of red-lining also impossible, as these dependencies
can no longer be correlated with A. We consider this goal as a good proxy for
fairness and this approach has been further investigated [1, 26, 32].

2.3 Fairness through a Gradient Reversal Layer (GRL)

Ganin et al. [19] introduced a gradient reversal layer (GRL) originally for domain
adaptation. Both Raff and Sylvester [32] and Adel et al. [1] treated the protected
attribute A as a domain label. The gradient reversal strategy assumes that mul-
tiplying by a negative sign will increase the loss of the branch ha : X → Â and
yields a representation X∗ that is maximally invariant to changes in A [1, 32].
For a model with two target outputs and a hidden internal representation, Equa-
tion 2 applies. In our framework, the Reader (see Figure 1) reuses this approach
to mitigate the ability to predict A.

2.4 Adversarial attacks on model inputs

Our framework uses a second kind of adversarial machine learning, known as
evasion attacks [4], to diversify the training set. The goal of the evasion at-
tacks is to generate new examples that do not follow the same distribution as
the original set. Generated examples combine different characteristics, initially
under-represented. These examples can be added to the training set to perform
adversarial retraining.

Evasion attacks are a gradient-based method and use a step size parameter t
to converge towards a local optimum. An attack: (i) chooses a starting example
for which the classifier’s decision is known; (ii) computes the gradient directed
towards the separating functions; (iii) applies this direction to the example’s
position scaled by t; (iv) repeats until a stopping criterion is met (number of
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iterations or a plateau is reached). This algorithm has been implemented and
made publicly available in the Python secML package 2 that we will use in our
experiments.

Demontis et al. [12] showed the transferability potential of such attacks. In
particular, from the attacker’s point of view, building the exact, same model is
not necessary. Data distributions to train both models should be similar. Hence,
one can approximate any complex or non-derivable ML models with simpler
ones and still generate relevant examples to influence the original model while
retraining. The Feeder of our framework aims at providing adversarial examples
for retraining that will mitigate unfairness.

2.5 Discrimination-Aware Data Mining

In works on discrimination-aware data mining (DADM) and fairness in machine
learning, modifications to the data, the learning algorithms, or the resulting pat-
terns and models [21] have been developed and applied. Pedreschi et al. [30] in-
troduced an approach to tackle discrimination by extracting classification rules
and ranking them based on a measure. DADM focuses on discovering discrimina-
tion as well as preventing discrimination, both direct or indirect discrimination,
the latter is the reason why simply removing protected attributes is not effective
(see Section 1). Our framework performs both steps in an integrated manner by
generating new examples and tuning the model to prevent discrimination.

3 Why gradient reversal is not a silver bullet

As described in Section 2.3, GRL is a currently popular approach, also known
as ‘adversarial fairness’. We also use this technique, and like the authors who
used it to learn ‘fair(er) representations’ [1, 32], we find that it can mitigate
unfairness in classification/prediction tasks.

In the remainder of this section, we formulate and prove this problem and
illustrate it in Figure 2.

The introduction of a gradient reversal layer by Ganin et al. [19] targeted
domain adaptation. Adel et al. [1], Raff and Sylvester [32] continued on this
by viewing the protected attribute A as a domain label. However, Ganin et al.
[19] offered no guarantees as to how the domain was represented internally. In
this section, we argue that the adversarial branch achieves its goal by learning
specifically to predict the protected attribute, rather than obfuscating it.

The gradient reversal strategy assumes that multiplying by a negative sign
will increase the loss of the branch ha : X → Â that then yields a representation
X∗ that is maximally invariant to changes in A [1]. This is intuitive, but there
is no guarantee that gradient descent with flipped gradients does guarantee this
maximal invariance.

2 https://secml.gitlab.io/
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Lemma 1. Gradient reversal equates to perform gradient ascent on the shared
layers with respect to the protected attribute A, whilst simultaneously performing
gradient descent on the dedicated branch for the attribute A.

Proof. Consider the final layer L with two independent branches, governed by
parameters θ and φ respectively, and the shared penultimate layer L − 1. The
shared loss function for both is stated earlier in Equation 2. For the branch that
predicts the protected attribute A, the loss D

′

θ,φ(X,A) gives rise to the weight

updates ∆w
(L)
φ for the weights of the branch ha : X → Â, following

∆w
(L)
φ = −αλ∂Dθ,φ

∂w
(L)
φ

. (3)

The branch giving target label Y is updated similarly. The shared penulti-
mate layer’s weights rely on the shared loss L(θ, φ) and are updated following

∆w(L−1) = −α ∂Eθ,φ
∂w(L−1)

+ αλ
∂Dθ,φ

∂w(L−1)
. (4)

The weights w
(L)
φ are updated following gradient descent with respect to the

loss Dθ,φ(X,A), thus minimizing the loss for this branch. However, gradient
reversal simultaneously performs gradient ascent with respect to the same loss
Dθ,φ(X,A) on all weights of layers 1, . . . , L− 1. The shared layers still perform
gradient descent with regard to the loss Eθ,φ(X,Y ) for the target label Y .

We have shown that the shared penultimate layer does not perform gradient
descent, but gradient ascent. This is in accordance with the implicit definition
for maximal variance [1, 19, 32] following

max
φ

Dθ,φ(X,A). (5)

This fits in the larger minimax problem from Equation 1 and results in a
saddle point [19]. However, the end result is not guaranteed to be a maximal
invariant representation. In the worst case, maximizing this loss Dθ,φ(X,A) can
even result in the opposite optimum for the shared trunk with regard to A. This
means that the model is not necessarily maximally invariant on (L − 1). We
need to emphasize that this is a theoretical result, but it calls for caution when
adversarial fairness is to be used to, for example, publish or re-use a supposedly
‘fair’ data representation. We illustrate this issue on the COMPAS dataset in
Figure 2.

For each individual for the COMPAS test set, all three models derive a rep-
resentation in the last hidden layer, on which we applied a t-SNE dimensionality
reduction for a two-dimensional visualisation.

The model without fairness constraints (Figure 2a) has slight separation with
regard to the protected attribute, but it is clearly separable in the representation
from the model trained with a GRL (Figure 2b). This is also shown by retraining
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(a) Naive model (b) Model trained with a
GRL (λ = 50)

(c) Model trained with
our framework

Fig. 2: T-SNE dimensionality reduction of the activations in the last hidden layer
on the held-out COMPAS test set. Distinct colors are used for the reported race
of individuals in the dataset: either African-American or Caucasian .

a one-layer perceptron on these representation. The model that was originally
trained to predict only recidivism could be used to classify the protected at-
tribute race with AUC = 0.71. And although the original GRL reported an
AUC = 0.44, Theorem 1 tells us that this adversary cannot be trusted. Which
is the case here, as an independent perceptron has AUC = 0.92. Elazar and
Goldberg [16] made an empirical observation on leakage of protected attributes
specifically for text-based classifiers that can also be traced back to this.

Here, we demonstrated that the hidden representation obtained by gradient
reversal, not only still contains information about the protected attribute, but
contains a stronger signal. Our architecture that joins ‘adversarial fairness’ and
‘adversarial learning’ (see Section 1.1 and Fig. 1) leverages utility- and fairness-
focused methods in a better way than the modification of the model alone. By
injecting noise with the adversarial Feeder, our framework makes the protected
attribute A a useless predictor, as shown in Figure 2c. Our results, discussed in
Section 5.3, confirm this expectation.

4 Ethical Adversaries Framework

In this section, we present how the two adversarial attacks interact in our frame-
work. The first attacks the inputs of the model whereas the second tries to
predict the protected attribute A as part of the model. We join both adversaries
in a single system to address issues discussed in Section 2.2 and Section 2.3,
ultimately resulting in a fairer model.

Figure 1 shows how these two adversaries are incorporated. Our network
follows the architecture with a GRL (discussed in Section 2.3 and used by the
Reader on the right part of the figure). The external adversary (the Feeder on the
left part of the figure) performs evasion attacks as discussed in Section 2.4. We
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discuss both parts in this section, including the hyperparameters and complexity
they introduce to our architecture.

4.1 Adversarial reader

We augment the original model by adding a second branch with reversed gra-
dients that will predict the protected attribute A. We follow the training setup
from Raff and Sylvester [32], discussed in Section 2.3. The model will thus be
trained with the joint loss of the original prediction target and the protected at-
tribute. During the backward pass, the signs of the gradients from the adversarial
branch are flipped and scaled by a hyperparameter λ.

4.2 Adversarial feeder

As presented in Section 2.4, the feeder needs a starting point that is an approx-
imation of the target model, i.e., a surrogate model (see Section 2).

The evasion attack runs as presented in Section 2.4, and newly generated
examples can be included in the training set for adversarial retraining. Note
that adversarial retraining may drastically increase convergence time to compute
a separating function since included adversarial examples make the separation
more difficult to find. Generally, defining the ideal size of batches for training
remains an open issue [24].

4.3 Complexity analysis

Our architecture consists of three elements: the model under attack, the Reader
and the Feeder. The adversarial reader is trained in conjunction with the model
under attack. The time complexity of the attacked model is in part dependent
on the chosen model. For neural networks, this is architecture-dependent. After
training the model with the adversarial reader, a surrogate is trained, in our
case, an SVM with time complexity O(n3) for n� d with n the number of data
points and d the number of features [8]. The time complexity for our entire system
becomes O(n3) and scales linearly with the number of adversarial attacks. While
not the focus of this paper, there are ways to learn SVMs faster and integrating
them is subject to future work.

5 Evaluation

We evaluate our model on three popular datasets: COMPAS [2], German Credit
and, the Adult Census [23]. The COMPAS dataset was originally a sample of
outcomes from the COMPAS system that predicted the risk of recidivism. This
caused a debate about whether or not this score was disadvantaging African
Americans [2, 9, 10, 13]. The dataset, therefore, includes the race of individuals.

In line with other research [1, 2, 35], we will only use individuals from Cau-
casian or African-American descent. As there is much less data on other groups
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(e.g., only 31 instances for people of Asian descent), this poses issues during
training and evaluation. This implies that there are minorities that are excluded
from many studies; more datasets would be needed to study whether patterns
of unfairness are similar and mitigation measures can be transferred, or whether
these affect different demographics differently.

COMPAS is composed of 5,278 instances and represented by 12 features.
The target variable is whether a person has recidivated within two years. The
race is used as a protected attribute. The Adult dataset gathers 32,000 instances
represented by 9 features. We use gender as a protected attribute and the binary
target variable is income, whether someone earns more than 50,000 USD. Ger-
man Credit is the smallest dataset, with only 1,000 instances and 20 features.
There is a class imbalance, with 70% of all samples good credits and only 30%
bad credits. The protected attribute is age, with a threshold at 25 years.

For reproducibility purposes, we have publicly released our code and pro-
vided users with a template that they can incorporate in their projects. It is
compatible with all PyTorch models with only minor modifications, i.e., adding
an adversarial branch and replacing the training loop. We recall that we have
used the secML package3 (v0.11) for running evasion attacks.

5.1 Training setup

The model under attack. We start from a neural network of 3 hidden layers
with 32 hidden units for COMPAS and German Credit and 128 for Adult, due
to its larger encoded input. Each of the hidden units has a ReLU activation.
This activation function is computationally efficient and mitigates the issue of
vanishing gradients since the function never saturates, which makes it one of the
most popular activation functions. For the output units, a softmax activation was
used to get the classification and a linear activation for COMPAS. The network—
as well as the adversarial reader—are trained with the Adam optimizer with
β1 = 0.9, β2 = 0.9999 and an initial learning rate lr = 0.01, which is adjusted by
a factor of 0.1 when reaching a plateau.

The adversarial reader. The adversarial reader is part of the model under
attack and therefore follows the same training regime. The joint loss follows
Equation 2 by including the GRL. The individual losses for both hA and hy are
binary cross-entropy loss, except for COMPAS. In that case, the risk score is
predicted as a regression problem with the MSE loss and then thresholded at
> 4 (low vs medium and high risk).

The adversarial feeder. In our setting, we can use the same training set for
both the feeder and reader since they are part of the same, unique architec-
ture. We also approximate—relying on the earlier discussed transferability of
attacks—the attacked model by an SVM with a radial basis function kernel. We
set the hyperparameters C and γ with a grid search with a reduced number of
values: respectively {0.0001; 0.001; 0.01; 0.1; 1.0} and {0.01; 0.1; 1; 10; 100; 1000}.
We performed 10-fold cross-validation.

3 https://secml.gitlab.io/
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5.2 Evaluating fairness

Since the architecture we proposed in Section 4 aims at mitigating unfairness,
we will have to evaluate this aspect in our experiments. There exist several
measures of fairness in the literature. In this subsection, we discuss some of the
most popular ones for different aspects of fairness.

We define all measures via the predicted values of the classifier Ŷ and the
protected attribute A. We identify the disadvantaged group with A = 1 and the
privileged group with A = 0. The similarities of predictions are described for
Ŷ = 1. Since the focus of most fairness measures is on the disadvantaged group
having fewer (desired) opportunities, Ŷ = 1 is generally the desired outcome.

One set of measures expresses the requirement that the predicted values of the
classifier Ŷ conditioned on the protected attribute be equal [6] or the difference
to be within an acceptable range.

Definition 1. Demographic parity (DP). DP is the equality or similarity of
prediction outcomes as an absolute difference [14, 32]:

DP =
∣∣∣P (Ŷ = 1 | A = 0)− P (Ŷ = 1 | A = 1)

∣∣∣ ≤ ε. (6)

Definition 2. Demographic parity ratio (DPR). DPR is the equality or simi-
larity of prediction outcomes as a ratio:

P (Ŷ = 1 | A = 1)

P (Ŷ = 1 | A = 0)
≥ τ. (7)

Requiring ε = 0 or DPR = 1 would require exactly equal predicted outcomes
for both groups. This is unrealistic for most data, such that real-world usage of
such measures is less restrictive. For instance, in a legal setting, the US Equal
Employment Opportunity Commission (EEOC) uses the DP ratio with τ = 0.8
(“80% rule” [18]), stating that disparate impact caused by employment-related
decisions or structures can only be ascertained if DPR ≤ 0.8.

Demographic parity has received some criticisms, since (i) it can meaning-
lessly reduce the utility of the classifier and—more worrying— (ii) does not nec-
essarily measure what many would define as fairness [14]. The first issue is due
to possible correlations between the protected attribute A and the true outcome
Y . Since we expect equality of the classifier concerning the protected attribute,
it cannot operate as a perfect classifier.

The second issue stems from ignoring both the true outcome and individual
merits. For instance, consider a selection procedure with two subgroups with
different values for the protected attribute A. One subgroup can be composed
of qualified individuals (i.e., with high chances for a positive true outcome Y =
1), but another subgroup can consist of random individuals. This still satisfies
demographic parity, but these token individuals are not guaranteeing fairness
since qualified individuals from the protected subgroup are still mistreated.

Addressing the criticisms of demographic parity, Hardt et al. [22] presented
two other metrics that extend the aforementioned ones. By including the true
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outcome Y , the authors show that this variable can serve as a justification for
the predicted outcome. For example, in the case of COMPAS, this is the recidi-
vism rate as measured by violent crimes in a two-year window. Conditioning by
the true outcome is a justification that the authors consider to be a suitable in-
terpretation of the task-specific similarity measure from Dwork et al. [14], which
can otherwise be difficult to come up with. This is also very similar to disparate
mistreatment [3, 34] used as an evaluation metric by Adel et al. [1].

Definition 3. Equal opportunity (EO). EO requires an independence Ŷ ⊥⊥ A |
Y of Ŷ and A conditioned on the true outcome Y . Expressed as a difference,
this yields:∣∣∣P (Ŷ = 1 | A = 0, Y = 1)− P (Ŷ = 1 | A = 1, Y = 1)

∣∣∣ ≤ ν. (8)

“Equality of opportunity” is satisfied if ν = 0, and larger values are indicative
of unfairness in the model or data.

5.3 Results

Table 1: Results on the three datasets. An obelisk (†) show results reported by
original papers. Results of classifiers without fairness constraints are reported as
a baseline. Best results are in bold typeface. An asterisk (∗) indicates a division
by zero.

Model ACC F1 DP DPR EO

Adult
Baseline without fairness constraints 0.839 ± 0.009 0.763 0.173 0.296 0.096
GRL 0.612 ± 0.012 0.518 0.059 1.931 0.061

NBF (NB) [6] 0.773† — 0.000† — —

NBF (EM) [6] 0.801† — 0.001† — —

Grad-Pred [32] 0.754† — 0.000† — —

FF [33] 0.753† — 0.000† — —

LFR [36] 0.702† — 0.001† — —
Ours 0.814 ± 0.009 0.689 0.031 0.784 0.179

German Credit
Baseline without fairness constraints 0.705 ± 0.063 0.624 0.018 0.929 0.198
GRL 0.710 ± 0.063 0.415 0.000 ∗ 0.000

Grad-Pred [32] 0.675† — 0.001† — —

FF [33] 0.700† — 0.000† — —

LFR [36] 0.591† — 0.004† — —
Ours 0.730 ± 0.062 0.640 0.006 0.971 0.175

COMPAS
Baseline without fairness constraints 0.715 0.709 0.466 2.192 0.449
GRL 0.567 0.549 0.057 0.926 0.114
COMPAS 0.655 ± 0.029 0.654 0.289 1.829 0.000

Preference-based fairness [35] 0.675† — 0.380† — —
Ours 0.794 0.793 0.026 0.840 0.008
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Fig. 3: Fairness and utility measures after each attack iteration on COMPAS
(Batch size of 1024, λ = 100, epochs=100, 50 adversarial points per iteration)

Table 1 presents our results on the three datasets. We compare them with
(i) a naive baseline, i.e., the same architecture without any particular control
on fairness aspects, (ii) a re-implementation of the GRL [1, 19, 32] and (iii) the
reported results from other works that incorporate fairness and cover a wide
range of learning algorithms: Naive Bayes [6], random forests [33], SVMs [35]
and neural networks [32, 36]. The models’ utility was evaluated by binary classi-
fication accuracy and macro-averaged F1 score; the latter highlights some issues
when dealing with class imbalances, as is the case for German Credit. Fairness
is evaluated with demographic parity, both as an absolute difference (DP) and
as a ratio (DPR), and equal opportunity (EO).

Adel et al. [1] also report results on both COMPAS and Adult but use a
different setup for the Adult dataset. For COMPAS, the reported results (as
well as their unfair baseline) are significantly higher than in our experiments,
which we could replicate only when classifying high-risk individuals. To make a
meaningful comparison, we also include our replication of FAD [1] as GRL.

The utility of our framework is the highest on the German Credit and COM-
PAS datasets, even surpassing the baseline model. On Adult, we achieve the
highest utility of any model with fairness constraints. These results show that
our model has only a very limited impact on the utility of the classifier, and it
can even contribute to the training as is also visualised in Figure 3. Note that on
German Credit, a majority classifier would achieve 70% accuracy already, hence
the inclusion of the F1 score.

Regarding fairness evaluation, our framework gives the best results for COM-
PAS when considering DP. It also increases fairness as measured by DPR, which
is the only one of the considered measures that indicates the “direction” of unfair-
ness. More fairness is sometimes given by an increase towards parity (DPR=1)
for the disadvantaged group: for the German Credit dataset, their chances of
getting a loan increase. In COMPAS, the “bias against blacks” [2] decreases
from a probability of recidivism prediction that is more than twice as high as for
white people. Here, the near-equality of 0.926 appears fairer than the “opposite
unfairness” of our, further reduced, DPR value.



14 Anonymous et al.

Figure 3 also highlights the effect of the adversarial fraction in the training
dataset on COMPAS. When adversarial examples (equivalent to 25% of the
training set size) are added to the training set, the utility is maximal. With higher
fractions, the utility decreases and the development of the DP ratio fluctuates.
This could stem from the minimax formulation, where a small fraction (i.e., 25%)
helps optimize better for this saddle point, but higher fractions only add noise.

6 Summary, conclusions and future work

In this paper, we presented a novel architecture for integrating fairness con-
straints in machine learning models. Our architecture consists of two adversaries:
(i) an adversarial reader that evaluates fairness constraints during model train-
ing and attempts to enforce them, and (ii) an adversarial feeder that performs
iterative evasion attacks to discover previously uncovered regions in the input
space. We evaluated our architecture on three well-studied datasets and showed
that it can deliver high utility to models while satisfying fairness constraints. On
COMPAS, we illustrated that our architecture yields a model that surpasses an
unfair baseline regarding the utility (accuracy and F1 score), whilst giving bet-
ter fairness guarantees. We provide evidence that gradient reversal alone is not
sufficient (it might even be detrimental) but that our combination of adversaries
leads to intrinsically fairer models.

There is room for future work. First, we may optimize the runtime execution
of the technique via faster learning of surrogate models. Second, we could use
the target model directly instead of a surrogate classifier to support adversarial
attacks and assess if transferability properties hold for fairness constraints. This
requires heavyweight modification of the secML framework to allow multiple out-
put values in neural networks. Third, while we do not generate invalid instances,
one could define constraints involving multiple features: e.g., a 4-year-old child
cannot have a Ph.D. Enforcing these domain-specific constraints during attack
generation raises questions on the representation of the feature space and opti-
mal convergence of the algorithms. Finally, we would like to generate the most
dissimilar examples possible to ensure good coverage of the unseen feature space
with a minimal number of attacks.
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