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Analysis and control of nonlinear infinite-dimensional systems:
Application to chemical and wave processes

by Anthony HASTIR

Abstract: Nonlinear infinite-dimensional systems are nonlinear dynamical systems
whose state components lie in an infinite-dimensional space, typically a function
space. Such systems, which are also called distributed parameter systems, are ubiq-
uitous in real-life since they are able to model many physical processes, going from
conservative mechanical systems to dissipative phenomena. A lot of questions may
arise when dealing with such classes of systems. For instance, the well-posedness in
terms of existence and uniqueness of solutions as well as the study of the equilibria,
their stability and their control are paramount steps when studying these dynamical
systems. On the basis of the existing literature, we pay a particular attention to the
existence, the uniqueness and the stability of equilibria and the control of nonlinear
distributed parameter systems. In particular, as main contributions, we extend the clas-
sical approach that allows to deduce the stability of equilibria for a nonlinear system
based on the stability of a corresponding linearized version of it. Using a new concept
of differentiability for nonlinear operators which takes another space as the state space
into account, we show how to guarantee local exponential stability or instability of the
equilibria for the original nonlinear system. This is applied to the determination of
the stability of the equilibria of a nonlinear plug-flow tubular reactor model with axial
dispersion for which the temperature and the reactant concentration are considered as
state variables. From a control point of view, the previous results are extended to the
stabilization of equilibria of nonlinear infinite-dimensional systems. Thanks to this
extension, we are able to identify a class of optimally controlled systems for which
the required assumptions hold. As another contribution, we study the field of tracking
control, and especially funnel control, which constitutes an appropriate tool for the
output of a system to track a class of reference signals. As a main contribution on this
topic, we extend the available results that allow to consider linear infinite-dimensional
systems as internal dynamics to the nonlinear setting. We prove that a general class of
nonlinear infinite-dimensional systems that satisfy some standard assumptions admits
a differential relation between the input and the output that is conducive for funnel
control. A large number of theoretical results in this thesis are illustrated by means
of examples and numerical simulations, especially in the field of process control. The
considered applications are related to chemical reactor models, damped wave equa-
tions and damped Sine-Gordon equations.

Analyse et commande de systèmes non linéaires en dimension infinie :
Application aux procédés chimiques et ondulatoires

par Anthony HASTIR

Résumé : Les systèmes non linéaires en dimension infinie sont des systèmes dyna-
miques non linéaires dont les composantes d’état se trouvent dans un espace de di-
mension infinie, typiquement un espace de fonctions. De tels systèmes, aussi appelés



systèmes à paramètres distribués, sont omniprésents dans la vie de tous les jours car ils
sont capables de modéliser de nombreux procédés physiques, allant de systèmes mé-
caniques conservatifs à des phénomènes dissipatifs. Bon nombre de questions peuvent
apparaître en considérant ces classes de systèmes. Par exemple, le caractère bien posé
en termes d’existence et d’unicité de solutions aussi bien que l’étude des équilibres,
leur stabilité et leur contrôle sont des étapes primordiales en étudiant ces systèmes dy-
namiques. Sur base de la littérature existante, nous portons une attention particulière à
l’étude de l’existence, de l’unicité et de la stabilité des équilibres et le contrôle de sys-
tèmes à paramètres distribués. En particulier, comme contributions principales, nous
étendons l’approche classique qui permet de déduire la stabilité des équilibres pour un
système non linéaire sur base de la stabilité d’un modèle linéarisé correspondant. En
utilisant un nouveau concept de différentiabilité pour les opérateurs non linéaires qui
prend en compte un autre espace que l’espace d’état, nous montrons comment garantir
la stabilité exponentielle locale ou l’instabilité des équilibres du système non linéaire
original. Cette théorie est appliquée pour déterminer la stabilité des équilibres d’un
modèle de réacteur non linéaire à effet piston avec dispersion axiale de la masse pour
lequel les variables d’états sont la température et la concentration en réactifs. En adop-
tant un point de vue "contrôle", les résultats précédents sont étendus à la stabilisation
d’équilibres de systèmes non linéaires en dimension infinie. Grâce à cette extension,
nous pouvons identifier une classe de systèmes contrôlés de manière optimale pour
laquelle les hypothèses sont satisfaites. Comme autre contribution, nous nous inté-
ressons au problème de poursuite de trajectoires, en particulier au contrôle "funnel",
qui constitue un outil approprié pour faire suivre à la sortie d’un système une classe
de signaux de référence. Comme contribution principale dans ce sujet, nous étendons
les résultats disponibles qui permettent de considérer des systèmes linéaires de di-
mension infinie comme dynamique interne au cadre non linéaire. Nous démontrons
qu’une classe générale de systèmes non linéaires en dimension infinie qui satisfait
quelques hypothèses standards admet une relation différentielle entre les entrées et les
sorties qui est propice au contrôle "funnel". Un grand nombre de résultats théoriques
dans cette thèse sont illustrés à l’aide d’exemples et de simulations numériques, par-
ticulièrement dans le domaine du contrôle des procédés. Les applications considérées
sont liées à des modèles de réacteurs chimiques, des équations d’onde amorties et des
équations de Sine-Gordon amorties.
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Introduction

Nonlinear infinite–dimensional, that is distributed parameter systems, are nonlinear
dynamical systems which admit an abstract description on an infinite–dimensional
Banach or Hilbert state space. These systems model a lot of applications in real-life,
e.g. either conservative mechanical systems or dissipative chemical phenomena. The
variables in the equations governing such systems depend most of the time on more
than one parameter, giving rise to partial differential equations together with boundary
conditions. A lot of attention is paid to this kind of systems, from theoretical or
practical points of view. They constitute a large field of research since a priori simple
questions as existence and uniqueness of solutions (well-posedness) may be extremely
challenging to deal with when dealing with such systems, whose analysis and design
require notably the use of nonlinear functional analysis.

Different aspects related to this class of dynamical systems are studied in this the-
sis, going from the well-posedness of nonlinear distributed parameter systems to their
control. The notion of strongly continuous semigroup, extensively studied for lin-
ear infinite-dimensional systems e.g. in Curtain and Zwart (1995), Jacob and Zwart
(2012) and Curtain and Zwart (2020), is of great importance here and is often used
to express the solution (the state trajectories) of an abstract Cauchy problem. Exten-
sions to systems driven by nonlinear partial differential equations are also considered
in (Curtain and Zwart, 2020, Chapter 11) wherein questions like existence and unicity
of solutions are deeply studied. Objects like equilibria of such systems constitute an
important field to explore. Depending on their stability, they are able to give informa-
tion on the place where the state trajectories of the system are located for large times.
Due to the distributed parameters and nonlinear natures of the systems we consider,
this question concerning the equilibria may be challenging to look at. Their explicit
computation is often impossible, since nonlinear ordinary differential equations with
boundary conditions should be solved. Therefore, approximated solutions can be a
good trade-off in order to get quite accurate and useful information on them. For this
aspect our contribution concentrates on a particular distributed parameter system con-
sisting of the dynamics of a plug-flow tubular reactor model with axial dispersion for
which the reaction kinetics are given by the Arrhenius law. The latter is used to model
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the variation of the velocity of the reaction as a function of the temperature. Two
important parameters when dealing with such kind of chemical reactors are the mass
and the thermal Peclet numbers. They express two different ratios between the model
parameters. As it is highlighted in this thesis, considering them equal may reduce the
difficulty of the computations a lot. However, this makes not so much sense from a
practical point of view. Going along the lines of Drame et al. (2008), we character-
ize the existence and the multiplicity of the equilibria for this system by using some
perturbation based method, by considering either equal or different Peclet numbers.
Approximated solutions to the equilibrium equations are also given thanks to the per-
turbation theory. This is also inspired by Dochain (2018) where perturbation theory
has been used to tackle the equilibrium analysis for equal Peclet numbers.

When moving to the study of the asymptotic behavior of a nonlinear infinite-
dimensional system, what is commonly done is a linearization of the system around a
given equilibrium and a study of the stability of the linearized system, like it could be
appropriate when working in finite-dimensions. Then under quite common regularity
assumptions, the stability properties of the linearization holds locally for the nonlinear
system. However, this is not so simple when analyzing an infinite-dimensional sys-
tem. In particular, the linearization is a difficult process that must have a well-defined
meaning. Inspired by the works of Al Jamal and Morris (2018), Al Jamal (2013), we
attack that question here by considering some useful adapted differentiability condi-
tions to make the link between the stability of a linearized model and its corresponding
nonlinear system. One important feature is that the considered stability is exponential.
As it is highlighted in a counter example in Al Jamal et al. (2014), this approach does
not work when considering asymptotic stability for instance.

After performing these analysis steps, the question of control pops up quite natu-
rally. This consists in acting on a system with possibly different objectives. Interesting
questions are the stabilization of an equilibrium, or the improvement of its stability
margin, just to cite a few of them. The linearization process is also used a lot when
considering such control problems. What is done here goes along the lines of the ap-
proach used for deducing stability. A perturbation based approach is used to compute
a stabilizing control law for the nonlinear dynamical system, locally around the equi-
librium of interest. Different notions related to the field of control are introduced and
recalled in this part.

Looking for global control methods instead of the previous local ones, the ex-
panding field of adaptive control has been studied. This kind of control is consid-
ered especially when parameters or parts of the dynamics are unknown and need to
be estimated, see Krstic et al. (1995a) and Bastin and Dochain (1990) for instance.
It is in general well suited for chemical processes as it will be highlighted in this
thesis. Starting from the classical proportional integral control developed for linear
infinite-dimensional systems in Pohjolainen (1982), we extend this theory by intro-
ducing some additional term that aims at dominating the nonlinear aspects of the dy-
namics to regulate the scalar average temperature in a plug-flow tubular reactor for
which we assume that no diffusion occurs. In addition to this control problem, the
notion of funnel control has been considered in e.g. Ilchmann et al. (2002), Ilchmann
and Trenn (2004) and Ilchmann et al. (2005). This powerful control method, which
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is used for the tracking of a general class of output signals, is model-free and was
shown to be suitable for an increasing number of classes of systems, as it can be seen
in Berger et al. (2018) and Berger et al. (2021c) for finite-dimensional systems. A
few years ago, this control method has captured the attention for its applicability to
dynamical systems whose internal dynamics are infinite-dimensional as it is studied
in Ilchmann et al. (2016), Berger et al. (2020), Berger et al. (2021a), Puche et al.
(2021), Berger (2021) and Berger et al. (2022). Keeping our objective of studying
and controlling nonlinear infinite-dimensional systems, funnel control for such a class
of systems is considered in this thesis, enlarging significantly the applicability of this
control approach.

Structure of the thesis
This thesis is organized as follows. The conducting application that is used to illus-
trate a large number of concepts and theoretical results, namely a model of nonlinear
plug-flow tubular reactor with axial dispersion, is introduced in Chapter 1, where the
motivations of considering this application together with the underlying mathematical
model are presented.

The aim of the second chapter is to make the reader more familiar with infinite-
dimensional system theory, both from linear and nonlinear points of view. Most of
the reported results are borrowed from the recent book by Curtain and Zwart (2020).
We take a particular attention at the consideration of useful, well-chosen and pertinent
illustrations in this chapter that aims at easing the understanding of what follows in
the manuscript.

A thorough study of the equilibria of the main application of this work is per-
formed in Chapter 3. One finds for instance results on the existence, the multiplicity
and the linear stability or instability of these equilibria. Numerical simulations are
used to reinforce the theoretical results.

The link of these stability results with the local stability of the equilibria for the
nonlinear original system is constructed in Chapter 4. Therein, a new framework
for studying the stability of equilibria for nonlinear distributed parameter systems is
built from a theoretical point of view with the ad-hoc assumptions. This new theory
is applied to the determination of the stability of equilibria for the plug-flow tubular
reactor with axial dispersion whose reaction kinetics are modeled by the Arrhenius
law.

The extension of the previous results to the stabilization problem is constructed in
Chapter 5, where inputs expressed as state feedbacks are considered. Local aspects of
the method are discussed.

Next, with a goal of global stabilization and output regulation, we move in Chap-
ter 6, in which we study the concept of adaptive control. Starting from the "classical"
proportional integral control action, a new adaptive integral controller is developed in
such a way that a scalar output corresponding to a nonlinear plug-flow tubular reactor
aims at tracking constant reference profiles. Numerous numerical simulations involv-
ing notably set-point changes are used to highlight the efficiency of this approach.
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Seeking for a model-free control approach for the tracking of a quite general class
of signals for the output of a nonlinear infinite-dimensional system, the concept of
funnel control is extensively studied in Chapter 7, where the developments are meant
to be hopefully self-contained. Funnel control is shown to be appropriate for a new
class of nonlinear distributed parameter systems, after a change of variables related to
the Byrnes-Isidori form. Two infinite-dimensional models linked with chemical and
wave processes are used to illustrate the theoretical notions and results.

Contributions
As mentioned above, when dealing with infinite-dimensional systems, and especially
when they are nonlinear, it is often common to work on a linearized model to over-
come technical difficulties, even when studying the analysis in terms of existence and
uniqueness of solutions to the nonlinear partial differential equations. In this thesis,
we adopt another point of view. In constrast to the approach that consists in chang-
ing (linearizing) the applications in order to apply existing tools from linear infinite-
dimensional systems theory, we keep the dynamics nonlinear as much as possible. In
that way, we develop new tools related to nonlinear functional analysis and nonlin-
ear infinite-dimensional systems theory to perform analysis and control for nonlinear
distributed parameter systems.

In particular, one of the main contributions of this thesis consists in deducing the
stability of equilibria of nonlinear infinite-dimensional systems on the basis of the
stability properties of a corresponding linearized system. Therefore, we extended the
work of Al Jamal and Morris (2018) which uses the notion of Fréchet derivative to
make the link between linear and nonlinear stability of equilibria for nonlinear infinite-
dimensional systems. In particular, a new concept of differentiability for nonlinear
operators is introduced here and it is shown how to get satisfactory (local) stability
results thanks to this new definition. This new result can be viewed as an admissibility
result since it takes into account another space as the state space, which makes the
approach powerful since that new space adds a degree of freedom and may be chosen
depending on the application.

The second major contribution consists in the extension of the results for deducing
stability to the case of stabilization of equilibria of nonlinear distributed parameter sys-
tems. To this end, we proved how the adapted Fréchet differentiability of the nonlinear
operator dynamics can be used to conclude the same fact for the closed-loop nonlinear
semigroup. We noticed that boundedness (in an appropriate sense) of the feedback op-
erator as well as boundedness of the control operator imply continuous dependence of
the closed-loop system trajectories on the initial condition at 0, which is a major tech-
nical condition for getting Fréchet differentiability. Moreover, we identified a class of
linear-quadratic optimally controlled systems for which the assumptions of the new
framework hold. On the basis of a perturbation result for Riesz-spectral operators, we
proved that the convergence of a particular series involving the eigenvalues and the
eigenfunctions of the closed-loop linearized operator dynamics is a sufficient condi-
tion that guarantees that the optimal state feedback stabilizes exponentially and locally
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the nonlinear dynamics.
The third contribution one may mention lies in Chapter 7. There, we introduced

a class of nonlinear controlled and observed infinite-dimensional systems for which
the nonlinear operator has to be uniformly Lipschitz continuous. Then, under quite
standard assumptions on the control and the observation operators, we show that this
class of systems is conducive for funnel control. This has been performed by consid-
ering a change of variables related to the Byrnes-Isidori form, which is extensively
studied in Ilchmann et al. (2016) for linear infinite-dimensional systems. This com-
pletes the contributions of Berger et al. (2018), Berger et al. (2020) and Berger et al.
(2021c) since our contribution enlarges the applicability of funnel control, giving a
partial answer to the following remark in Berger et al. (2020): "While the class of
functional differential equations (1) appears to be rather general and funnel control is
feasible for these systems by Theorem 2.1, it is not clear exactly which kind of systems
that contain PDEs are encompassed by the class (1)", where (1) refers to a class of
systems for which funnel control is considered in that paper.
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Chapter 1
A conducting application: The
regulation of the temperature in
tubular reactors

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Mathematical model for different types of reactors . . . . . . . 22

This part of the thesis is dedicated to the presentation of the application that is
taken into account for the illustration of the different theoretical concepts that are pre-
sented along the manuscript. This application is of particular interest in chemical en-
gineering due to its ability in improving the production of products in some chemical
reactions.

1.1 Motivation
Some general concepts on chemical engineering and more specifically on chemical
reactors are described in this section.

A chemical reactor is basically the place wherein one chemical reaction (or more)
occurs. The objective of such a device is to try to transform a reactant into a product.
The basic objective is to transform raw materials into more valuable ones. To this end,
a step called the separation process has to be performed on the materials that enter
into the reactor in such a way that the reaction behaves well and after the reaction to
get the best products as possible, see Figure 1.1 for the representation of the different
steps of the process.

In order to act on these steps and to be able to have an impact on the synthe-
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Raw materials Separation process Chemical process Separation process Products

Figure 1.1 – Different steps from the transformation of the reactant into the products.

sized products thanks to mathematical tools, a mathematical model of the chemical
reaction(s) will be derived.

For this, we need first to specify the type of reactions that will be considered. We
shall focus on irreversible reactions here, meaning that once the products are obtained,
no more transformation to the reactant is possible. A notion that will appear directly
in the mathematical model is the reaction rate. This quantity describes the dependence
of the rate of transformation on the variables of the systems, see Schmidt (1998) for
instance. It generally depends on the temperature of the reaction like k(T ) = k0e−

E
RT ,

where k0 is a kinetic constant, E is the activation energy, R denotes the perfect gas
constant and T is the temperature, see e.g. Schmidt (1998); Aksikas (2005). This
dependency on the temperature is due to Svante Arrhenius and is often called the
Arrhenius’ law.

The rates may also depend on the concentration in different ways. The basic rule
in pure chemistry is that they are proportional to the concentration of reactant raised
to the power equal to its stochiometric coefficient, see Schmidt (1998). For instance in
the reaction 2A→ B where A denotes the reactant and B the product, the reaction rate
as a function of the reactant concentration and of the temperature will be described by
the function r(CA,T ) = k0e−

E
RT C2

A whereas for the reaction F → G, the reaction rate
is given by r(CF ,T ) = k0e−

E
RT CF . This is known as the mass action law(1).

Secondly, let us distinguish different types of chemical reactors. They can either
operate in batch or in flow modes. A batch reactor is sometimes called a closed reactor
since no mass can be added in after time t = 0. However flow reactors can be loaded
during the reaction.

The following distinction concerns only flow reactors. They operate between
completely unmixed contents and completely mixed ones, involving different phases:
solid, liquid and gas. Reactors for which the medium is homogeneous are called
stirred tank reactors (e.g. the Continuous Stirred Tank Reactor (CSTR)) and if the
medium can be nonhomogeneous, they are said to be tubular reactors (e.g. the Plug
Flow Tubular Reactor (PFTR)).

The reactors that will be of interest in what follows are tubular reactors. Two
differences may still be made. On one hand one finds the plug flow tubular reactor
wherein the flow is supposed to be laminar, i.e. no turbulences are allowed inside the
reactor. On the other hand, one may consider axial mixing (also called molecular dif-

(1)Note that in many instances, kinetic models differ from the mass action law and their structure is
derived from identification from experimental data. We refer to (Schmidt, 1998, Chapter 2) for an overview
on kinetic models and how they can be identified with data.
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Chemical reactors

Batch reactors Flow reactors

Stirred tank reactors (e.g. CSTR) Tubular reactors

Axial mixing (TRAD) No axial mixing (PFTR)

Figure 1.2 – Different types of chemical reactors.

fusion) which takes into account the fact that the contents of the reactor can move from
right to left and vice versa during the reaction process, see e.g. plug flow reactors with
axial mixing, sometimes called a Tubular Reactor with Axial Dispersion (TRAD). The
second case is probably the most often used in practice since back-mixing of the fluid
inside the reactor occurs in a large number of configurations. The latter has been mod-
eled thanks to Fick’s and Fourier’s laws, see Varma and Aris (1977) or (Levenspiel,
1999, Chapter 13) for instance. The classification of the different reactors discussed
above is depicted in Figure 1.2.

Tubular reactors are sometimes called diffusion-convection-reaction reactors since
these three phenomena are considered when writing the mass and energy balances.
The diffusion phenomenon is symbolized by the displacement of atoms or molecules
from regions with high concentration to regions with low ones. The diffusion occurs
in tubular reactors notably because of the axial mixing. Moreover, the convection
models the heat transfer through the reactor and is due to the plug flow/laminar ef-
fect in tubular reactors. The reaction part pops up when the rate of transformation is
considered, as explained above.

Moreover, note that chemical reactors are most of the time nonisothermal since
reactions generate or absorb large amounts of heat (exothermic or endothermic reac-
tions), which produces variations in the temperature in the reactor. Consequently two
conflicting aspects have to be considered. On one hand, the temperature inside the re-
actors has to be sufficiently high to activate the reaction but on the other hand it cannot
blow up or be too high. In this case, the equilibrium limitation can limit the conversion
and slow the activation of the reaction down, but the most dangerous consequences of
temperature runaway are the release of undesirable chemicals or even the explosion in
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the case of under pressure batch reactors. For this reason, control of the temperature
inside chemical reactors is of great importance and will be studied in the following
parts of this thesis. The device that plays the role of the control is a heat exchanger
surrounding the reactor in which a fluid flows in order to regulate the temperature
inside the reactor. This device is of particular interest in the case of exothermic reac-
tions. Moreover, control of the temperature could also prevent the effects of large and
concentrated variations in the spatial profiles of the temperature and/or the concentra-
tion, often called "hot spots", see Lefèvre et al. (2000) for instance.

1.2 Mathematical model for different types of reactors
The equations governing the dynamic of a nonisothermal tubular reactor are nonlinear
partial differential equations (PDEs) derived from mass and energy balances, based
notably on the laws of thermodynamics. The different terms that composed the PDEs
come mainly from the elements that have been presented in Section 1.1. More partic-
ularly, the nonlinearities are located in the kinetic terms for which the Arrhenius law
is considered to express the temperature dependence. Power dependencies for the re-
actant concentrations are also taken into account. The reaction that will be considered
is of type A→ B, where A denotes the reactant and B the product, yielding a reaction
rate that depends on the reactant concentration, CA, and on the temperature, T , like
k0CAe−

E
RT as described above, see e.g. Varma and Aris (1977). In addition to this

nonlinearity, the linear part of the PDEs is called the diffusion-convection-reaction
part since it includes these different phenomena. The diffusion (or the axial disper-
sion) is written mathematically with a second order spatial derivative operator while
the convection is modeled by a first order spatial derivative operator.

As a first model, we shall consider a plug-flow tubular reactor with axial disper-
sion, see e.g. Dochain (2018); Varma and Aris (1977); Aksikas (2005) among others.
The quantities that are considered are the temperature inside the reactor, T [K], the
reactant concentration, CA[mol/l] and the product concentration, CB[mol/l]. The dy-
namics of these quantities are governed by the following set of nonlinear PDEs

∂T
∂τ (ζ ,τ) =−v ∂T

∂ζ (ζ ,τ)+
λea
ρCp

∂ 2T
∂ζ 2 (ζ ,τ)− ∆H

ρCp
k0CA(ζ ,τ)e

− E
RT (ζ ,τ)

+ 4h
ρCpd (1[0,L](ζ )Tw(τ)−T (ζ ,τ)),

∂CA
∂τ (ζ ,τ) =−v ∂CA

∂ζ (ζ ,τ)+Dma
∂ 2CA
∂ζ 2 (ζ ,τ)− k0CA(ζ ,τ)e

− E
RT (ζ ,τ) ,

∂CB
∂τ (ζ ,τ) =−v ∂CB

∂ζ (ζ ,τ)+Dma
∂ 2CB
∂ζ 2 (ζ ,τ)+ k0CA(ζ ,τ)e

− E
RT (ζ ,τ) ,

(1.2.1)

where the spatial and the time variables ζ and τ lie in the intervals [0,L] and [0,+∞),
respectively, L[m] being the length of the reactor. These are deduced by performing
mass and energy balances on a slice of infinitesimal thickness dζ during an infinitesi-
mal time dτ , under the assumption that there is no energy transfer from the reactor to
the heat exchanger and that the mass flow through the heat exchanger is sufficiently
large so that Tw does not depend on the position ζ ∈ [0,L]. The characteristic function
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1.2 Mathematical model for different types of reactors

Notation Unit Description
L m Reactor length
v m

s Fluid superficial velocity
∆H kJ

kg Heat of the reaction

ρ kg
m3 Fluid density

Cp
kJ

kgK Specific heat

k0
1
s Kinetic constant

E kJ
kg Activation energy

R kJ
kgK Gas constant

h kJ
m2 K s Wall heat transfer coefficient

d m Reactor diameter
Tw K Coolant temperature
Tin K Inlet temperature
Cin

mol
l Inlet reactant concentration

λea
kJ

msK Axial energy dispersion coefficient

Dma
m2

s Axial mass dispersion coefficient

Table 1.1 – System parameters.

1[0,L](z) is defined as taking the value 1 for ζ ∈ [0,L] and the value 0 elsewhere. The
meaning and the units of the parameters in (1.2.1) are summarized in Table 1.1. Note
that the coefficient ∆H determines whether the reaction is exothermic or endother-
mic. A negative value of ∆H produces an exothermic reaction while a positive value
of ∆H entails that the reaction is endothermic. The coefficients λea and Dma stand
for the axial energy dispersion coefficient and the axial mass dispersion coefficient,
respectively.

The variable Tw is the temperature in the heat exchanger surrounding the reactor
and is distributed around the reactor through the characteristic function 1[0,L]. This
variable often plays the role of a control action that enables to force the behavior of the
system. A schematic profile view of a plug-flow tubular reactor with axial dispersion
is depicted in Figure 1.3.

From a physical point of view, the variables T , CA and CB satisfy

0≤ T (ζ ,τ),0≤CA(ζ ,τ)≤Cin,0≤CB(ζ ,τ). (1.2.2)

This means that the temperature has to remain above the absolute zero temperature,
and that the reactant concentration cannot be below 0 and cannot exceed the inlet con-
centration, see Laabissi et al. (2001). To the PDEs (1.2.1) we associate the following
boundary conditions known as the Danckwert’s boundary conditions, see Danckwerts

23
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dζ

0 L

ζ

Plug Flow (Convection)

Axial Dispersion (Diffusion)

Nonlinear Reaction - Convection - Diffusion model

Figure 1.3 – Profile view of a plug-flow tubular reactor with axial dispersion actuated
by a surrounding heat exchanger.

(1953), and expressed as

λea
ρCp

∂T
∂ζ (0,τ) = v(T (0,τ)−Tin),Dma

∂CA
∂ζ (0,τ) = v(CA(0,τ)−Cin),

Dma
∂CB
∂ζ (0,τ) = vCB(0,τ)

λea
ρCp

∂T
∂ζ (L,τ) = 0,Dma

∂CA
∂ζ (L,τ) = 0,Dma

∂CB
∂ζ (L,τ) = 0,

(1.2.3)

where τ ∈ [0,+∞). The variables Tin and Cin can play the role of boundary control
actions in this context but they are going to be assumed constant in what follows.
Only the distributed control variable Tw will be considered for control purposes.

Note that the case where only the plug-flow is considered leads to the convection-
reaction model and is the same as (1.2.1) together with (1.2.3) where the diffusion
coefficients λea and Dma are set to 0. Moreover, from (1.2.1), it is easy to see that
the product concentration CB is directly deduced from the variables T and CA whose
dynamics are independent of CB. For this reason, the dynamics of CB will be often
omitted in what follows.

Despite the fact that this thesis is centered mainly on reactions of the form A→ B,
other more involved reactions such as the Van der Vusse or the Williams-Otto re-
actions could be considered, see e.g. Hudon et al. (2008) and Hudon et al. (2005),
respectively. On one hand, the Van der Vusse reaction reads as A→ B→C,2A→ D.
This takes three reactions into account, the first transforming A into B, the second
going from B to C and the last changing 2A into C. For taking this into account, one
should consider three quantities in the PDE, the temperature, the concentration of A
and the concentration of B. As an example, the three reaction rates are expressed in
the same manner as the one introduced in (1.2.1) by r1 = k1CAe−

E
RT ,r2 = k2CBe−

E
RT

and r3 = k3C2
Ae−

E
RT , where T,CA,CB and R have the same meanings as before. The

parameters ki, i = 1,2,3 are kinetic constants. On the other hand the Williams-Otto
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1.2 Mathematical model for different types of reactors

reaction is given by A+B→ 2C,B+ 2C→ P+ 2E,2C +P→ 3G, yielding to con-
sider the concentration of six chemical components, CA,CB,CC,CP,CE and CG. Many
others reactions are also available in Schmidt (1998).

The first question that will be under investigation is whether the PDE system
(1.2.1) together with the boundary conditions (1.2.3) possesses a unique solution that
has some useful properties such as continuous dependence on the initial profiles of
temperature and concentrations or invariance properties induced by the physical con-
straints (1.2.2). This will be discussed at the end of Chapter 2 in the case where no
control action is given to the system, i.e. Tw(τ) ≡ 0 for all τ ≥ 0. Then, still by con-
sidering the homogeneous case(2), the challenging question of existence and stability
of equilibria of (1.2.1) with (1.2.3) is studied in Chapter 3. In particular, perturbation
methods are used to achieve this objective. Although the question of existence of equi-
libria is studied for the nonlinear equation, the stability is first deduced on a linearized
version of (1.2.1). The extension of this question to the nonlinear case with appropri-
ate tools of functional analysis is available in Chapter 4. The control aspects related
to (1.2.1) with particular objectives such as the production of the best output concen-
tration are developed in Chapters 6 and 7 in the case where the diffusion coefficients
are set to 0, i.e. for the case of a plug-flow reactor.

(2)Homogeneous means that Tw(τ)≡ 0,τ ≥ 0 here.

25



Chapter 1 Regulation of the temperature in tubular reactors

26



Chapter 2
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This chapter aims at introducing the general framework of this thesis. Concepts
of functional analysis together with linear and nonlinear tools of system theory are
presented. The definitions and the theorems will be always motivated regarding the
application to chemical processes encountered in Chapter 1. In particular, theorems
that aim at proving the existence and uniqueness of solutions for the partial differential
equation modeling the dynamics of a chemical reactor will be used.

2.1 Linear system theory on Hilbert spaces
Let H be a (separable) Hilbert space, equipped with the inner product 〈·, ·〉H . For
x0 ∈ H and t ≥ 0, we consider the following abstract differential equation{

ẋ(t) = Ax(t),
x(0) = x0,

(2.1.1)

where the (possibly unbounded) time independent linear operator A : D(A)⊂H→H is
defined on a linear, closed and dense subspace D(A) of H, which is called the domain
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Chapter 2 Infinite-dimensional system theory

of the operator A. The notation (A,D(A)) will be frequently used in what follows to
speak of the operator A together with its domain. The question we ask is under which
conditions on A and D(A) (2.1.1) possesses a unique solution which lies in the space
H, and even in D(A). The answer in the case where H is finite-dimensional is quite
direct since the solution of (2.1.1) is given by the matrix exponential x(t) = etAx0. This
solution possesses some properties that are "the minimum we may ask" for a solution
of an ordinary differential equation (ODE). It gives the initial condition back when
evaluated at t = 0, it satisfies the composition law e(t+s)A = etAesA for all t,s ≥ 0 and
it is continuous with respect to time at 0, which implies the continuity at any time
due to the composition law. The extension to infinite-dimensions is not direct and
is intricate. To answer this question we need the concept of semigroup of bounded
linear operators, see (Curtain and Zwart, 2020; Pazy, 1983) among other books for an
overview on that topic.

Definition 2.1.1 Let us consider the operator-valued function T (t) in the set of
linear and bounded operators on the Hilbert space H, denoted L (H), for any t ∈
R+. It is called a strongly-continuous semigroup (C0−semigroup) if it satisfies
the following properties:

1. T (0) = IH ;

2. T (t + s) = T (t)T (s) for all t,s≥ 0;

3. ‖T (t)x0− x0‖H → 0 as t→ 0+ for all x0 ∈ H.

Note that the matrix exponential defined above in the case of a finite-dimensional
space H satisfies the properties of Definition 2.1.1. More generally, for any operator
A ∈L (H), one may define the operator-valued function

T (t) = etA :=
∞

∑
n=0

tnAn

n!
, (2.1.2)

for t ≥ 0. It is well-defined since the operator A ∈ L (H) and it can be easily ver-
ified that it satisfied the three properties of Definition 2.1.1. Therefore it defines a
C0−semigroup of bounded linear operators on H.

In order to be able to characterize the solution of (2.1.1) the following definition
is useful.

Definition 2.1.2 Let (T (t))t≥0 be a C0−semigroup of bounded linear operators
on H. The infinitesimal generator A of (T (t))t≥0 is defined as

Ax0 = lim
t→0+

T (t)x0− x0

t
, (2.1.3)

whenever the limit exists. The set of all x0 for which the limit exists is called the
domain of A and is noted D(A).

This definition allows us to link the solution of (2.1.1) with Definition 2.1.1. Provided
that the operator A is the infinitesimal generator of a strongly continuous semigroup
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2.1 Linear system theory on Hilbert spaces

(T (t))t≥0 on H, the solution of (2.1.1) is given by

x(t) = T (t)x0,

where x0 ∈ H is the initial condition given to the dynamical system (2.1.1).
Different types of solution of (2.1.1) may be distinguished, relying mainly on the

regularity of the initial condition.

Definition 2.1.3 A differentiable function x : [0,∞) → H is called a classical
solution of (2.1.1) if for all t ≥ 0 it holds that x(t) ∈D(A) and equation (2.1.1) is
satisfied.

Definition 2.1.4 A continuous function x : [0,∞)→ H is called a mild solution
of (2.1.1) if

∫ t
0 x(s)ds ∈ D(A),x(0) = x0 and

x(t)− x0 = A
∫ t

0
x(s)ds,

for all t ≥ 0.

The main difference between these two notions of solution of (2.1.1) is its regularity,
dealing with a solution which may be differentiated in the case it is classical and which
is continuous but not necessarily differentiable when it is mild.

2.1.1 Generation theorems
This part is dedicated to the theorems that give necessary and sufficient conditions in
order to prove that a closed, linear and densely defined operator A is the infinitesimal
generator of a C0−semigroup on a Hilbert space H. We shall focus on a particular class
of semigroups, the contraction semigroups, i.e. semigroups (T (t))t≥0 that satisfy

‖T (t)‖ ≤ 1,

for any t ≥ 0. Note that in what follows we shall tacitly assumed that when speaking
of an operator A, the latter is closed, linear and densely defined.

To start we need the following definition.

Definition 2.1.5 Let A be a closed, linear and densely defined operator on H.
The set of λ ∈ C that are such that the operator (λ I − A)−1 exists and is a
bounded linear operator on a dense domain of H is called the resolvent set of A
and is denoted ρ(A). For λ ∈ ρ(A), the operator (λ I−A)−1 =: R(λ ,A) is called
the resolvent operator of A.

In the next example it is shown how to compute the resolvent operator of the
diffusion operator and how to determine the corresponding resolvent set.
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Chapter 2 Infinite-dimensional system theory

Example 2.1.1 Let H := L2([0,1];R) and let the linear operator A be defined as
Ax = d2x

dz2 for x ∈ D(A) expressed as

D(A) =
{

x ∈ H,x a.c. ,
dx
dz

a.c. ,
d2x
dz2 ∈ H,

dx
dz

(0) = 0 =
dx
dz

(1)
}
, (2.1.4)

where a.c. means absolutely continuous. Computing the function (λ I−A)−1 f
for λ ∈ ρ(A) and f ∈ H consists in finding x ∈ D(A) such that the equation
(λ I−A)x = f is satisfied. Equivalently, by defining the variables x1(z) = x(z)
and x2(z) = dx

dz (z),z ∈ [0,1], it can be rewritten as

d
dz

(
x1
x2

)
=

(
0 1
λ 0

)(
x1
x2

)
−
(

0
f

)
whose solution is given by(

x1(z)
x2(z)

)
=

(
cosh(

√
λ z) sinh(

√
λ z)√

λ√
λ sinh(

√
λ z) cosh(

√
λ z)

)(
x1(0)
x2(0)

)

+
∫ z

0

(
cosh(

√
λ (z−ζ )) sinh(

√
λ (z−ζ ))√
λ√

λ sinh(
√

λ (z−ζ )) cosh(
√

λ (z−ζ ))

)(
0

f (ζ )

)
dζ . (2.1.5)

By taking the boundary conditions into account, one gets that x2(0) = 0 and
x2(1) = 0. This implies that the constant x1(0) is given by

x1(0) =
∫ 1

0 cosh(
√

λ (1−ζ )) f (ζ )dζ√
λ sinh(

√
λ )

. (2.1.6)

Combining (2.1.5), (2.1.6) and the relation x1 = x one gets that

((λ I−A)−1 f )(z) =cosh(
√

λ z)

[∫ 1
0 cosh(

√
λ (1−ζ )) f (ζ )dζ√

λ sinh(
√

λ )

]

−
∫ z

0

sinh(
√

λ (z−ζ ))√
λ

f (ζ )dζ .

The values of λ which are such that the previous expression makes sense are
those that satisfy

√
λ sinh(

√
λ ) 6= 0. This is equivalent to impose that λ 6= 0 and

− j sin( j
√

λ ) = sinh(
√

λ ) 6= 0, where j is such that j2 =−1. The last condition
is satisfied provided that j

√
λ 6= nπ,n ∈ Z. Equivalently, λ 6= −n2π2,n ∈ N.

Consequently, the resolvent set of A is given by

ρ(A) = C\
{
−n2π2,n ∈ N

}
. (2.1.7)

In order to be able to characterize the contraction property, the next definition will
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2.1 Linear system theory on Hilbert spaces

play an important role.

Definition 2.1.6 A linear operator A : D(A)⊂ H→ H is called dissipative, if

Re〈Ax,x〉H ≤ 0,x ∈ D(A). (2.1.8)

This definition generalizes the concept of negative definite matrices which is ex-
pressed as pTAp≤ 0 for any vector p ∈ Rn and a matrix A ∈ Rn×n,n ∈ N. When the
matrix A is associated to the dynamical system ṗ(t) = Ap(t), p(0) = p0 ∈ Rn, t ≥ 0,
the fact that A is negative definite translates in the fact that the energy p2(t) is dissi-
pating with time, or in other words that the system is dissipative. This gives intuition
about the terminology "dissipative".

Example 2.1.2 Let H := L2([0,1];R) be equipped with the standard inner prod-
uct

〈 f ,g〉H :=
∫ 1

0
f (z)g(z)dz, (2.1.9)

for f ,g ∈ H and let the linear operator A be defined as in Example 2.1.1. By
taking x ∈ D(A), it holds that

Re〈Ax,x〉H =
∫ 1

0

d2x
dz2 (z)x(z)dz =

[
x(z)

dx
dz

(z)
]1

0
−
∫ 1

0

(
dx
dz

(z)
)2

dz

=−
∫ 1

0

(
dx
dz

(z)
)2

dz≤ 0.

This shows that the one-dimensional diffusion operator with Neumann boundary
conditions is dissipative on the real Hilbert space of square integrable functions.

The next theorem (special case of the Hille-Yosida theorem) gives necessary and
sufficient conditions in order to show that a closed, linear and densely defined operator
is the infinitesimal generator of a C0− semigroup on a separable Hilbert space, see e.g.
(Jacob and Zwart, 2012, Theorem 6.1.3). The conditions that have to be satisfied are
related to the resolvent set and the resolvent operator.

Theorem 2.1.1 A necessary and sufficient condition for a closed, densely de-
fined, linear operator A on a Hilbert space H to be the infinitesimal generator of
a contraction semigroup is that (0,∞)⊂ ρ(A) and

‖R(λ ,A)‖ ≤ 1
λ
, for all λ > 0. (2.1.10)

We shall now give an illustration of this Theorem for a perturbed convection operator.

Example 2.1.3 Consider the closed, densely defined and linear operator Ax :=
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− dx
dz −αx,α > 0 for

x ∈ D(A) :=
{

x ∈ H1([0,1];R),x(0) = 0
}
,

where H1([0,1];R) is the Sobolev space of square integrable functions whose
generalized first order derivative is square integrable. The state space associated
to this operator is H = L2([0,1];R) equipped with the inner product (2.1.9). Let
us consider λ > 0 and f ∈ H. The resolvent operator R(λ ,A) applied to f at
some point z ∈ [0,1] is given by

(R(λ ,A) f )(z) =
∫ z

0
e(−α−λ )(z−ζ ) f (ζ )dζ , (2.1.11)

which means that any positive λ yields a linear and bounded resolvent operator,
leading to (0,∞)⊂ ρ(A). Moreover, observe that, for any x ∈ D(A), the relation

〈Ax,x〉=−1
2

x2(1)−α
∫ 1

0
x2(ζ )dζ ≤ 0

holds. This implies that the operator A is dissipative. According to the Cauchy-
Schwarz inequality, one may write that

‖(λ I−A)x‖‖x‖ ≥ 〈(λ I−A)x,x〉= λ‖x‖2−〈Ax,x〉 ≥ λ‖x‖2, (2.1.12)

where the relation holds for any x∈D(A) and any λ > 0. For an arbitrary f ∈H,
let us define x := (λ I−A)−1 f , see (2.1.11). Plugging this x in (2.1.12) entails
that

‖R(λ ,A) f‖ ≤ 1
λ
‖ f‖.

The Hille-Yosida Theorem leads to the conclusion that A is the infinitesimal gen-
erator of a contraction semigroup on H.

Let us present another theorem (Lumer-Philipps theorem) that provides alternative
necessary and sufficient conditions for the generation of a contration semigroup. The
latter is based on the dissipativity of the linear operator and a range condition, see
(Jacob and Zwart, 2012, Theorem 6.1.7) among others.

Theorem 2.1.2 Let A be a closed, linear and densely defined operator on a
Hilbert space H. Then the operator A is the infinitesimal generator of a con-
traction C0−semigroup on H if and only if A is dissipative and ran(I−A) = H.

In order to test that theorem, let us consider the operator of Example 2.1.1 and let us
show that is the generator of a C0−semigroup on H = L2([0,1];R).

Example 2.1.4 The dissipativity of the operator A defined in Example 2.1.1 is
proved in Example 2.1.2. In order to show that A is the infinitesimal generator
of a C0−semigroup, it remains to show the range condition ran(I−A) = H. The
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inclusion ran(I−A) ⊆ H is easy to see. Let us now take x ∈ H and let us prove
that there exists y ∈ D(A) such that (I−A)y = x. According to Example 2.1.1
such a y is given by

((I−A)−1x)(z) =
cosh(z)
sinh(1)

∫ 1

0
cosh((1−ζ )) f (ζ )dζ −

∫ z

0
sinh((z−ζ )) f (ζ )dζ .

It is well-defined since 1∈ ρ(A), see (2.1.7), and it lies in the domain of the oper-
ator A. This implies that the one-dimensional diffusion operator with Neumann
boundary conditions generates a contraction C0− semigroup on H.

A last variant we shall go through is a corollary of the Lumer-Philipps Theorem,
reported in (Jacob and Zwart, 2012, Theorem 6.1.8) for instance.

Theorem 2.1.3 Let A be a linear, densely defined and closed operator on a
Hilbert space H. Then A is the infinitesimal generator of a contraction C0−
semigroup if and only if A and A∗ are dissipative, where A∗ is the adjoint opera-
tor of A.

The example on which the corollary of the Lumer-Phillips Theorem is applied
corresponds to the linear part of the PDE introduced in Chapter 1.

Example 2.1.5 Let us consider the Hilbert state space of square integrable func-
tions H = L2([0,1];R) equipped with the inner product (2.1.9). We define the
operator A by Ax = 1

Pe
d2x
dz2 − dx

dz −k0x for x ∈D(A) := {x ∈H2([0,1];R), dx
dz (0) =

Pex(0), dx
dz (1) = 0}, where the parameters Pe > 0 and k0 > 0. A calculation re-

veals that the adjoint operator of A, denoted by A∗, is given by A∗y = 1
Pe

d2y
dz2 +

dy
dz − k0y for y ∈ D(A∗) = {y ∈ H2([0,1];R), dy

dz (0) = 0, dy
dz (1) = −Pey(1)}. By

taking x ∈ D(A) we have that

〈Ax,x〉= 1
Pe

∫ 1

0

d2x
dz

(z)x(z)dz−
∫ 1

0

dx
dz

(z)x(z)dz− k0

∫ 1

0
x2(z)dz

=−1
2

x2(0)− 1
2

x2(1)−
∫ 1

0

(
dx
dz

)2

(z)dz− k0

∫ 1

0
x2(z)dz≤ 0,

which means that the operator A is dissipative. Same types of arguments may be
used to show that, for y ∈ D(A∗)

〈A∗y,y〉 ≤ −1
2

y2(1)− 1
2

y2(0)− 1
Pe

∫ 1

0

(
dy
dz

)2

(z)dz− k0

∫ 1

0
y2(z)dz≤ 0,

i.e. A∗ is a dissipative operator. By using Theorem 2.1.3 one may conclude that
the operator A is the infinitesimal generator of a contraction semigroup on the
Hilbert space H.
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2.1.2 Riesz-spectral operators
In this section, we introduce a class of operators which satisfy a spectral decompo-
sition as matrices in finite dimensions and for which the spectrum is composed of
eigenvalues only. First let us consider the following definition of a Riesz basis, see
(Curtain and Zwart, 2020, Definition 3.2.1).

Definition 2.1.7 A sequence of vectors {φn}n≥1 in a Hilbert space H forms a
Riesz basis for H if the following conditions hold:

1. span
n≥1
{φn}= H;

2. There exist m > 0 and M > 0 such that for arbitrary N ∈ N and arbitrary
scalars {αn}n≥1,

m
N

∑
n=1
|αn|2 ≤ ‖

N

∑
n=1

αnφn‖2 ≤M
N

∑
n=1
|αn|2. (2.1.13)

This definition entails that any orthonormal basis of a Hilbert space H is a Riesz basis
for H. The notion of Riesz basis can be viewed as an extension of orthonormal basis
according to the following lemma, see (Curtain and Zwart, 2020, Lemma 3.2.4).

Lemma 2.1.1 Let {φn}n≥1 be a Riesz basis of a Hilbert space H. Then it holds
that:

1. There exists a unique biorthogonal sequence {ψn}n≥1, i.e. 〈φn,ψm〉= δnm;

2. Every z ∈ H can be represented uniquely by

z =
∞

∑
n=1
〈z,ψn〉φn,

and

m
∞

∑
n=1
|〈z,ψn〉|2 ≤ ‖z‖2 ≤M

∞

∑
n=1
|〈z,ψn〉|2,

where the constants m and M come from (2.1.13).

Moreover, we want to stress in the following lemma that any Riesz basis can be ob-
tained from an orthonormal basis thanks to an invertible linear and bounded operator,
see (Curtain and Zwart, 2020, Lemma 3.2.2).

Lemma 2.1.2 Suppose that {en}n≥1 is an orthonormal basis for the Hilbert
space H. Then {φn}n≥1 forms a Riesz basis for H if and only if there exists
an operator T ∈L (H) such that T is boundedly invertible and Ten = φn. For
a given Riesz basis this operator T can be chosen such that ‖T‖2 ≤ M and
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‖T−1‖2 ≤ m−1. Moreover, if the Riesz basis is constructed via Ten = φn, then
M = ‖T‖2 and m−1 = ‖T−1‖2.

Before defining a Riesz spectral operator, let us consider the following characteri-
zation coming from (Curtain and Zwart, 2020, Lemma 3.2.5).

Lemma 2.1.3 Suppose that a closed, linear operator A on a Hilbert space H
has simple eigenvalues {λn}n≥1 and that its corresponding eigenvectors {φn}n≥1
form a Riesz basis in H. If {ψn}n≥1 are the eigenvectors of the adjoint of A
corresponding to the eigenvalues {λn}n≥1, then the {ψn}n≥1 can be suitably
scaled so that {φn}n≥1 and {ψn}n≥1 are biorthogonal.

The previous considerations allow to introduce the definition of a Riesz-spectral
operator, see (Curtain and Zwart, 2020, Definition 3.2.6).

Definition 2.1.8 Suppose that A is a linear, closed operator on a Hilbert space
H. Assume that A has simple eigenvalues {λn}n≥1 with corresponding eigenvec-
tors {φn}n≥1. If

1. {φn}n≥1 form a Riesz basis of H;

2. The set of eigenvalues {λn}n≥1 has at most finitely many accumulation
points,

then A is called a Riesz-spectral operator.

In order to illustrate the concept of Riesz operator, we shall use the operator of
Example 2.1.1 again. It has been shown in (2.1.7) that the resolvent set of A is
given by ρ(A) = C \ {−n2π2,n ∈ N}, which means that the spectrum of the oper-
ator A is composed of only eigenvalues which are given by {−n2π2}n≥0. More-
over, it can be easily seen that the eigenfunctions of the operator A are given by
1[0,1](z)∪{

√
2cos(nπz)}n≥1. This set of eigenfunctions is an orthonormal basis of

H := L2([0,1];R) and hence a Riesz basis. According to Definition 2.1.8, the diffu-
sion operator with Neumann boundary conditions is a Riesz spectral operator.

The class of Riesz spectral operators possesses nice properties in terms of genera-
tion of C0−semigroups, resolvent operators, ... . This is summarized in the following
Theorem, see (Curtain and Zwart, 2020, Theorem 3.2.8) for instance.

Theorem 2.1.4 Suppose that A is a Riesz-spectral operator with simple eigen-
values {λn}n≥1 and corresponding eigenvectors {φn}n≥1. Let {ψn}n≥1 be the
eigenvectors of A∗ such that 〈φn,ψm〉= δnm. Then A satisfies the following prop-
erties:

• The resolvent set ρ(A) is given by {λ ∈ C, inf
n≥1
|λ −λn|> 0}, the spectrum
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of A has the expression σ(A) = {λn}n≥1 and for λ ∈ ρ(A), it holds that

(λ I−A)−1 =
∞

∑
n=1

1
λ −λn

〈·,ψn〉φn;

• The operator A has the representation

Ax =
∞

∑
n=1

λn〈x,ψn〉φn (2.1.14)

for x ∈ D(A) given by D(A) = {x ∈ H,∑∞
n=1 |λn|2|〈x,ψn〉|2 < ∞};

• A is the infinitesimal generator of a C0−semigroup (T (t))t≥0 if and only if
sup
n≥1

Re(λn)< ∞ and T (t) is given by

T (t) =
∞

∑
n=1

eλnt〈·,ψn〉φn; (2.1.15)

• The growth bound of (T (t))t≥0 is given by

ω0 = inf
t>0

(
1
t

log‖T (t)‖
)
= sup

n≥1
Re(λn). (2.1.16)

Note that the relation (2.1.16) means that in the case of a Riesz-spectral operator,
the growth bound of the semigroup of which it is the infinitesimal generator may be
viewed as a generalization of what is called the spectral abscissa for matrices.

According to the latter theorem, the spectral representation of the linear diffusion
operator with Neumann boundary conditions is given by

Ax =−
∞

∑
n=1

2n2π2〈x,cos(nπz)〉cos(nπz),

for x ∈ D(A) given by (2.1.4). Moreover, the corresponding generated semigroup
(T (t))t≥0 is expressed as

T (t)x = 〈x,1[0,1]〉1[0,1](z)+2
∞

∑
n=1

e−n2π2t〈x,cos(nπz)〉cos(nπz),

for t ≥ 0 and x ∈ H.

2.1.2.1 Sturm-Liouville operators

Finding the spectrum and the eigenfunctions of an operator may be difficult in many
cases. Therefore, we shall consider a particular class of systems that is of prime
importance in the context of Riesz-spectral operators and which is called the class of
Sturm-Liouville systems.
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Let us consider the state space of square integrable functions H = L2([a,b];K)
where a,b ∈ R,a < b and K is an arbitrary vector field. Let us consider the class of
operators A defined on the domain D(A) expressed as

D(A) =
{

x ∈ H2([a,b];K),αa
dx
dz

(a)+βax(a) = 0,αb
dx
dz

(b)+βbx(b) = 0
}
,

(2.1.17)
where (αa βa) 6= (0 0),(αb βb) 6= (0 0). The operator A is said to be a Sturm-
Liouville operator if it admits the representation

(Ax)(z) =
1

r(z)

(
d
dz

(
−p(z)

dx
dz

(z)
)
+q(z)x(z)

)
, (2.1.18)

where p, d p
dz ,q and r are real-valued and continuous functions such that r > 0, p > 0,

see e.g. Delattre et al. (2003). The following lemma makes the link between Sturm-
Liouville and Riesz-spectral operators, see (Delattre et al., 2003, Lemma 1).

Lemma 2.1.4 Let A be the negative of a Sturm-Liouville operator (2.1.18) de-
fined on its domain (2.1.17). Then

1. A is a Riesz-spectral operator,

2. A is the infinitesimal generator of a C0−semigroup of bounded linear op-
erators on H.

As an illustration, let us consider the operator A of Example 2.1.5. It can be seen that
its opposite admits the representation (2.1.18) where the functions r, p and q are given
by

r(z) = e−Pez, p(z) =
1
Pe

r(z),q(z) = k0r(z).

Moreover, the domain of A may be written as (2.1.17) with

(αa βa) = (1 −Pe),(αb βb) = (1 0).

Consequently, the operator A described in Example 2.1.5 is a Riesz-spectral operator.

2.1.2.2 Perturbation of Riesz-spectral operators

A natural question one may asked is under which types of perturbation a Riesz-spectral
operator preserves that property. Let us consider the state Hilbert space H equipped
with the inner product 〈·, ·〉H . Let A : D(A)⊂ H→ H be a Riesz-spectral operator on
H whose spectrum is composed only of the eigenvalues {λn}n∈N. On the spectrum of
A, we make the following assumption:

sup
m∈N

∞

∑
n=0
n 6=m

1
|λn−λm|2

= κ, (2.1.19)
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for some positive and finite constant κ . This entails that the following condition holds:

inf
n,m∈N,n 6=m

|λn−λm|= µ,µ > 0. (2.1.20)

Indeed, assume by contradiction that this does not hold. Let us take any k ∈ N such
that κ ≤ k2. Then there exists λnk ,λmk such that |λnk −λmk | ≤ 1/k, which implies that
the sum of the series in (2.1.19) exceeds k2, leading to a contradiction.

The condition (2.1.20) is imposed in order to be able to characterize the spectrum
of a particular perturbation of the operator A, see later in (2.1.21). It could be viewed
as a bit restrictive but it is useful to preserve what is called the spectrum determined
growth assumption (SDGA). This says that the growth bound of a C0−semigroup is
given by the supremum of the real part of the eigenvalues of its infinitesimal generator,
which is a priori not guaranteed in infinite dimensions. For an overview on the root
locii and the preservation of the SDGA under bounded perturbation, we refer to Jacob
and Morris (2016).

Let us consider b,c ∈ H and define the operator Ap as the following perturbation
of the operator A:

Ap = A+b〈c, ·〉H . (2.1.21)

Thanks to condition (2.1.19), the operator Ap defined in (2.1.21) is still a Riesz-
spectral operator whose spectrum is composed of eigenvalues only. This result may
be found in (Shun-Hua, 1981, Theorem 2.1) in the case where A is self-adjoint. An
extension to non necessarily self-adjoint operators has been considered in (Curtain,
1985, Appendix B). This result may be useful for instance in the case where optimal
control of the following class of systems is considered:{

ẋ(t) = Ax(t)+Bu(t),x(0) = x0 ∈ H
y(t) =Cx(t),

where the (unbounded) linear operator A : D(A)⊂H→H is a Riesz-spectral operator
whose eigenvalues satisfy (2.1.19), the control operator B : R→ H is defined as Bu =
bu for some function b ∈ H and the observation operator C : H→ R is given as Cx =
〈c,x〉H , with c ∈ H. An optimal control law u(t) which minimizes the functional cost

J(u,x0) =
∫

∞

0

(
‖Cx(t)‖2 +‖u(t)‖2)dt

is known to be given(1) by the linear state feedback u(t) = Kox(t) = 〈ko,x(t)〉H for
some function ko ∈ H, see (Winkin et al., 2004, Section 4.2) for instance. This entails
that the closed-loop operator A+b〈ko, ·〉H is a Riesz-spectral operator.

As an illustration let us consider the operator A of Example 2.1.1 again. Let us fix
an arbitrary small σ > 0 and let us define the operator Ap as

Apx = Ax− 1
`

1[0,`](z)〈x,1[0,1]〉, (2.1.22)

(1)We make here the assumptions that the pairs (A,B) and (C,A) are exponentially stabilisable and de-
tectable, respectively, see Definition 2.1.10 in the next section.
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where x ∈ D(Ap) = D(A) given in (2.1.4). The operator Ap arises for instance when
trying to positively stabilize the heat equation with Neumann boundary conditions
with the integral state feedback u(t) =−∫ 1

0 x(z, t)dz distributed on a window of width
` right of z = 0, see (Abouzaïd et al., 2021, Section 5.2). As already noticed, the oper-
ator A is of Riesz-spectral type with eigenvalues {λn}n∈N = {−n2π2}n∈N. Therefore
it can be checked that the condition (2.1.19) holds. In particular there holds

sup
m∈N

∞

∑
n=0
n 6=m

1
|λn−λm|2

≤ 1
6π2 .

Consequently, the operator Ap is a Riesz spectral operator. Computations reveal that
the eigenvalues of Ap are given by {λ p

n }n∈N = {−1} ∪ {−n2π2}n≥1 and the corre-
sponding eigenfunctions are expressed as

φ p
0 (z) = Kφ p

0

[
cos(z)

(
sin( `2 )

`
2

cos( 2−`
2 )

sin(1)

)

+1[`,1](z)
sin( `2 )

`
2

sin(z− `

2
)+

1
`

1[0,`](z)(1− cos(z))

]
,

φ p
n (z) =

√
2cos(nπz),n ∈ N0.

The eigenfunctions of the adjoint operator(2) of Ap are given by

ψ p
0 (z) = Kψ01[0,1](z),

ψ p
n (z) = Kψn

[
nπ`

sin(nπ`)

(
1− 1

n2π2

)
cos(nπz)+

1
n2π2

]
,

where n ∈ N0. The constants Kφ p
0
,Kψn ,n ≥ 0 are such that the sequences {φ p

n }n∈N
and {ψ p

n }n∈N are biorthogonal, i.e. 〈φ p
n ,ψ p

m〉H = δnm. Thanks to Theorem 2.1.4 the
operator Ap (2.1.22) may be decomposed as

Apx =
∞

∑
n=0

λ p
n 〈x,ψ p

n 〉Hφ p
n ,

for any x ∈ D(Ap). Moreover, this operator is known to generate a C0−semigroup of
bounded linear operators whose expression is given by

Tp(t)x =
∞

∑
n=0

eλ p
n t〈x,ψ p

n 〉Hφ p
n ,

where x is allowed to be chosen arbitrarily in H.

(2)It is expressed as A∗p = A∗+ 1
` 1[0,1](z)〈·,1[0,`]〉H = A+ 1

` 1[0,1](z)〈·,1[0,`]〉H .

39



Chapter 2 Infinite-dimensional system theory

2.1.3 Stability analysis
Here we aim at describing the asymptotic behavior of solutions of the abstract dif-
ferential equation (2.1.1). In particular, we shall consider the exponential decay of
the trajectories of (2.1.1), i.e. of the C0−semigroup (T (t))t≥0, also called exponential
stability, see Curtain and Zwart (2020).

Definition 2.1.9 A strongly continuous semigroup (T (t))t≥0 of bounded linear
operators on a Hilbert space H is exponentially stable if there exist positive con-
stants M and α such that

‖T (t)‖ ≤Me−αt , t ≥ 0. (2.1.23)

If the C0−semigroup (T (t))t≥0 whose infinitesimal generator is the operator A from
(2.1.1) is exponentially stable, then the solution of (2.1.1) with initial condition x0 ∈H,
i.e. x(t) = T (t)x0, converges exponentially fast to 0 when t tends to ∞.

Some characterizations are available for determining whether a C0−semigroup is
exponentially stable or not. Let us first consider Datko’s lemma which gives necessary
and sufficient conditions for the exponential stability.

Lemma 2.1.5 The C0−semigroup (T (t))t≥0 on the Hilbert space H is exponen-
tially stable if and only if for every x ∈ H there exists a positive constant γx < ∞

(that may depend on x) such that∫
∞

0
‖T (t)x‖2

H ≤ γx. (2.1.24)

As an example of Datko’s lemma, let us consider the operator A defined by

Ax =
d2x
dz2 +

√
2

2
x−
√

2+
√

6
2

1[0,1](z)
∫ 1

0
x(z)dz, (2.1.25)

where x∈D(A) = {x∈H2([0,1];R), dx
dz (0) = 0= dx

dz (1)} and for which the state space
is H = L2([0,1];R). This operator can be viewed as a perturbation of the diffusion
operator defined in Example 2.1.1. It may pop up as the result of the resolution of the
following optimal control(3) problem minu(·)∈L2([0,∞);R)

∫
∞

0

((∫ 1

0
x(z, t)dz

)2

+u2(t)

)
dt

subject to ∂x
∂ t =

∂ 2x
∂ z2 +

√
2

2 x+1[0,1](z)u(t),x(0, t) = x0(z).

(2.1.26)

It can be shown that the latter is a Riesz-spectral operator whose eigenvalues are sim-
ple and given by the set {λn}n∈N = {−

√
6

2 }∪{−n2π2 +
√

2
2 }n∈N0 . The corresponding

eigenfunctions are the same as the ones of the non-perturbed diffusion operator, i.e.

(3)The resulting optimal control u∗(t) =−
√

2+
√

6
2

∫ 1
0 x(z, t)dz and has been obtained by solving an appro-

priate Riccati equation.
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{φn}n∈N = {1[0,1](z)}∪{
√

2cos(nπz)}n∈N0 . An easy computation reveals also that the
operator A defined in (2.1.25) is self-adjoint with respect to the classical inner product
whose H is equipped with. Consequently, A admits the spectral representation

Ax =
∞

∑
n=0

λn〈x,φn〉Hφn,

where the function x ∈ D(A). Hence, the corresponding semigroup (T (t))t≥0 is given
by

(T (t)x)(z) = e
−
√

6
2 t〈x,1[0,1]〉H1[0,1](z)+2

∞

∑
n=1

e(−n2π2+
√

2
2 )t〈x,cos(nπz)〉H cos(nπz),

where x may be chosen in H. A computation of ‖T (t)x‖2
H = 〈T (t)x,T (t)x〉H gives

rise to

‖T (t)x‖2
H = e−

√
6t〈x,1[0,1]〉2H +2

∞

∑
n=1

e(−2n2π2+
√

2)t〈x,cos(nπz)〉2H ,

which has the consequence that∫
∞

0
‖T (t)x‖2

Hdt =
1√
6
〈x,1[0,1]〉2H +2

∞

∑
n=1

1
n2π2−

√
2
〈x,cos(nπz)〉2H .

According to the Cauchy-Schwarz inequality, it can be shown that

∫
∞

0
‖T (t)x‖2

Hdt ≤ ‖x‖2
H

(
1√
6
+

∞

∑
n=1

1
n2π2−

√
2

)
=: γx < ∞,

which is a statement of exponential stability according to Lemma 2.1.5.

Remark 2.1.1 Note that a generalization of Datko’s Lemma consists in showing
that the integral ∫

∞

0
‖T (t)x‖p

Hdt

is convergent for every x ∈ H, for some p ∈ [1,∞). This result can be found in
Buse et al. (2006) and (Pazy, 1983, Theorem 4.1) for instance and is valid also
when H is not necessarily a Hilbert space.

An information that can help to conclude on exponential stability of a C0− semi-
group is its Growth bound. The latter has already been defined in Theorem 2.1.4. In
that way, the following result makes the link between the sign of the growth bound of
a C0−semigroup (T (t))t≥0 and the exponential stability of (T (t))t≥0.
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Proposition 2.1.5 Let us consider the strongly continuous semigroup (T (t))t≥0
on a Hilbert space H. Then, (T (t))t≥0 is exponentially stable if and only if its
growth bound is negative.

Proof. Let us start with the sufficiency. Let ω0 = inft>0
1
t log‖T (t)‖ be the growth

bound of (T (t))t≥0. According to (Curtain and Zwart, 2020, Theorem 2.1.7 e.), for
any ω > ω0, there exists Mω such that the relation ‖T (t)‖ ≤Mω eωt holds for all t ≥ 0.
Hence, the negativity of ω0 implies exponential stability of (T (t))t≥0.

Assume now that (T (t))t≥0 is exponentially stable. Then, for any t ≥ 0, there
holds ‖T (t)‖ ≤ Me−αt , for positive constants M and α . Without loss of generality
let us assume that M > 1 here (this is always possible since Me−αt is a positive and
increasing function of M). Define the time instant t∗ := log(2M)

α > 0. Then for t∗, we
have that ‖T (t∗)‖ ≤ 1

2 , which means that ω0 = inft>0
1
t log‖T (t)‖ ≤ 1

t∗ log‖T (t∗)‖<
0. �

This proposition has the consequence that for a Riesz-spectral operator A with
simple eigenvalues {λn}n∈N, the corresponding C0−semigroup is exponentially stable
if and only if supn∈NRe(λn)< 0, see (2.1.16).

To highlight this result, let us take the operator A of Example 2.1.5 again. It
has been shown that the latter is a Riesz-spectral operator. The calculation of its
eigenvalues reveals that

{λn}n∈N =

{
−Pe

4
s2

n−
Pe
4
− k0

}
n∈N

, (2.1.27)

where the positive numbers {sn}n∈N are the solutions of the resolvent equation

tan
(

Pe
2

sn

)
=

2sn

s2
n−1

.

Note also as an information that the eigenfunctions of the operator A are expressed as

{φn(z)}n∈N = Kn

(
e

Pe
2 z
[

sin
(

Pe
2

z
)
+ sn cos

(
Pe
2

z
)])

, z ∈ [0,1],

where Kn is a constant that normalizes φn. Given the expression of {λn}n∈N (2.1.27),
it is easy to see that

sup
n∈N

Re(λn)<−
Pe
4
− k0 < 0,

which means that the C0−semigroup generated by the operator A is exponentially
stable.

We shall now consider another tool that gives necessary and sufficient conditions
for proving exponential stability of a C0−semigroup.
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Theorem 2.1.6 Assume that the operator A is the infinitesimal generator of the
C0−semigroup (T (t))t≥0 on the Hilbert space H. Then (T (t))t≥0 is exponentially
stable if and only if there exists a positive operator P ∈L (H) such that

〈Ax,Px〉+ 〈Pz,Az〉=−〈x,x〉, (2.1.28)

for all x ∈ D(A).

This theorem is known as the Lyapunov Theorem and (2.1.28) is called a Lyapunov
equation. Note that another version of that theorem exists, where the relation (2.1.28)
is replaced by

〈Ax,Px〉+ 〈Pz,Az〉 ≤ −〈x,x〉,x ∈ D(A). (2.1.29)

As an illustration, let us consider the application of (Curtain and Zwart, 2020,
Example 2.3.5) which deals with the following abstract differential equation

d2x
dt2 +α

dx
dt

+A0x = 0,x(0) = x0,
dx
dt

(0) = x1, (2.1.30)

where it is assumed that the operator A0 : D(A0)⊂H→H is a self-adjoint and coercive
operator(4) on the Hilbert space H (equipped with the real inner product 〈·, ·〉H ) and

α > 0. Let us introduce the Hilbert space Z = D(A
1
2
0 )×H with the inner product

〈w, w̃〉Z = 〈A
1
2
0 w1,A

1
2
0 w̃1〉H + 〈w2, w̃2〉H , (2.1.31)

for w=(w1 w2)
T ∈D(A

1
2
0 )×H and w̃=(w̃1 w̃2)

T ∈D(A
1
2
0 )×H. Note that (2.1.30)

may also be written as
Ẋ(t) = AX(t),X(0) = X0, (2.1.32)

where the state vector X(t) = (x(t) dx
dt (t))

T and the operator A : D(A) = D(A0)×
D(A

1
2
0 )⊂ Z→ Z is defined by

A =

(
0 I
−A0 −αI

)
. (2.1.33)

According to (Curtain and Zwart, 2020, Example 2.3.5) the operator A is the infinites-

imal generator of a C0−semigroup on Z = D(A
1
2
0 )×H. We shall show in the next

proposition that the latter is exponentially stable.

Proposition 2.1.7 The C0−semigroup (T (t))t≥0 whose operator A defined in

(2.1.33) is the infinitesimal generator, is exponentially stable on Z = D(A
1
2
0 )×H.

(4)This means that there exists a positive constant k such that 〈A0x,x〉H ≥ k‖x‖2
H for every x ∈ H. As

a consequence, the operator A0 is boundedly invertible, i.e. A−1
0 ∈L (H), see (Curtain and Zwart, 2020,

Lemma A.3.85)
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Proof. Let us define the operator P : Z→ Z by

P =

( 1
α I + α

2 A−1
0

1
2 A−1

0
1
2 I 1

α I

)
. (2.1.34)

Let us check that the operator A−1
0 is bounded from D(A

1
2
0 ) into itself. For this pick

any w1 ∈ D(A
1
2
0 ) and observe that

‖A−1
0 w1‖2

D(A
1
2
0 )

= 〈A
1
2
0 A−1

0 w1,A
1
2
0 A−1

0 w1〉H = 〈A−1
0 w1,w1〉H ≤ ‖A−1

0 ‖‖w1‖2
H .

As the operator A0 is boundedly invertible, so is its square root A
1
2
0 , see (Curtain and

Zwart, 2020, Lemma A.3.84). Consequently, it holds that

‖A−1
0 w1‖2

D(A
1
2
0 )

≤ ‖A−1
0 ‖‖w1‖2

H = ‖A−1
0 ‖‖A

− 1
2

0 A
1
2
0 w1‖2

H

≤ ‖A−1
0 ‖‖A

− 1
2

0 ‖2〈A
1
2
0 w1,A

1
2
0 w1〉H =C‖w1‖2

D(A
1
2
0 )

,

where C := ‖A−1
0 ‖‖A

− 1
2

0 ‖2. Using the boundedness of A−1
0 on H and the previous

arguments implies that the operator P is bounded from Z into Z. Moreover, according
to (Curtain and Zwart, 2020, Exercise 4.11), the operator P =

(
P11 P12
P21 P22

)
is self-adjoint

for the inner product defined in (2.1.31) if and only if P22 is self-adjoint, P11D(A0)⊂
D(A0),P∗11A0 =A0P11 on D(A0) and P∗12A0 =P21 on D(A0). According to (2.1.34), it is
easy to see that P22 is self-adjoint and that P11D(A0)⊂ D(A0). The facts that P∗11A0 =
A0P11 on D(A0) and P∗12A0 = P21 on D(A0) come from the relation(5) (A−1

0 )∗ = A−1
0 .

Moreover for w = (w1 w2)
T ∈ Z, it holds that

〈Pw,w〉Z = 〈 1
α

A
1
2
0 w1 +

α
2

A
1
2
0 A−1

0 w1,A
1
2
0 w1〉H + 〈1

2
A

1
2
0 A−1

0 w2,A
1
2
0 w1〉H

+
1
2
〈w1,w2〉H +

1
α
〈w2,w2〉H

=
1
α
〈A

1
2
0 w1,A

1
2
0 w1〉H +

α
2
〈w1,w1〉H + 〈w1,w2〉H +

1
α
〈w2,w2〉H

≥ 1
2α
〈A

1
2
0 w1,A

1
2
0 w1〉H + 〈

√
α√
2

w1 +
1√
2α

w2,

√
α√
2

w1 +
1√
2α

w2〉H

+
1

2α
〈w2,w2〉H ≥

1
2α
‖w‖2

Z ,

which shows that P is coercive. Furthermore, by taking w = (w1 w2)
T ∈ D(A) and

by looking at the quantity 〈Aw,Pw〉Z + 〈Pw,Aw〉Z , one gets that

〈Aw,Pw〉Z + 〈Pw,Aw〉Z = 2〈Aw,Pw〉Z
(5)This holds since A0 is self-adjoint and has a bounded inverse.
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= 2
〈(

w2
−A0w1−αw2

)
,

( 1
α w1 +

α
2 A−1

0 w1 +
1
2 A−1

0 w2
1
2 w1 +

1
α w2

)〉
Z

=
2
α
〈A

1
2
0 w2,A

1
2
0 w1〉H +α〈A

1
2
0 w2,A

1
2
0 A−1

0 w1〉H + 〈A
1
2
0 w2,A

1
2
0 A−1

0 w2〉H

−〈A0w1,w1〉H −
2
α
〈A0w1,w2〉H −α〈w2,w1〉H −2〈w2,w2〉H . (2.1.35)

As the elements A−1
0 w1 and A−1

0 w2 are in D(A0) by construction and as the relation

〈A0w1,w1〉H = 〈A
1
2
0 w1,A

1
2
0 w1〉H holds for any w1 ∈ D(A0), the relation (2.1.35) can

also be written as

〈Aw,Pw〉Z + 〈Pw,Aw〉Z =
2
α
〈w2,A0w1〉H +α〈w2,w1〉H + 〈w2,w2〉H

−〈A
1
2
0 w1,A

1
2
0 w1〉H −

2
α
〈A0w1,w2〉H −α〈w2,w1〉H −2〈w2,w2〉H

=−〈A
1
2
0 w1,A

1
2
0 w1〉H −〈w2,w2〉H =−

∥∥∥∥(w1
w2

)∥∥∥∥2

Z
.

The conclusion follows thanks to Theorem 2.1.6. �

This example pops up for instance when looking at the damped wave equation
with Dirichlet boundary condition at one hand and Neumann boundary condition at
the other hand. The displacement of the wave at time t ∈ [0,∞) and position z ∈ [0,1],
denoted by x(t,z), is subject to the PDE{

∂ 2x
∂ t2 = ∂ 2x

∂ z2 −α ∂x
∂ t

x(t,0) = 0, ∂x
∂ z (t,1) = 0,

(2.1.36)

where α > 0 is a positive parameter coming from the damping. The PDE (2.1.36) ad-
mits the representation (2.1.32) with A being defined as (2.1.33), where A0 : D(A0)⊂
H→H,H = L2([0,1];R) is given by A0 =− d2

dz2 on D(A0) = {x∈H2([0,1];R),x(0) =
0 = dx

dz (1)}. Thanks to the Poincaré inequality, it can be shown that

〈A0x,x〉H =
∫ 1

0

(
dx
dz

)2

dz≥ π2

4
‖x‖2

H ,

which implies that A0 is coercive. As it is also self-adjoint, it admits a unique nonneg-
ative square-root whose domain is expressed as

D(A
1
2
0 ) = {x ∈ H1([0,1];R),x(0) = 0},

see e.g. (Tucsnak and Weiss, 2009, Chapter 3). This allows to consider the Hilbert

state space Z = D(A
1
2
0 )×H equipped with the inner product

〈w, w̃〉Z = 〈A
1
2
0 w1,A

1
2
0 w̃1〉H + 〈w2, w̃2〉H = 〈dw1

dz
,

dw̃1

dz
〉H + 〈w2, w̃2〉H , (2.1.37)
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Figure 2.1 – Z−norm of the solution pair (x(z, t) ∂x
∂ t (z, t)) of (2.1.36).

for w = (w1,w2) ∈ D(A
1
2
0 ) and w̃ = (w̃1, w̃2) ∈ H. Hence, according to Proposition

2.1.7, the Z−norm of the solution pair (x(z, t) ∂x
∂ t (z, t)) of (2.1.36) converges ex-

ponentially fast to 0 when t goes to ∞. This is illustrated in Figure 2.1 wherein the
exponential decay can be observed. Moreover the state trajectories x(z, t) and ∂x

∂ t (z, t)
are depicted in Figures 2.2 and 2.3. Note that the initial conditions have been fixed to
x(z,0) = 1

6 sin(π
2 z) and ∂x

∂ t (z,0) =
1
5 (2z2− z4) while the damping parameter is set to

α = π + 1
3 .

Remark 2.1.2 The numerical method that has been used is based on a space
discretization of the operator A (2.1.33) by means of finite differences. The spa-
tial coordinate has been discretized into n equal pieces, n = 50. Based on this,
a finite-dimensional approximation of the operator A has been obtained, let us
denote it by An ∈ R2n×2n. Let us also denote by Xn ∈ R2n the approximation of
the state vector X. Its components are given by

X i
n(t) = x((i−1)h, t),X i+n

n (t) =
∂x
∂ z

((i−1)h, t), i = 1, . . . ,n,

where h stands for the discretization step (h = 1
n−1 ). Then, the linear finite-

dimensional approximation of (2.1.32), Ẋn(t) = AnXn(t), has been numerically
integrated via the routine ode15s of Matlab c©.

We end this section by recalling the notions of exponential stabilizability and ex-
ponential detectability, which will be of interest later in this thesis, see e.g. (Curtain
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Figure 2.2 – State trajectory x(z, t) of (2.1.36).

Figure 2.3 – State trajectory ∂x
∂ t (z, t) of (2.1.36).
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Chapter 2 Infinite-dimensional system theory

and Zwart, 1995, Definition 5.2.1).

Definition 2.1.10 Let us consider an operator A : D(A) ⊂ X → X defined on
the Hilbert space X. It is assumed that A is the infinitesimal generator of a
C0− semigroup of bounded linear operators on X. Moreover, take two operators
B∈L (U,X) and C ∈L (X ,Y ) for some Hilbert spaces U and Y . The pair (A,B)
is called exponentially stabilizable if there exists an operator K ∈L (X ,U) such
that the semigroup generated by the operator A+ BK is exponentially stable.
Furthermore, the pair (C,A) is called exponentially detectable if there exists an
operator L ∈L (Y,X) such that the operator A+LC generates an exponentially
stable C0−semigroup.

2.2 Nonlinear systems on Hilbert spaces
The objective of this section is characterizing the existence and uniqueness (well-
posedness) of solutions to the abstract differential equation{

ẋ(t) = Ax(t)+ f (x(t)),
x(0) = x0 ∈ H,

(2.2.1)

where A : D(A)⊂H→H is a linear operator that generates a C0−semigroup (T (t))t≥0
of bounded linear operators on the Hilbert space H and f : D( f )⊆H→H is a nonlin-
ear operator. This question of well-posedness can be quite different depending on the
domain of the nonlinear operator f and of its Lipschitz continuity, which is defined as
follows.

Definition 2.2.1 A mapping f : D( f ) ⊆ H → H is locally Lipschitz continuous
on D( f ) if for every r > 0 there exists L(r) such that for all x1,x2 ∈ D( f ) satis-
fying ‖x1‖H ,‖x2‖H ≤ r there holds

‖ f (x1)− f (x2)‖H ≤ L(r)‖x1− x2‖H . (2.2.2)

If L(r) can be chosen independently of r, then the mapping f is called uniformly
Lipschitz continuous on D( f ).

Let us first investigate the case where f is defined on the whole space H, i.e. D( f ) =
H.

The following theorem gives sufficient conditions under which a solution of (2.2.1)
exists and is unique, see (Curtain and Zwart, 2020, Theorem 11.1.5).

Theorem 2.2.1 Let us consider the abstract differential equation (2.2.1) where
the operator A is the infinitesimal generator of a C0−semigroup on the Hilbert
state space H and assume that f : H → H. If f is locally Lipschitz continuous,
then there exists a tmax > 0 such that (2.2.1) has a unique mild solution on [0, tmax)
with the following properties:
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2.2 Nonlinear systems on Hilbert spaces

• For 0≤ t ≤ tmax the solution depends continuously on the initial condition,
uniformly on any bounded interval [0,τ]⊂ [0, tmax),

• If x0 ∈ D(A), then the mild solution is a classical solution on [0, tmax).

If tmax < ∞, then limt↑tmax ‖x(t)‖ = ∞. Moreover, if the nonlinear operator f is
uniformly Lipschitz continuous, then tmax = ∞.

Note that, by mild solution, we mean that the solution of the integral form of (2.2.1),
i.e. the solution of

x(t) = T (t)x0 +
∫ t

0
T (t− s) f (x(s))ds (2.2.3)

defines a continuous function, see e.g. (Curtain and Zwart, 2020, Defintion 11.1.3). In
addition, a classical solution of (2.2.1) on the time interval [0,τ),τ > 0 is a function
x(t) that possesses the following properties

• x(t) ∈C1([0,τ);H);

• x(t) ∈ D(A) for all t ∈ [0,τ);

• x(t) satisfies (2.2.1) for all t ∈ [0,τ),

see the definition in (Curtain and Zwart, 2020, Definition 11.1.2).
To illustrate Theorem 2.2.1, we shall consider a nonlinear PDE built from the

linear damped wave equation introduced in (2.1.36) and known as the damped Sine-
Gordon equation. It models many physical phenomena such as the dynamics of a
Josephson junction, see e.g. Temam (1997); Cuevas-Maraver et al. (2014). From
a more mechanical point of view, this PDE arises also when studying the nonlinear
dynamics of mechanical transmission lines, see Cirillo et al. (1981) among others.
The corresponding PDE is{

∂ 2x
∂ t2 = ∂ 2x

∂ z2 −α ∂x
∂ t −β sin(x)

x(t,0) = 0, ∂x
∂ z (t,1) = 0,

(2.2.4)

where β > 0. As for the damped wave equation, let us define the state variable
X(t) = (x(t) dx

dt (t))
T =: (X1(t) X2(t))T . Then (2.2.4) admits the representation

(2.2.1) with A being expressed by (2.1.33) on the domain D(A) = D(A0)×D(A
1
2
0 )

where the considered state space Z = D(A
1
2
0 )×H. The nonlinear operator f : Z→ Z

is
f (X(t)) = (0 −β sin(X1(t)))T . (2.2.5)

As explained in the previous section, the operator A (2.1.33) is the infinitesimal gen-
erator of a C0−semigroup on Z. To prove that the PDE (2.2.4) possesses a unique
mild solution, let us examine the Lipschitz continuity of the nonlinear operator f .
Now take X = (X1 X2)

T ∈ Z, X̃ = (X̃1 X̃2)
T ∈ Z and let us compute the quantity

‖ f (X)− f (X̃)‖2
Z . It holds that

‖ f (X)− f (X̃)‖2
Z = β 2‖sin(X1)− sin(X̃1)‖2

H = β 2
∫ 1

0
(sin(X1(z))− sin(X̃1(z))2dz.
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Chapter 2 Infinite-dimensional system theory

Note that, by defining the scalar function f : R→ [−1,1], f(y) = sin(y) the relation
supy∈R |f′(y)|= 1 holds true. This has the consequence that

‖ f (X)− f (X̃)‖2
Z ≤ β 2

∫ 1

0
(X1(z)− X̃1(z))2dz = β 2‖X1− X̃1‖2

H .

Thanks to the invertibility of A
1
2
0 and the boundedness of A

− 1
2

0 the following holds

‖ f (X)− f (X̃)‖2
Z ≤ β 2‖X1− X̃1‖2

H = β 2‖A−
1
2

0 A
1
2
0 (X1− X̃1)‖2

H

≤ β 2‖A−
1
2

0 ‖2‖A
1
2
0 (X1− X̃1)‖2

H ≤ β 2‖A−
1
2

0 ‖2‖X− X̃‖2
Z ,

where (2.1.31) has been used. This proves that the nonlinear operator f is uniformly

Lipschitz continuous on Z with β‖A−
1
2

0 ‖ as one Lipschitz constant. Hence, accord-
ing to Theorem 2.2.1 the nonlinear PDE (2.2.4) possesses a unique mild solution on
[0,∞). Moreover, if the initial condition pair (x(z,0) ∂x

∂ t (z,0))
T is chosen to be in

the domain of the operator A, the solution is classical.
The question of existence and uniqueness of solutions of (2.2.1) becomes quite

more complicated when the nonlinear operator f is not defined on the whole space
H. It is assumed here that D( f ) ( H is a closed and convex subset(6) of the Hilbert
state space H. Note that the domain D( f ) often encompasses the physical constraints
required on the state variables of the dynamical system (2.2.1) as it will be seen in
Section 2.3 herebelow. First let us consider the following definition, see Laabissi et al.
(2001).

Definition 2.2.2 The operator f : D( f )→ H is called dissipative if

〈 f (x)− f (y),x− y〉H ≤ 0, (2.2.6)

for any x,y ∈ D( f ).

Note that, if the operator f is linear, this definition coincides with Definition 2.1.6.
Intuitively speaking, the terminology "dissipative" can be related to some energy dis-
sipation, as it is explained above with Definition 2.1.6 for linear operators. This means
that, if a dissipative operator f is attached to a dynamical system, it does not contribute
to a production of energy with time. As the property of dissipativity is important for
existence and uniqueness of solutions for linear infinite-dimensional systems, see The-
orem 2.1.2, it also plays a role when looking at nonlinear systems, see Theorem 2.2.2
hereafter.

The existence and uniqueness of solutions of (2.2.1) is characterized in the fol-
lowing theorem, see (Laabissi et al., 2001, Theorem 2.1) or (Martin, 1987, Chapter 8,
Theorem 5.1) for instance.

(6)The closedness of the domain D( f ) is required for the well-posedness of the abstract equation (2.2.1),
see (Martin, 1987, Chapter 8, Theorem 5.1), while its convexity will be useful in Chapters 3 and 4, notably
when defining the Gâteaux and the Fréchet derivatives of the nonlinear operator f , whenever they exist.
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2.3 Nonlinear plug-flow tubular reactor with axial dispersion

Theorem 2.2.2 Let us consider (2.2.1) where the nonlinear operator f : D( f )(
H→ H where D( f ) is a closed and convex subset of H and assume that

• The domain D( f ) is (T (t))t≥0 invariant, i.e. T (t)D( f ) ⊂ D( f ), for all
t ≥ 0;

• The relation
lim

h→0+

1
h

d(x+h f (x);D( f )) = 0 (2.2.7)

holds for all x ∈ D( f ), where the distance d between the point x and the
subset V of the Hilbert space H is defined as d(x,V ) = infv∈V{‖x− v‖H};

• The nonlinear operator f is Lipschitz continuous on D( f ) and there exists
a nonnegative constant l f such that the operator f − l f I is dissipative on
D( f ).

Then, (2.2.1) has a unique mild solution x(t) on [0,∞), for all x0 ∈ D( f ). More-
over, if (S(t))t≥0 is defined on D( f ) by S(t)x0 = x(t), for all t ≥ 0 and x0 ∈D( f ),
it is a nonlinear semigroup on D( f ) with A+ f as infinitesimal generator.

By a nonlinear semigroup on D( f ), we mean a family of nonlinear operators (S(t))t≥0
defined from D( f ) into D( f ) that satisfies the following properties

• S(0) = I;

• S(t + s) = S(t)S(s) for all t,s≥ 0;

• For any x ∈ D( f ), limt→0+ ‖S(t)x− x‖= 0.

Moreover, the semigroup (S(t))t≥0 is called a contraction if

‖S(t)x−S(t)x̃‖ ≤ ‖x− x̃‖,

for every t ≥ 0 and all x, x̃ ∈ D( f ), see e.g. (Aksikas, 2005, Definition 4.1.1). The
infinitesimal generator of (S(t))t≥0, denoted by A , is defined by

A x = lim
t→0+

S(t)x− x
t

, (2.2.8)

for all x ∈ D(A ) =: {x ∈ D( f ), (2.2.8) exists}.

2.3 Nonlinear plug-flow tubular reactor with axial dis-
persion

The existence and uniqueness of solutions for the homogeneous part of (1.2.1) with
the boundary conditions (1.2.3) is studied here. Note that only the temperature and the
reactant concentration are considered as variables, that is, we consider the following
set of PDEs with associated boundary conditions.
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

∂T
∂τ (ζ ,τ) =−v ∂T

∂ζ (ζ ,τ)+
λea
ρCp

∂ 2T
∂ζ 2 (ζ ,τ)− ∆H

ρCp
k0CA(ζ ,τ)e

− E
RT (ζ ,τ)

+ 4h
ρCpd (1[0,L](ζ )Tw(τ)−T (ζ ,τ)),

∂CA
∂τ (ζ ,τ) =−v ∂CA

∂ζ (ζ ,τ)+Dma
∂ 2CA
∂ζ 2 (ζ ,τ)− k0CA(ζ ,τ)e

− E
RT (ζ ,τ) ,

λea
ρCp

∂T
∂ζ (0,τ) = v(T (0,τ)−Tin),Dma

∂CA
∂ζ (0,τ) = v(CA(0,τ)−Cin),

λea
ρCp

∂T
∂ζ (L,τ) = 0,Dma

∂CA
∂ζ (L,τ) = 0.

(2.3.1)

We shall use a dimensionless model. Let us define the dimensionless and rescaled
variables

x1 =
T −Tin

Tin
,x2 =

Cin−C
Cin

,xw =
Tw−Tin

Tin
, t = τ

v
L
,z =

1
L

ζ . (2.3.2)

This change of coordinates allows us to write (2.3.1) as

∂x1
∂ t (z, t) =−

∂x1
∂ z (z, t)+

1
Peh

∂ 2x1
∂ z2 +αδ (1− x2(z, t))e

µx1(z,t)
1+x1(z,t)

−γ(x1(z, t)−1[0,1](z)xw(t))
∂x2
∂ t (z, t) =−

∂x2
∂ z (z, t)+

1
Pem

∂ 2x2
∂ z2 +α(1− x2(z, t))e

µx1(z,t)
1+x1(z,t)

∂x1
∂ z (0, t) = Pehx1(0, t),

∂x2
∂ z (0, t) = Pemx2(0, t),

1
Peh

∂x1
∂ z (1, t) = 0, 1

Pem

∂x2
∂ z (1, t) = 0,

(2.3.3)

where µ,α,γ and δ are given by

µ =
E

RTin
,α =

k0L
v

e−µ ,γ =
4hL

ρCpdv
,δ =− ∆H

ρCp

Cin

Tin
, (2.3.4)

respectively. Moreover the two dimensionless numbers Peh := vLρCp
λea

and Pem := vL
Dma

are the thermal and the mass Peclet numbers. These represent the ratio between the
convection transfer and the conduction transfer and the ratio between the convection
transfer and the diffusion transfer, respectively. The physical constraints (1.2.2) in the
dimensionless variables become

−1≤ x1(z, t),0≤ x2(z, t)≤ 1, (2.3.5)

for z∈ [0,1] and t ∈ [0,+∞). In order to write (2.3.3) with xw≡ 0 in an abstract way, let
us define the product spaces X :=L2([0,1];R)×L2([0,1];R) and X :=H2([0,1];R)×
H2([0,1];R). Therefore one may write the PDEs (2.3.3) as the abstract ODE

ẋ(t) = Ax(t)+ f (x(t)),x(0) = x0 ∈ X ,

where the (unbounded) linear operator A is defined as

A :=

(
− d

dz +
1

Peh

d2

dz2 − γI 0

0 − d
dz +

1
Pem

d2

dz2

)
=:
(

A1 0
0 A2

)
(2.3.6)
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on the domain

D(A) :=
{

x := (x1 x2) ∈X ,
dx1

dz
(0) = Pehx1(0),

dx2

dz
(0) = Pemx2(0),

1
Peh

dx1

dz
(0) = 0,

1
Pem

dx2

dz
(0) = 0

}
.

(2.3.7)

Note that D(A) may also be seen as the product space D(A) = D(A1)×D(A2) where

D(A1) =

{
x1 ∈ H2([0,1];R),

dx1

dz
(0) = Pehx1(0),

1
Peh

dx1

dz
(1) = 0

}
and

D(A2) =

{
x2 ∈ H2([0,1];R),

dx2

dz
(0) = Pemx2(0),

1
Pem

dx2

dz
(1) = 0

}
.

The nonlinear operator f : D⊂ X → X is given by

f (x1,x2) :=
(

αδ (1− x2)e
µx1

1+x1 α(1− x2)e
µx1

1+x1

)T
(2.3.8)

where x := (x1 x2)
T is in the invariant, closed and convex subset

D( f ) := {x ∈ X ,−1≤ x1,0≤ x2 ≤ 1} , (2.3.9)

that takes the constraints (2.3.5) into account. First observe that according to Example
2.1.5 the operator A is the infinitesimal generator of a C0−semigroup of contractions
on the product Hilbert space X . It comes from the fact that the operators A1 and
A2 are generators of contraction C0−semigroups. Then according to (Laabissi et al.,
2001, Theorem 5.1) or (Martin, 1987, Chapter 8, Theorem 5.1), the operator A+ f is
the infinitesimal generator of a nonlinear semigroup, meaning that (2.3.3) possesses
a unique mild solution on the time interval [0,+∞) for any x0 ∈ X , where Theorem
2.2.2 has been used. The invariance of D( f ) with respect to the linear semigroup
generated by the operator A is shown in (Laabissi et al., 2001, Proposition 5.2) while
the tangential condition (2.2.7) is proved in (Laabissi et al., 2001, Lemma 3.1).
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This chapter is more application oriented, trying to give an answer to the ques-
tion of the existence of equilibria of (2.3.3) as well as their linear stability. By linear
stability, we mean here exponential stability of a particular linearization of the non-
linear PDEs (2.3.3). For this, we need some definitions of linearization for nonlinear
operators.

3.1 Different types of linearization
As we are working in infinite-dimensional spaces, linearization depends strongly on
the norm whose state space is equipped with. The following concept, named as the
Gâteaux derivative, generalizes the notion of directional derivative for scalar-valued
functions.

Definition 3.1.1 Let f : D( f ) ⊆ H → H be a nonlinear operator on a Banach
space. The operator f is Gâteaux differentiable at x0 ∈ D( f ) if there exists a
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Chapter 3 Equilibria for infinite-dimensional systems

linear operator d f (x0) : H→ H such that

lim
ε→0

f (x0 + εh)− f (x0)

ε
= d f (x0)h, (3.1.1)

for every h ∈ D( f ) such that x0 + εh ∈ D( f ) for all ε sufficiently small. The
operator d f (x0) is called the Gâteaux derivative of the operator f at x0.

Nevertheless, remark that the directional derivative for scalar-valued functions may
not be linear in h. The definition 3.1.1 entails a linear derivative in h. Note that, for
the particular example of the plug-flow tubular reactor, see Chapter 2, Section 2.3,
the domain of f , see (2.3.9), is a closed and convex subset of H. This means that if
there exists ε0 > 0 such that x0 + ε0h ∈ D( f ) then the function x0 + εh ∈ D( f ) for
any ε < ε0. Indeed by convexity it holds that ax0 +(1− a)(x0 + ε0h) ∈ D( f ) for all
a ∈ [0,1], which reads in a different way as x0 +(1− a)ε0h ∈ D( f ). The conclusion
follows by noting that a ∈ [0,1].

For sufficiently smooth nonlinear operators, it is in general not so difficult to show
that Gâteaux differentiability holds since the ε in the limit (3.1.1) is a scalar and goes
to 0 independently of anything related to the space H. In that case, the Gâteaux dif-
ferentiability relies on the existence of partial derivatives of the nonlinear operator. A
much stronger concept that relies on H and its norm is the Fréchet differentiability
and is presented in the following definition. It will be useful notably in Chapter 4 in
order to make the link between the stability properties of a linearized model and the
stability of the corresponding nonlinear system.

Definition 3.1.2 The operator f : D( f ) ⊆ H → H is said to be Fréchet differ-
entiable at x0 ∈ D( f ) if there exists a bounded linear operator D f (x0) : H → H
such that

lim
h→0

‖ f (x0 +h)− f (x0)−D f (x0)h‖H

‖h‖H
= 0, (3.1.2)

where h is such that x0 + h ∈ D( f ). Equivalently, this means that for all h ∈ H
such that x0+h∈D( f ), f (x0+h)− f (x0) =D f (x0)h+w(x0,h) where w satisfies
limh→0

‖w(x0,h)‖H
‖h‖H = 0.

Note that, in the case where the operator f is Fréchet differentiable at x0, it is also
Gâteaux differentiable at x0 and the relation D f (x0) = d f (x0) holds true. This concept
of differentiability is in general difficult to prove and even impossible if the operator
f is not bounded. The difficulty comes mainly from the space H since the norms are
not equivalent in infinite dimensions.

Consider for instance the nonlinear operator f defined by f (x) =
√

x2 +1 for
functions x ∈C([0,1];R) =: H, which is equipped with the supremum norm ‖x‖∞ =
supz∈[0,1] |x(z)|. Note that this operator is well-defined from H into H. It can be shown
that the Gâteaux derivative of f at x0 = 1 is given by the linear and bounded opera-
tor d f (1) = 1√

2
I. In the next proposition, it is shown that the Gâteaux derivative is

actually a Fréchet derivative.
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Proposition 3.1.1 Let H be the space of continuous real-valued functions de-
fined on [0,1] and let f : H → H be defined as f (x) =

√
x2 +1. The operator f

is Fréchet differentiable at x0 = 1 with Fréchet derivative D f (1) = 1√
2
I.

Proof. Let us take h ∈ H. The following holds∥∥∥∥√(h+1)2 +1−
√

2− 1√
2

h
∥∥∥∥

H
=

∥∥∥∥∥ (h+1)2 +1−2√
(h+1)2 +1+

√
2
− 1√

2
h

∥∥∥∥∥
H

=

∥∥∥∥∥ ((h+1)2−1)
√

2−h(
√
(h+1)2 +1+

√
2)√

2(
√
(h+1)2 +1+

√
2)

∥∥∥∥∥
H

≤
∥∥∥∥∥ 1√

2(
√
(h+1)2 +1+

√
2)

∥∥∥∥∥
H

∥∥∥∥(h2 +2h)
√

2−h
√
(h+1)2 +1−

√
2h
∥∥∥∥

H

≤
∥∥∥∥√2h2 +

√
2h−h

√
(h+1)2 +1

∥∥∥∥
H

≤
√

2
∥∥h2∥∥

H +

∥∥∥∥√2h−h
√
(h+1)2 +1

∥∥∥∥
H

≤
√

2‖h‖2
H +‖h‖H

∥∥∥∥∥ 2− (h+1)2−1√
2+
√
(h+1)2 +1

∥∥∥∥∥
H

≤
√

2‖h‖2
H +‖h‖H

∥∥∥∥∥ 1√
2+
√
(h+1)2 +1

∥∥∥∥∥
H

∥∥h2 +2h
∥∥

H

≤
√

2‖h‖2
H +‖h‖2

H (2+‖h‖H)

Consequently, the estimate∥∥∥√(h+1)2 +1−
√

2− 1√
2h

∥∥∥
H

‖h‖H
≤ ‖h‖H

(√
2+2+‖h‖H

)
(3.1.3)

holds true. Hence

lim
‖h‖H→0

∥∥∥√(h+1)2 +1−
√

2− 1√
2h

∥∥∥
H

‖h‖H
= 0.

�

Note that the norm inequalities that have been useful to prove the existence of a
Fréchet derivative are due to the fact that the space H is a multiplicative algebra, i.e.
the product of two functions in H is in H and the inequality ‖xy‖H ≤ ‖x‖H‖y‖H holds
for any x,y ∈ H. This result would suggest that, if an operator is Gâteaux and Fréchet
differentiable at some point, then the corresponding derivatives coincide. This can be
found in (Lebedev and Vorovich, 2006, Theorem 3.1.1).
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Let us now have a look at the same operator but defined on the space H :=
L2([0,1];R) equipped with the norm ‖x‖2

H =
∫ 1

0 x2(z)dz. The operator f is well-
defined on H since

‖ f (x)‖2
H =

∫ 1

0
(x2(z)+1)dz = ‖x‖2

H +1,

for any x ∈ H. Consider the sequence of H−functions {hn}n∈N defined by

hn(z) =
1
n

1[0,1− 1
n )
(z)+1[1− 1

n ,1]
(z),

for z ∈ [0,1] and n ∈ N. A simple calculation reveals that the H−norm of hn is given
as

‖hn‖2
H =

n2 +n−1
n3 ,n ∈ N.

Moreover, it holds that ‖
√
(hn +1)2 +1−

√
2− 1√

2
hn‖2

H =∫ 1

0
(
√

(hn(z)+1)2 +1−
√

2− 1√
2

hn(z))2dz

=
∫ 1− 1

n

0
(

√
(

1
n
+1)2 +1−

√
2− 1√

2n
)2dz+

∫ 1

1− 1
n

(
√
(1+1)2 +1−

√
2− 1√

2
)2dz

= (1− 1
n
)

(√
(n+1)2

n2 +1−
√

2− 1√
2n

)2

+
1
n

(
√

5−
√

2−
√

2
2

)2

=
n−1

n

(
1
n

√
2n2 +2n+1− 2n+1√

2n

)2

+
1
n

(
19−6

√
10

2

)

=
n−1
2n3

(√
4n2 +4n+2− (2n+1)

)2
+

1
n

(
19−6

√
10

2

)
.

Computing the quantity
‖
√

(hn+1)2+1−
√

2− 1√
2

hn‖2H
‖hn‖2H

gives

n3

n2 +n−1

[
n−1
2n3

(√
4n2 +4n+2− (2n+1)

)2
+

1
n

(
19−6

√
10

2

)]

=
n−1

2(n2 +n−1)

(
1√

4n2 +4n+2+2n+1

)2

+
n2

n2 +n−1

(
19−6

√
10

2

)
,

which tends towards 19−6
√

10
2 when n tends to ∞. This proves that the nonlinear op-

erator f is not Fréchet differentiable at 1 on H = L2([0,1];R). This example shows
also that even if an operator f is Gâteaux differentiable and uniformly Lipschitz con-
tinuous, its Fréchet differentiability is not guaranteed. The key point that breaks down
the Fréchet differentiability of f is due to the fact that the L∞([0,1];R)−norm of hn
is equal to 1 for any n ∈ N. The convergence to 0 of the H−norm of hn is not suffi-
cient here, which means that stronger conditions should have been required to ensure
Fréchet differentiability on H.
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3.2 Plug-flow tubular reactor

3.2 Plug-flow tubular reactor
Here we go back to the plug-flow tubular reactor with axial dispersion in order to
characterize its equilibria and their linear stability. Note that adiabatic conditions are
considered here, meaning that we assume no heat exchange between the inside of the
reactor and the environment outside, i.e. γ = 0, where γ is the parameter introduced
in (2.3.4).

3.2.1 Equilibria and related properties
As is it common for PDEs, finding equilibria relies generally on a differential equation.
More particularly, the kind of differential equations that will be of interest here are
ODEs with boundary conditions, also named two point boundary value problems. In
other words, writing the equations (2.3.3) in adiabatic form at the equilibrium yields
the following set of ODEs with boundary conditions

1
Peh

d2xe
1

dz2 −
dxe

1
dz +αδ (1− xe

2)e
µxe

1
1+xe

1 = 0, dxe
1

dz (0) = Pehxe
1(0),

1
Peh

dxe
1

dz (1) = 0,

1
Pem

d2xe
2

dz2 −
dxe

2
dz +α(1− xe

2)e
µxe

1
1+xe

1 = 0, dxe
2

dz (0) = Pemxe
2(0),

1
Pem

dxe
2

dz (1) = 0,
(3.2.1)

where xe
1 and xe

2 denote the dimensionless temperature and concentration at steady-
state, respectively. Due to the boundary conditions, we are not dealing with a Cauchy
problem when looking at (3.2.1). For this reason, existence and uniqueness properties
of a solution pair (xe

1,x
e
2) are not guaranteed. Moreover, an additional difficulty relies

on the link between the two Peclet numbers. We shall consider them equal here with
the notation Peh = Pem =: Pe = v

D where v and D stand for the superficial velocity and
the diffusion coefficient, respectively. We want to emphasize the fact that this equality
is done for mathematical purposes but it has no real physical meaning. In that case,
the change of variables χ = xe

1− δxe
2 simplifies the problem quite strongly since it

allows to decouple the equations and to express one solution as a function of the other
like xe

1 = δxe
2, see e.g. (Hastir et al., 2020, Appendix A). For that case, the remaining

equilibrium equation is expressed as

1
Pe

d2xe
1

dz2 −
dxe

1
dz

+α(δ − xe
1)e

µxe
1

1+xe
1 = 0,

dxe
1

dz
(0) = Pexe

1(0),
1
Pe

dxe
1

dz
(1) = 0. (3.2.2)

In particular, it has been proven in that case that, depending on the diffusion coeffi-
cient, (3.2.1) possesses one or three solutions. Formally, it reads as follows

Proposition 3.2.1 For some values of the parameters µ,δ ,α , there exists D∗

large enough, v∗1 and v∗2 such that for all D≥ D∗, (3.2.1) has either

• at least three solutions if v ∈ (v∗,v∗), or

• at least one solution, otherwise,
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where v∗ := min{v∗1,v∗2} and v∗ := max{v∗1,v∗2}.

This result is based on perturbation theory, see Hoppensteadt (2013) for instance,
where a small parameter, defined as 1/D here, is considered. The perturbation theory
allows to deduce existence, uniqueness and approximation of the solution of (3.2.1)
by looking at the same problem in the limit with 1

D going to 0. In that way, for D
sufficiently large, the following result holds for characterizing the solution of (3.2.2).

Proposition 3.2.2 Taking into account Proposition 3.2.1, a solution of (3.2.2),
denoted by xe

1(z), is given by

xe
1(z) = a− k0L(δ −a)e−

µ
1+a

2D
(1− z)2 +O

(
1

D2

)
=: x?1(z)+O

(
1

D2

)
, (3.2.3)

where a is a solution of the equation

k0L(δ −a)e
−µ
1+a − va = 0 (3.2.4)

and where O stands for the Landau notation (see Definition 3.2.1).

Note that the function x?1(z) will be called an approximated solution of (3.2.2) in what
follows. Equation (3.2.4) helps in understanding Proposition 3.2.1 intuitively since
the number of equilibria is determined by the parameter a. More particular, for a
fixed value of v, the number of equilibria is given by the number of roots of (3.2.4) or
equivalently the number of values of a that can reached the fixed value of v. For this,
the function v is expressed as

v =
k0L(δ −a)e

−µ
1+a

a
=: v(a,1/D), (3.2.5)

see (3.2.4). A study of v(a) as a function of a leads to Proposition 3.2.1. This is valid
for a large diffusion coefficient D (according to perturbation theory in which a small
parameter, namely 1/D, is introduced). The particular form of (3.2.3) is explained
later thanks to Theorem 3.2.4.

As an illustration, v as a function of a is depicted in Figure 3.1 in the case of 3
equilibria (µ = 10,δ = 1). It is clear in this figure that, for a fixed value of v between
the values v∗1 and v∗2, three different values of a can reached the fixed value of the
volicity. The chosen value of v is 1.1e−3.

From the modeling point of view, v is a (fixed) parameter, but here it is inter-
preted as a function of the parameter a for analysis purposes. It is indeed well known
in chemical engineering (Levenspiel (1999)) that the convection-diffusion-reaction
(CDR) model is an intermediate model between the plug-flow reactor model (PFTR)
(when the diffusion coefficients are equal to zero) and the continuous stirred tank re-
actor (CSTR) model (described by ODEs) (when these coefficients tend to +∞). As
it is highlighted in Varma and Aris (1977), the plug-flow reactor can generate only
one equilibrium profile, since the latter is the solution of a set of first-order differ-
ential equations with fixed initial values. And, at the other extreme, the CSTR can
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Figure 3.1 – Illustration of the multiplicity of the equilibria for equal Peclet numbers
(µ = 10,δ = 1).

PFTR CDR CSTR
1 equilibrium 1 equilibrium→ 3 equilibria 3 equilibria

D = 0 → D > D∗ → D =+∞

Table 3.1 – Intuitive schematic view of the multiplicity of equilibria.

exhibit three different equilibrium points. Therefore, one could conclude intuitively
that there should be a value of the diffusion coefficients above which the tubular re-
actor model can exhibit multiple equilibrium profiles (and below which there is only
one equilibrium profile), see the schematic representation in Table 3.1. In this context,
it is important to note that the (dimensionless) Peclet numbers allow us to evaluate
the relative importance of convection (characterized by v) versus diffusion (charac-
terized by D). Thus, if there are a1 = a2 such that v(a1) = v(a2), (3.2.2) has at least
two solutions. To reach this goal, perturbation theory (Hoppensteadt, 2013, Regular
perturbation theorem) is used, which consists of disturbing the equations with a small
parameter, 1/D here. Then, if a solution can be found to the disturbed equations with
1/D = 0 (see (Hoppensteadt, 2013, Section 5.2.1., Hypothesis H2)), perturbation the-
ory guarantees that the system has a solution for small 1/D (this is the reason why
we consider a large diffusion coefficient (D∗ large enough)), under a few assumptions,
especially continuity conditions (see (Hoppensteadt, 2013, Section 5.2.1., Hypothesis
H3)). Furthermore, the solution can be identified to its Taylor expansion of powers of
1/D, see Section 3.2.2 hereafter.
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3.2.2 Linear stability of equilibria
Here we aim at studying the stability of a linearized model corresponding to (2.3.3)
in adiabatic form, around any equilibrium pair satisfying (3.2.1), in the case of equal
Peclet numbers. Note that the asymptotic stability of such types of systems has al-
ready been studied in Dochain (2018), Varma and Aris (1977) or in Luss and Amund-
son (1967), wherein bistability of the equilibria is established. In other words, when
the system exhibits one equilibrium, the latter is asymptotically stable while when
three equilibria are highlighted, the pattern "asymptotically stable - unstable - asymp-
totically stable" holds. Furthermore, numerical methods to deduce stability of equi-
libria for (2.3.3) have been developed in Nishimura and Matsubara (1969), Lefèvre
et al. (2000) or McGowin and Perlmutter (1970). The techniques that have been used
are based on the Galerkin Residuals Method which is quite well-suited for parabolic
PDEs. The latter consists in a finite dimensional model reduction that allows to con-
clude on stability on the basis of the dominant eigenvalue of some matrix approxima-
tion of the differential operators in (2.3.3).

The approach that will be followed here is quite different in the sense that expo-
nential stability is considered instead of the asymptotic one. To this end, we shall
first linearize (2.3.3) around an equilibrium solution of (3.2.1). Then, after the intro-
duction of some properties related to equilibria of the adiabatic form of (2.3.3), the
well-posedness of the linearized model in terms of existence and uniqueness of so-
lutions will be studied. A Lyapunov-based method will then be used to conclude on
exponential stability of some particular equilibria.

Let us return to the definition of the nonlinear operator f introduced in (2.3.8). For
the sake of simplicity in what follows, let us write the operator f as f := ( f1 f2)

T

with f1 = δ f2. In order to build a linearized model of (2.3.3) around an equilibrium
pair (xe

1,x
e
2) solution of (3.2.1), let us consider the following lemma.

Lemma 3.2.1 The nonlinear operator f1 resulting from (2.3.8) is Gâteaux differ-
entiable at (xe

1,x
e
2) ∈D( f ) solution of (3.2.1) and its Gâteaux derivative is given

by the linear operator d f1(xe
1,x

e
2) : X → L2([0,1];R) defined for

(
x1 x2

)T ∈ X
by

d f1(xe
1,x

e
2)
(
x1 x2

)T
= α̃

δ µ (1− xe
2)(

1+ xe
1

)2 e
−µ

1+xe
1 x1− α̃δe

−µ
1+xe

1 x2, (3.2.6)

where α̃ = k0L
v .

Proof. The proof is a straightforward consequence of the existence of the partial
derivatives of f1 with respect to x1 and x2 evaluated at the equilibrium (xe

1,x
e
2). �

In order to ensure that the Gâteaux derivative of f1 is a bounded linear operator
from X into L2([0,1];R), we need some properties on an exact equilibrium solution
(xe

1,x
e
2) of (3.2.1). Let us start with properties on the approximated form expressed

from (3.2.3).
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Proposition 3.2.3 The approximated form x∗1(z) of a temperature equilibrium
profile for the nonisothermal axial dispersion tubular reactor (2.3.3) in adia-
batic condition is such that−1+η < x∗1(z)< δ , a.e. on [0,1], for some positive
constant η , whenever the diffusion coefficient D is sufficiently large.

Proof. According to (3.2.3), x?1(z) is given as x?1(z) = a− k0L(δ−a)e
−µ
1+a

2D (1− z)2 and

the approximated form of the velocity is v? = k0L(δ −a)e
−µ
1+a /a. Since positive veloc-

ities and positive values of the parameter a are considered, it follows that δ > a > 0.
Moreover, 0≤ (1− z)2 ≤ 1, which yields

a− k0L(δ −a)e
−µ
1+a

2D
≤ a− k0L(δ −a)e

−µ
1+a

2D
(1− z)2 ≤ a. (3.2.7)

Consequently, a− k0L(δ − a)e
−µ
1+a /2D ≤ x?1(z) ≤ a < δ . Furthermore, observe that,

since 0 < e
−µ
1+a < e

−µ
1+δ for all a > 0, it holds

x?1(z)≥ a− k0L(δ −a)e
−µ
1+δ

2D

>
2aD− k0Lδe

−µ
1+δ +2D−2D

2D
>−1+

2D− k0Lδe
−µ
1+δ

2D
:=−1+η . (3.2.8)

To ensure that η > 0, D has to be large enough, i.e. there must exist some D? > 0
sufficiently large such that D≥D?. By "D large enough", we mean D? > k0Lδe

−µ
1+δ /2.

Note that η → 1 as D→+∞, i.e. as the diffusion is sufficiently dominant. �

Before characterizing some bounds on the exact equilibrium profile, denoted xe
1(z), let

us take into account the following definitions and theorem. Given a function f : H →
R2 and an initial condition Θ ∈ R2, we consider the initial value problem

dx
dz

= f (z,x,ε), x(0) = Θ(ε), (3.2.9)

where ε is a parameter. Assume that the following conditions are satisfied :

Assumption 3.2.1 For ε = 0, (3.2.9) has a unique solution on 0≤ z≤ 1, denoted
by x0(z). Hence the latter satisfies the equations dx0

dt = f (z,x0,0), x0(0) = Θ(0).

Assumption 3.2.2 The functions f and Θ are smooth functions of their variables
for 0≤ z≤ 1, x near x0 and ε near 0. Specifically, we suppose that f and Θ are
n+1 times continuously differentiable in all their variables, so that Θ admits the

decomposition
n

∑
k=0

Θkεk +O(εn+1).

The regular perturbation theorem is expressed as follows.
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Theorem 3.2.4 Let Assumptions 3.2.1 and 3.2.2 hold. Then, for sufficiently
small ε , the perturbed problem (3.2.9) has a unique solution, which is n + 1
times differentiable with respect to ε . Moreover this solution admits a Taylor
expansion x(z,ε) = x0(z) + x1(z)ε + · · ·+ xn(z)εn +O(εn+1), where the error
estimate holds as ε → 0 uniformly for 0≤ z≤ 1.

Thanks to what preceeds, we are now able to explain an approximated equilibrium
profile with an exact one. By the Regular Perturbation Theorem, it holds, in our case,

xe
1(z,ε) = x?1(z,ε)+O(ε2), (3.2.10)

where ε = 1/D, see (Hastir et al., 2020, Section IV. A.) for detailed arguments con-
cerning the computation of x?1(z,ε). In order to bound the exact form of the temper-
ature equilibrium profile, let us consider the following definition, see (Hoppensteadt,
2013, Section 5.1.1, Gauge Functions).

Definition 3.2.1 Suppose that f and g are smooth functions of ε for ε near 0, say
0 < ε < ε0 for some ε0 sufficiently small. We say that f (ε) =O(g(ε)) as ε→ 0 if
f (ε)/g(ε) is bounded for all sufficiently small ε . Thus, there is a constant K > 0
and a sufficiently small constant ε? > 0 such that | f (ε)| ≤ K|g(ε)| holds for all
0 < ε ≤ ε?.

This leads to consider the following bounds on an exact temperature equilibrium
profile xe

1(z) of (2.3.3).

Theorem 3.2.5 The exact form of a temperature equilibrium profile for (2.3.3)
satisfies

−1+ η̃ < xe
1(z)< δ̃ , (3.2.11)

when the diffusion coefficient D is sufficiently large, where η̃ = η− K
D2 > 0 and

δ̃ = δ + K
D2 for some positive constant K.

Proof. By taking (3.2.10) into account and the characterization of O in Definition
3.2.1, there exist K > 0 and ε? > 0 such that for a.e. z ∈ [0,1], |xe

1(z,ε)− x?1(z,ε)| ≤
Kε2, for ε ≤ ε?. This holds for a.e. z∈ [0,1] since the error estimate is valid uniformly
for 0≤ z≤ 1. Consequently we have

x?1(z,ε)−Kε2 ≤ xe
1(z,ε)≤ x?1(z,ε)+Kε2. (3.2.12)

By using Lemma 3.2.3, it follows that −1+ η −K/D2 < xe
1(z,1/D) < δ +K/D2,

where we have been using the fact that ε = 1/D, which is equivalent to −1+ η̃ <
xe

1(z,1/D) < δ̃ , where η̃ := η −K/D2 and δ̃ := δ +K/D2. The positivity of η̃ is
guaranteed provided that D is large enough. �
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3.2.2.1 Well-posedness of the linearized model

According to Lemma 3.2.1, a Gâteaux linearized version of (2.3.3) around the equi-
librium (xe

1,x
e
2) with γ = 0 is written as

ξ̇ (t) = A|γ=0ξ (t)+
(

d f1(xe
1,x

e
2)

d f2(xe
1,x

e
2)

)
ξ (t),ξ (0) = ξ0, (3.2.13)

where d f2(xe
1,x

e
2) =

1
δ d f1(xe

1,x
e
2),d f1(xe

1,x
e
2) being introduced in (3.2.6) and ξ (t) =

x(t)− xe. Note that the notation A|γ=0 stands for the operator A defined in (2.3.6)
with domain (2.3.7) in which γ has been set to 0. By using the notations p(xe

1,x
e
2) :=

α̃ µ(1−xe
2)e

−µ
1+xe

1

(1+xe
1)

2 and r(xe
1,x

e
2) :=−α̃e

−µ
1+xe

1 , (3.2.13) may be rewritten as

ξ̇ (t) = A|γ=0ξ (t)+
(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
ξ (t) =: Alinξ (t). (3.2.14)

In that way, a sufficient condition that ensures the well-posedness of (3.2.14) in terms
of existence and uniqueness of a mild solution is the boundedness of the operator(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
defined on the Hilbert space X = L2([0,1];R)×L2([0,1];R). This

will be achieved in the following lemma thanks to Theorem 3.2.5.

Lemma 3.2.2 The operator Alin given in (3.2.14) on the domain D(Alin) = D(A)
is the infinitesimal generator of a C0−semigroup of bounded linear operators on
X.

Proof. Since the operator A|γ=0 is the infinitesimal generator of a C0−semigroup, the
operator Alin possesses the same property provided that the operator(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
is bounded on X , see (Engel and Nagel, 2006, Bounded Perturbation Theorem). By
taking ξ = (ξ1 ξ2)

T ∈ X , one has that

‖
(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
ξ‖2

X = (δ 2 +1)‖p(xe
1,x

e
2)ξ1 + r(xe

1,x
e
2)ξ2‖2

L2

≤ 2(δ 2 +1)
[
‖p(xe

1,x
e
2)ξ1‖2

L2 +‖r(xe
1,x

e
2)ξ

e
2‖2

L2

]
.

Moreover, using Theorem 3.2.5 and the relation xe
1 = δxe

2, the following estimates
hold

‖
(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
ξ‖2

X

≤ 2(δ 2 +1)α̃2

[
µ2

η̃2 max{|1− δ̃
δ
|, |1− η̃

δ
+1|}2‖ξ‖2

L2 +‖ξ2‖2
L2

]

≤ 2(δ 2 +1)α̃2 max

{
µ2

η̃2 max{|1− δ̃
δ
|, |1− η̃

δ
+1|}2,1

}
‖ξ‖2

X ,
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where we have been using the inequalities ‖1/(1+ xe
1)‖∞

≤ 1
η̃ ,‖e

−µ
1+xe

1 ‖∞ ≤ 1 and ‖1−
xe

2‖∞ ≤ max{|1− δ̃
δ |, |

1−η̃
δ + 1|}. This concludes the boundedness of the operator(

δ p(xe
1,x

e
2) δ r(xe

1,x
e
2)

p(xe
1,x

e
2) r(xe

1,x
e
2)

)
and consequently the well-posedness of (3.2.13). �

3.2.2.2 Exponential bistability of the equilibria

In this section, we aim at characterizing the exponential decay of the state trajectory of
(3.2.14) by means of a Lyapunov based approach. In particular, sufficient conditions
that guarantee exponential stability of (3.2.14) are derived on the system parameters.
Then, these conditions are tested on the different cases of equilibria, see Proposition
3.2.1. Before beginning, remember that the case of equal Peclet numbers is considered
here, i.e. Peh = Pem := v

D .
Let us start by considering the following change of variables on (3.2.14): ξ̂1(z, t) =

e
−Pe

2 zξ1(z, t), ξ̂2(z, t) = e
−Pe

2 zξ2(z, t). This entails that (3.2.14) becomes

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 − Pe

4 ξ̂1 +δ p(xe
1,x

e
2)ξ̂1 +δ r(xe

1,x
e
2)ξ̂2,

∂ ξ̂2
∂ t = 1

Pe
∂ 2ξ̂2
∂ z2 − Pe

4 ξ̂2 + p(xe
1,x

e
2)ξ̂1 + r(xe

1,x
e
2)ξ̂2,

∂ ξ̂1
∂ z (0, t) =

Pe
2 ξ̂1(0, t),

∂ ξ̂1
∂ z (1, t) =−Pe

2 ξ̂1(1, t),
∂ ξ̂2
∂ z (0, t) =

Pe
2 ξ̂2(0, t),

∂ ξ̂2
∂ z (1, t) =−Pe

2 ξ̂2(1, t).

(3.2.15)

Now consider the operator matrix U =
( I 0

I −δ I

)
. The similarity state transformation(

ξ̂1
χ

)
=U

(
ξ̂1
ξ̂2

)
implies that (3.2.15) takes the form

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 − Pe

4 ξ̂1− r(xe
1,x

e
2)χ + r(xe

1,x
e
2)ξ̂1 +δ p(xe

1,x
e
2)ξ̂1,

∂ χ
∂ t = 1

Pe
∂ 2χ
∂ z2 − Pe

4 χ,
∂ ξ̂1
∂ z (0, t) =

Pe
2 ξ̂1(0, t),

∂ ξ̂1
∂ z (1, t) =−Pe

2 ξ̂1(1, t),
∂ χ
∂ z (0, t) =

Pe
2 χ(0, t), ∂ χ

∂ z (1, t) =−Pe
2 χ(1, t).

(3.2.16)

Let us consider the following proposition that will help in characterizing the asymp-
totic behavior of the variable χ .

Proposition 3.2.6 The component χ in (3.2.16) is expressed as

χ(z, t) =
+∞

∑
n=1

ψn φn(z)e−(β 2
n +

Pe
4 )t , (3.2.17)

for z ∈ [0,1] and t ≥ 0, where ψn =
∫ 1

0 f (z)φn(z)dz with f (z) denoting the initial
condition to ξ̂1−δ ξ̂2. The set {φn}n≥1 contains the eigenfunctions of the linear

operator 1
Pe

d2

dz2 − Pe
4 I, defined by φn(z)=Kn[βn

√
Pecos(βn

√
Pez)+ Pe

2 sin(βn
√

Pez)].
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Note that {Kn}n≥1 is a set of normalization constants expressed as

Kn =

(
2

β 2
n Pe+Pe+Pe2/4

) 1
2

and {βn}n≥1 are solutions of the resolvent equation tan(β
√

Pe) = 4β
√

Pe
4β 2−Pe , see

e.g. (Delattre et al., 2003).

Proof. Let us define the linear operator Ac by Acχ = 1
Pe

d2χ
dz2 − Pe

4 χ on the domain

D(Ac) = {χ ∈ H2([0,1];R), dχ
dz (0) =

Pe
2 χ(0), dχ

dz (1) = −Pe
2 χ(1)}. By defining the

functions P(z) = 1
Pe and Q(z) = Pe

4 ,z ∈ [0,1], it is easy to see that the operator −Ac
admits the representation (2.1.18) with the functions p and q replaced by P and Q
and with the function ρ given as ρ(z) = 1,z ∈ [0,1]. Moreover D(−Ac) = D(Ac)
has the form (2.1.17) with (α0,β0) = (1,−Pe

2 ) and (α1,β1) = (1, Pe
2 ). Consequently,

according to Lemma 2.1.4, the operator Ac is a Riesz-spectral operator on the space
L2([0,1];R). Moreover, it can be noted that the operator Ac is self-adjoint, which
entails with its Riesz-spectral property that it admits the following decomposition

Acx =
∞

∑
n=1

λn〈x,φn〉L2φn(z),

where x ∈ D(Ac) and the sets {λn}n∈N and {φn}n∈N containing the eigenvalues and
the eigenfunctions of the operator Ac, respectively. Thanks to Theorem 2.1.4, the
C0−semigroup whose operator Ac is the infinitesimal generator, is expressed as

TAc(t)χ0 =
∞

∑
n=1

eλnt〈χ0,φn〉L2φn(z).

Since the component χ solution of (3.2.16) is expressed as χ(z, t) = (TAc(t)χ0)(z),
the end of the proof is a consequence of the calculations of the eigenvalues and the
eigenfunctions of the operator Ac, see e.g. Varma and Aris (1977). �

Note that U defines a similarity transformation, i.e. a Hilbert space isomorphism

on X . Then (3.2.15), which involves the variables
(

ξ̂1
ξ̂2

)
, is equivalent to (3.2.16) writ-

ten in the variables
(

ξ̂1
χ

)
. Consequently, studying exponential stability of (3.2.15) is

equivalent to studying exponential stability of (3.2.16). Denoting by Â the linear oper-
ator describing the dynamics of (3.2.15), exponential stability can be viewed by noting
that the semigroups generated by the operators Â and UÂU−1 have the same growth
bounds. Since {φn}n∈N is a Riesz-basis for L2([0,1];R), it follows from (3.2.17) that
‖χ(·, t)‖L2 ≤ e−(β

2∗+Pe/4)t‖ f (·)‖L2 , where −(β 2
∗ +Pe/4) = supn∈N{−(β 2

n +Pe/4)} is
the growth constant of the semigroup generated by the Riesz-spectral operator Ac. This
means that ‖χ(·, t)‖L2 converges exponentially fast to 0 as t tends to +∞. Moreover, by
using the reaction invariant xe

1−δxe
2 = 0, the stability analysis of the linearized model
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corresponding to the plug-flow tubular reactor is based on the following parabolic
PDE {

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 −q(z)ξ̂1,

∂ ξ̂1
∂ z (0, t) =

Pe
2 ξ̂1(0, t),

∂ ξ̂1
∂ z (1, t) =−Pe

2 ξ̂1(1, t),
(3.2.18)

where ξ̂1(z, t) = e
−Pe

2 z(x1(z, t)− xe
1(z)) and

q(z) =
Pe
4
+

k0L
v

e
−µ

1+xe
1(z) −δ

k0L
v

µ(1− xe
2(z))

(1+ xe
1(z))

2 e
−µ

1+xe
1(z) . (3.2.19)

An estimation of the exponential behavior of ‖ξ̂ (·, t)‖L2 as a function of time is
given in the next proposition.

Proposition 3.2.7 The state trajectory ξ̂1 solution of the PDE (3.2.18) satisfies
the following estimate

‖ξ̂1(·, t)‖L2 ≤ e−
(

π2

π2+4Pe
+q(c)

)
t‖ξ̂1(·,0)‖L2 , t ≥ 0, (3.2.20)

for some c ∈ (0,1).

Before going into the proof of that proposition, we need two auxiliary results, the
first being an extension of the Wirtinger’s inequality and the second standing for a
generalization of the mean value theorem for integrals.

Lemma 3.2.3 For any continuously differentiable function w defined on [0,1],
the inequalities

−1
2

w2(0)≤− 1
4Λ

∫ 1

0
w2(z)dz+

2
π2(2Λ−1)

∫ 1

0

(
dw
dz

)2

(z)dz (3.2.21)

and

−1
2

w2(1)≤− 1
4Λ

∫ 1

0
w2(z)dz+

2
π2(2Λ−1)

∫ 1

0

(
dw
dz

)2

(z)dz (3.2.22)

hold for all Λ > 1
2 .

Proof. By (Chung-Fen et al., 2004, Corollary 9), it holds that

∫ 1

0
(w(z)−w(0))2 dz≤ 4

π2

∫ 1

0

(
dw
dz

)2

(z)dz, (3.2.23)

or equivalently

∫ 1

0
w2(z)dz≤−w2(0)+

∫ 1

0
2w(0)w(z)dz+

4
π2

∫ 1

0

(
dw
dz

)2

(z)dz.
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By using the Generalized Young’s Inequality, see e.g. Krstic and Smyshlyaev (2008),
it follows that(

1− 1
2Λ

)∫ 1

0
w2(z)dz≤ (−1+2Λ)w2(0)+

4
π2

∫ 1

0

(
dw
dz

)2

(z)dz, (3.2.24)

for some Λ > 0. To ensure the positivity of 1− 1
2Λ

, we have to assume that Λ > 1
2 . In

this way, one may write (3.2.24) as

∫ 1

0
w2(z)dz≤ 2Λw2(0)+

8Λ

π2 (2Λ−1)

∫ 1

0

(
dw
dz

)2

(z)dz.

The inequality (3.2.22) can be deduced by applying similar arguments on the function
w̃ defined by w̃(z) = w(1− z),z ∈ [0,1]. �

Lemma 3.2.4 Let a < b be two real numbers. If f is a continuous function on
[a,b] and g is integrable on [a,b] and either g(z)≥ 0 or g(z)≤ 0 for all z ∈ [a,b],
then there exists c ∈ [a,b] such that

∫ b
a f (z)g(z)dz = f (c)

∫ b
a g(z)dz.

Proof. See (Neuser, 1970, Theorem 3.3). �

Proof. (Proposition 3.2.7) Let us choose as Lyapunov functional candidate the func-
tion V : L2([0,1] : R)→ R, defined by V (ξ̂1) =

1
2‖ξ̂1‖2

L2 . By differentiating V w.r.t. t
along the state trajectories corresponding to (3.2.18), one gets

V̇ (ξ̂1) =
1
2

d
dt

∫ 1

0
ξ̂ 2

1 dz =
∫ 1

0
ξ̂1

(
1
Pe

d2ξ̂1

dz2 −q(z)ξ̂1

)
dz.

Integration by parts yields that

V̇ (ξ̂1) =−
1
2

ξ̂ 2
1 (1)−

1
2

ξ̂ 2
1 (0)−

1
Pe

∫ 1

0

(
dξ̂1

dz

)2

dz−
∫ 1

0
q(z)ξ̂ 2

1 dz.

According to Lemma 3.2.4, V̇ takes the form

V̇ (ξ̂1) =−
1
2

ξ̂ 2
1 (1)−

1
2

ξ̂ 2
1 (0)−

1
Pe

∫ 1

0

(
dξ̂1

dz

)2

dz−q(c)
∫ 1

0
ξ̂ 2

1 dz (3.2.25)

for some c ∈ (0,1). Applying Lemma 3.2.3 to (3.2.25) allows to bound V̇ as

V̇ (ξ̂1)≤
(−1

2Λ
−q(c)

)∫ 1

0
ξ̂ 2

1 dz+
(

4
π2(2Λ−1)

− 1
Pe

)∫ 1

0

(
dξ̂1

dz

)2

dz.
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We shall now choose Λ in such a way that 4
π2(2Λ−1) −

1
Pe = 0, which yields Λ = 1

2 +
2Pe
π2 > 1

2 . Consequently,

1
2

d
dt
‖ξ̂1‖2

L2 ≤−
(

π2

π2 +4Pe
+q(c)

)∫ 1

0
ξ̂ 2

1 dz =−
(

π2

π2 +4Pe
+q(c)

)
‖ξ̂1‖2

L2 .

(3.2.26)
By applying Gronwall’s Lemma, see (Curtain and Zwart, 2020, Lemma A.5.30), one
gets

‖ξ̂1(·, t)‖L2 ≤ e−
(

π2

π2+4Pe
+q(c)

)
t‖ξ̂1(·,0)‖L2 . (3.2.27)

�

The estimate (3.2.27) leads to the following sufficient condition in order to char-
acterize the exponential stability of equilibria of (2.3.3).

Theorem 3.2.8 A sufficient condition for an equilibrium profile of (2.3.3) to be
exponentially stable for the linearized system (3.2.18) is that

µ ≤ h̃e(a), (3.2.28)

where the function h̃e(a) is defined as (1− f̃ e(a))
2
(r(δ−a−alD)+a)

(δ+ f̃ e(a))a
with

f̃ e(a) =
k0L(δ −a)e

−µ
1+a

2D
−a+

K
D2 ,

r =
π2

π2 +4Pe
+

Pe
4

and

lD =
k0L(δ−a)e

−µ
1+a+ K

D2

a − k0L(δ−a)e
−µ
1+a

a

k0Le
−µ

1+a+ K
D2

, (3.2.29)

where K is the positive constant introduced in (3.2.11). Note that in the case
where inequality (3.2.28) holds, exponential stability is obtained for all D≥ D?

where D? > 0 is sufficiently large, which is the same condition for existence and
multiplicity of the equilibria.

Proof. Starting from inequality (3.2.28), it holds that

a
(

µδ +µ f̃ e(a)−
(
1− f̃ e(a)

)2
)

δ −a−alD
≤ r
(
1− f̃ e(a)

)2
. (3.2.30)

It follows from inequalities (3.2.7) and (3.2.12) that a− k0L(δ−a)e
−µ
1+a

2D − K
D2 < xe

1(z) <
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a+ K
D2 , a.e. on [0,1], which can be written as

− f̃ e(a)< xe
1(z)< a+K/D2. (3.2.31)

Since xe
1(z)< a+K/D2 a.e. on [0,1], it follows that

e−µ/(1+xe
1(z)) < e−µ/(1+a+ K

D2 ) (3.2.32)

a.e. on [0,1]. Combining (3.2.30), (3.2.31) and the previous inequality yields the
estimate

k0Le
−µ

1+xe
1(z)

k0Le
−µ

1+a+ K
D2

a
(

µδ −µxe
1(z)− (1+ xe

1(z))
2
)

δ −a−alD
< r (1+ xe

1(z))
2 ,

where the positivity of 1− f̃ e(a) and δ −a−alD have been used thanks to (3.2.8) and
the fact that D is sufficiently large. Equivalently one has that

k0Le
−µ

1+xe
1(z)
(

µδ −µxe
1(z)− (1+ xe

1(z))
2
)

k0L(δ−a)e

−µ
1+a+ K

D2

a − k0Le
−µ

1+a+ K
D2 lD

< r (1+ xe
1(z))

2 .

By plugging the expression of lD (3.2.29) in the previous inequality, it follows that

k0Le
−µ

1+xe
1(z)

v

(
µδ −µxe

1(z)− (1+ xe
1(z))

2
)
< r (1+ xe

1(z))
2 ,

where relation (3.2.4) has been taken into account. By dividing the last inequality by
(1+ xe

1(z))
2, one gets

k0Le
−µ

1+xe
1(z)

v
µδ (1− xe

2(z))
(1+ xe

1(z))
2 −

k0Le
−µ

1+xe
1(z)

v
< r,

which can be rewritten as −q(z)+Pe/4 < r by using the definition of the function q,
see (3.2.19), where we have been considering the reaction invariant relation xe

1(z) =
δxe

2(z). Hence π2

π2+4Pe + q(z) > 0 for a.e. z ∈ [0,1]. In particular, π2

π2+4Pe + q(c) > 0
for c ∈ (0,1). By using the fact that (3.2.27) holds for all t > 0, see Proposition 3.2.7,
it follows that the equilibrium xe

1 is exponentially stable. �

Note that the parameter a on which the function h̃e depends plays the role of a
switch for the different equilibria. As explained above, the equilibria are characterized
by the values of a that make the function v− k0L(δ − a)e

−µ
1+a /a zero, see (3.2.4).

Consequently, for any of these values (depending on the multiplicity of the equilibria),
condition (3.2.28) has to be tested to determine if the equilibrium is exponentially
stable. Therefore, let us consider the following corollary which takes two different
situations into account, a first one involving the case where only one equilibrium is
exhibited and a second one dealing with the case of three equilibria.
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Corollary 3.2.9 In the case where the nonisothermal axial dispersion tubular
reactor (2.3.3) admits only one equilibrium profile, there exists D? sufficiently
large such that this equilibrium profile is exponentially stable for all D ≥ D?.
Moreover, when three equilibria are exhibited, bistability is established, i.e. the
pattern "exponentially stable - unstable - exponentially stable" is depicted.

Proof. The proof is divided into two parts, depending on the number of equilibria.

Part 1: one equilibrium
Remember that the velocity v is given by k0L(δ − a)e

−µ
1+a /a and remember also that

for a fixed value of v the number of equilibria is determined as the number of values
of a that reach v, see (Hastir et al., 2020, Section IV). Moreover, by differentiating v
w.r.t. a, it yields that

dv
da

=
k0Le

−µ
1+a

a2(1+a)2

[
−(µ +δ )a2 +δ (µ−2)a−δ

]
. (3.2.33)

Hence, in the case where only one equilibrium is exhibited, the first order derivative
of v w.r.t. a does not change sign on the interval ]0,δ [. This is characterized by the
two following possibilities(1)

µδ (µδ −4δ −4)< 0, (3.2.34)
µδ (µδ −4δ −4) = 0. (3.2.35)

These two options characterize the fact that only one value of a can reach a fixed value
of v, see Hastir et al. (2020). In the first situation, i.e. (3.2.34), the first order derivative
of v(a) with respect to a has no root, meaning that v has no extremum and is strictly
decreasing, see (Hastir et al., 2020, Section IV.A). Only one value of a can reach a
fixed value v (one equilibrium).

In the second case, i.e. (3.2.35), the first order derivative of v with respect to a
vanishes only one time in the interval ]0,δ [, see (Hastir et al., 2020, Section IV.A) and
in particular (Hastir et al., 2020, Equation (15)), wherein it is shown that the point
where dv

da (a) vanishes is a point of inflexion, meaning that v is monotone on ]0,δ [
(only one value of a can reach a fixed value of v).

To get exponential stability, by Theorem 3.2.28, one has to check that µ ≤ h̃e(a).
It could be seen as challenging to show that inequality by looking at the expression of
the function h̃e(a). Therefore we shall look at an approximation of the problem thanks
to the Taylor expansion of the functions h̃e(a), f̃ e(a),r and lD as functions of 1

D near
1
D = 0. Only the first term in the expansion will be considered. Hence, by introducing
the parameter ε = 1/D, the problem of finding values of a such that µ ≤ h̃e(a) will be

approached by a similar one by taking ε = 0, i.e.(2) µ ≤ δ (1+a)2

a(δ−a) =: h(a). Equivalently

(1)The quantity µδ (µδ −4δ −4) represents the discriminant of the second order polynomial in (3.2.33),
i.e. the discriminant of −(µ +δ )a2 +δ (µ−2)a−δ .

(2)Setting 1/D to 0 implies that lD| 1
D =0

= 0,r| 1
D =0 = 1 and f̃ e(a)| 1

D =0 =−a, which leads to h̃e(a)| 1
D =0 =

δ (1+a)2

a(δ−a) .

72



3.2 Plug-flow tubular reactor

we have
(µ +δ )a2−δ (µ−2)a+δ ≥ 0. (3.2.36)

Let us look at the case for which (3.2.34) holds. The discriminant of the second
order polynomial in (3.2.36), denoted by ρ , is equal to µδ (µδ −4δ −4), which is
assumed to be negative here. Hence (3.2.36) is satisfied for all values of a ∈]0,δ [ and
the corresponding equilibrium profile is exponentially stable by Theorem 3.2.28.

In the second case, see (3.2.35), the polynomial in (3.2.36) vanishes only one time
when a = δ/(2+δ ) := a?. For other values of the parameter a, it is positive, leading
to exponential stability of the related equilibria.

Part 2: three equilibria
Similar arguments to those presented before in the proof are used here. In the case
where the reactor can exhibit three equilibria, three values of a can reach a fixed value
of v? meaning that v?(a) has two extrema in the interval ]0,δ [. Mathematically there
holds

µδ (µδ −4δ −4)> 0, (3.2.37)

see (Hastir et al., 2020, Section IV.A) for the reasoning and calculation details. Once
more, exponential stability is obtained if (3.2.36) is satisfied. Since (3.2.37) holds, the
second order polynomial in (3.2.36) possesses two roots that are given by

a?1 =
δ (µ−2)
2(µ +δ )

− 1
2(µ +δ )

√
µδ (µδ −4δ −4)

and

a?2 =
δ (µ−2)
2(µ +δ )

+
1

2(µ +δ )
√

µδ (µδ −4δ −4).

Hence values of a in the interval ]0,a?1[ or in ]a?2,δ [ lead to exponentially stable equi-
libria. Since a?1 and a?2 are also roots of the first order derivative of v, the intervals
]0,a?1[, [a

?
1,a

?
2] and ]a?2,δ [ denote the three zones where the first, the second and the

third equilibrium profiles are located, respectively, see the expression and the shape
of v(a). It follows that the first and the third equilibria are exponenially stable. For
establishing the instability of the second equilibrium, we refer to (Varma and Aris,
1977, Section 2.5.2.). �

Note that, when an equilibrium profile is exponentially stable, the function q de-
fined in (3.2.19) gives a hint on the exponential decay to 0 of the L2([0,1];R)− norm
of the state trajectory ξ̂1. Let us have a look at q in the limit where 1

D tends to 0. This
has the consequence that xe

1(z) behaves like a and xe
2(z) like 1

δ a, see Proposition 3.2.2
and relation (3.2.10). According to the expression of the velocity as a function of a,
see (3.2.4), this entails that q(z) behaves like

q(z)| 1
D=0 =

a
δ −a

− µa
(1+a)2 . (3.2.38)

This asymptotic expression of q yields that the nearer a is to δ , the larger q(z) is, for
any z ∈ [0,1]. At the other side of the interval ]0,δ [, the nearer a is to 0, the closer q
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Chapter 3 Equilibria for infinite-dimensional systems
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Figure 3.2 – Function h in the case of one equilibrium (µ = 6,δ = 2).

is to 0. Thanks to Proposition 3.2.7, for an equilibrium characterized by a value of a
that is close to 0, the L2([0,1];R)− norm of the state trajectory ξ̂1 has more chance to
converge slowly to 0 than in the case of an equilibrium that is characterized by a value
of a that is close to δ . By looking at (3.2.4), a value of a that is close to 0 means that
the velocity v is large while a value of a that is close to δ entails that the velocity is
low.

The function h(a) is depicted in Figures 3.2 and 3.3 in the cases where one or
three equilibria are exhibited. The parameters that are chosen for the case of one
equilibrium are as follows: µ = 6,δ = 2 (ρ = 0). For the case where three equilibria
are highlighted, the values of µ and δ have been fixed to 10 and 1, respectively (ρ =
20). It can be seen that the condition (3.2.28) is always satisfied in the case of one
equilibrium. For the case with three equilibria, the condition is satisfied for the first
and the third equilibria, which implies bistability.

We shall end this chapter by looking at an intuitive manner to see that the exponen-
tial bound found in (3.2.20) is tight in the case where the diffusion coefficient is large.
As explained above the function q takes the form (3.2.38) in the limit case where D is
large. Hence for D large enough, (3.2.18) behaves like{

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 −qaξ̂1,

∂ ξ̂1
∂ z (0, t) =

Pe
2 ξ̂1(0, t),

∂ ξ̂1
∂ z (1, t) =−Pe

2 ξ̂1(1, t),
(3.2.39)

which is a Riesz-spectral system whose operator dynamics Ar := 1
Pe

d2

dz2 −qaI with do-

main D(Ar) = {ξ̂1 ∈ H2([0,1];R), dξ̂1
dz (0) =

Pe
2 ξ̂1(0),

dξ̂1
dz (1) =−Pe

2 ξ̂1(1)} is a Riesz-
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Figure 3.3 – Function h in the case of three equilibria (µ = 10,δ = 1).

spectral operator with eigenvalues −s2
n− qa where {sn}n∈N are the solutions of the

resolvent equation

tan(s
√

Pe) =
4s
√

Pe
4s2−Pe

,s > 0. (3.2.40)

Note that the notation qa = q(z)| 1
D=0 has been used, see (3.2.38) for the expression

of q(z)| 1
D=0. Let us have a look at the resolvent equation (3.2.40) and let us try to

classify its solutions. Obviously 0 is a solution but not interesting here since only
positive solutions are considered. A large value of D entails that Pe is small, which
has the consequence that the resolvent equation behaves like

tan(s
√

Pe) =
4s
√

Pe
4s2 =

√
Pe
s

,s≥ 0. (3.2.41)

When its argument is small, the tangent may be approximated by its argument, which
entails that the next solution after 0 is s1 = 1 when looking at (3.2.41). According to
Dehaye (2015), the solutions of (3.2.40) are increasing and possess the property that

lim
n→∞

[
sn−

(n−1)π√
Pe

]
= 0. Hence the largest eigenvalue of the operator Ar is λ ∗ =

−1−qa. According to Theorem 2.1.4, the growth bound of the semigroup generated
by Ar is equal to λ ∗. When this growth bound is negative, it dictates the speed at which
the solution of (3.2.18) decreases exponentially to 0. Consider now the exponent found
in the exponential of (3.2.20) with the Lyapunov-based approach. This exponent is
given by − π2

π2+4Pe − q(c) =: λ for some c ∈ (0,1). Considering the limit when 1
D is

close to 0 yields that λ →−1−qa = λ ∗. This proves that the exponential rate found
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Figure 3.4 – Function qa in the case of three equilibria (µ = 10,δ = 1).

in (3.2.20) is quite tight and gives an accurate estimation of the growth bound of the
semigroup generated by the operator 1

Pe
d2

dz2 −q(z)I on the domain D(Ar).
The representation of the function qa is depicted in Figure 3.4 in the case of

µ = 10,δ = 1,v = 0.0011 and D = 10. The three values of a that characterize the
three equilibria are illustrated on the Figure. These three values of a are given by
aeq1 = 0.0791,aeq2 = 0.3284 and aeq3 = 0.7498, respectively. This has the conse-
quence that the corresponding values of qa are qaeq1

=−0.5935,qaeq2
=−1.3720 and

qaeq3
= 0.5476. Plugging these values in the parameter λ ∗ entails that λ ∗a=0.0791 =

−0.4065,λ ∗a=0.3284 = 0.3720 and λ ∗a=0.7498 = −1.5476, which tells that the first and
the third equilibria are exponentially stable while the second is unstable.
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A perturbation method to analyze
the nonlinear stability of
equilibria
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The topic that is developed in this chapter is based on the concepts of differentia-
bility introduced in Chapter 3. The key point is to try to deduce the nonlinear stability
of an equilibrium of a distributed parameter system (locally) on the basis of the stabil-
ity analysis of the equilibrium for a corresponding linearized system.

4.1 Existing theories to deduce exponential stability
The type of differentiability which will play an important role here is Fréchet dif-
ferentiability which has been defined in Definition 3.1.2. Let us start by recalling the
following result from the finite-dimensional setting, known as the Lyapunov’s Indirect
Theorem, see e.g. (Haddad and Chellaboina, 2008, Theorem 3.19).
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Chapter 4 Stability analysis of equilibria

Theorem 4.1.1 Let us consider the nonlinear finite-dimensional system

ẋ(t) = f (x(t)),x(0) = x0, t ≥ 0, (4.1.1)

where the nonlinear function f : D→ Rn is continuously differentiable and D is
an open set that contains the origin. Moreover, let the origin be an equilibrium
point of (4.1.1) and let A = ∂ f

∂x |x=0 be the Jacobian matrix of f at the equilibrium
point 0 with {λn}n=1,...,n being the set of its eigenvalues. Then the following
statements hold:

• If sup
i=1,...,n

Re(λn) < 0 then the equilibrium point 0 is locally exponentially

stable;

• If there exists n∗ ∈ N,1 ≤ n∗ ≤ n such that Re(λn∗) > 0 then the equilib-
rium point 0 is unstable.

The central idea in the proof of the theorem is the continuous differentiability of f .
This argument is the most responsible for the stability property of the nonlinear system
as well as the local aspect of the stability. Thanks to that result, it is intuitively natural
to ask for a same kind of concept when moving to infinite dimension. This argument
is the Fréchet differentiability of the nonlinear semigroup whose nonlinear operator
dynamics is the infinitesimal generator. We report hereafter some results on the link
between the local stability of a nonlinear system and the stability of a corresponding
linearized version of it. This is called linearized stability.

The concept of linearized stability is discussed in Henry (1981) wherein some
assumptions on the nonlinear operator dynamics are stated like continuous Fréchet
differentiability, local Hölder continuity in time and also local Lipschitz continuity.
As long as the linearized system around a chosen equilibrium is exponentially stable,
(Henry, 1981, Theorem 5.1.1) guarantees that the same conclusion holds for the orig-
inal system, locally around that equilibrium. In Smoller (1983), the same conclusion
on the nonlinear semigroup is shown to hold provided that the latter, generated by the
nonlinear operator dynamics, is Fréchet differentiable at the considered equilibrium
point, see (Smoller, 1983, Theorem 11.22). It is expressed as follows.

Theorem 4.1.2 Let X be a Hilbert space. Consider the dynamical system{
ẋ(t) = Ax(t)+ f (x(t)),
x(0) = x0 ∈ X ,

(4.1.2)

where the assumptions of Theorem 2.2.2 are supposed to hold. Let (S(t))t≥0
be the nonlinear semigroup whose A+ f is the infinitesimal generator and let
(T (t))t≥0 be the linear semigroup generated by the operator A+D f (xe), the
Fréchet derivative of A+ f at xe, where xe is an equilibrium of (4.1.2). Under
the assumption that (S(t))t≥0 is Fréchet differentiablea at xe with (T (t))t≥0 as
Fréchet derivative, it holds that:
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4.2 From the classical Fréchet differentiability to an adapted concept of
differentiability

• If (T (t))t≥0 is exponentially stable then the equilibrium xe is locally expo-
nentially stable for (4.1.2);

• If (T (t))t≥0 is unstable then it is locally unstable for (4.1.2).

aAs the semigroup (S(t))t≥0 is indexed by time, by Fréchet differentiability of (S(t))t≥0, we mean
Fréchet differentiability of S(t) for any t ≥ 0.

Sufficient conditions on the nonlinear operator are often stated to get Fréchet differ-
entiability of the generated nonlinear semigroup, see e.g. (Smoller, 1983, Theorems
11.17 and 11.18). It is for instance asked that the nonlinear operator f is Fréchet
differentiable at the equilibrium point while it has to be locally Lipschitz continuous.
Two years later, Webb showed the same result in (Webb, 1985, Theorem 4.12) with
other assumptions and applied it to the age-dependent population problem. Fréchet
differentiability of nonlinear semigroups is also studied in Temam (1997) for semilin-
ear systems of the form (2.2.1). Conditions are required on both linear and nonlinear
parts of the dynamics, i.e. on the operators A and f , respectively. For instance, the lin-
ear operator has to be closed, negative and self-adjoint while the nonlinear one has to
satisfy some appropriate decomposition, see e.g. (Temam, 1997, Section 8). This re-
sult has been presented again in (Al Jamal et al., 2014, Theorem 3.8) where it is stated
that the conditions that have to be fulfilled are quite restrictive. In Kato (1995), it is
shown that exponential stability of an equilibrium of a nonlinear system is guaranteed
as long as the same behavior holds for a Gâteaux linearized version of the nonlinear
operator describing the dynamics, as long as the nonlinear operator is Fréchet differ-
entiable. Other assumptions like the Lipschitz continuity of the Fréchet derivative in
the operator norm are also needed.

More recently in Al Jamal et al. (2014), similar results are established and applied
to the Kuramoto-Sivashinski nonlinear partial differential equations. In that paper the
limitations of the theory are also discussed. Indeed the assumptions that are required
on both the linearized system and the nonlinearity could be hard to verify for many
models of nonlinear PDEs. The main difficulty is due to the assumptions needed on
the nonlinear operator dynamics that ensure Fréchet differentiability of the nonlinear
semigroup. This is the reason why one often works on the semigroup instead of the
generator, see for instance (Al Jamal, 2013; Al Jamal and Morris, 2018). In general a
case-by-case study has to be performed.

4.2 From the classical Fréchet differentiability to an
adapted concept of differentiability

In this section we show how the difficulties reported previously to get Fréchet differ-
entiability may be overcome. We shall introduce a new concept of differentiability for
nonlinear operators. A new framework is built around this new concept to be able to
characterize the local stability of an equilibrium for a nonlinear system of the form
(4.1.2).
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Chapter 4 Stability analysis of equilibria

The systems that are considered are of the form (4.1.2) where we suppose that the
assumptions of Theorem 2.2.2 hold, that is,

• the domain D( f ) is (T (t))t≥0 invariant, i.e. T (t)D( f )⊂ D( f ), for all t ≥ 0;

• the relation
lim

h→0+

1
h

d(x+h f (x);D( f )) = 0

holds for all x ∈ D( f );

• the nonlinear operator f is Lipschitz continuous on D( f ) and there exists a
nonnegative constant l f such that the operator f − l f I is dissipative on D( f ).

Let xe be an equilibrium solution of (4.1.2), i.e. Axe + f (xe) = 0. In addition, we
consider the following assumption on the operator f .

Assumption 4.2.1 The nonlinear operator f : D( f )⊆ X → X is Gâteaux differ-
entiable at the equilibrium xe. Its Gâteaux derivative is denoted by d f (xe) : X→
X and is assumed to be bounded on X, i.e. d f (xe) ∈L (X).

Let us perform the change of variables ξ = x− xe in such a way that the new
equilibrium is 0. Consequently, (4.1.2) becomes{

ξ̇ (t) = Aξ (t)+ f (ξ (t)+ xe)− f (xe),
ξ (0) = x0− xe =: ξ0.

(4.2.1)

The assumptions of Theorem 2.2.2 that guarantee well-posedness of (4.1.2) imply that
(4.2.1) is still well-posed and that for any initial condition in the shifted domain De( f̃ )
of the operator f̃ (·) := f (·+ xe)− f (xe), i.e. De( f̃ ) := D( f )− xe, the corresponding
state trajectory ξ (t) solution to (4.2.1) lies in De( f̃ ). Indeed, in terms of semigroups,
the change of variable ξ (t) = x(t)−ξ e is expressed as

Se(t)ξ0 = S(t)x0− xe, (4.2.2)

where (S(t))t≥0 and (Se(t))t≥0 denote the semigroups generated by A+ f and by A+
f (·+ xe)− f (xe), respectively. Note that the initial conditions x0 and ξ0 are chosen
in D( f ) and De( f̃ ), respectively. The D( f )−invariance of the semigroup (S(t))t≥0
implies that Se(t)ξ0 ∈ De( f̃ ), which proves that (Se(t))t≥0 is De( f̃ )−invariant.

As it will be needed later, the following lemma characterizes some type of conti-
nuity of the state trajectory ξ (t) of (4.2.1) on a finite time interval [0, t0], t0 > 0.

Lemma 4.2.1 Let us consider ξ , the mild solution of (4.2.1) with ξ0 as ini-
tial condition. Suppose that f (ξ (·)) ∈ Lp([0, t0];X) for some p ≥ 1, and that
ξ0 ∈ D(A) ∩De( f̃ ). Then ξ (·) and f (ξ (·) + xe)− f (xe)− d f (xe)ξ (·) lie in
L∞([0, t0];X).
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4.2 From the classical Fréchet differentiability to an adapted concept of
differentiability

Proof. Let us consider t ∈ [0, t0]. By (Curtain and Zwart, 1995, Lemma 3.1.5)
and (Temam, 1997, Theorem II.3.4), the state trajectory ξ (·) ∈ L∞([0, t0];X) since
f (ξ (·)) ∈ Lp([0, t0];X) for some p≥ 1. Moreover

‖ f (ξ + xe)− f (xe)−d f (xe)ξ‖L∞([0,t0];X)

= sup
t∈[0,t0]

‖ f (ξ (t)+ xe)− f (xe)−d f (xe)ξ (t)‖X

≤ sup
t∈[0,t0]

(‖ f (ξ (t)+ xe)− f (xe)‖X +‖d f (xe)‖op‖ξ (t)‖X ),

where ‖ · ‖op denotes the appropriate operator norm and where the boundedness of
d f (xe) has been used. Since f is Lipschitz continuous on the invariant subset D( f ),
one gets that

‖ f (ξ + xe)− f (xe)−d f (xe)ξ‖L∞([0,t0];X) ≤ (l f +‖d f (xe)‖op) sup
t∈[0,t0]

‖ξ (t)‖X

= (l f +‖d f (xe)‖op)‖ξ‖L∞([0,t0];X) < ∞,

where l f denotes a Lipschitz constant of f . �

The new concept of differentiability needed to overcome the verifiability of the
classical Fréchet differentiability is introduced in the following definition.

Definition 4.2.1 Let Y be a (possibly Banach) infinite-dimensional space con-
tinuously embedded in X, i.e. Y ⊆ X and ‖h‖X ≤ σ‖h‖Y for any h ∈Y and some
σ > 0. It is also required that D(A) ⊂ Y and that D(A)∩De( f̃ ) 6= /0. The oper-
ator f is said to be (Y,X)−Fréchet differentiable at xe if there exists a bounded
and linear operator D f (xe) : X → X such that for all h ∈ D(A)∩De( f̃ ) there
holds f (xe +h)− f (xe) = D f (xe)+R(xe,h) where

lim
‖h‖Y→0

‖R(xe,h)‖X

‖h‖X
= 0. (4.2.3)

Equivalently, it holds that

lim
‖h‖Y→0

‖ f (xe +h)− f (xe)−D f (xe)h‖X

‖h‖X
= 0, (4.2.4)

that is for all ε > 0, there exists δ > 0 such that for all h∈D(A)∩De( f̃ ),‖h‖Y <
δ implies that

‖ f (xe +h)− f (xe)−D f (xe)h‖X

‖h‖X
< ε.

Note that convergence in Y implies convergence in X since ‖h‖X ≤ σ‖h‖Y for all
h ∈ D(A)∩De( f̃ ).

Note that when Y coincides with X , this new definition is the same as the classical
Fréchet differentiability introduced in Definition 3.1.2, see for instance Al Jamal and
Morris (2018). This will be called the X−Fréchet differentiability here.
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Chapter 4 Stability analysis of equilibria

According to the new concept of Fréchet differentiability we shall need new con-
cepts of local exponential stability in order to characterize the latter for the nonlinear
system (4.2.1). We start with the classical definition of a globally exponentially stable
equilibrium, see e.g. (Al Jamal, 2013, Definition 3.1.1).

Definition 4.2.2 The equilibrium xe of (4.2.1) is said to be globally exponentially
stable if there exist α,β > 0 such that for all x0 ∈ X, it holds ‖x(t)− xe‖X ≤
αe−β t‖x0− xe‖X , t ≥ 0, or equivalently, ‖ξ (t)‖X ≤ αe−β t‖ξ0‖X for all ξ0 ∈ X.

According to our new concept of differentiability, see Definition 4.2.1, let us con-
sider the following new definition of local exponential stability.

Definition 4.2.3 The equilibrium xe of (4.1.2) is (Y,X)−locally exponentially
stable if there exist δ ,α,β > 0 such that, for all ξ0 ∈D(A)∩De( f̃ ) with ‖ξ0‖Y <
δ , there holds ‖ξ (t)‖X ≤ αe−β t‖ξ0‖X , t ≥ 0.

The main difference from a classical local condition is that the Y−norm of the
initial condition has to be small instead of its X−norm, restricting the set of allowed
initial conditions because of the continuous embedding of Y into X . A same adaptation
is introduced in the next definition for local stability and instability.

Definition 4.2.4 The equilibrium xe of (4.1.2) is said to be (Y,X)−locally stable
if for all ε > 0 there exists δ > 0 such that for all ξ0 ∈ D(A)∩De( f̃ ),‖ξ0‖Y < δ
implies ‖ξ (t)‖X < ε, t ≥ 0. The equilibrium xe is (Y,X)−(locally) unstable if it
is not (Y,X)−stable.

In order to be allowed to consider the Y−norm of the state trajectory ξ (t) one
has to ensure that (4.2.1) is well-posed on the space Y . This requirement with other
regularity conditions are stated in the following assumption.

Assumption 4.2.2 The nonlinear abstract Cauchy problem (4.2.1) is well-posed
on Y . Moreover, it is assumed that the Gâteaux derivative d f (ξ e) of f is bounded
on Y . This has the consequence that, provided that the linear operator A gener-
ates a C0−semigroup on Y , the linearized dynamics corresponding to (4.2.1), i.e.
the operator A+ d f (xe), is well-posed on Y , see e.g. (Engel and Nagel, 2006,
Bounded Perturbation Theorem). The nonlinear C0− semigroup (Se(t))t≥0 is
also assumed to be Y−Fréchet differentiable at 0.

Let us state the following assumption that will be of great importance in deducing
the Fréchet differentiability of the semigroup (Se(t))t≥0 on the basis of the Fréchet
differentiability of the nonlinear operator f̃ .

Assumption 4.2.3 Let ξ (t) be the mild solution of (4.2.1) for the initial con-
dition ξ0, where 0 ≤ t ≤ t0. Let us consider a space (Y,‖ · ‖Y ) that satisfies
D(A) ⊂ Y ⊆ X. It is assumed that the nonlinear operator f is (Y,X)−Fréchet
differentiable ata xe and that ξ is continuously dependent of the initial condition
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differentiability

ξ0 on X and on Y at zero in the sense that the inequalities

‖ξ (t)‖X ≤ γX
t ‖ξ0‖X , (4.2.5)

‖ξ (t)‖Y ≤ γY
t ‖ξ0‖Y (4.2.6)

hold for some positive γX
t ,γY

t that may depend on time.

aThis is equivalent to assume that the nonlinear operator f̃ := f (·+xe)− f (xe) is (Y,X)−Fréchet
differentiable at 0.

According to this assumption, one may characterize the behavior of the ratio
‖ f (ξ+xe)− f (xe)−D f (xe)ξ‖L∞([0,t0 ];X)

‖ξ0‖X as the Y−norm of the initial condition ξ0 goes to 0, see
the following lemma. The notation D f (xe) stands for the (Y,X)−Fréchet derivative of
f at xe. Note that the latter coincides with the Gâteaux derivative when restricted on
Y , i.e. D f (xe)h = d f (xe)h for any h ∈ Y .

Lemma 4.2.2 Let us consider ξ (t), the solution of the abstract differential equa-
tion (4.2.1), where t ∈ [0, t0] for some positive t0 and where f (ξ (·)) is assumed
to be in Lp([0, t0];X) for some p ≥ 1. Then, under Assumptions 4.2.1 and 4.2.3,
the condition

lim
‖ξ0‖Y→0

‖ f (ξ + xe)− f (xe)−D f (xe)ξ‖L∞([0,t0];X)

‖ξ0‖X
= 0 (4.2.7)

holds for any initial condition ξ0 ∈ D(A)∩De( f̃ ).

Proof. First note that, if f ∈ Lp([0, t0];X) for some p ≥ 1, it follows that ξ and
f (ξ +xe)− f (xe)−d f (xe)ξ are in L∞([0, t0];X) and are continuous, see Lemma 4.2.1.
Then observe that the function f (ξ (·)+ xe)− f (xe)−D f (xe)ξ (·) is time–continuous
on the interval [0, t0]. Hence there exists t∗ ∈ [0, t0] such that

sup
t∈[0,t0]

‖ f (ξ (t)+ xe)− f (xe)−D f (xe)ξ (t)‖X

= ‖ f (ξ (t∗)+ xe)− f (xe)−D f (xe)ξ (t∗)‖X . (4.2.8)

Moreover, according to (4.2.5), the estimate

1
‖ξ0‖X

≤ γX
t∗

1
‖ξ (t∗)‖X

(4.2.9)

holds true. Combining (4.2.8) and (4.2.9) yields

‖ f (ξ + xe)− f (xe)−D f (xe)ξ‖L∞([0,t0];X)

‖ξ0‖X

=
‖ f (ξ (t∗)+ xe)− f (xe)−D f (xe)ξ (t∗)‖X

‖ξ0‖X
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≤ γX
t∗
‖ f (ξ (t∗)+ xe)− f (xe)−D f (xe)ξ (t∗)‖X

‖ξ (t∗)‖X
.

According to the inequality (4.2.5), imposing that ‖ξ0‖Y converges to 0 implies that
so does ‖ξ (t∗)‖Y . Moreover, since the initial condition ξ0 has been chosen in D(A)∩
De( f̃ ), the solution ξ (t) of (4.2.1) is actually a classical solution, and hence, lies in
D(A). Consequently, by the assumption of (Y,X)−Fréchet differentiability of f at xe,
we have

lim
‖ξ0‖Y→0

γX
t∗‖ f (ξ (t∗)+ xe)− f (xe)−D f (xe)ξ (t∗)‖X

‖ξ (t∗)‖X
= 0.

In view of the inequality above, it follows that

lim
‖ξ0‖Y→0

‖ f (ξ + xe)− f (xe)−D f (xe)ξ‖L∞([0,t0];X)

‖ξ0‖X
= 0.

�

In order to be able to link the stability of a linearization of (4.2.1) with the stability
of (4.2.1) let us consider the following lemma that enables the link between the Fréchet
differentiability of f and the Fréchet differentiability of the C0−semigroup (Se(t))t≥0.
Let us start by considering the following linear system{

ξ̇ (t) = Aξ (t)+d f (xe)ξ (t),
ξ (0) = ξ0,

(4.2.10)

that corresponds to a Gâteaux linearization of (4.2.1) around 0. Under the assumption
of boundedness of the operator d f (xe) both viewed as an operator defined on X or
on Y , the linear operator A+d f (xe) is the infinitesimal generator of a C0−semigroup
on X and on Y . The C0−semigroup whose operator A is the infinitesimal generator is
denoted by(1) (T (t))t≥0.

Lemma 4.2.3 Let us consider a space (Y,‖ · ‖Y ) satisfying D(A) ⊂ Y ⊆ X and
for which ‖h‖X ≤ σ‖h‖Y for all h ∈ Y . Under Assumptions 4.2.1 and 4.2.3,
the nonlinear C0−semigroup (Se(t))t≥0 is (Y,X)−Fréchet differentiable at 0 and
its Fréchet derivative is given by the linear C0−semigroup (T (t))t≥0 whose in-
finitesimal generator is A+ d f (ξ e), that corresponds to the Gâteaux derivative
of A+ f (·+ xe)− f (xe) at 0.

Proof. Take ξ0 ∈D(A)∩De( f̃ ) and t ∈ [0, t0]. The mild solutions associated to (4.2.1)
and (4.2.10) are given by

ξ (t) = Se(t)ξ0 = T (t)ξ0 +
∫ t

0
T (t− s)[ f (ξ (s)+ xe)− f (xe)]ds

(1)According to (Curtain and Zwart, 2020, Theorem 2.1.7), the estimate ‖T (t)‖ ≤ Mω eωt holds for all
ω > ω0 and some Mω that depends on the choice of ω , where ω0 denotes the growth bound of (T (t))t≥0.
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4.3 Deducing local exponential stability

and
ξ (t) = T (t)ξ0 = T (t)ξ0 +

∫ t

0
T (t− s)d f (xe)ξ (s)ds,

respectively. Obviously, it holds that

‖Se(t)ξ0−T (t)ξ0‖X = ‖
∫ t

0
T (t− s)[ f (ξ (s)+ xe)− f (xe)−d f (xe)ξ (s)]ds‖X

= ‖
∫ t

0
T (t− s)[ f (ξ (s)+ xe)− f (xe)−d f (xe)ξ (s)+d f (xe)ξ (s)−d f (xe)ξ (s)]ds‖X

≤Mω

∫ t

0
eω(t−s)‖ f (ξ (s)+ xe)− f (xe)−d f (xe)ξ (s)‖X ds

+Mω

∫ t

0
eω(t−s)‖d f (xe)(ξ (s)−ξ (s))‖X ds.

By using the boundedness of the Gâteaux derivative of f at xe on the space X , one gets
that

‖e−ωt(Se(t)ξ0−T (t)ξ0)‖X ≤Mω

∫ t

0
e−ωs‖ f (ξ (s)+ xe)− f (xe)−d f (xe)ξ (s)‖X ds

+Mω‖d f (xe)‖L (X)

∫ t

0
‖e−ωs(Se(s)ξ0−T (s)ξ0)‖X ds.

It follows by using Gronwall’s lemma that

‖Se(t)ξ0−T (t)ξ0‖X ≤Mω e(ω+η)tk0

∫ t

0
‖R(ξ (s),xe)‖X ds (4.2.11)

where R(ξ ,xe) stands for f (ξ + xe)− f (xe)− d f (xe)ξ ,η := Mω‖d f (xe)‖L (X) and
k0 = max{1,e−ωt0}. Consequently, this leads to the following estimate

‖Se(t)ξ0−T (t)ξ0‖X ≤Mω e(|ω|+η)t0k0t0‖R(ξ ,xe)‖L∞([0,t0];X).

Since (4.2.7) holds by Lemma 4.2.2, the nonlinear semigroup (Se(t))t≥0 is (Y,X)−
Fréchet differentiable at 0 with (T (t))t≥0 as Fréchet derivative. �

Note that the previous lemma is valid also if X is a Banach space. No arguments
related to the Hilbert spaces setting are used.

4.3 Deducing local exponential stability
Here we aim at constructing the link between the exponential stability/instability of
the semigroup (T (t))t≥0 with the local exponential stability/instability of (Se(t))t≥0
by using the new concept of differentiability introduced in the previous section.

Before going into the main theorem of this section, let us introduce the following
assumption on the exponential stability of the semigroup (T (t))t≥0 on Y when the
latter satisfies the same property on X .
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Assumption 4.3.1 In the case where (T (t))t≥0 is exponentially stable on X, it is
supposed that (T (t))t≥0 is also exponentially stable on Y , that is

‖T (t)ξ0‖Y ≤ ηe−θ t‖ξ0‖Y , t ≥ 0,∀ξ0 ∈ Y,

for some η ≥ 1,θ > 0.

In the following remark we illustrate a consequence of the exponential stability of
the linearized model (4.2.10) on the space Y thanks to Theorem 4.1.2.

Remark 4.3.1 Under Assumptions 4.2.2 and 4.3.1, the estimate

‖Se(t)ξ0‖Y ≤M‖ξ0‖Y , t ≥ 0, for ‖ξ0‖Y < δ (4.3.1)

holds for some M > 0 and δ > 0 that may depend on M. Indeed, the Y−Fréchet
differentiability of (Se(t))t≥0 in Assumption 4.2.2 combined with Assumption
4.3.1 yields that (Se(t))t≥0 is locally exponentially stable on Y , see Theorem
4.1.2. In other words

‖Se(t)ξ0‖Y ≤Me−β t‖ξ0‖Y , t ≥ 0,‖ξ0‖Y < δ ,

for some M,β ,δ > 0, see e.g. Al Jamal and Morris (2018). This implies (4.3.1).

Hereafter an alternative function that measures the elements on Y is introduced
and shown to be locally equivalent with ‖ · ‖Y around the equilibrium xe. A specific
property of the nonlinear semigroup (Se(t))t≥0 is illustrated by using this new manner
of measuring.

Remark 4.3.2 Let us consider the function

|||x||| := sup
t≥0
‖Se(t)x‖Y

for x ∈ Y,‖x‖Y < δ , δ > 0 sufficiently small. The quantities ||| · ||| and ‖ · ‖Y are
locally equivalent around the equilibrium xe, that is

‖x‖Y ≤ |||x||| ≤M‖x‖Y ,

for some M > 0 and ‖x‖Y < δ . This is valid since (4.3.1) is satisfied and since
the relation supt≥0 ‖Se(t)x‖Y ≥ ‖Se(0)x‖Y = ‖x‖Y holds. Moreover, (Se(t))t≥0
satisfies a contraction property when evaluated with ||| · ||| on Y . For this, take
any x ∈ Y and any t0 > 0 and observe that

|||Se(t0)x||| := sup
t≥0
‖Se(t)Se(t0)x‖Y = sup

t≥0
‖Se(t + t0)x‖Y = sup

s≥t0
‖Se(s)x‖Y

≤ sup
s≥0
‖Se(s)x‖Y =: |||x|||.
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4.3 Deducing local exponential stability

The following theorem generalizes Theorem 4.1.2 in which the classical notion of
Fréchet differentiability is needed for the semigroup (S(t))t≥0. Here we extend the
latter by considering our setting that takes the adapted concept of Fréchet differentia-
bility into account.

Theorem 4.3.1 Let us consider Assumptions 4.2.1 to 4.3.1. If 0 is a globally
exponentially stable equilibrium of the linearized model (4.2.10), then it is a
(Y,X)− locally exponentially stable equilibrium of (4.2.1). Conversely, if 0 is a
(Y,X)− unstable equilibrium of (4.2.10), it is (Y,X)− locally unstable for the
nonlinear system (4.2.1).

Proof. Let us start the proof with the case where the semigroup (T (t))t≥0 is expo-
nentially stable on X . Let us consider ξ0 ∈ D(A)∩De( f̃ ). Thanks to Assumptions
4.2.1 and 4.2.3, it holds that the semigroup (Se(t))t≥0 is (Y,X)−Fréchet differentiable
at 0 by Lemma 4.2.3, i.e. Se(t)ξ0 = T (t)ξ0 + r(t,xe,ξ0), where

lim
‖ξ0‖Y→0

‖r(t,xe,ξ0)‖X

‖ξ0‖X
= 0, (4.3.2)

where the above limit holds uniformly in t on any compact time interval [0, t0], t0 > 0.
As the functions ||| · ||| and ‖ · ‖Y are locally equivalent, see Remark 4.3.2, it holds that

lim
|||ξ0|||→0

‖r(t,xe,ξ0)‖X

‖ξ0‖X
= 0.

In other words, for any t0 > 0 and ε > 0, there exists δ (t0,ε)> 0 such that, if |||ξ0|||<
δ (t0,ε),

‖r(t,xe,ξ0)‖X

‖ξ0‖X
< ε,

for any t ∈ [0, t0]. By the strong continuity in t of the semigroups (Se(t))t≥0 and
(T (t))t≥0, the function r(t,xe,ξ0) is also continuous in t. Since 0 is a globally expo-
nentially stable equilibrium of (4.2.10) by assumption, there exist α ≥ 1 and β > 0
such that for all ξ0 ∈ D(A)∩De( f̃ )

‖T (t)ξ0‖X ≤ αe−β t‖ξ0‖X , t ≥ 0. (4.3.3)

Hence for any t0 <+∞ and any ε > 0, it holds that

‖Se(τ)ξ0‖X ≤ ‖T (τ)ξ0‖X +‖r(τ,xe,ξ0)‖X

≤ αe−βτ‖ξ0‖X + ε‖ξ0‖X =: C‖ξ0‖X , (4.3.4)

for τ ∈ [0, t0] and any ξ0 such that |||ξ0||| < δ (t0,ε), where C := αe−βτ + ε . Let us
choose t0 =

ln(4α)
β > 0. The relation (4.3.3) with t replaced by t0 gives ‖T (t0)ξ0‖X ≤

1
4‖ξ0‖X . Moreover, there holds

lim
|||ξ0|||→0

‖Se(t0)ξ0−T (t0)ξ0‖X

‖ξ0‖X
= 0,
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that is, there exists δ > 0 such that, if |||ξ0|||< δ , then ‖Se(t0)ξ0−T (t0)ξ0‖X ≤ 1
4‖ξ0‖X .

Consequently,

‖Se(t0)ξ0‖X = ‖Se(t0)ξ0−T (t0)ξ0 +T (t0)ξ0‖X

≤ ‖Se(t0)ξ0−T (t0)ξ0‖X +‖T (t0)ξ0‖X ≤
1
2
‖ξ0‖X = e−ln 2‖ξ0‖X .

Let k > 0 be an integer. The semigroup property for (Se(t))t≥0 and the fact that
(Se(t0))k maps D(A)∩De( f̃ ) into D(A)∩De( f̃ ) for every k ∈ N entails that for ev-
ery t0 ≥ 0, one gets

‖Se(kt0)ξ0‖X =‖(Se(t0))kξ0‖X = ‖Se(t0)(Se(t0))k−1ξ0‖X

≤ e−ln 2‖(Se(t0))k−1ξ0‖X ≤ e−(ln 2)k‖ξ0‖X , (4.3.5)

where we have been using recursively the fact that if |||ξ0|||< δ , then |||Se(t0)ξ0|||< δ
too, see Remark 4.3.2. For t > 0, let(2) k = b t

t0
c and τ = t− kt0 ∈ [0, t0]. By using the

semigroup property, (4.3.4) and (4.3.5), one may deduce the relations

‖Se(t)ξ0‖X = ‖Se(τ + kt0)ξ0‖X = ‖Se(τ)Se(kt0)ξ0‖X

≤C‖Se(kt0)ξ0‖X ≤Ce−(ln 2)k‖ξ0‖X = C̃e−γt‖ξ0‖X

for γ = ln 2
t0

and C̃ = Celn 2 τ
t0 . Hence 0 is a (Y,X)−locally exponentially stable equi-

librium for (4.2.1).
In order to prove the second part of the theorem, let 0 be a (Y,X)−locally stable

equilibrium to the nonlinear system (4.2.1). One has

Se(t)ξ0 = T (t)ξ0 + r(t,xe,ξ0). (4.3.6)

Since 0 is (Y,X)−locally stable, it follows that for any ε > 0, there exists δ > 0
such that if ‖ξ0‖Y < δ , then ‖Se(t)ξ0‖X ≤ ε

2 , for all t ≥ 0. From (4.3.2) and since
‖ξ0‖X ≤ σ‖ξ0‖Y , it follows that

lim
‖ξ0‖Y→0

‖r(t,xe,ξ0)‖X

‖ξ0‖Y
≤ lim
‖ξ0‖Y→0

σ
‖r(t,xe,ξ0)‖X

‖ξ0‖X
= 0.

Hence, ‖r(t,xe,ξ0)‖X has to converge to 0 when so does ‖ξ0‖Y . Consequently, there
exists δ ∗ with 0 < δ ∗ < δ such that, if ‖ξ0‖Y < δ ∗, then ‖r(t,xe,ξ0)‖X ≤ ε

2 . Since
‖ξ0‖Y < δ ∗ < δ , it follows from (4.3.6) and from the last inequality that

‖T (t)ξ0‖X ≤ ‖r(t,xe,ξ0)‖X +‖Se(t)ξ0‖X ≤
ε
2
+

ε
2
= ε.

�

(2)The notation b·c stands for the integer part.
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4.4 Applications

Remark 4.3.3 Here we want to report some differences between the new ap-
proach, i.e. mainly Theorem 4.3.1 and (Al Jamal et al., 2014, Theorem 3.3). The
definition of "locally" means here that ‖ξ0‖Y is assumed to converge to 0 in-
stead of ‖ξ0‖X , because of the (Y,X)−Fréchet differentiability of the nonlinear
semigroup (Se(t))t≥0. This somehow restricts the set of initial conditions that
are allowed to be considered in our approach. This leads to additional tech-
nical difficulties, notably when we need to apply successively the property that
‖Se(t0)ξ0‖X ≤ e−ln 2‖ξ0‖X whenever ‖ξ0‖Y < δ , on higher composition orders
of the nonlinear semigroup, i.e. on (Se(t0))kξ0,k ∈N,k > 1. This is possible due
to Assumptions 4.2.2 and 4.3.1 that allow to use a locally equivalent function
to ‖ · ‖Y , namelya ||| · |||. This technical detail is not needed in (Al Jamal et al.,
2014) because ‖Se(t0)ξ0‖X ≤ e−ln 2‖ξ0‖X implies directly that ‖Se(t0)ξ0‖X ≤ δ
whenever ‖ξ0‖X ≤ δ .

aIt can be shown that the function ||| · ||| would define a norm if (Se(t))t≥0 was a linear
C0−semigroup, see e.g. (Engel and Nagel, 2006, Lemma 3.10).

The alternative space Y has to be chosen e.g. in order to avoid limitations in
the manipulations of norm-inequalities. Good choices are in general L∞, Sobolev
spaces of integer orders (H p, p ∈ N0) which are all multiplicative algebras(3) or even
the domain of the operator A equipped with the graph norm ‖ · ‖2

A := ‖A · ‖2
X +‖ · ‖2

X .
Hence, they allow for example to split the norm of the product of two functions into
the product of the norms, which is not permitted in Lp−spaces, 1 ≤ p < ∞, in which
Hölder inequality has to be applied.
In order to give a systematic view and what could be called an "algorithmic" view of
the method, the following scheme is proposed, see Figure 4.1.

It can be summarized as follows: the objective is to deduce exponential stability or
instability of equilibrium profiles for nonlinear distributed parameter systems, where
the state space is called X . First, a Gâteaux linearized version of the nonlinear system
is built and its exponential stability is studied. Then, after the choice of the alternative
space Y , the nonlinear semigroup is proved to be Y−Fréchet differentiable. In addi-
tion, its linearization has to be exponentially stable on Y when it is exponentially stable
on X . Next, the new concept of (Y,X)−Fréchet differentiability plays its role to make
the connection between Y and X to deduce exponential stability or instability of the
equilibria for the nonlinear system (by using X−norms). The specificity here is that
local means that the Y−norm of the initial condition is small instead of its X−norm.

4.4 Applications
The aim of this section is to motivate the use of the approach developed previously
thanks to the (Y,X)−Fréchet differentiability.

(3)Note that there are no canonical choices for a given problem.
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Target Local (exp.) stability/instability of (Se(t))t≥0 on X

Go to Y

• (Se(t))t≥0 is Y−Fréchet differentiable at 0
with (T (t))t≥0 as Fréchet derivative

• (T (t))t≥0 is exponentially stable on Y when
it is exponentially stable on X

Go to X
• (Se(t))t≥0 is (Y,X)−Fréchet differentiable at

0 with (T (t))t≥0 as Fréchet derivative
• (T (t))t≥0 is (exp.) stable/unstable on X

‖ξ0‖Y < δ

Figure 4.1 – Schematic view of the new methodology developed based on an adapted
concept of Fréchet differentiability.

4.4.1 A nonlinear heat equation
We start by looking at the nonlinear operator f : L2([0,1];R)→ L2([0,1];R) defined
as f (x) =

√
x2 +1 and introduced in Chapter 3. It has been proved there that it

is not Fréchet differentiable at 1 by considering X := L2([0,1];R) as state space.
With the standard approach where classical Fréchet differentiability is needed, this
would have bring us to the conclusion that nothing could be said about the stabil-
ity of an equilibrium of a system wherein f was attached to the dynamics. How-
ever, the (Y,X)−Fréchet differentiability enables us to tell a bit more about stabil-
ity of such a nonlinear system. First observe that, by considering Y = C([0,1];R),
one may conclude that the nonlinear operator f is (Y,X)−Fréchet differentiable at
1 by looking at the proof of Proposition(4) 3.1.1. This is equivalent to the fact that
f̃ (x) := f (x+1)− f (1) is (Y,X)−Fréchet differentiable at 0. Now consider the non-
linear system

∂ξ
∂ t

=
∂ 2ξ
∂ z2 −

√
2+
√

6
2

1[0,1](z)
∫ 1

0
ξ dz+ f (ξ +1)− f (1),

∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t),
(4.4.1)

(4)The arguments that ensure (Y,X)−Fréchet differentiability are almost the same as the one presented in
Proposition 3.1.1 and are allowed because the function h that has to be considered in the proof has to lie in Y .

By performing the same kind of computations, it yields that (3.1.3) takes the form

∥∥∥√(h+1)2+1−
√

2− 1√
2h

∥∥∥
X

‖h‖X
≤

‖h‖Y
(√

2+2+‖h‖Y
)

, which ensures (Y,X)−Fréchet differentiability.
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which can be seen as a nonlinear heat equation with an integral term. The interpreta-
tion will be made later. It can be easily written in an abstract way as

ξ̇ (t) = Aξ (t)+ f (ξ (t)+1)− f (1),ξ (0) = ξ0, (4.4.2)

with A being defined by

Aξ =
d2ξ
dz2 −

√
2+
√

6
2

1[0,1](z)
∫ 1

0
ξ (z)dz =: Adξ −

√
2+
√

6
2

1[0,1](z)
∫ 1

0
ξ (z)dz

for ξ ∈ D(A) expressed as

D(A) =
{

ξ ∈ H2([0,1];R),
dξ
dz

(0) = 0 =
dξ
dz

(1)
}
. (4.4.3)

According to Example 2.1.2 the linear operator Ad is the infinitesimal generator of
a C0−semigroup on X . Since the perturbation −

√
2+
√

6
2 1[0,1](z)

∫ 1
0 ξ (z)dz defines a

linear and bounded operator on X the operator A is still the infinitesimal generator of
a C0−semigroup on X . Similar arguments may be used to conclude that A generates
a C0−semigroup on Y and may be found in (Hundertmark et al., 2013, Lecture 4)
or (Engel and Nagel, 2006, Chapter 2, Section 2.11). Moreover, let us observe that
the scalar valued function f : R→ R defined as f(x) =

√
(x+1)2 +1−

√
2 satisfies

supx∈R |f′(x)| = 1 which implies that the nonlinear operator f̃ is uniformly Lipschitz
continuous both on X and on Y . This guarantees that (4.4.1) possesses a unique mild
solution on X and on Y , which can even be a classical solution provided that the initial
condition is taken in(5) D(A), see Theorem 2.2.1.

It can be seen that the state 0 is an equilibrium of (4.4.1). The question one may
ask is whether that steady-state is stable for the nonlinear system or not. Therefore,
let us take the Gâteaux linearization of (4.4.1) at 0. This yields the linear PDE{

∂ξ
∂ t = ∂ 2ξ

∂ z2 −
√

2+
√

6
2 1[0,1](z)

∫ 1
0 ξ dz+

√
2

2 ξ ,
∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t).
(4.4.4)

This linear system has been shown exponentially stable on X in Chapter 2 as an il-
lustration of Datko’s Lemma, see Lemma 2.1.5. In order to apply Theorem 4.3.1 it
remains to show that the linear operator governing (4.4.4) generates an exponentially
stable C0−semigroup on the space Y . Let us therefore recall that the linear operator

Alinξ :=
d2ξ
dz2 +

√
2

2
ξ −
√

2+
√

6
2

1[0,1](z)
∫ 1

0
ξ dz

defined on D(Alin) = D(A) is a Riesz-spectral operator with simple eigenvalues

{−
√

6
2
}∪{−n2π2 +

√
2

2
}n∈N0

(5)When the state space X is considered, the domain D(A) is expressed as (4.4.3) while it is given by
{ξ ∈C2([0,1];R), dξ

dz (0) = 0 = dξ
dz (1)} when the state space Y is chosen.
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and normalized eigenfunctions given by

{1[0,1](z)}∪{
√

2cos(nπz)}n∈N0 ,

see Chapter 2, Section 2.1.3. Consequently, the corresponding C0−semigroup, de-
noted by (T (t))t≥0, has the form

(T (t)ξ 0)(z)

= e
−
√

6
2 t〈ξ 0,1[0,1]〉X 1[0,1](z)+2

∞

∑
n=1

e(−n2π2+
√

2
2 )t〈ξ 0,cos(nπz)〉X cos(nπz),

for ξ 0 ∈ Y, t ≥ 0 and z ∈ [0,1]. A sufficient condition for exponential stability of
(T (t))t≥0 on Y is the convergence of the following integral∫

∞

0
‖T (t)ξ 0‖p

Y dt,

for some p ∈ [1,∞) and every ξ 0 ∈ Y , see Remark 2.1.1. Let us consider ξ 0 ∈ Y and
p = 1. An estimation of ‖T (t)ξ 0‖p

Y yields that

‖T (t)ξ 0‖Y ≤ e
−
√

6
2 t |〈ξ 0,1[0,1]〉X |+2

∞

∑
n=1

e(−n2π2+
√

2
2 )t |〈ξ 0,cos(nπz)〉X |.

Integrating both sides of the previous inequality yields that∫
∞

0
‖T (t)ξ 0‖Y dt ≤ 2√

6
|〈ξ 0,1[0,1]〉X +2

∞

∑
n=1

|〈ξ 0,cos(nπz)〉X |
n2π2−

√
2

2

≤ 2√
6
‖ξ 0‖X +

√
2‖ξ 0‖X

∞

∑
n=1

1

n2π2−
√

2
2

,

which is a convergent series. Consequently, thanks to Theorem 4.3.1, the steady-state
0 is locally exponentially stable for system (4.4.1). Only the diffusion operator as
linear part would not have been sufficient to have stability of the nonlinear system.
Just itself with Neumann boundary condition is unstable since 0 is in its spectrum.
The stability comes from the integral term −

√
2+
√

6
2 1[0,1](z)

∫ 1
0 ξ (z)dz which may be

interpreted as the optimal control solution of the optimal control problem (2.1.26) for
the linearized system (4.4.4), see Chapter 2, Section 2.1.3.

4.4.2 Nonlinear bistability of the equilibria for the plug-flow tubu-
lar reactor with axial dispersion

Here we shall apply the results presented in Section 4.3 to determine the nonlinear
stability of the equilibria of (2.3.3) in the adiabatic case, i.e. γ = 0. This will be based
on the results that have been obtained in Chapter 3 for the stability of the linearized
version of (2.3.3). We shall focus on the case where the two Peclet numbers are equal,
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i.e. Peh = Pem := v/D where v and D stand for the superficial velocity of the fluid
and the diffusion coefficient, respectively. We start by performing the same change
of variables as in (3.2.15), i.e. ξ1(z, t) = x1(z, t)− xe

1(z),ξ2(z, t) = x2(z, t)− xe
2(z) to-

gether with ξ̂1(z, t) = e−
Pe
2 zξ1(z, t), ξ̂2(z, t) = e−

Pe
2 zξ2(z, t) where (xe

1,x
e
2) denotes an

equilibrium pair of (2.3.3), i.e. a solution of (3.2.1). This entails that the nonlinear
PDEs (2.3.3) take the following form

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 − Pe

4 ξ̂1 +δe
−Pe

2 z f̂1(ξ̂1, ξ̂2,xe
1,x

e
2),

∂ ξ̂2
∂ t = 1

Pe
∂ 2ξ̂2
∂ z2 − Pe

4 ξ̂2 + e
−Pe

2 z f̂ (ξ̂1, ξ̂2,xe
1,x

e
2),

∂ ξ̂1
∂ z (0, t) =

Pe
2 ξ̂1(0, t),

∂ ξ̂2
∂ z (0, t) =

Pe
2 ξ̂2(0, t),

∂ ξ̂1
∂ z (1, t) =−Pe

2 ξ̂1(1, t),
∂ ξ̂2
∂ z (1, t) =−Pe

2 ξ̂2(1, t),

(4.4.5)

where f̂ (ξ̂1, ξ̂2,xe
1,x

e
2) = f1(e

Pe
2 zξ̂1+xe

1,e
Pe
2 zξ̂2+xe

2)− f1(xe
1,x

e
2) with f1(x,y) = α̃(1−

y)e
−µ
1+x for (x,y) ∈ D( f ) given in (2.3.9) and f1(−1,y) = 0. It can be easily seen that

the dynamics of the variable χ(z, t) := ξ̂1(z, t)− δ ξ̂2(z, t) is driven by the following
PDE {

∂ χ
∂ t = 1

Pe
∂ 2χ
∂ z2 − Pe

4 χ,
∂ χ
∂ z (0, t) =

Pe
2 χ(0, t), ∂ χ

∂ z (1, t) =−Pe
2 χ(1, t).

Thanks to Proposition 3.2.6 one may observe that χ tends to 0 exponentially fast when
t goes to ∞, which allows us to focus on the following PDE in order to study nonlinear
stability of the equilibria of (2.3.3){

∂ξ
∂ t = 1

Pe
∂ 2ξ
∂ z2 − Pe

4 ξ + e
−Pe

2 z[g̃(e
Pe
2 zξ + xe)− g̃(xe)],

∂ξ
∂ z (0) =

Pe
2 ξ (0), ∂ξ

∂ z (1) =−Pe
2 ξ (1),

(4.4.6)

where the notation ξ := ξ̂1,xe := xe
1 and δg(x, 1

δ x) = α̃(δ − x)e
−µ
1+x =: g̃(x) has been

used. We shall choose X as the state space L2([0,1];R). Let us define the linear
operator A by Aξ = 1

Pe
d2ξ
dz2 − Pe

4 ξ on the domain

D(A) = {ξ ∈ H2([0,1];R),
dξ
dz

(0) =
Pe
2

ξ (0),
dξ
dz

(1) =−Pe
2

ξ (1)}, (4.4.7)

while the nonlinear operator e
−Pe

2 z[g̃(e
Pe
2 zξ + xe)− g̃(xe)] is defined on the closed and

convex subset D built from D( f ), see (2.3.9), and expressed as{
ξ ∈ X |ξ ≥ e−

Pe
2 z(−1− xe),−e−

Pe
2 zxe ≤ ξ −χ ≤ e−

Pe
2 z(δ − xe), a.e. on [0,1]

}
.

(4.4.8)
Note that the operator A + e−

Pe
2 z[g̃(e

Pe
2 z ·+xe)− g̃(xe)] is the infinitesimal genera-

tor of a nonlinear C0−semigroup on D(A)∩D denoted by (S(t))t≥0 and that satis-
fies (S(t)ξ0)(z) = ξ (z, t), where ξ0 denotes the initial condition given to (4.4.6), see
e.g. Laabissi et al. (2001). In Aksikas et al. (2007), it is shown that the nonlin-
ear operator f̃ (ξ̂1, ξ̂2,xe

1,x
e
2) is Lipschitz continuous in the variables ξ̂1 and ξ̂2 for
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(e
Peh

2 zξ̂1(t,z)+ xe
1 e

Pem
2 zξ̂2(t,z)+ xe

2
) ∈ D( f ). This is equivalent to the fact that the

operator j(ξ ) := e−
Pe
2 z[g̃(e

Pe
2 zξ + xe)− g̃(xe)] is Lipschitz continuous when consider-

ing ξ ∈ D . In Chapter 3, the operator j(ξ ) has been shown Gâteaux differentiable at
0 with a Gâteaux derivative given by the linear and bounded operator dg̃(xe) : X → X

defined as dg̃(xe)ξ = (α̃ µ(δ−xe)

(1+xe)2 e
−µ

1+xe − α̃e
µ

1+xe )ξ for ξ ∈ X . The resulting linear sys-
tem, given by (3.2.18), has also been proven well-posed and its exponential stability
has been characterized in Proposition 3.2.7.

According to Theorem 4.1.2 it should be natural to ask now whether the semigroup
generated by the operator A ·+ j(·) is Fréchet differentiable at the origin on X or not,
which could be studied by looking at the Fréchet differentiability of the nonlinear part
of the dynamics at 0, i.e. the operator j(ξ ). Let us consider therefore an adaptation of
the nonlinear j(ξ ) given by

F : (V := {ξ ∈ X ,0≤ ξ ≤ 1})→ X ,F(ξ ) = (1−ξ )e
−1

1+ξ − e−1 (4.4.9)

for ξ ∈ V . This nonlinear operator could be viewed as a simplification of j(ξ ) with
Pe = 0, all other constants equal to 1 and the equilibrium xe being set to the null
function for the ease of calculation. In the following counter-example, it is shown that
F is not Fréchet differentiable at 0 on X .

Proposition 4.4.1 The nonlinear operator F given by (4.4.9) is not Fréchet dif-
ferentiable at 0 on X.

Proof. Suppose, for the sake of a contradiction, that F is Fréchet differentiable at
0. Since it is also Gâteaux differentiable at 0 the corresponding derivatives are equal.
Remark that the Gâteaux derivative of F at xe in the direction h ∈ L2(0,1) is given
by dF(xe)h =

(
−e

−1
1+xe + 1−xe

(1+xe)2 e
−1

1+xe
)

h. By looking at that derivative for xe ≡ 0, one
gets that dF(0)≡ 0. It follows that the corresponding Fréchet derivative DF(0) would
be the null operator on L2(0,1). Because of the Fréchet differentiability of F at 0, the
relation

lim
‖h‖X→0

‖F(0+h)−F(0)−DF(0)h‖X

‖h‖X
= 0

holds for every h ∈V , i.e.

lim
‖h‖X→0

‖(1−h)e
−1
1+h − e−11[0,1]‖X

‖h‖X
= 0, (4.4.10)

where 1[0,1] denotes the characteristic function of the interval [0,1]. Let us consider
the sequence of X−functions {hn}n∈N defined by hn(z) = 1

n 1[0,1− 1
n ]
(z)+1[1− 1

n ,1]
(z),

for n ∈ N. Remark that hn ∈V for each n ∈ N. Moreover,

‖hn‖2
X =

∫ 1− 1
n

0

1
n2 dz+

∫ 1

1− 1
n

dz =
n2 +n−1

n3 . (4.4.11)
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It is obvious that lim
n→+∞

‖hn‖2
X = 0. Hence (4.4.10) implies that

lim
n→+∞

‖(1−hn)e
−1

1+hn − e−11[0,1]‖X

‖hn‖X
= 0. (4.4.12)

Let us compute ‖(1−hn)e
−1

1+hn − e−11[0,1]‖2
X =: Sn. It holds

Sn =
∫ 1

0

(
e

−1
1+hn(z) − e−11[0,1](z)− e

−1
1+hn(z) hn(z)

)2

dz

=
∫ 1− 1

n

0

(
e
−1

1+ 1
n − e−1− e

−1
1+ 1

n
1
n

)2

dz+
∫ 1

1− 1
n

(
e
−1
2 − e−1− e

−1
2

)2
dz

= e−2 + e
−2n
1+n

(n−1)3

n3 − 2e−2+ 1
1+n (n−1)2

n2 . (4.4.13)

Combining (4.4.13) with (4.4.11) yields

‖(1−hn)e
−1

1+hn − e−11[0,1]‖2
X

‖hn‖2
X

=
n3e−2 +(n−1)3e

−2n
1+n −2n(n−1)2e−2+ 1

1+n

n2 +n−1
.

It follows that lim
n→+∞

‖(1−hn)e
−1

1+hn − e−11[0,1]‖X

‖hn‖X
= e−1, which contradicts (4.4.12).

�

As it has been of interest in Section 4.4.1, we shall consider an auxiliary space
Y in order to overcome the difficulties encountered on X with the classical definition
of Fréchet differentiability. The latter is fixed as being Y := C([0,1];R) equipped
with the supremum norm ‖ f‖∞ defined as supz∈[0,1] | f (z)| for any f ∈ Y . In order
to apply the new framework developed in Sections 4.2 and 4.3, we shall check that
Assumptions 4.2.1, 4.2.3, 4.2.2 and 4.3.1 are satisfied. First observe that the nonlinear
operator e

−Pe
2 z[g̃(e

Pe
2 z ·+xe)− g̃(xe)] is Gâteaux differentiable at 0 on X and that the

Gâteaux derivative is a bounded linear operator, see Lemma 3.2.1. This implies that
Assumption 4.2.1 is satisfied.

Same arguments as the ones used in Lemma 3.2.1 may be used to show that the
nonlinear operator j(·) is Gâteaux differentiable at 0 on Y . Moreover, the Gâteaux
linearization yields the same Gâteaux derivative as the one found on X , i.e. (3.2.6).
According to Drame et al. (2008), the linear operator A is the infinitesimal generator
of a C0−semigroup of bounded linear operators on the space Y . This together with
the boundedness of the Gâteaux derivative viewed as an operator defined on Y has the
consequence that the linearized system corresponding to (4.4.6) is well-posed on Y .

By (Deimling, 1985, Chapter 6, Example 20.4), the PDE (4.4.6) admits a mild
solution ξ (z, t) := (S(t)ξ0)(z) on Y , for t ≥ 0, for every ξ0 ∈ Y , which is a classical
solution provided that ξ0 ∈ D(A)∩D , wherein X is replaced by Y . That is,

S(t)ξ0 = T (t)ξ0 +
∫ t

0
T (t− s)(e

−Pe
2 z[g̃(η(S(s)ξ0))− g̃(xe)])ds (4.4.14)
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for every ξ0 ∈ D(A)∩D , where (T (t))t≥0 is the C0−semigroup whose operator A is
the infinitesimal generator and where the shortcut of notation η(·) := e

Pe
2 z ·+xe has

been used.
Note that the functions S(·)ξ0 and S(·)ξ̃0 : [0, t0)→ D(A)∩D are continuous and

satisfy identity (4.4.14) with initial states ξ0 and ξ̃0, respectively, where t0 > 0. Hence,
by (Martin, 1987, Lemma 5.1.),

‖S(t)ξ0−S(t)ξ̃0‖Y ≤ γt‖ξ0− ξ̃0‖Y , (4.4.15)

for all t ∈ [0, t0), for some positive γt that is increasing in t and which is bounded on
[0, t0). Inequality (4.4.15) is commonly called the continuous dependence property of
the well-posed system (4.4.6) in the Banach space Y = C([0,1];R). In particular for
ξ̃0 = 0,

‖S(t)ξ0‖Y ≤ γt‖ξ0‖Y , (4.4.16)

for all t ∈ [0, t0), since S(t) maps the origin to itself, see (Augner, 2019, Remark 2.12).
This shows that the semigroup (S(t))t≥0 depends continuously on the initial condition
at 0 on the space Y . Looking at (4.4.16), one observes that

‖S(·)ξ0‖L∞([0,t0];Y ) := sup
t∈[0,t0]

‖S(t)ξ0‖Y ≤ γt0‖ξ0‖Y < ∞, (4.4.17)

for all ξ0 ∈ D(A)∩D , where γt0 = supt∈[0,t0] γt < ∞. Let us look at a similar property
on X .

Consider the same t0 > 0 as before and 0≤ t ≤ t0. Define V (ξ (t)) = 1
2
∫ 1

0 ξ 2(t)dz
where ξ denotes the state trajectory of system (4.4.6). Differentiating V w.r.t. t along
the state trajectory (4.4.6) yields

1
2

d
dt
‖ξ (t)‖2

X ≤
( −π2

π2 +4Pe
− Pe

4

)
‖ξ (t)‖2

X +
∫ 1

0
e−

Pe
2 z(g̃(η(ξ (t)))− g̃(xe))ξ (t)dz,

(4.4.18)

where (3.2.26) has been used. The Cauchy-Schwarz inequality implies that

1
2

d
dt
‖ξ (t)‖2

X

≤
( −π2

π2 +4Pe
− Pe

4

)
‖ξ (t)‖2

X +‖e−Pe
2 z(g̃(η(ξ (t)))− g̃(xe))‖X · ‖ξ (t)‖X .

Since the operator g̃ is Lipschitz continuous, one obtains

1
2

d
dt
‖ξ (t)‖2

X ≤
( −π2

π2 +4Pe
− Pe

4

)
‖ξ (t)‖2

X + lg̃‖e
Pe
2 zξ (t)‖X · ‖ξ (t)‖X ,

where lg̃ > 0 denotes a Lipschitz constant associated to g̃. It follows that

1
2

d
dt
‖ξ (t)‖2

X ≤
( −π2

π2 +4Pe
− Pe

4
+ lg̃e

Pe
2

)
‖ξ (t)‖2

X .
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By using Gronwall’s Lemma and by denoting the constant | −π2

π2+4Pe −
Pe
4 + lg̃e

Pe
2 | by k,

one gets the inequality:
‖ξ (t)‖X ≤ ekt ‖ξ0‖X , (4.4.19)

for all t ∈ [0, t0], which leads to

‖ξ‖L∞([0,t0];X) ≤ sup
t∈[0,t0]

ekt‖ξ0‖X = ekt0‖ξ0‖X .

Hence, continuous dependence is proved on X and the time boundedness of the state
trajectories is achieved both on X and on Y thanks to the estimates (4.4.19) and
(4.4.17), respectively. In order to conclude on the (Y,X)−Fréchet differentiability
of the nonlinear C0−semigroup (S(t))t≥0, the (Y,X)−Fréchet differentiability of the
nonlinear operator e

−Pe
2 z[g̃(e

Pe
2 z ·+xe)− g̃(xe)] on 0 has to be studied. Therefore the

following lemma characterizes the maximum amplitude of the function η on the do-
main D wherein the dynamics of the asymptotic reaction invariant χ is considered.

Lemma 4.4.1 Let us consider the sequence {ψn}n∈N, which has been introduced
in Proposition 3.2.6. Assume that there exists a positive and sufficiently large
constant κ such that the condition

+∞

∑
n=1
|ψn| ≤

1√
2

e−
Pe
2

(
1− 1

κ

)
(4.4.20)

holds. Then
1
κ
−1≤ e

Pe
2 zξ + xe(z)≤ δ +1− 1

κ
,

for all t ≥ 0, a.e. z ∈ [0,1] and all ξ ∈D .

Proof. From Proposition 3.2.6, let us start by recalling that the asymptotic reaction
invariant χ(z, t) satisfies

χ(z, t) =
∞

∑
n=1

ψnφn(z)e−(β
2
n +

Pe
4 )t ,

where the quantities ψn,φn and βn are given in Proposition 3.2.6. Observe that for
n ∈ N, there holds

|φn(z)|= Kn|βn
√

Pecos(βn
√

Pez)+
Pe
2

sin(βn
√

Pez)|

= Kn

∣∣∣∣〈(βn
√

Pe
Pe
2

)
,

(
cos(βn

√
Pez)

sin(βn
√

Pez)

)〉
R2

∣∣∣∣
≤
[

2

β 2
n Pe+Pe+ Pe2

4

] 1
2 (

β 2
n Pe+

Pe2

4

) 1
2

≤
√

2,
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where the Cauchy-Schwarz inequality has been used and where 〈·, ·〉R2 denotes the
standard inner product of R2. It follows that

|χ(z, t)| ≤
+∞

∑
n=1
|ψnφn(z)|e−(β

2
n +

Pe
4 )t ≤

√
2
+∞

∑
n=1
|ψn| ≤ e−

Pe
2

(
1− 1

κ

)
. (4.4.21)

Now take ξ ∈D . By definition of D ,ξ satisfies the estimate

−e−
Pe
2 zxe(z)≤ ξ −χ(z, t)≤ e−

Pe
2 z(δ − xe(z)),

for a.e. z ∈ [0,1] and every t ≥ 0. Equivalently, there holds

e
Pe
2 zχ(z, t)≤ e

Pe
2 zξ + xe ≤ δ − xe + e

Pe
2 zχ(z, t).

By using the relation (4.4.21) wherein it is considered that κ is such that 1− 1
κ > 0,

one gets that

e
Pe
2 ze−

Pe
2

(
1
κ
−1
)
≤ e

Pe
2 zξ + xe ≤ δ − xe + e

Pe
2 ze−

Pe
2

(
1− 1

κ

)
.

The relation 0≤ xe ≤ δ due to the physical constraints (2.3.9) enables us to conclude
that

1
κ
−1≤ e

Pe
2 zξ + xe(z)≤ δ +1− 1

κ
.

�

Observe that, despite that the asymptotic reaction invariant χ(z, t) depends on the
space variable z and on the time variable t, the bounds found on η(ξ ) are independent
of these two variables.

Remark 4.4.1 The assumption that is needed in Lemma 4.4.1 means that the
sequence of the projections of the initial condition of the asymptotic reaction
invariant χ , namely ξ1− δξ2, on the basis of eigenfunctions of the operator A
has to be summable, i.e. {ψn}n∈N ⊂ l1(N) where l1(N) denotes the space of
absolutely summable sequences equipped with the norm ‖x‖l1 := ∑

∞
n=1 |xn| with

x = (x1,x2, . . .) ∈ l1(N). Moreover, its l1(N)−norm can not exceed the constant
1√
2
e−

Pe
2 (1− 1

κ ).

As an illustration, let us take as initial conditions the functions

ξi,0(z) := ωi

(
sin(πz)+

2π
Pe

)
, i = 1,2,

where ωi are constant numbers that have to be chosen in such a way that condition
(4.4.20) is satisfied. Note that the subscript i denotes the initial condition given to the
i−th variable. It is straightforward to see that this kind of initial conditions is in D(A).
Here after, we first show that the series ∑

+∞

n=1 |ψn| is convergent with the considered
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initial conditions. In a second time we shall give the value above which the constant
κ has to be chosen such that condition (4.4.20) holds. Since the series is convergent
it is always possible to adapt the constants ωi, i = 1,2 and then to choose κ such that
(4.4.20) holds. With the choice of ξi,0, the coefficient |ψn| satisfies

|ψn| ≤ |ω1−δω2| ·
(∣∣∣∣∫ 1

0
sin(πz)φn(z)dz

∣∣∣∣+ 2π
Pe

∣∣∣∣∫ 1

0
φn(z)dz

∣∣∣∣) .

Computing |∫ 1
0 φn(z)dz| yields∣∣∣∣∫ 1

0
φn(z)dz

∣∣∣∣= ∣∣∣∣Kn

[
sin(βn

√
Pe)− Pe

2βn
√

Pe
cos(βn

√
Pe)+

Pe
2βn
√

Pe

]∣∣∣∣ .
By (Dehaye, 2015, Section 4.3.2), the approximation βn ≈ π(n−1)/

√
Pe holds for n

large. Moreover by considering Pe small and by plugging the asymptotic form of Kn
in the previous equality, it implies that∣∣∣∣∫ 1

0
φn(z)dz

∣∣∣∣≈
∣∣∣∣∣
√

2
π(n−1)

(
Pe

2π(n−1)
(1− (−1)n+1)

)∣∣∣∣∣≤
√

2Pe
π2(n−1)2 .

Moreover, one has∣∣∣∣∫ 1

0
sin(πz)φn(z)dz

∣∣∣∣= ∣∣∣∣Knβn
√

Pe
2

∫ 1

0
sin((π +βn

√
Pe)z)dz

+
Knβn

√
Pe

2

∫ 1

0
sin((π−βn

√
Pe)z)dz+

KnPe
4

∫ 1

0
cos((π−βn

√
Pe)z)dz

−KnPe
4

∫ 1

0
cos((π +βn

√
Pe)z)dz

∣∣∣∣ .
Considering n large enough yields that Kn ≈

√
2

π(n−1) , which results in∣∣∣∣∫ 1

0
sin(πz)φn(z)dz

∣∣∣∣≈
∣∣∣∣∣
√

2
2

∫ 1

0
sin(πnz)dz+

√
2

2

∫ 1

0
sin((2−n)πz)dz

+

√
2Pe

4π(n−1)

∫ 1

0
cos((2−n)πz)dz−

√
2Pe

4π(n−1)

∫ 1

0
cos(nπz)dz

∣∣∣∣∣
=
√

2
∣∣∣∣ ((−1)n−1)

πn2−2πn

∣∣∣∣≤ 2
√

2
|πn2−2πn| =

2
√

2
πn2−2πn

.

The last equality holds since n is sufficiently large(6). Combining the previous com-
putations gives that∣∣∣∣∫ 1

0
f (z)φn(z)dz

∣∣∣∣= O

(
|ω1−δω2| ·

(
2
√

2
πn2−2πn

+
2π
Pe

√
2Pe

π2(n−1)2

))
(6)Without loss of generality, since n is large, one can assume that n > 2 which entails that πn2−2πn > 0.
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= O

(
|ω1−δω2|

4
√

2
πn2−2πn

)
,

which is the general term of a convergent series. This proves that {ψn}n∈N0 is l1(N)−
summable. In other words, there exists a positive and finite real number Ω such that

Ω :=
∞

∑
n=1

∣∣∣∣∫ 1

0

(
sin(πz)+

2π
Pe

)
φn(z)dz

∣∣∣∣ .
Let us adopt the notation ω∗ := |ω1−δω2|. The inequality (4.4.20) becomes

ω∗Ω≤ 1√
2

e−
Pe
2 (1− 1

κ
).

This can be written equivalently as 1
κ ≤ 1−

√
2e

Pe
2 ω∗Ω, whose right hand-side is

supposed to be positive(7). Hence, the constant κ has to be taken such that

κ ≥ 1

1−
√

2e
Pe
2 ω∗Ω

. (4.4.22)

Since Ω is a finite positive real number and ω∗ is a degree of freedom in the analysis,
there will always exist κ such that (4.4.22) is satisfied, i.e. such that assumption
(4.4.20) of Lemma 4.4.1 holds. The procedure is as follows: first the constant ω∗ has
to be chosen such that 1−

√
2e

Pe
2 Ω is positive and secondly the constant κ is adjusted

in such a way that (4.4.22) holds true.
Before going further, let us recall that the reaction invariant, χ , is subject to the

following PDE {
∂ χ
∂ t = 1

Pe
∂ 2χ
∂ z2 − Pe

4 χ,
∂ χ
∂ z (0, t) =

Pe
2 χ(0, t), ∂ χ

∂ z (1, t) =−Pe
2 χ(1, t),

whose operator dynamics Acχ = 1
Pe

d2χ
dz2 − Pe

4 χ is a Riesz-spectral operator, see Propo-
sition 3.2.6. According to Theorem 2.1.4, the domain of the operator Ac may be
written as D(Ac) =

{
χ ∈ X ,∑∞

n=1 λ 2
n 〈χ,φn〉2X < ∞

}
, where {λn}n≥1 and {φn}n≥1 rep-

resent the eigenvalues and the eigenfunctions of the operator Ac, see Proposition 3.2.6
for their expressions. Moreover, there holds

∞

∑
n=1
|ψn|=

∞

∑
n=1
|〈χ0,φn〉X |=

∞

∑
n=1

∣∣∣∣ 1
λn

∣∣∣∣ · |λn〈χ0,φn〉X |

≤
∞

∑
n=1

1
λ 2

n

∞

∑
n=1

λ 2
n 〈χ0,φn〉2X ,

where the initial condition is chosen in D(Ac) and where the Cauchy-Schwarz inequal-
ity has been used. On one hand, observe that the series ∑

∞
n=1 λ 2

n 〈χ0,φn〉2X is convergent,

(7)This is always possible to render this quantity positive because ω∗ can be chosen arbitrarily.

100



4.4 Applications

according to the definition of D(Ac). On the other hand, ∑
∞
n=1

1
λ 2

n
is convergent too,

thanks to the relation λ 2
n ≈ O(n4). This means that the series ∑

∞
n=1 |ψn| is convergent

for any initial condition χ0 chosen in the domain of the operator Ac.
Let us now consider the following corollary that gives estimations on some func-

tions of elements of the invariant subspace D when considering the asymptotic reac-
tion invariant χ . This is a direct consequence of Lemma 4.4.1.

Corollary 4.4.2 The following inequalities hold:∥∥∥∥α(δ −η(ξ ))e
−µ

1+η(ξ )

∥∥∥∥
Y
≤ α

(
δ +1− 1

κ

)
(4.4.23)

and ∥∥∥∥ 1
(1+η(ξ ))(1+ xe)

∥∥∥∥
Y
≤ κ (4.4.24)

for all t ≥ 0 and any ξ ∈D , where the function η is defined as η(ξ ) := e
Pe
2 zξ +

xe.

Proof. Let us pick any ξ ∈D . By Lemma 4.4.1, it holds that

1
κ
≤ 1+ e

Pe
2 zξ + xe(z)≤ δ +2− 1

κ
,

for all t ≥ 0 and a.e. z ∈ [0,1]. Moreover the equilibria xe
1 and xe

2 satisfy the reaction
invariant xe

1−δxe
2 = 0 which entails that 1≤ 1+xe

1(z)≤ 1+δ holds for a.e. z ∈ [0,1],
see (2.3.9). These inequalities imply (4.4.24). Moreover Lemma 4.4.1 implies that

1
κ
−1≤ δ − e

Pe
2 zξ + xe(z)≤ δ +1− 1

κ
.

This completes the proof of (4.4.23) since 1+ e
Pe
2 zξ + xe(z)≥ 1

κ > 0. �

Lemma 4.4.1 together with Corollary 4.4.2 enables us to state the following propo-
sition.

Proposition 4.4.3 The nonlinear operator e
−Pe

2 z[g̃(e
Pe
2 z ·+xe)− g̃(xe)] is (Y,X)−

Fréchet differentiable at 0. Its Fréchet derivative is given by the linear and
bounded operator dg̃(xe) defined as dg̃(xe)ξ = (α̃ µ(δ−xe)

(1+xe)2 e
−µ

1+xe − α̃e
−µ

1+xe )ξ for

ξ ∈ X.

Proof. Let us consider ξ ∈ D(A)∩D . Using the definitions of g̃ and of its Gâteaux
derivative gives the following:∥∥∥e−

Pe
2 z[g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ ]

∥∥∥
X

:=
∥∥∥∥e−

Pe
2 z(α̃(δ −η(ξ ))e

−µ
1+η(ξ )

−α̃(δ − xe)e
−µ

1+xe )−
(

α̃
µ(δ − xe)

(1+ xe)2 e
−µ

1+xe ξ − α̃e
−µ

1+xe ξ
)∥∥∥∥

X
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= α̃
∥∥∥∥e−

Pe
2 z(δ − xe)

[
e
−µ

1+η(ξ ) − e
−µ

1+xe

]
− µ(δ − xe)

(1+ xe)2 e
−µ

1+xe ξ −
[

e
−µ

1+η(ξ ) − e
−µ

1+xe

]
ξ
∥∥∥∥

X
.

Thanks to the series decomposition of the exponential function, observe that

e
−µ

1+η(ξ ) − e
−µ

1+xe = e
−µ

1+xe

e
µe

Pe
2 zξ

(1+η(ξ ))(1+xe) −1


= e

−µ
1+xe

(
+∞

∑
n=0

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!
−1

)

= e
−µ

1+xe

(
+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!

+
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

)
.

Consequently, the relations∥∥∥e−
Pe
2 z(g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ )

∥∥∥
X
=

α̃

∥∥∥∥∥e−
Pe
2 z(δ − xe)e

−µ
1+xe

+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!

+
e−

Pe
2 z (δ − xe)e

−µ
1+xe µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

−µ(δ − xe)

(1+ xe)2 e
−µ

1+xe ξ − e
−µ

1+xe
+∞

∑
n=1

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!

ξ

∥∥∥∥∥
X

≤ α̃
∥∥∥e

−µ
1+xe
∥∥∥

Y
·

∥∥∥∥∥∥e−
Pe
2 z(δ − xe)

µe
Pe
2 zξ

(1+η(ξ ))(1+ xe)

+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n−1
1
n!

+µ(δ − xe)ξ
[

1
(1+η(ξ ))(1+ xe)

− 1
(1+ xe)2

]
−

+∞

∑
n=1

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!

ξ

∥∥∥∥∥
X

hold. In that way, by using the triangular inequality and the fact that ‖e
−µ

1+xe ‖Y ≤ 1,
one obtains that∥∥∥e−

Pe
2 z(g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ )

∥∥∥
X

≤ α̃

∥∥∥∥∥∥µ(δ − xe)
1

(1+η(ξ ))(1+ xe)
ξ

+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n−1
1
n!

∥∥∥∥∥∥
X

+ α̃µ‖δ − xe‖Y ·
∥∥∥∥∥ e

Pe
2 zξ

(1+η(ξ ))(1+ xe)2 ξ

∥∥∥∥∥
X

+α

∥∥∥∥∥+∞

∑
n=1

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n
1
n!

ξ

∥∥∥∥∥
X

.
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Integration in Lebesgue spaces(8) and Corollary 4.4.2 imply the following:∥∥∥∥∥∥µ(δ − xe)
1

(1+η(ξ ))(1+ xe)
ξ

+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n−1
1
n!

∥∥∥∥∥∥
X

≤ µδκ
+∞

∑
n=2

1
n!

∥∥∥∥∥∥
[

µe
Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n−1

ξ

∥∥∥∥∥∥
X

≤ µδκ
+∞

∑
n=2

µn−1(e
Pe
2 )n−1κn−1

n!

∥∥ξ n−1ξ
∥∥

X ≤ µδκ
+∞

∑
n=2

(µe
Pe
2 κ)n−1 ‖ξ‖n−1

Y
n!

‖ξ‖X

Noting that

+∞

∑
n=2

kn−1

n!
=

1
k

+∞

∑
n=2

kn

n!
=

1
k

(
+∞

∑
n=0

kn

n!
− k−1

)
=

ek− k−1
k

leads to ∥∥∥∥∥∥µ(δ − xe)
1

(1+η(ξ ))(1+ xe)
ξ

+∞

∑
n=2

[
µe

Pe
2 zξ

(1+η(ξ ))(1+ xe)

]n−1
1
n!

∥∥∥∥∥∥
X

≤ µδκ
eµκe

Pe
2 ‖ξ‖Y −µκe

Pe
2 ‖ξ‖Y −1

µκe
Pe
2 ‖ξ‖Y

‖ξ‖X .

By using the relation ‖δ − xe‖Y ≤ δ induced by the invariant subspace (2.3.9) and
Lemma 4.4.1, it holds that∥∥∥e−

Pe
2 z(g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ )

∥∥∥
X

≤ α̃µδκ‖ξ‖X

eµκe
Pe
2 ‖ξ‖Y −µκe

Pe
2 ‖ξ‖Y −1

µκe
Pe
2 ‖ξ‖Y


+ α̃µδe

Pe
2 ‖ξ‖Y‖ξ‖X + α̃‖ξ‖X

(
eµe

Pe
2 κ‖ξ‖Y −1

)
. (4.4.25)

As a consequence

lim
‖ξ‖Y→0

∥∥∥e−
Pe
2 z(g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ )

∥∥∥
X

‖ξ‖X

≤ lim
‖ξ‖Y→0

α̃µδκ
eµκe

Pe
2 ‖ξ‖Y −µκe

Pe
2 ‖ξ‖Y −1

µκe
Pe
2 ‖ξ‖Y

(8)It has been used that the space Y is a multiplicative algebra in which the relation ‖ f g‖Y ≤ ‖ f‖Y ‖g‖Y
holds for any f ,g ∈ Y .
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+α̃µδe
Pe
2 ‖ξ‖Y + α̃(eµe

Pe
2 κ‖ξ‖Y −1)

]
= 0,

which shows the (Y,X)−Fréchet differentiability of e
−Pe

2 z[g̃(e
Pe
2 z ·+xe)− g̃(xe)] at 0.

�

This proposition mixed with the continuous dependence of the state trajectory of
(4.4.6) at 0 on X and Y yields that Assumption 4.2.3 is satisfied, which enables us
to conclude that the semigroup (S(t))t≥0 is (Y,X)−Fréchet differentiable at 0, see
Lemma 4.2.3.

Very similar arguments also lead to the conclusion that

lim
‖ξ‖Y→0

∥∥∥e−
Pe
2 z(g̃(η(ξ ))− g̃(xe)−dg̃(xe)e

Pe
2 zξ )

∥∥∥
Y

‖ξ‖Y
= 0, (4.4.26)

which has the consequence that the nonlinear semigroup (S(t))t≥0 is Y−Fréchet dif-
ferentiable at 0. This together with the well-posedness of (4.4.6) and its Gâteaux
linearization on Y has the consequence that Assumption 4.2.2 is satisfied.

In order to apply Theorem 4.3.1 it remains to show that the linear semigroup gen-
erated by the operator A+dg̃(xe) is exponentially stable on Y when it is exponentially
stable on X , which would show that Assumption 4.3.1 is satisfied.

Remember that the linearized system corresponding to (4.4.6) around any equilib-
rium is written as {

∂ξ
∂ t = 1

Pe
∂ 2ξ
∂ z2 −q(z)ξ ,

∂ξ
∂ z (0, t) =

Pe
2 ξ (0, t), ∂ξ

∂ z (1, t) =−Pe
2 ξ (1, t),

(4.4.27)

where the function q(z) is defined in (3.2.19) for z ∈ [0,1]. In the perspective of
studying exponential stability, we shall focus on the cases where either the reactor
exhibits only one equilibrium profile or three. In order to study exponential stability
on the space Y let us consider the approximated linearized system

∂ξ a
∂ t = 1

Pe
∂ 2ξ a
∂ z2 −q(c)ξ a,

∂ξ a
∂ z (0, t) =

Pe
2 ξ a(0, t),

∂ξ a
∂ z (1, t) =−Pe

2 ξ a(1, t),
(4.4.28)

where the subscript a is used to denote the approximated solution and c ∈ [0,1]. Ac-
cording to Lemma 2.1.4, (4.4.28) defines a Riesz-spectral system whose solution can
be expressed in a series form as

ξ a(z, t) =
∞

∑
n=1

ψnφn(z)e−(β
2
n +q(c))t , (4.4.29)

for z ∈ [0,1], t ≥ 0 and all c ∈ [0,1], where ψn =
∫ 1

0 φn(z)ξ a(z,0)dz. Performing the
same types of inequalities as in the proof of Proposition 3.2.7 yields that the estimate

‖ξ a(·, t)‖X ≤ e−
(

π2

π2+4Pe
+q(c)

)
t‖ξ a(·,0)‖X
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is satisfied. Moreover, in Corollary 3.2.9 the bistability of the equilibria has been stud-
ied, meaning that in the case of one or three equilibria, the constant −( π2

π2+4Pe +q(c))
is negative. This has the consequence that the growth bound of the semigroup gener-
ated by the operator dynamics of (4.4.28) is negative. As the operator describing the
dynamics of the approximated system (4.4.28) is of Riesz-spectral type, the relation
sup
n∈N
{−β 2

n +q(c)}< 0 holds. Moreover, by the proof of Lemma 4.4.1, one has that

|ξ a(z, t)| ≤
+∞

∑
n=1

e−(β
2
n +q(c))t |ψn| |φn(z)| ≤

√
2
+∞

∑
n=1

e−(β
2
n +q(c))t

∫ 1

0
|ξ a

0(z)φn(z)|dz

≤ 2
+∞

∑
n=1

e−(β
2
n +q(c))t‖ξ a

0‖L1([0,1];R)

≤ 2‖ξ a
0‖Y

+∞

∑
n=1

e−(β
2
n +q(c))t ,

where the notation ξ
a
0(z) := ξ a(z,0) has been used. Consequently, it holds that

‖ξ a(·, t)‖Y ≤ 2‖ξ a
0 ‖Y

+∞

∑
n=1

e−(β
2
n +q(c))t .

A straightforward computation leads to∫ +∞

0
‖ξ a(·, t)‖Y dt ≤ 2‖ξ a

0 ‖Y
+∞

∑
n=1

1
β 2

n +q(c)
(4.4.30)

According to (Dehaye, 2015, Section 4.3.2), the estimate βn ' π(n− 1)/
√

Pe holds
for n sufficiently large. Hence (4.4.30) becomes

∫ +∞

0
‖ξ a(z, t)‖Y dt ≤ 2ν‖ξ a

0‖Y
(

+∞

∑
n=1

Pe
π2(n−1)2 +Peq(c)

)
= 2ν‖ξ a

0‖Y η <+∞,

for some ν > 0 and η > 0. From an extension of Datko’s lemma, see e.g. (Buse et al.,
2006, Section 1) or Remark 2.1.1, it follows that ξ a is exponentially stable on Y , i.e.
there exists M ≥ 1 and α > 0 such that

‖ξ a(·, t)‖Y ≤Me−αt‖ξ a
0‖Y , t ≥ 0. (4.4.31)

Note that considering the Y−norm of ξ a makes sense since ξ a lies in D(A), see (4.4.7),
for initial conditions ξ

a
0 chosen in D(A), which is a subspace of Y . Consider now the

system (4.4.27), which can also be expressed as{
∂ξ
∂ t = 1

Pe
∂ 2ξ
∂ z2 −q(c)ξ +[q(c)−q(z)]ξ ,

∂ξ
∂ z (0) =

Pe
2 ξ (0), ∂ξ

∂ z (1) =−Pe
2 ξ (1).

(4.4.32)
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Since the estimate (4.4.31) holds for the approximated system (4.4.28), by (Engel and
Nagel, 2006, Bounded Perturbation Theorem), one has that

‖ξ (·, t)‖Y ≤Me(−α+M‖q(c)−q(·)‖Y )t‖ξ 0‖Y ,

t ≥ 0, where ξ is the solution to (4.4.27) (or equivalently (4.4.32)) with initial condi-
tion ξ 0. By considering large diffusion phenomenon (meaning that Pe is sufficiently
small), the equilibrium xe→ a uniformly for z ∈ [0,1], where a ∈ (0,δ ), see relation
(3.2.10) together with Proposition 3.2.2 and Theorem 3.2.4. As a consequence, it
holds that ‖q(c)− q(·)‖Y → 0 as Pe→ 0. Fix ε > 0 such that Mε < α . Then there
exists δ > 0 such that Pe < δ implies that ‖q(c)−q(·)‖Y < ε . Hence

−α +M‖q(c)−q(·)‖Y <−α +Mε :=−ζ < 0

by construction. It follows that the solution of (4.4.27) satisfies

‖ξ (·, t)‖Y ≤Me−ζ t‖ξ0‖Y , t ≥ 0,

which ensures that Assumption 4.3.1 is satisfied. We are now able to state the fol-
lowing theorem that fills the gap between the stability of equilibria for the linearized
system (4.4.27) and the local stability of the equilibria for the nonlinear system (4.4.6).
Its proof is a direct consequence of Theorem 4.3.1.

Theorem 4.4.4 Consider the nonlinear PDE (4.4.6) that describes the time evo-
lution of the temperature in a nonisothermal axial dispersion tubular reactor. In
the case where the reactor exhibits one equilibrium profile, the latter is (Y,X)−
locally exponentially stable for the nonlinear system (4.4.6). In the case of three
equilibria the pattern (Y,X)− "locally exponentially stable - locally unstable -
locally exponentially stable" is highlighted, which is called bistability.

Note that, despite that the auxiliary space Y has been chosen as the space of con-
tinuous functions for the two applications treated in this chapter, it is not the only
possibility. In general, multiplicative algebras should be appropriate, like Sobolev
spaces of integer order, H p, p ∈ N, for instance.

We end this chapter with the illustration of Theorem 4.4.4. A set of parameters
is chosen in order to highlight three equilibria. The initial condition is considered
sufficiently small in the Y−norm and the diffusion is assumed to be large enough.

We choose ξ0(z) = ω(sin(πz) + 2π
Pe ) as initial condition for the system (4.4.6),

where ω is a weighting parameter that can make the Y−norm of ξ0 as small as desired.
Observe that these initial conditions are in D(A) since the required regularity, i.e. ξ0 ∈
H2([0,1];R), and the boundary conditions dξ0

dz (0) =
Pe
2 ξ0(0) and dξ0

dz (1) = −Pe
2 ξ0(1)

are satisfied.
An explicit computation of the Y−norm of ξ0 gives

‖ξ0‖Y := sup
z∈[0,1]

|ξ0(z)|=
ω
Pe

(Pe+2π). (4.4.33)
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By choosing for instance ω = εPe,ε > 0, (4.4.33) becomes ‖ξ0‖Y = εPe+2πε , which
can be made as small as desired by considering ε small.

As mentioned in Theorem 4.4.4, in the case of three equilibria, these are alterna-
tively locally exponentially stable with the pattern "stable - unstable - stable". In order
to illustrate the latter, the parameters have been chosen as follows: µ = 10,δ = 1,v =
1.1e− 3 and D = 1e− 3. This implies that Pe = 1.1. The parameter ω is fixed to
1.1e− 2 such that ‖ξ0‖Y = 0.07383. The state trajectories ξ (z, t) and their X−norm
are represented in Figures 4.2, 4.4, 4.6, 4.3, 4.5 and 4.7 for the different equilib-
rium profiles, respectively, wherein it can be observed that bistability is confirmed.
Moreover, observe that the state trajectory associated to the second equilibrium is not
diverging, and is going to be stabilized around another equilibrium. This phenomenon
is often encountered when dealing with nonlinear systems. The state is moving from
the unstable equilibrium to one of the two stable ones.

Remark 4.4.2 The numerical method that has been used is based on a dis-
cretization of the spatial interval [0,1], into n equal pieces, n = 50. By defining
the state vector ξn ∈ Rn whose components are given by ξ i

n(t) = ξ ((i− 1)h, t),
the system (4.4.6) has been discretized by means of finite differences, where h is
the discretization step (h = 1

n−1 ). Based on this, a finite-dimensional approxi-

mation of the operator d2

dz2 , denoted by the matrix Ln ∈ Rn×n, has produced the
finite-dimensional approximation of (4.4.6), whose dynamics are given by

ξ̇n(t) =
1
Pe

Lnξn(t)−
Pe
4

ξn(t)+En (Gn(ξn(t)+ xe
n)−Gn(xe

n)) , (4.4.34)

where the matrix En is given by

En = diag(1,e−
Pe
2 h,e−Peh, . . . ,e−

Pe
2 ),

with diag denoting a diagonal matrix whose arguments are on the diagonal. The
i−th component of the vectors xe

n and Gn, i = 1, . . . ,n, are expressed as

xe,i
n = xe((i−1)h)

and

Gi
n(ξn + xe

n) = g̃(ξ i
n + xe,i

n ),

respectively, while the i−th component of Gn(xe) is given by

Gi
n(x

e
n) = g̃(xe,i

n ).

Then, for any equilibrium, the system (4.4.34) has been numerically integrated
via the routine ode15s of Matlab c©.

107



Chapter 4 Stability analysis of equilibria

0

0

0.02

0.04

0.06

0.08

0.5
15

10

5
1

0

Figure 4.2 – State trajectory ξ for µ = 10,δ = 1, first equilibrium.
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Figure 4.3 – X−norm of the state trajectory ξ for µ = 10,δ = 1, first equilibrium.
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Figure 4.4 – State trajectory ξ for µ = 10,δ = 1, second equilibrium.
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Figure 4.5 – X−norm of the state trajectory ξ for µ = 10,δ = 1, second equilibrium.
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Figure 4.6 – State trajectory ξ for µ = 10,δ = 1, third equilibrium.
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Figure 4.7 – X−norm of the state trajectory ξ for µ = 10,δ = 1, third equilibrium.
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Chapter 5
Local stabilization of nonlinear
infinite-dimensional systems with
an adapted Fréchet
differentiability concept
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The concepts presented in the previous chapter concerning the stability of equilib-
ria are extended in this chapter to the stabilization problem of equilibrium profiles for
nonlinear infinite-dimensional systems by means of particular types of control inputs.
Regularity assumptions on the control operator are stated in terms of the state space
and the auxiliary space. In particular, it is shown how to link the Fréchet differentia-
bility of the nonlinear closed-loop semigroup with the Fréchet differentiability of the
open-loop semigroup.

Moreover, a specific class of LQ-optimally controlled systems is presented and is
shown to fullfil the required assumptions provided that some spectral conditions are
satisfied.

We shall illustrate these new results for the regulation of a nonlinear heat equation
with Neumann boundary conditions.
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Chapter 5 Local stabilization of equilibria

5.1 From stability to stabilization
Let us consider X as being a (separable) Hilbert space. We take the class of nonlinear
infinite-dimensional systems presented in (4.2.1) again in which additional inputs are
considered. Formally this reads as follows:{

ξ̇cl(t) = Aξcl(t)+ f (ξcl(t)+ xe)− f (xe)+Bu(t),
ξcl(0) = ξ0 ∈ X ,

(5.1.1)

where the operator B ∈L (U,X), U being the input space. The control objective aims
at designing the input function u(t) in such a way that the state trajectory correspond-
ing to (5.1.1) with initial condition ξ0 converges locally exponentially fast to zero.
Note that the subscript ”cl” refers to the abbreviation "closed-loop". It is easy to see
that (ξ e

cl ,u
e) = (0,0) consitutes an equilibrium solution of the steady-state equations

associated to (5.1.1).
In what follows we shall consider input functions expressed as state feedbacks, that

is, u(t) := Kξcl(t) where the operator K : X →U is an appropriate linear and bounded
operator that have to be designed accordingly to the control objective described above.
With links to what has been constructed in Chapter 4, the main question will consist
in determining a stabilizing state feedback K for the controlled linearized dynamics{

ξ̇ cl(t) = Aξ cl(t)+d f (xe)ξ cl(t)+BKξ cl(t),
ξ (0) = ξ0,

(5.1.2)

where the notations are the same as those used in Chapter 4. Note that we shall restrict
ourselves to the case where the domain of the nonlinear operator f is the whole space
X .

In that way, in order to be able to use the framework developed in Chapter 4 we
shall see how only the Fréchet differentiability of the nonlinear operator f (·+ xe)−
f (xe) at 0 (in the different senses) allows us to deduce the Fréchet differentiability of
the nonlinear semigroup generated by the nonlinear operator dynamics of (5.1.1). Let
us therefore state the following assumption.

Note that, in what follows, we consider again an auxiliary space Y continuously
embedded in X and that satisfies D(A)⊆ Y ⊆ X .

Assumption 5.1.1 The control operator B is linear and bounded, when viewed
as acting from the input space U into the auxiliary space Y , i.e. B ∈L (U,Y ).
Moreover, the feedback operator K ∈L (X ,U).

As a direct consequence of Assumption 5.1.1, we have the following lemma.

Lemma 5.1.1 Under Assumption 5.1.1 and due to the continuous embedding of
Y into X, it holds that B ∈L (U,X) and K ∈L (Y,U).

Proof. We begin with the boundedness of B from U in into X . Take any u ∈ U .
Thanks to B ∈L (U,Y ) it holds that ‖Bu‖Y ≤ ‖B‖L (U,Y )‖u‖U . The continuous em-
bedding of Y into X entails the following

‖Bu‖X ≤ σ‖Bu‖Y ≤ σ‖B‖L (U,Y )‖u‖U .
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Now let us consider ξ ∈ Y . By assumption it holds that ‖Kξ‖U ≤ ‖K‖L (X ,U)‖ξ‖X .
The fact that ‖ξ‖X ≤ σ‖ξ‖Y ends the proof. �

Before looking at the Fréchet differentiability of the nonlinear semigroup gener-
ated by the nonlinear operator dynamics corresponding to (5.1.1) with ũ(t) = Kξcl(t),
we shall ensure that this semigroup exists and makes sense both on X and on Y .

Lemma 5.1.2 Assuming that the linear operator A : D(A) ⊂ X → X is the in-
finitesimal generator of a C0−semigroup on X, that the nonlinear operator f :
X → X is globally Lipschitz continuous and that Assumption 5.1.1 holds gives
that the nonlinear operator A+ f (·+xe)− f (xe)+BK is the infinitesimal gener-
ator of a nonlinear semigroup on X.

Proof. Observe that Assumption 5.1.1 implies that B ∈L (U,X) and K ∈L (X ,U).
Consequently, BK ∈ L (X). Hence according to (Engel and Nagel, 2006, Bounded
Perturbation Theorem), the linear operator A+BK is the infinitesimal generator of a
C0−semigroup. Since the nonlinear operator f : X→ X is uniformly Lipschitz contin-
uous, so is the operator f (·+xe)− f (xe). According to Theorem 2.2.1, the conclusion
follows. �

Note that the boundedness assumption 4.2.2 implies that the same conclusion
holds true for the space Y where the nonlinear operator is redefined as acting from
Y into Y .

In what follows we adopt the following notations: the nonlinear semigroup gen-
erated by the operator A+ f (·+ xe)− f (xe)+BK is denoted by (Scl(t))t≥0 while the
linear semigroup generated by the operator A+d f (xe)+BK is denoted by (T cl(t))t≥0.
Moreover the linear operator A generates the C0−semigroup(1) (T (t))t≥0.

The following result characterizes the continuous dependence of the solution of
(5.1.1) thanks to Assumption 5.1.1.

Proposition 5.1.1 Consider the nonlinear controlled system (5.1.1) where

u(t) = Kξcl(t)

for some linear gain operator K. Under Assumption 5.1.1, the mild solution
ξcl(t) to (5.1.1) depends continuously on the initial condition ξ0 at 0 on X and Y
on any compact interval [0, t0], where t0 > 0.

Proof. Let us take ξ0 ∈ D(A) and t0 > 0. We shall prove the continuous dependence
on the initial condition on the space X . Similar arguments can be used to prove this
property on Y . By assumption, the feedback operator K ∈ L (X ,U). According to
Lemma 5.1.1 the operators B and K satisfy B ∈L (U,X) and K ∈L (X ,U), respec-
tively. Now consider the mild solution of (5.1.1). It is expressed as

ξcl(t) = T (t)ξ0 +
∫ t

0
T (t− s)[ f (ξcl(s)+ xe)− f (xe)+BKξcl(s)]ds.

(1)For this semigroup, it holds that for any ω > ω0 there exists Mω > 0 such that ‖T (t)‖ ≤Mω eωt , t ≥ 0.
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Taking the X−norm of both sides yields

‖ξcl(t)‖X ≤‖T (t)ξ0‖X +
∫ t

0
‖T (t− s)[ f (ξcl(s)+ xe)− f (xe)]‖X ds

+
∫ t

0
‖T (t− s)BKξcl(s)‖X ds

≤Mω eωt‖ξ0‖X +
∫ t

0
Meω(t−s)‖ f (ξcl(s)+ xe)− f (xe)‖X ds

+
∫ t

0
Mω eω(t−s)‖BKξcl(s)‖X ds.

The boundedness of B and K together with the Lipschitz continuity of f imply that

‖e−ωtξcl(t)‖X ≤Mω‖ξ0‖X +Mω lN
∫ t

0
‖e−ωsξcl(s)‖X ds

+Mω‖B‖L (U,X)‖K‖L (X ,U)

∫ t

0
‖e−ωsξcl(s)‖X ds

= Mω‖ξ0‖X + η̃
∫ t

0
‖e−ωsξcl(s)‖X ds,

where η̃ := Mω l f +Mω‖B‖L (U,X)‖K‖L (X ,U) with l f being one Lipschitz constant of
f . Then Gronwall’s inequality, see (Robinson, 2001, Lemma 2.8), yields

‖ξcl(t)‖X ≤Mω e(ω+η̃)t‖ξ0‖X ,

which proves continuous dependence at 0 on X . �

We shall now focus on the Y− and the (Y,X)−Fréchet differentiability of the
nonlinear semigroup (Scl(t))t≥0 in order to be able to link the global stability of
(T cl(t))t≥0 with the local stability of (Scl(t))t≥0 thanks to Theorem 4.3.1.

Proposition 5.1.2 Under Assumption 5.1.1, if the nonlinear operator f (·+xe)−
f (xe) is (Y,X)− and Y−Fréchet differentiable at 0, the nonlinear semigroup
(Scl(t))t≥0 is (Y,X)− and Y−Fréchet differentiable at 0 with T cl(t) as Fréchet
derivative.

Proof. We shall prove the proposition for the (Y,X)−Fréchet differentiability. Sim-
ilar arguments lead to the conclusion for the Y−Fréchet differentiability. First note
that according to Proposition 5.1.1, the solution of (5.1.1) in closed-loop with u(t) =
Kξcl(t) depends continuously on the initial condition at 0 on X and on Y . Hence
Assumption 4.2.3 is satisfied. Consequently the relation

lim
‖ξ0‖Y→0

‖ f (ξcl + xe)− f (xe)−d f (xe)ξcl‖L∞([0,t0];X)

‖ξ0‖X
= 0 (5.1.3)

is satisfied according to Lemma 4.2.2 for any positive t0. Then, observe that for t ∈
[0, t0], the state trajectories of (5.1.1) and (5.1.2) are given by

ξcl(t) = T (t)ξ0 +
∫ t

0
T (t− s)[ f (ξcl(s)+ xe)− f (xe)+BKξcl(s)]ds

114



5.2 A class of LQ-optimally controlled nonlinear systems

and

ξ cl(t) = T (t)ξ0 +
∫ t

0
T (t− s)[d f (xe)ξ cl(s)+BKξ cl(s)]ds,

respectively. As a consequence,

‖e−ωt(ξcl(t)−ξ cl(t))‖X ≤Mω

∫ t

0
e−ωs‖ f (ξcl(s)+ xe)− f (xe)−d f (xe)ξcl(s)‖X ds

+Mω

∫ t

0
e−ωs‖d f (xe)(ξcl(s)−ξ cl(s))‖X ds

+Mω

∫ t

0
e−ωs‖BK(ξcl(s)−ξ cl(s))‖X ds.

Using the boundedness of the Gâteaux derivative of f at xe and the fact that BK ∈
L (X), it follows that

‖e−ωt(ξcl(t)−ξ cl(t))‖X ≤Mω

∫ t

0
e−ωs‖ f (ξcl(s)+ xe)− f (xe)−d f (xe)ξcl(s)‖X ds

+λ
∫ t

0
‖e−ωs(ξcl(s)−ξ cl(s))‖X ds,

where λ := Mω(‖d f (xe)‖L (X)+‖BK‖L (X)). Hence, by Gronwall’s lemma,

‖ξcl(t)−ξ cl(t)‖X ≤Mω e(ω+λ )tk0

∫ t

0
‖R(ξcl(s),xe)‖X ds,

where R(ξcl ,xe) stands for f (ξcl + xe)− f (xe)− d f (xe)ξcl and k0 := max{1,e−ωt0}.
Since (5.1.3) holds, the nonlinear semigroup(2) (Scl(t))t≥0 is (Y,X)−Fréchet differen-
tiable at 0 with (T cl(t))t≥0 as Fréchet derivative. �

By looking at Theorem 4.3.1, designing a stabilizing state feedback K for the lin-
earized dynamics (5.1.2) both on X and Y implies that the nonlinear system(3) (5.1.1)
with the input function u(t) expressed as u(t) = Kξcl(t) is locally exponentially stable
on X , where locally means that initial conditions ξ0 ∈ Y having a sufficiently small
Y−norm have to be considered, see Definition 4.2.3.

5.2 A class of LQ-optimally controlled nonlinear sys-
tems

Here we focus our attention on a specific class of single-input systems of the form
(5.1.1) defined on a state (Hilbert) space X equipped with the inner product 〈·, ·〉X . The
auxiliary (possibly Banach) space is denoted by Y and satisfies D(A) ⊆ Y ⊆ X . The

(2)It holds that ξcl(t) = Scl(t)ξ0 and ξ cl(t) = T cl(t)ξ0 for any t ≥ 0 and ξ0 ∈ X .
(3)This has the consequence that Assumption 4.3.1 is satisfied.
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input space is chosen as being U = R while the control operator B : R→ X is defined
as the multiplication of the scalar input u by the Y−function b, i.e. Bu = bu,b ∈ Y for
all u ∈R. In addition to this setting, we consider an operator C : X →R being a linear
functional, that is, without loss of generality, defined by Cξ = 〈c,ξ 〉X for some c ∈ X
and any ξ ∈ X . This linear functional may be interpreted as scalar measurements on
the system. According to these considerations, the nonlinear system (5.1.1) has the
form {

ξ̇cl(t) = Aξcl(t)+ f (ξcl(t)+ xe)− f (xe)+bKξcl(t),
ξcl(0) = ξ0,

(5.2.1)

where the initial condition ξ0 ∈ X . The nonlinear operator f : X→ X is assumed to be
uniformly Lipschitz continuous and Y− and (Y,X)−Fréchet differentiable at xe with
xe being a solution of the equation Axe + f (xe) = 0. Its (Y,X)−Fréchet derivative is
given by the linear operator d f (xe) which is assumed to be bounded both viewed as
acting from X into X or from Y into Y . Linearizing (5.2.1) around the equilibrium 0
yields the linear system{

ξ̇ cl(t) = Aξ cl(t)+d f (xe)ξ cl(t)+bKξ cl(t),
ξ cl(0) = ξ0.

(5.2.2)

Besides, it is assumed that the pairs (A+d f (xe),b) and (c,A+d f (xe)) are exponen-
tially stabilizable and detectable, respectively, see Definition 2.1.10. These two as-
sumptions will be interpreted after having defined the optimal control problem. Note
that the condition b ∈ Y implies that the operator B ∈L (R,Y ) which has the conse-
quence that B ∈L (U,X) according to Lemma 5.1.1.

In what follows the operator A+d f (xe) is assumed to be a Riesz-spectral operator
whose spectrum is composed of only simple eigenvalues. Hence, it may be repre-
sented by the following series expansion

(A+d f (xe))ξ cl :=
∞

∑
n=0

λn〈ξ cl ,ψn〉X φn, (5.2.3)

where {λn}n∈N,{φn}n∈N and {ψn}n∈N are the eigenvalues, the eigenfunctions basis
of the operator A+d f (xe) and the eigenfunctions basis of its adjoint(4) on X , respec-
tively. The set of functions {ψn}n∈N and {φn}n∈N form an biorthogonal basis, i.e.
〈φn,ψm〉X = δnm.

As a quite common assumption on the eigenvalues {λn}n∈N of A+d f (xe) we ask
that there exists a positive and finite real number κ such that

sup
m∈N
{

∞

∑
n=0
n 6=m

1
|λn−λm|2

}= κ (5.2.4)

holds true. As mentioned in Section 2.1.2.2 this has the consequence that

inf
n,m∈N,n6=m

|λn−λm|= µ,µ > 0. (5.2.5)

(4)The adjoint operator of A is denoted by A∗.
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Let us consider the notation A := A+d f (xe) in what follows.
As a computation of the feedback operator K, we focus on the following optimal

control problem for system (5.1.2). The goal consists in finding a control law uo ∈
L2([0,∞);R) that minimizes the cost functional

J(ξ0,u) =
∫

∞

0
(ρ1|Cξ cl(t)|2 +ρ2|u(t)|2)dt, (5.2.6)

where the real numbers satisfy ρ1 ≥ 0 and ρ2 > 0, subject to the dynamics (5.2.2).
The assumption of exponential stabilizability of (A ,b) ensures that the problem is
optimizable, that is, there exists at least one control input u that renders the cost (5.2.6)
finite. Meanwhile, the exponential detectability of (c,A ) implies that the feedback
operator K, solution of the optimal control problem, is exponentially stabilizing, see
(Curtain and Zwart, 2020, Theorem 9.2.9). Looking at the weighting parameters,
they aim at penalizing the effects of the functions Cξ cl(t) and u(t) in the cost (5.2.6).
The optimal control that minimizes (5.2.6) subject to the dynamics (5.2.2) is given by
uo(t) = Koξ cl(t), where Ko :=− 1

ρ2
B∗Q with Q being the unique positive self-adjoint

solution of the following operator Riccati equation

A ∗Q+QA +ρ1C∗C− 1
ρ2

QBB∗Q = 0 (5.2.7)

on D(A ) with the condition that Q(D(A)) ⊂ D(A∗). For more details about the LQ-
optimal control problem for infinite- dimensional systems, see for instance Callier and
Winkin (1990, 1992); Curtain and Zwart (2020) and references therein.

According to Winkin et al. (2004), the general form of the state feedback Ko ∈
L (X ,R) is given by Koξ cl := 〈ko,ξ cl〉, for any ξ cl ∈ X and some ko ∈ X . Lemma
5.1.1 implies that the feedback operator Ko is bounded from the auxiliary space Y into
the input space R.

By considering (Shun-Hua, 1981, Theorem 2.1) and due to the form of the operator
Ko, the linear closed-loop operator A + bKo preserves the Riesz-spectral property.
Provided that the eigenvalues of the closed-loop operator A + bKo are simple, the
later admits the spectral decomposition

(A +bKo)ξ cl =
∞

∑
n=0

λ o
n 〈ξ cl ,ψ

o
n 〉X φ o

n , (5.2.8)

where {λ o
n }n∈N,{φ o

n }n∈N and {ψo
n}n∈N are the eigenvalues, the eigenfunctions of the

operator A +bKo and the eigenfunctions of its adjoint, respectively.
This framework entails that the nonlinear semigroup generated by the nonlinear

operator dynamics associated(5) to (5.2.1) is (Y,X)− and Y−Fréchet differentiable
at 0 with the linear semigroup (T cl(t))t≥0 generated by the dynamics of (5.2.2) as
Fréchet derivative, see Proposition 5.1.2.

It remains to solve the question of exponential stability of (T cl(t))t≥0 on the space
Y . Sufficient conditions that ensures the desired result are proposed in the next propo-
sition.

(5)Which exists on X and on Y thanks to Lemma 5.1.2.
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Proposition 5.2.1 Let us consider the linear feedback gain Ko, given by 〈ko, ·〉X ,
that is obtained as the solution of the optimal control problem that consists in
minimizing (5.2.6) subject to (5.2.2). Under the following assumption

∞

∑
n=0

‖ψo
n‖X‖φ o

n ‖Y
|Re(λ o

n )|
< ∞, (5.2.9)

the feedback gain Ko exponentially stabilizes the dynamics (5.2.2) around 0 on
the space Y .

Proof. As mentionned previously in (5.2.8) the closed-loop operator A +b〈k0, ·〉 is
a Riesz-spectral operator since so is A and since (5.2.4) holds true.

Observe that supn∈N{Re(λ o
n )}< 0 since the semigroup generated by A +b〈k0, ·〉

is exponentially stable on X by construction. Take ξ0 ∈ Y . It holds that

‖ξ cl(t)‖Y = ‖
∞

∑
n=0

eλ o
n t〈ξ0,ψo

n 〉X φ o
n ‖Y ≤

∞

∑
n=0

eRe(λ o
n )t‖ψo

n‖X‖φ o
n ‖Y‖ξ0‖X .

It is stated in Remark 2.1.1 that, if the condition∫
∞

0
‖ξ cl(t)‖p

Y dt < ∞ (5.2.10)

holds for some p ∈ [1,∞) and for any ξ0 ∈ Y , then the state trajectory ξ cl(t) is ex-
ponentially stable when evaluated in Y−norm. The condition (5.2.10) in this specific
context with p = 1 follows from∫

∞

0
‖ξ cl(t)‖Y dt ≤

∫
∞

0

∞

∑
n=0

eRe(λ o
n )t‖ψo

n‖X‖φ o
n ‖Y‖ξ0‖Y dt =

∞

∑
n=0

‖ψo
n‖X‖φ o

n ‖Y
|Re(λ o

n )|
‖ξ0‖X

and Assumption (5.2.9). �

5.3 Illustration
In this section we aim at applying the results that have been presented before in order
to regulate the state of a nonlinear heat equation with Neumann boundary conditions.
The dynamical model that is under consideration is driven by the following PDE{

∂x
∂ t =

∂ 2x
∂ z2 +

√
x2 +1+b(z)u(t),

∂x
∂ z (0, t) = 0 = ∂x

∂ z (1, t),
(5.3.1)

where t ≥ 0 and z ∈ [0,1] stand for the temporal and the spatial variables, respectively.
The function b is defined by b(z) = 1[0,1](z) for all z ∈ [0,1]. For any t ≥ 0, it is as-
sumed that the spatially dependent profile x(·, t) lies in the state space L2([0,1];R) =:
X . We want to insist on the fact that (5.3.1) does not correspond to a real physical
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example but is has been constructed in order to illustrate the theory developed in the
previous section. The control objective consists in designing an input u(t) such that
the state x reaches the reference profile r(z) := 1[0,1](z) exponentially fast. Remark
that, for r(z) to be an equilibrium solution of (5.3.1), it is necessary that the steady
state control input ue takes the form ue =−

√
2. Remark also that reaching the profile

r(z) is not possible without applying any control since it is not an equilibrium profile
of the homogeneous part of (5.3.1) (i.e. with u(t) ≡ 0). Therefore let us perform the
change of variables ũ(t) = u(t)−ue together with ξ (z, t) = x(z, t)− r(z). In this way,
(5.3.1) is given by{

∂ξ
∂ t = ∂ 2ξ

∂ z2 +
√
(ξ +1)2 +1−1[0,1](z)

√
2+b(z)ũ(t),

∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t).
(5.3.2)

With this change of variables and according to the setting developed in Section 5.1,
the control objective may be interpreted as designing the control input ũ(t) as the
state feedback ũ(t) = Kξ (t) such that the state trajectory of (5.3.2) converges to 0
exponentially fast when t goes to ∞. As it has already been pointed out in Section
3.1, the nonlinear operator f̃ given by f̃ (ξ ) :=

√
(ξ +1)2 +1−

√
2 for ξ ∈ X is not

Fréchet differentiable at 0 on the state space X . As it has been proposed in Section
4.4.1 let us consider the Banach space of continuous functions Y := C([0,1];R) as
auxiliary space.

First notice that (5.3.2) admits the abstract representation (5.2.1) with the operator
A : D(A)→X being defined by Aξ = d2ξ

dz2 for ξ ∈D(A) whose expression may be found

in (4.4.3). The nonlinear operator f : X → X is given by f (ξ ) =
√

ξ 2 +1. Moreover,
the control operator B : R→ X takes the form Bu = b(z)u for any u ∈ R. Owing to
the fact that b ∈ Y , the operator B ∈L (R,Y ). It is easy to see that the operator A is
the infinitesimal generator of a C0−semigroup on X . The same property holds on Y
too, where tools related to the Banach space setting have to be used, see e.g. (Engel
and Nagel, 2006, Chapter 2, Section 2.11). Moreover, according to Section 4.4.1, the
nonlinear operator f̃ (·) := f (·+ r)− f (r) is uniformly Lipschitz continuous on X and
on Y with one Lipschitz constant given by l f̃ := 1. These facts have the consequence
that the nonlinear equation (5.3.2) with ũ(t) ≡ 0 possesses a unique mild solution on
X and on Y . Considering control inputs ũ expressed as state feedbacks ũ(t) = Kξ (t)
where K ∈L (X ,U) does not change this property of existence and uniqueness of a
mild solution. Furthermore note that the solution may be classical whenever the initial
condition is chosen in D(A).

Concerning the continuous dependence of the solution ξ (t) on the initial condition
at 0 on X and on Y , we refer to (Martin, 1987, Lemma 5.1). Indeed, as the initial
conditions are chosen in the domain of the linear operator A we are dealing with
classical solutions, i.e. solutions that are differentiable in time. This implies continuity
in time. Hence, continuous dependence is proved.

As the space Y has been introduced, note that according to Proposition 3.1.1 and
to Section 4.4.1, the nonlinear operator f̃ is Y− and (Y,X)−Fréchet differentiable at
0, with the linear and bounded operator d f̃ (0) expressed as d f̃ (0) = 1√

2
I as Fréchet

derivative. This together with continuous dependence of the solution of (5.3.2) at
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0 implies that the nonlinear closed-loop semigroup (Scl(t))t≥0 satisfying Scl(t)ξ0 =
ξ (t), t ≥ 0 where ξ0 stands for the initial condition is Y− and (Y,X)−Fréchet differ-
entiable at 0 as well, see Lemma 4.2.3. Its Fréchet derivative is given by the linear
semigroup (T cl(t))t≥0 which is generated by the dynamics of the following linear
system 

∂ξ
∂ t = ∂ 2ξ

∂ z2 + 1√
2
ξ +bKξ ,

∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t).
(5.3.3)

Observe that (5.3.3) admits the abstract representation

ξ̇ (t) = A ξ (t)+bKξ (t),ξ (0) = ξ0, (5.3.4)

where the linear operator A = A+ 1√
2
I is defined on D(A ) = D(A). Since A is the

infinitesimal generator of a C0−semigroup on X and Y and since the operator bK is
bounded when viewed as acting from X into X or from Y into Y , the abstract Cauchy
problem (5.3.4) is well-posed on X and on Y .

The design of a stabilizing state feedback K for the linear dynamics (5.3.4) on X
and Y is adressed in the next section.

5.3.1 Resolution of an optimal control problem
As proposed in Section 5.2, the state feedback K will be computed as the solution of
the following optimal control problem u∗ = arg min J(ξ0, ũ) :=

∫
∞

0
(ρ1〈c,ξ (t)〉2X +ρ2ũ2(t))dt,

ξ̇ (t) = A ξ (t)+bũ(t),ξ (0) = ξ0,
(5.3.5)

where we seek for a control input u∗(t) = Kξ (t) that is square integrable in infinite
horizon, i.e. u∗(·) ∈ L2([0,∞);R). Note that the weights ρ1 and ρ2 are supposed to
be such that ρ1 ≥ 0 and ρ2 > 0. The function c is chosen as c(z) = 1[0,1](z). In order
to ensure that (5.3.5) is feasible, we need to verify that the pairs (A ,b) and (c,A )
are exponentially stabilizable and detectable, respectively, see (Curtain and Zwart,
2020, Theorem 9.2.9). For this purpose, observe that the operator A is of Riesz-
spectral type. Its spectrum is composed of only eigenvalues expressed as {λn}n∈N =
{−n2π2 + 1√

2
}n∈N. The corresponding normalized eigenfunctions {φn}n∈N are given

by {1[0,1](z)} ∪ {
√

2cos(nπz)}n∈N0 and form an orthonormal basis of X . Observe
also that the operator A is self-adjoint and has a compact resolvent operator. The last
feature is obtained since the relation limn→∞

1
λn

= 0 holds true, see (Curtain and Zwart,
2020, Lemma 3.2.12). Consequently, the exponential stabilizability of the pair (A ,b)
is guaranteed provided that 〈φn,b〉X 6= 0 for any n ∈ N for which Re(λn) > 0, see
(Curtain and Zwart, 2020, Theorem 8.2.2). It is easy to see that the only n for which
the test has to be performed is n= 0. For this n it holds that 〈φ0,b〉X = 1 which implies
exponential stabilizability of (A ,b). Since the functions c and b are the same and A
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is self-adjoint, the exponential detectability of (c,A ) is equivalent to the exponential
stabilizability of (A ,b).

These considerations entail the well-posedness of the optimal control problem
(5.3.5) since this means that there exists at least one control input u(·) ∈ L2([0,∞);R)
such that the functional J in (5.3.5) is finite. Let us now focus on the solution of (5.3.5).
According to e.g. Shun-Hua (1981); Winkin et al. (2004); Curtain and Zwart (2020),
the optimal feedback operator K ∈L (X ,R) is given by the operator K := − 1

ρ2
B∗Q

where the positive self-adjoint operator Q∈L (X) is the unique stabilizing solution of
the operator Riccati equation (5.2.7). Therefore we shall use the Riesz-spectral nature
of the operator A . Since it satisfies that property, it is isomorphic to a diagonal oper-
ator on the space of square summable sequences, l2(N) := {{αn}n∈N,∑∞

n=0 α2
n < ∞},

see (Tucsnak and Weiss, 2009, Proposition 2.6.2). The isomorphism that transforms
any element of X into a square summable sequence is denoted by F : X → l2(N) and
defined for any ξ ∈ X by

Fξ = {〈ξ ,φn〉X}n∈N.

It satisfies F ∈L (X , l2(N)) and its inverse is given by the operator F−1 : l2(N)→ X
as

F−1{αn}n∈N =
∞

∑
n=0

αnφn,

for all {αn}n∈N ∈ l2(N). The isomorphism F transforms the operators A ,b and C :=
〈c, ·〉X into the operators ˜A : D( ˜A )⊂ l2(N)→ l2(N), b̃ :R→ l2(N) and C̃ : l2(N)→R
as(6)

˜A α = {λnαn}n∈N, b̃u = {〈b,φn〉X u}n∈N, C̃η = η0,

for any α := {αn}n∈N ∈ D( ˜A ), which can be expressed as

D( ˜A ) = {α ∈ l2(N),
∞

∑
n=0

(1+λ 2
n )|αn|2 < ∞}

and u ∈ R. According to the orthogonality of the function b to all the eigenfunctions
φn,n≥ 1, the operator b̃ may also be rewritten as

b̃u = (δ1n)n∈N u,

where δ1n is the Kronecker symbol, i.e. b̃0 = 1 and b̃n = 0,n ≥ 1. Consequently, the
isomorphism F allows to rewrite the optimal control problem (5.3.5) defined on X as
the following optimal control problem on l2(N)

u∗ = arg min J(ξ0, ũ) :=
∫

∞

0
(ρ1α0(t)2 +ρ2ũ2(t))dt,

α̇0(t) = 1√
2
α0(t)+ ũ(t),

α̇n(t) = (−n2π2 + 1√
2
)αn(t),n≥ 1,

(5.3.6)

(6)The operators Ã, b̃ and are obtained from the operators A ,b and C in the following way: ˜A =
FA F−1, b̃ = Fb and C̃ =CF−1.

121



Chapter 5 Local stabilization of equilibria

where the notation {αn}n∈N :=Fξ has been used. The solution of this optimal control
problem is given by the state feedback u∗(t) = − 1

ρ2
b̃T Q̃(α0 α1 . . .)T where the

positive self-adjoint operator Q̃ ∈L (l2(N)) is the solution of the following operator
Riccati equation

˜A T Q̃+ Q̃A +ρ1c̃T c̃− 1
ρ2

Q̃b̃b̃T Q̃ = 0, (5.3.7)

where c̃ = b̃T . By considering the expressions of the infinite matrices Ã, b̃ and c̃ and
by denoting the infinite matrix Q̃ by (qi j)i, j≥0, (5.3.7) may be expressed asλ0q00 λ0q01 λ0q02 ...

λ1q10 λ1q11 λ1q12 ...
λ2q20 λ2q21 λ2q22 ...

...
...

...
...

+

λ0q00 λ1q01 λ2q02 ...
λ0q10 λ1q11 λ2q12 ...
λ0q20 λ1q21 λ2q22 ...

...
...

...
...

+

ρ1 0 0 ...
0 0 0 ...
0 0 0 ...
...

...
...

...


− 1

ρ2

 q2
00 q00q01 q00q02 ...

q10q00 q10q01 q10q02 ...
q20q00 q20q01 q20q02 ...

...
...

...
...

=

 0 0 0 ...
0 0 0 ...
0 0 0 ...
...

...
...

...

 . (5.3.8)

First observe that the unknown q00 is subject to the scalar equation

2λ0q00 +ρ1−
1
ρ2

q2
00 = 0, (5.3.9)

whose solutions are(7) q+00 =
2λ0+

√
4λ 2

0 +
4ρ1
ρ2

2 ρ2 and q−00 =
2λ0−

√
4λ 2

0 +
4ρ1
ρ2

2 ρ2. In what
follows we shall keep the positive solution owing to the positivity of Q̃. By looking at
the element at the position (1,2) in the matrix equation (5.3.8) yields

(λ0 +λ1)q01−
1
ρ2

q00q01 = 0.

As the term λ0 +λ1− 1
ρ2

q00 < 0, the only solution is q01 = 0. Iterating the process by
looking at the element at position (1, i+1), i≥ 2 in (5.3.8), one gets the equation

(λ0 +λi)q0i−
1
ρ2

q00q0i = 0,

which yields the solution q0i = 0 for any i ≥ 1. As the operator matrix Q is self-
adjoint, it is symmetric, which implies that qi0 = 0, i ≥ 1. By incorporating this in
(5.3.8) one finds that qi j is 0 for any i, j≥ 0 except for the element q00. Consequently,
the solution Q̃ : l2(N)→ l2(N) of (5.3.8) satisfies Q̃{αn}n∈N = (q+00α0 0 0 . . .)T

for any sequence {αn}n∈N ∈ l2(N). This implies that the optimal feedback u∗(t) which
is the solution to the optimal control problem (5.3.6) is given by

u∗(t) =− 1
ρ

b̃T Q̃{αn(t)}n∈N =− 1
ρ2

q+00α0(t) =: k̃{αn}n∈N,

(7)The exponents "+" and "-" refer to the positive and the negative solutions, respectively.
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where k̃ : l2(N)→ R. Note that according to the isomorphism F , the solution of
the operator Riccati equation (5.2.7) is given by the positive self-adjoint operator Q ∈
L (X) defined by Q = F−1Q̃F . Now take any ξ ∈ X . It holds that

Qξ = F−1Q̃Fξ = F−1Q̃{〈ξ ,φn〉X}n∈N

= F−1(q+00〈ξ ,φ0〉X 0 0 . . .)T

= q+00〈ξ ,φ0〉X φ0 = q+001[0,1]
∫ 1

0
ξ (z)dz.

It is easy to see that the operator Q is self-adjoint. Moreover, observe that

〈Qξ ,ξ 〉X = q+00〈1[0,1]
∫ 1

0
ξ (z)dz,ξ 〉X = q+00

(∫ 1

0
ξ (z)dz

)2

≥ 0,

which means that the operator Q is positive. Furthermore, let us consider ξ ∈ D(A),
see (4.4.3). It is easy to see that Qξ ∈ D(A∗) = D(A). Besides it holds that

A ∗Qξ +QA ξ +ρ1C∗Cξ − 1
ρ2

Qbb∗Qξ

=
d2Qξ
dz2 +Q

d2ξ
dz2 +

√
2Qξ +ρ11[0,1]

∫ 1

0
ξ (z)dz− 1

ρ2
Qbb∗q+001[0,1]

∫ 1

0
ξ (z)dz

=
d2

dz2

(
q+001[0,1]

∫ 1

0
ξ (z)dz

)
+q+001[0,1]

∫ 1

0

d2ξ
dz2 dz+

√
2Qξ

+ρ11[0,1]
∫ 1

0
ξ (z)dz− 1

ρ2
q+00Q

(
1[0,1]

∫ 1

0
ξ (z)dz

)
= (
√

2q+00 +ρ1−
1
ρ2

(q+00)
2)1[0,1]

∫ 1

0
ξ (z)dz = 0,

where the definition of D(A) and relation (5.3.9) have been used. The corresponding
state feedback K : X → R takes the form K =− 1

ρ2
b∗Q, i.e. Kξ =− 1

ρ 2
q+00
∫ 1

0 ξ (z)dz,

with ξ ∈ D(A), which may also be found as K = k̃F .
It remains to show that once connected to the dynamics (5.3.4) the state feedback

K stabilizes the latter on Y . Notice that the eigenvalues of the operator A , namely
{λn}n∈N = {−n2π2 + 1√

2
}n∈N, satisfy the following inequality

sup
m∈N

∞

∑
n=0
n 6=m

1
|λn−λm|2

≤ 1
6π2 ,

see Abouzaïd et al. (2021) for instance. Consequently, the operator A +bK is a self-
adjoint Riesz-spectral operator whose eigenvalues are given by (8)

{λ o
n }n∈N = {−

√
λ 2

0 +
ρ1

ρ2
}∪{−n2π2 +

1√
2
}n∈N0 .

(8)In order to avoid eigenvalues with larger multiplicities than 1, the condition ρ1
ρ2
6= n4π4−

√
2n2π2 has

to be imposed for any n≥ 1.
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The corresponding eigenfunctions are the same as the one of the operator A , i.e.
{φ o

n }n∈N = {1[0,1](z)}∪{
√

2cos(nπz)}n∈N0 and form an orthonormal basis of X . The
series in (5.2.9) becomes in our context

∞

∑
n=0

‖φ o
n ‖X‖φ o

n ‖Y
|Re(λ o

n )|
=
√

2
∞

∑
n=0

1
|λn|

=

√
2√

λ 2
0 + ρ1

ρ2

+
∞

∑
n=1

1
n2π2− 1√

2

,

which is a convergent series. Consequently, the state feedback K stabilizes exponen-
tially the linear dynamics (5.3.4) on the space Y according to Proposition 5.2.1.

We are now able to state the main result of this section, which makes the link
between the stability of the linearized system (5.3.4) with the tracking of the reference
profile r(z) for the nonlinear system (5.3.1).

Theorem 5.3.1 The optimal control law u(t) = ũ(t)−
√

2 with ũ(t) being the
state feedback ũ(t) = − 1

ρ2
q+00
∫ 1

0 ξ (z, t)dz, stabilizes locally and exponentially
the nonlinear system (5.3.1) around the reference profile r(z) = 1[0,1](z).

Proof. See above in this Section and Theorem 4.3.1. �

Despite the control law u(t) is locally stabilizing for (5.3.1) and optimal for the
corresponding linearized system, it is not necessarily optimal for the nonlinear system
(5.3.1), for the same cost function. Similar arguments as those presented in Ikeda and
Šiljak (1990) and Aksikas (2005) could be used to study the inverse optimality of u(t)
for the nonlinear system (5.3.1), i.e., to see which cost should be minimized by u(t)
for the nonlinear system (5.3.1). This question will not be tackled in this thesis.

5.3.2 Discussion on the global stability of the closed-loop system
Here we shall see that the optimal state feedback computed as the solution of (5.3.5)
stabilizes even globally the nonlinear system (5.3.2) with the chosen parameters. How-
ever, another reference profile, which is different from r(z) = 1[0,1](z), and specific
parameters will be chosen to illustrate that this is not always the case.

5.3.2.1 Global exponential stability with the reference profile r(z) = 1[0,1](z)

Observe that, since the operator d2

dz2 − 1
ρ2

q+001[0,1]
∫ 1

0 is a Riesz-spectral operator with
eigenvalues {− 1

ρ2
q+00}∪{−n2π2}n∈N0 =: {κn}n∈N, the semigroup generated by this

operator, denoted (T(t))t≥0, satisfies

T(t)ξ0 =
∞

∑
n=0

eκnt〈ξ0,φn〉X φn,

for any initial condition ξ0 ∈ X . Its norm satisfies the estimate

‖T(t)ξ0‖2
X =

∞

∑
n=0

e2κnt〈ξ0,φ0〉2X ≤ e2supn∈N{κn}t
∞

∑
n=0
〈ξ0,φ0〉2X = e2supn∈N{κn}t‖ξ0‖2

X .
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Owing to this fact, one may express the mild solution of the PDE (5.3.2) with initial
condition ξ0 as

ξ (t) = T(t)ξ0 +
∫ t

0
T(t− s)[

√
(ξ (s)+1)2 +1−

√
2]ds. (5.3.10)

Taking the norm of both sides of (5.3.10) and using the notation(9) supn∈N{κn} :=
κ∗ <−1 imply that

‖ξ (t)‖X ≤ eκ∗t‖ξ0‖X +
∫ t

0
eκ∗(t−s)‖

√
(ξ (s)+1)2 +1−

√
2‖X ds

≤ eκ∗t‖ξ0‖X +
∫ t

0
eκ∗(t−s)‖ξ (s)‖X ds,

where the Lipschitz continuity of the nonlinear operator f̃ ·=
√

(·+1)2 +1−
√

2 has
been used. Applying Gronwall’s inequality to the function e−κ∗t‖ξ (t)‖X yields

e−κ∗t‖ξ (t)‖X ≤ et‖ξ0‖X ,

or equivalently
‖ξ (t)‖X ≤ e(κ

∗+1)t‖ξ0‖X ,

which shows the global exponential stability of the closed-loop nonlinear system
(5.3.2).

This fact could lead us to think that the proposed method based on the extended
Fréchet differentiability conditions is not useful since it can be shown in another easier
way that the linear feedback stabilizes globally the nonlinear dynamics. However, this
is not true and will be discussed in the next section.

5.3.2.2 Changes in the parameters

As another reference profile, let us consider r(z) = 1
4 1[0,1](z),z ∈ [0,1]. We shall see

that the conclusion highlighted in the previous section does not hold necessarily.
Indeed, for this new reference, the corresponding input steady-state value ue,

which is the solution of (5.3.1) at the equilibrium, is given by ue = −
√

17
16 . Con-

sequently the nonlinear "around equilibrium" system is written as{
∂ξ
∂ t = ∂ 2ξ

∂ z2 +
√

(ξ + 1
4 )

2 +1−1[0,1](z)
√

17
16 +b(z)ũ(t),

∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t),
(5.3.11)

where the variable ξ (z, t) = x(z, t)− r(z). Note that the nonlinear operator f̃ defined

by
√
(ξ + 1

4 )
2 +1−

√
17
16 is still uniformly Lipschitz continuous with a Lipschitz

(9)The relation κ∗ <−1 holds true since the eigenvalue− 1
ρ2

q+00 =−λ0−
√

λ 2
0 + ρ1

ρ2
<−2λ0 =−

√
2 and

all others eigenvalues {−n2π2}n∈N0 are less than −1.
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constant given by l f̃ := supξ∈R | f̃
′
(ξ )| = 1. The corresponding linearized equations

around ξ = 0 are given by
∂ξ
∂ t = ∂ 2ξ

∂ z2 + 1√
17

ξ +bũ(t),
∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t).
(5.3.12)

As it has been done for the previous reference profile, it can be shown by using similar
arguments that the optimal feedback operator K that minimizes the cost functional

J(ξ0, ũ) =
∫

∞

0
(ρ1〈c,ξ (t)〉2X +ρ2ũ2(t))dt

is given by the bounded linear operator K : X → R expressed as

Kξ =− 1
ρ2

q̂+00

∫ 1

0
ξ (z)dz, (5.3.13)

where q̂+00 is the positive solution of the following scalar Riccati equation

1
ρ2

(q̂+00)
2− 2√

17
q̂+00 +ρ1 = 0,

which is given by q̂+00 =
(

1√
17
+
√

1
17 +

ρ1
ρ2

)
ρ2. Consequently the closed-loop nonlin-

ear system is expressed as ∂ξ
∂ t = ∂ 2ξ

∂ z2 +
√
(ξ + 1

4 )
2 +1−1[0,1]

√
17
16 −

(
1√
17
+
√

1
17 +

ρ1
ρ2

)
1[0,1]

∫ 1
0 ξ dz,

∂ξ
∂ z (0, t) = 0 = ∂ξ

∂ z (1, t),
(5.3.14)

and its solution is known to be locally exponentially stable according to Theorem
4.3.1. As it was pointed out before, the operator

d2

dz2 −
(

1√
17

+

√
1

17
+

ρ1

ρ2

)
1[0,1]

∫ 1

0
=: A, (5.3.15)

defined on D(A) = D(A), is a Riesz-spectral operator whose spectrum is composed of

only the eigenvalues {κn}n∈N = {− 1√
17
−
√

1
17 +

ρ1
ρ2
}∪{−π2n2}n∈N0 . The semigroup

that is generated by this operator is denoted by (T(t))t≥0. Let us choose for instance
the parameters ρ1 = 3 and ρ2 = 17. In this way the largest eigenvalue of the operator
A is given by κ∗ = −3√

17
'−0.7276. Observe now that the mild solution of (5.3.14) is

given by

ξ (t) = T(t)ξ0 +
∫ t

0
T(t− s)[

√
(ξ (s)+

1
4
)2 +1−

√
17
16

]ds,

which implies that the estimate one may perform on the norm of ξ is ‖ξ (t)‖X ≤
e(κ
∗+1)t‖ξ0‖X . As the quantity κ∗+ 1 is positive, this does not give any information

about global exponential stability.
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5.3.3 Numerical simulations
Here we aim at illustrating the exponential convergence of the state trajectory x of the
nonlinear system (5.3.1) to the constant reference profile r(z). The influence of the
parameters ρ1 and ρ2 on the state x and the output u will also be depicted.

5.3.3.1 Fixed values of the weight parameters

As parameters for the numerical simulations, we choose the reference profile r(z) =
1
4 1[0,1](z). The method that is used to compute the state trajectory consists in dis-
cretizing the space variable z into n equal pieces, n = 40. The diffusion operator with
Neumann boundary conditions has been discretized by means of finite differences, re-
sulting in a matrix Dn ∈ Rn×n. The set of resulting n ordinary differential equations,
expressed as

ξ̇n(t) = Dnξn(t)+ f̃ (ξn(t))+bnũ(t), (5.3.16)

with ξn(t) = (ξ (0, t),ξ (h, t), . . . ,ξ (1, t))T ∈ Rn and bn = (1, . . . ,1)T has then been
linearized, which yields the linear finite-dimensional system

ξ̇ n(t) = Dnξ n(t)+
1√
17

ξ n(t)+bnũ(t).

Based on this linearization, the optimal control input ũ(t), solution of (5.3.5), has been
computed. This has been performed by using the routine lqr of Matlab c©, for which
it has been observed that it produces the same optimal control as the one found analyt-
ically in (5.3.13). Then the resulting set of n nonlinear ordinary differential equations
(5.3.16) is integrated via the routine ode23s of Matlab c©. As initial condition for the
x variable, we have chosen the function x0(z) = 4z3−6z2 +1. It is easy to show that
this function satisfies the boundary conditions dx0

dz (0) = 0 = dx0
dz (1) and is sufficiently

regular such that it lies in D(A).
As parameters for the penalties on the state and on the input, we fixed ρ1 = 3 and

ρ2 = 17.
The open-loop state trajectory x(z, t) of (5.3.1) with u(t) ≡ 0 is shown in Figure

5.1. The closed-loop state trajectory x(z, t) solution of (5.3.1) with u(t) = K(x(t)−
r)−
√

r2 +1 where K is given in (5.3.13) is represented in Figure 5.2. Therein it can
be observed that the reference profile r(z) = 1

4 1[0,1](z) is reached.
Moreover, the X−norm of the difference between the state x and the reference

profile r is depicted in Figure 5.3. The exponential decay of that quantity may be seen.
Besides, the corresponding control input u(t) = ũ(t)+ue is represented in Figure 5.4
where the steady-state value of the control ue is given by −

√
r2 +1.

5.3.3.2 Variations in the weight parameters

Now we shall illustrate the influence of the weighting parameters ρ1 and ρ2. There-
fore, we fixed the value of ρ2 to 1 and we considered three values for the parameter ρ1,
namely 1,6 and 72. The three corresponding state trajectories are depicted in Figure
5.5. In addition, the X−norm of the error between x and r and the optimal control
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Figure 5.1 – State trajectory x of the open-loop system (5.3.1) with u(t)≡ 0.

Figure 5.2 – State trajectory x of the closed-loop system (5.3.1) with the optimal con-
trol law u(t) = K(x(t)− r)−

√
r2 +1, where K is defined in (5.3.13).
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Figure 5.3 – X−norm of the deviation variable x(z, t)− r(z) as a function of t.
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Figure 5.4 – Optimal control law u(t) = K(x(t)− r)−
√

r2 +1, where K is defined in
(5.3.13).
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inputs are given in Figures 5.6 and 5.7, respectively. It can be noticed that the larger
the parameter ρ1 is, the faster the input and the error go to 0. This can be explained by
the fact that the quantity − 1√

17
−
√

1
17 +

ρ1
ρ2

is an eigenvalue of the operator A given
in (5.3.15). For the 3 values of ρ1, this eigenvalue is given by −1.2715,−2.7040
and −8.7313, successively. In particular, for these parameters, this eigenvalue is the
largest of the operator A since the others are given by {−n2π2}n∈N0 .

Figure 5.5 – State trajectory x of the closed-loop system (5.3.1) with u(t) = K(x(t)−
r)−
√

r2 +1, where K is defined in (5.3.13). The trajectory is depicted for any param-
eters ρ1 = 1,ρ1 = 6,ρ1 = 72, each time with ρ2 = 1.
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Figure 5.6 – X−norm of the deviation variable x(z, t)− r(z) as a function of t for any
parameters ρ1 = 1,ρ1 = 6,ρ1 = 72, each time with ρ2 = 1.
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Figure 5.7 – Optimal control law u(t) = K(x(t)− r)−
√

r2 +1, where K is defined in
(5.3.13), for the parameters ρ1 = 1,ρ1 = 6,ρ1 = 72, each time with ρ2 = 1.

131



Chapter 5 Local stabilization of equilibria

132



Chapter 6
Control of a structurally known
plug-flow reactor

Contents
6.1 Introduction on adaptive control . . . . . . . . . . . . . . . . . 134

6.1.1 Proportional Integral Derivative control . . . . . . . . . . 134
6.1.2 Adaptive control for chemical processes . . . . . . . . . . 135

6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3 Control description . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4 Regulation of the output and exponential stability of the closed-

loop system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . 145

This chapter is more application oriented since it is mostly dedicated to the regu-
lation of the temperature inside a plug-flow reactor where no diffusion phenomenon
is considered. As presented in Chapter 1, the control variable that is under considera-
tion is the heat exchanger temperature. This chapter aims at constructing a controller
which stabilizes globally and exponentially the dynamics of a plug-flow reactor while
regulating an output function at some constant reference. This is the main reason why
it is different from Chapters 4 and 5 and can be viewed as an extension of the method-
ology developed therein, where only local stability and stabilization are considered.

A generalization of the proportional-integral (PI) adaptive control will be devel-
oped in order to tackle the nonlinear aspects of the model that is under consideration.
In particular, the idea is to develop an integral adaptive control law perturbed by a
nonlinear term that enables to write the time derivative of some Lyapunov function
as the time derivative of a Lyapunov function corresponding to a linear system. The
control objective is on one hand the convergence of a scalar output which corresponds
to an averaged temperature in the reactor towards a reference temperature. On the
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Chapter 6 Control of a plug-flow reactor

other hand, it is required that the system trajectories (trajectories around the equilib-
rium) are exponentially stable. The proposed control law will be shown to fulfill the
control objective despite the known disturbances applied to the system. The condition
for the feasability of the control objective is expressed as an inequality on the integral
gain in relation with the system parameters, more specifically what could be called a
small-gain condition.

Numerical simulations will be performed to show the effectiveness of the proposed
method while it shows also the feasability of the control heat exchanger temperature
despite the fact that no constraints are imposed on the latter.

The field of control which is of interest in this chapter is closely related to adaptive
control, for which a brief review of the literature is given in the next section.

6.1 Introduction on adaptive control
Adaptive control of dynamical systems, both finite or infinite-dimensional, is a kind of
control which adapts to the system parameters or to uncertainties. It has been widely
studied in the literature in the last decades. Such techniques are deeply considered in
Krstic et al. (1995a) for nonlinear finite-dimensional systems. We refer to Logemann
and Townley (1997) to get an overview of adaptive control for infinite-dimensional
systems, where high-gain, low-gain and switching controllers are considered.

6.1.1 Proportional Integral Derivative control
A very often used and popular field of adaptive control is related to proportional–
integral (PI), proportional–derivative (PD) or proportional–integral–derivative (PID)
control. A large class of processes in the industry are monitored by means of such
control techniques.

A good reference for multivariable PI control of linear infinite-dimensional sys-
tems is Pohjolainen (1982) wherein a small gain condition needs to hold in order to
get a robust stabilizing PI controller that tracks constant reference signals. Moreover
it is assumed that the operator dynamics generates a holomorphic semigroup on the
considered Banach state space. The question of PI regulation has also been studied in
Logemann and Zwart (1992) for linear multivariable infinite-dimensional minimum-
phase systems with a property of "relative-degree" one. The authors showed that un-
der certain high-gain conditions, the PI controller yields a stable closed-loop system
while it tracks asymptotically constant reference signals. The controller also ensures
robustness properties such as perturbations induced by nonlinearities in the feedback
loop. Few years later, the authors of Xu and hamadi Jerbi (1995) generalized the
ideas of Pohjolainen (1982) to single-input, single-output linear systems whose op-
erator dynamics does not necessarily generates a holomorphic semigroup, covering
a larger class of linear infinite-dimensional systems, for instance systems governed
by hyperbolic partial differential equations (PDEs). The case of infinite-dimensional
linear regular systems subject to an input nonlinearity is studied in Logemann and

134



6.1 Introduction on adaptive control

Adam (2001). Extension of the results of Xu and hamadi Jerbi (1995) for multi-input
multi-output systems has been studied more recently in Boulite et al. (2009).

Attention has also been paid in the literature to PI control of nonlinear systems.
In Martins et al. (2014) a PI controller has been designed for a nonlinear distributed
parameter system derived from the hyperbolic Saint-Venant PDEs. The stability of the
closed-loop system is studied by means of operator techniques. Later in Guiver et al.
(2017) low–gain integral control is studied for nonlinear finite-dimensional systems,
where the nonlinearity enters in the system via the input. Note that the Saint-Venant
equations have also been studied in Trinh et al. (2017) and Trinh et al. (2015) for
which PI control is considered on a linearized version of the model. The input and
output variables are supposed to be on the boundary of the considered domain.

Adaptive control via PI, PD or PID is also established in Song (2018).

6.1.2 Adaptive control for chemical processes
Adaptive control methods are also often used in chemical process engineering, and in
particular with attention to the control of chemical/bio reactors. The on-line estima-
tion and adaptive control of such systems are deeply studied in the book Bastin and
Dochain (1990) for instance.

6.1.2.1 Extremum Seeking Control (ESC)

A field of adaptive control which is developing a lot and often used for chemical
processes is known as extremum-seeking-control (ESC). Roughly speaking it consists
in optimizing an objective function depending on the state of a dynamical system
while stabilizing the corresponding system and estimating unknown parameters. For
instance ESC has been applied to an infinite-dimensional system consisting in the
dynamics of a plug-flow tubular reactor with unknown reaction kinetics in Hudon
et al. (2005). Therein, the on-line optimization of a product concentration component
for the Williams-Otto reaction is studied. Few years later, a similar controller has been
developed in Hudon et al. (2008) for the Van der Vusse chemical reaction.

An overview of ESC applied to chemical processes is given in Dochain et al.
(2011).

6.1.2.2 PI control for chemical processes

Chemical processes have also attracted PI control or output feedback regulation such
as in Jadot et al. (1999) where a robust saturated output feedback is designed on a
stirred-tank reactor. Under some mild assumption, a temperature control with clas-
sical PI compensation is used in Alvarez-Ramirez and Puebla (2001) to stabilize the
dynamics of a chemical reactor. For that kind of devices, PI cascade control has been
shown to regulate the outlet concentration in Urrea et al. (2008). A general way of
controlling infinite-dimensional systems described by hyperbolic PDEs via a PI con-
troller is described and developed in Aguilar-Garnica et al. (2011), where particular
applications in process engineering are studied. The authors study first the regulation

135



Chapter 6 Control of a plug-flow reactor

of the temperature in a heat exchanger and then regulate the outlet concentration in
a nonisothermal plug-flow tubular reactor. In Nájera et al. (2016), feed and tempera-
ture measurments ensure the design of a robust output feedback controller for a highly
exothermic gas-phase packed-bed tubular reactor. The regulation of the temperature
in an axial dispersion plug-flow tubular reactor by means of an adaptive controller
based on partial temperature measurments has been described and developed in Beni-
ich et al. (2017). More specifically the authors steer the temperature in the reactor in
a ball of some prescribed and arbitrary small radius around an a priori temperature
reference. Plug-flow tubular reactors have also been considered in Zárate-Navarro
et al. (2019) where a PI controller with variable coefficients has been designed and
where dissipation conditions together with the second law of thermodynamics have
been used.

The question of integral control for a plug-flow tubular reactor is considered in the
next three sections. It generalizes the classical PI control action and incorporates an
additional term that aims at managing the nonlinear nature of the model.

6.2 Problem description
Let us recall that the time evolution of the temperature and the concentration in a
nonisothermal plug-flow tubular reactor are governed by the following set of partial
differential equations (PDEs)(1), see (1.2.1) where λea = 0 and Dma = 0:

∂τ T (ζ ,τ) =−v∂ζ T (ζ ,τ)− ∆H
ρCp

k0C(ζ ,τ)e
−E

RT (ζ ,τ)

+ 4h
ρCpd (1[0,L](ζ )Tw(τ)−T (ζ ,τ))+ v

εT
1[0,εT ](ζ )wT (τ),

∂τC(ζ ,τ) =−v∂ζC(ζ ,τ)− k0C(ζ ,τ)e
−E

RT (ζ ,τ) + v
εC

1[0,εC ](ζ )wC(τ),

(6.2.1)

where T (ζ ,τ) and C(ζ ,τ) represent the temperature and the concentration at time
τ ∈ [0,+∞) and position ζ ∈ [0,L], respectively. The parameters εT ∈ [0,L] and εC ∈
[0,L] represent the widths of the windows on which wT and wC act, respectively. The
perturbations wT [K] and wC[

mol
l ] are assumed to be constant and model uncertainties

on the temperature and concentration at the inlet of the reactor, respectively. The
meaning and the units of the parameters in (6.2.1) are summarized in Table 1.1.

For the meaning of the variables Tw and for the physical constraints on the vari-
ables T and C, we refer to Chapter 1, Section 1.2.

As the parameters λea and Dma are set to 0 here, the boundary conditions (1.2.3)
becomes

T (0,τ) = Tin,C(0,τ) =Cin, (6.2.2)

for τ ∈ [0,+∞). In order to work with a dimensionless model, we perform the changes
of variables (2.3.2) to get the following set of PDEs

∂tθ1(z, t) =−∂zθ1(z, t)+δ f (θ1,θ2)+β (1[0,1](z)θw(t)−θ1(z, t))
+ L

εT
1[0,εT /L](z)(1+dT ),

∂tθ2(z, t) =−∂zθ2(z, t)+ f (θ1,θ2)− L
εC

1[0,εC/L](z)(1−dC),
(6.2.3)

(1)The notations ∂τ and ∂ζ stand for the operators ∂
∂τ and ∂

∂ζ , respectively.
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6.2 Problem description

where the nonlinear function f (x,y) := α(1− y)e
µx

1+x for x ≥ −1 and y ∈ [0,1]. The
parameters δ ,µ,α and β are given by (2.3.4) while the constants dT and dC are given
by dT = (wT − Tin)/Tin and dC = (Cin−wC)/Cin, respectively. We shall adopt the
notations ηT := εT

L and ηC := εC
L in what follows. The boundary conditions (6.2.2) are

now expressed as
θ1(0, t) = 0,θ2(0, t) = 0. (6.2.4)

For the model (6.2.3) with (6.2.4) we assume to have access to pointwise measurments
of the dimensionless temperature. The place where the measure is collected is at the
outlet of the reactor, i.e., at z = 1. Therefore let us define the output function as
y(t) := θ1(t,1). The PDEs (6.2.3) together with the boundary conditions (6.2.4) and
the output y may be written as the abstract controlled and observed Cauchy problem θ̇(t) = Aθ(t)+F(θ(t))+Bu(t)+Γw(t),

y(t) =Cθ(t),
θ(0) = θ0,

(6.2.5)

where the associated state space is X := L2([0,1];R)×L2([0,1];R). The unbounded
linear operator A is defined by Aθ =

(
−dzθ1−βθ1 0

0 −dzθ2

)
for θ := (θ1 θ2 ) in D(A) ex-

pressed as
D(A) := {θ ∈ Y,θ1(0) = 0,θ2(0) = 0} ,

with Y := H1([0,1];R)×H1([0,1];R). The nonlinear operator F : D(F) ⊂ X → X
is given by ( δ f (θ1,θ2) f (θ1,θ2))T for θ in the closed and convex subset D(F) defined
by {θ ∈ X ,−1≤ θ1(z),0≤ θ2(z)≤ 1}. The control operator B : R→ X distributes
the scalar input u along the reactor through the characteristic function 1[0,1](z). It is
thus expressed as Bu = (β1[0,1](z)u 0)T . The control input is the heat exchanger tem-
perature θw(t). According to the definition of the output function, the unbounded
output operator C : X → R is such that Cθ = θ1(1). The perturbations in the dy-
namics (6.2.3) are modeled via the operator Γ, which is given as Γ : R2 → X ,Γw =
( 1

ηT
1[0,ηT ](z)w1 − 1

ηC
1[0,ηC ](z)w2 )T , with w = (w1 w2 )T , where the components w1 := 1+

dT and w2 := 1−dC.
Note that the homogeneous part of (6.2.5), characterized by the operator A+F

is known to possess a unique mild solution, see Laabissi et al. (2001); Winkin et al.
(2000) among others and Chapter 2, Section 2.3. In terms of semigroups, it means
that A+F generates a semigroup of nonlinear operators on D(A)∩D(F). Connecting
inputs and perturbations yields the following expression for the mild solution of (6.2.5)

θ(t) = T (t)θ0 +
∫ t

0
T (t− s)F(θ(s))ds+

∫ t

0
T (t− s)Bu(s)ds+

∫ t

0
T (t− s)Γw(s)ds,

where (T (t))t≥0 denotes the linear semigroup generated by the operator A.
We end this section by characterizing the equilibria of (6.2.3). An equilibrium

triplet (θ e
1 ,θ

e
2 ,u

e) of (6.2.3) is the solution of the following set of nonlinear differential
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equations (ODEs)(2)


dzθ e

1 (z) =−βθ e
1 (z)+δ f (θ e

1 ,θ
e
2 )+β1[0,1](z)ue + 1

ηT
1[0,ηT ](z)(1+dT ),

dzθ e
2 (z) = f (θ e

1 ,θ
e
2 )− 1

ηC
1[0,ηC ](z)(1−dC),

θ e
1 (0) = 0,θ e

2 (0) = 0.
(6.2.6)

Note that once the equilibrium ue is fixed, the set of ODEs (6.2.6) possesses a unique
solution since only initial conditions are taken into account. The notation ue := θ e

w has
been used.

6.3 Control description
In this section we focus on the construction of an adaptive controller whose objective
is to steer the output of the system (6.2.3) to a predetermined value while it has to
stabilize the state trajectory of (6.2.3) in some sense.

In order to be able to prove asymptotic regulation of the output of (6.2.3) we shall
approximate the output operator C by an operator which is bounded on the state space
we are working in, X . Let us consider ρ(A) 3 λ > 0, sufficiently large. We introduce
the operator C1

λ : D(A)→ R as follows

C1
λ θ = λ

∫ 1

0
e−λ (1−z)θ1(z)dz =: Cλ θ1, (6.3.1)

where the operator Cλ works only on the first component of θ . It is easy to see that
Cλ is bounded since according to the Cauchy-Schwarz inequality we have

|Cλ θ1| ≤ λ‖e−λ (1−·)‖L2‖θ1‖L2 = λ
(∫ 1

0
e−2λ (1−z)dz

) 1
2

‖θ1‖L2

=

√
λ (1− e−2λ )

2
‖θ1‖L2 .

Moreover, performing an integration by parts on (6.3.1) yields that

Cλ θ1 =
[
θ1(z)e−λ (1−z)

]1

0
−
∫ 1

0
e−λ (1−z) dθ1

dz
dz

= θ1(1)− e−λ θ1(0)−
∫ 1

0
e−λ (1−z) dθ1

dz
dz. (6.3.2)

The last term of the previous equation can be bounded as

∣∣∣∣∫ 1

0
e−λ (1−z) dθ1

dz
dz
∣∣∣∣≤ (∫ 1

0
e−2λ (1−z)dz

) 1
2

‖dθ1

dz
‖L2 =

√
1− e−2λ

2λ
‖dθ1

dz
‖L2 ,

(2)The notation dz stands for the operator d
dz .
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which is well defined since functions on the domain of A are also in Y . Consequently
taking the limit for λ going to ∞ both sides of (6.3.2) entails that

lim
λ→∞

Cλ θ1 = θ1(1),

which means that the limit for λ going to ∞ of (6.3.1) coincides with the exact output
operator applied on the domain of A. This concept is known as the Yosida approxi-
mation of the output operator C, see Weiss (1994) and references therein. Let us now
introduce the following adaptive controller{

u(t) = kIz(t)+ ũ(t),
ż(t) =Cλ θ1− yr−η(z(t)− ze),

(6.3.3)

where ũ(t) is an additional control variable tending to 0 when t approaches ∞ and
that has to be assigned during the design. The constant ze is the value of z at steady-
state. In other words, ze is such that the condition Cλ θ e

1 = yr is met when replacing ue

by kIz
e in (6.2.6). The equilibrium dimensionless temperature and concentration are

denoted by θ e
1 and θ e

2 , respectively, and are supposed to be known. The scalar yr is
the asymptotic value of the approximated output Cλ θ1 which is fixed a priori and the
coefficients η(≥ 0) and kI are real numbers that will be assigned during the design
procedure. With this setting the control objective can be formulated mathematically
as follows:

• The control u(t) introduced in (6.3.3) regulates the output Cλ θ1 asymptotically
to yr, i.e.

lim
t→∞

Cλ θ1 = yr;

• Moreover, u(t) is such that the X×R−deviation between the state trajectory of
the system composed by the variables (θ1,θ2,z) from the corresponding equi-
librium (θ e

1 ,θ
e
2 ,z

e) tends exponentially fast to 0 when t goes to ∞, that is∥∥∥∥θ1(·,t)−θ e
1 (·)

θ2(·,t)−θ2(·)
z(t)−ze

∥∥∥∥
X×R
≤M e−γt

∥∥∥∥∥θ1(·,0)−θ e
1 (·)

θ2(·,0)−θ e
2 (·)

z(0)−ze

∥∥∥∥∥
X×R

,

for positive constants M and γ and any initial conditions (θ1(0,·) θ2(0,·) z(0))T ∈
D(A)×R.

Note that since the space X is a Hilbert space, the product space X ×R, noted X ,
remains Hilbert in which the norm is induced by the following inner product〈(

f1
f2
z1

)
,

(
l1
l2
z2

)〉
X

:= 〈f1, l1〉L2 + 〈f2, l2〉L2 + z1z2, (6.3.4)

for fi, li ∈ L2([0,1];R), i = 1,2, and zi ∈ R, i = 1,2.
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6.4 Regulation of the output and exponential stability
of the closed-loop system

We start this section by introducing the variables θ̃1 := θ1− θ e
1 , θ̃2 := θ2− θ e

2 and
z̃ = z− ze. In this new variables the first component of (6.2.3) together with (6.3.3)
transforms as:

∂t θ̃1 = ∂tθ1 =−∂zθ̃1−dzθ e
1 +δ f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )+β (1[0,1]kI(z̃+ ze)+ ũ)

−β θ̃1−βθ e
1 +

1
ηT

1[0,ηT ](1+dT )

=−∂zθ̃1−β θ̃1 +δ f (θ̃1 +θ e
1 , θ̃2 +θ e

2 )+βkI1[0,1]z̃+β1[0,1]ũ

+

(
−dzθ e

1 −βθ e
1 +βkIz

e1[0,1]+
1

ηT
1[0,ηT ](1+dT )

)
(6.2.6)
= −∂zθ̃1−β θ̃1 +δ

(
f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 )
)
+βkI1[0,1]z̃+β1[0,1]ũ.

(6.4.1)

The dimensionless concentration around the equilibrium is written in the following
way

∂t θ̃2 = ∂tθ2 =−∂zθ̃2−dzθ e
2 + f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )

(6.2.6)
= −∂zθ̃2 + f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 ). (6.4.2)

The differential equation associated to the new variable z̃ is given by

˙̃z= ż=Cλ θ̃1 +Cλ θ e
1 − yr︸ ︷︷ ︸
=0

−η(z̃+ ze− ze) =Cλ θ̃1−η z̃. (6.4.3)

In order to prove exponential stability of the system composed of (6.4.1), (6.4.2) and
(6.4.3) in the X −norm, let us introduce the following Lyapunov functional candidate

V : R+→ R+

t 7→ 1
2

∫ 1

0
λe−λ (1−z)θ̃ 2

1 dz+
1
2

∫ 1

0
λe−λ (1−z)θ̃ 2

2 dz+
1
2
(1− e−λ )z̃2, (6.4.4)

where λ is the same constant that has been chosen for the definition of the operator
Cλ . Note that the function V is equivalent to the square of the X −norm of ( θ̃1 θ̃2 z̃)T

in the sense that there exist positive constants m and M such that

m

∥∥∥∥∥ θ̃1(·,t)
θ̃2(·,t)
z̃(t)

∥∥∥∥∥
2

X

≤V (t)≤M

∥∥∥∥∥ θ̃1(·,t)
θ̃2(·,t)
z̃(t)

∥∥∥∥∥
2

X

. (6.4.5)

Observe that the positive function λe−λ (1−z) ∈ [λe−λ ,λ ] for a.e. z ∈ [0,1]. This is
sufficient to prove that (6.4.5) holds true with m and M given by 1

2 min{λe−λ ,1−e−λ}
and 1

2 max{λ ,1− e−λ}, respectively.
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6.4 Regulation of the output and exponential stability of the closed-loop system

Before going into the characterization of the exponential stability of (6.2.3) with
(6.3.3) the following lemma makes the link between the Lyapunov function V and a
weighted version of the latter.

Lemma 6.4.1 Let us consider a matrix N ∈ R3×3 such that N = NT . Then the
inequality

1
2

∫ 1

0
( θ̃1 θ̃2 z̃)Nλe−λ (1−z)

(
θ̃1
θ̃2
z̃

)
dz≤ [maxσ(N)]V (t)

holds, where V is defined in (6.4.4).

Proof. Observe that V may be written as

V (t) =
1
2

∫ 1

0
( θ̃1 θ̃2 z̃)I3×3λe−λ (1−z)

(
θ̃1
θ̃2
z̃

)
dz.

Now we consider a weighted version of V , denoted by V N , given as

V N(t) =
1
2

∫ 1

0
( θ̃1 θ̃2 z̃)Nλe−λ (1−z)

(
θ̃1
θ̃2
z̃

)
dz.

Since N is symmetric it is orthogonally diagonalizable, that is, N = KT DK where K
is an orthogonal matrix whose columns are the eigenvectors of N and D is a diagonal
matrix containing the eigenvalues of N on its diagonal. The function V N may be
written in another way as

V N(t) =
1
2

∫ 1

0
( θ̃ K

1 θ̃ K
2 z̃K )Dλe−λ (1−z)

(
θ̃ K

1
θ̃ K

2
z̃K

)
dz,

where the change of coordinates ( θ̃ K
1 θ̃ K

2 z̃K )T = K( θ̃1 θ̃2 z̃)T has been introduced.
Since the diagonal matrix D contains the eigenvalues of N, the following estimation
holds for V N(t):

V N(t)≤ [maxσ(N)]
1
2

∫ 1

0
( θ̃ K

1 θ̃ K
2 z̃K )λe−λ (1−z)

(
θ̃ K

1
θ̃ K

2
z̃K

)
dz

= [maxσ(N)]
1
2

∫ 1

0
( θ̃1 θ̃2 z̃)KT Kλe−λ (1−z)

(
θ̃1
θ̃2
z̃

)
dz.

By using the orthogonality of the matrix K, we conclude that

V N(t)≤ [maxσ(N)]V (t).

�

The following proposition gives necessary conditions ensuring that the closed-loop
system (6.2.3) together with (6.3.3) is exponentially stable for a particular nonlinear
feedback ũ(t) := g(θ̃1, θ̃2).
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Chapter 6 Control of a plug-flow reactor

Proposition 6.4.1 System (6.2.3) in closed-loop with (6.3.3) where the addi-
tional control input ũ(t) is defined for t ≥ 0 by

ũ(t) =
1

β
∫ 1

0 λe−λ (1−z)θ̃1dz

[
−
∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃1(dzθ̃1)dz

∣∣∣∣ (6.4.6)

−
∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃2(dzθ̃2)dz

∣∣∣∣
−
∫ 1

0
λe−λ (1−z)(δ θ̃1 + θ̃2)( f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 ))dz

−κ(θ̃ 2
1 (0)+ θ̃ 2

1 (1))− kC

∫ 1

0
λe−λ (1−z)θ̃ 2

2 dz
]
, (6.4.7)

with kC > 0 and κ > 0, is exponentially stable provided that the coefficient kI
satisfies 4βη− (βkI +1− e−λ )2 > 0.

Proof. Let us fix the parameters λ > 0,kC > 0 and κ > 0 and consider the Lyapunov
functional candidate (6.4.4). Taking its time derivative along the state trajectories of
(6.4.1)–(6.4.3) implies that

V̇ (t) =
∫ 1

0
λe−λ (1−z)θ̃1(∂t θ̃1)dz+

∫ 1

0
λe−λ (1−z)θ̃2(∂t θ̃2)dz+(1− e−λ )z̃˙̃z

=−
∫ 1

0
λe−λ (1−z)θ̃1(dzθ̃1)dz−β

∫ 1

0
λe−λ (1−z)θ̃ 2

1 dz

+
∫ 1

0
λe−λ (1−z)δ θ̃1( f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 ))dz

+βkI

∫ 1

0
λe−λ (1−z)θ̃1z̃dz+ ũβ

∫ 1

0
λe−λ (1−z)θ̃1dz−

∫ 1

0
λe−λ (1−z)θ̃2(dzθ̃2)dz

+
∫ 1

0
λe−λ (1−z)θ̃2( f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 ))dz

+(1− e−λ )
∫ 1

0
λe−λ (1−z)θ̃1z̃dz− (1− e−λ )η z̃2.

Injecting the expression of ũ (6.4.7) in the time derivative of V yields that

V̇ (t) =−
∫ 1

0
λe−λ (1−z)θ̃1(dzθ̃1)dz−

∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃1(dzθ̃1)dz

∣∣∣∣︸ ︷︷ ︸
≤0

−κ(θ̃ 2
1 (0)+ θ̃ 2

1 (1))︸ ︷︷ ︸
≤0

−
∫ 1

0
λe−λ (1−z)θ̃2(dzθ̃2)dz−

∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃2(dzθ̃2)dz

∣∣∣∣︸ ︷︷ ︸
≤0

−β
∫ 1

0
λe−λ (1−z)θ̃ 2

1 dz

− kC

∫ 1

0
λe−λ (1−z)θ̃ 2

2 dz+(βkI +1− e−λ )
∫ 1

0
λe−λ (1−z)θ̃1z̃dz− (1− e−λ )η z̃2
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6.4 Regulation of the output and exponential stability of the closed-loop system

≤
∫ 1

0
( θ̃1 θ̃2 z̃)

 −β 0 βkI+1−e−λ
2

0 −kC 0
βkI+1−e−λ

2 0 −η

λe−λ (1−z)
(

θ̃1
θ̃2
z̃

)
dz.

Applying Lemma 6.4.1 to the previous expression with

N =

 −β 0 βkI+1−e−λ
2

0 −kC 0
βkI+1−e−λ

2 0 −η


implies that

V̇ (t)≤ 2maxσ(N)V (t),

where the elements of σ(N) are given by

σ1 =−kC,

σ2 =
−(η +β )+

√
(η +β )2− (4βη− (βkI +1− e−λ )2)

2
,

σ3 =
−(η +β )−

√
(η +β )2− (4βη− (βkI +1− e−λ )2)

2
.

The assumption 4βη − (βkI + 1− e−λ )2 > 0 ensures that maxi=1,2,3 σi < 0. Conse-
quently,

V̇ (t)≤−ΩV (t),

with Ω :=−2maxi=1,2,3 σi > 0, which proves exponential stability. �

Remark 6.4.1 In order to properly define the additional control input ũ(t) in
Proposition 6.4.1, one should ensure that the denominator is not 0 at any time.
This is not perfomed in this thesis but a partial answer concerning the asymptotic
behavior of ũ(t) is given in Proposition 6.4.2 herebelow.

Due to the exponential convergence of the function V (t) to 0 when t goes to ∞, i.e.

V (t)≤ e−ΩtV (0), (6.4.8)

and the relation (6.4.5), we may conclude that the X −norm of the state vector

( θ̃1 θ̃2 z̃)

converges also to 0 exponentially fast as t goes to ∞. More particularly we have that∥∥∥∥∥ θ̃1(·,t)
θ̃2(·,t)
z̃(t)

∥∥∥∥∥
X

≤
√

M
m

e−
Ω

2 t

∥∥∥∥∥ θ̃1(·,0)
θ̃2(·,0)
z̃(0)

∥∥∥∥∥
X

,
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Chapter 6 Control of a plug-flow reactor

where the positive constants m and M have been introduced in (6.4.5). In addition
let us prove that exponential stability of ( θ̃1 θ̃2 z̃) implies that the approximate output
converges towards the reference, yr. Therefore, remark that

|Cλ θ1− yr|= |Cλ θ1−Cλ θ e
1 +Cλ θ e

1 − yr|= |Cλ θ̃1| ≤
√

λ (1− e−2λ )

2
‖θ̃1‖L2 ,

which converges exponentially fast to 0 as t tends to ∞ due to Proposition 6.4.1.
The last point of that section is dedicated to the convergence of the additional

control input, ũ(t).

Proposition 6.4.2 The additional control law ũ(t), whose expression is given in
(6.4.7), converges to 0 as t tends to ∞ whenever the limit exists.

Proof. Note that as the X −norm of ( θ̃1 θ̃2 z̃) tends to 0 exponentially fast as t tends
to ∞ so does

∫ 1
0 λe−λ (1−z)θ̃1dz. Observe that ũ(t) may be written as

ũ(t) =
−
∣∣∣∫ 1

0 λe−λ (1−z)θ̃1(dzθ̃1)dz
∣∣∣− ∣∣∣∫ 1

0 λe−λ (1−z)θ̃2(dzθ̃2)dz
∣∣∣

k(t)

− κ(θ̃ 2
1 (1)+ θ̃ 2

1 (0))+g(t)
k(t)

,

where the functions g and k are defined for positive t by

g(t) :=−
∫ 1

0
λe−λ (1−z)(δ θ̃1 + θ̃2)( f (θ̃1 +θ e

1 , θ̃2 +θ e
2 )− f (θ e

1 ,θ
e
2 ))dz

− kC

∫ 1

0
λe−λ (1−z)θ̃ 2

2 dz,

k(t) :=β
∫ 1

0
λe−λ (1−z)θ̃1dz,

respectively. Applying the Cauchy-Schwarz and the Young inequalities combined
with the Lipschitz continuity of f to the first term of the function g is sufficient to
show that g(t) converges to 0 whenever t goes to ∞. This together with the assumption
that the limit for t going to ∞ of ũ(t) exists implies that

lim
t→∞

[
−
∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃1(dzθ̃1)dz

∣∣∣∣− ∣∣∣∣∫ 1

0
λe−λ (1−z)θ̃2(dzθ̃2)dz

∣∣∣∣
−κ(θ̃ 2

1 (1)+ θ̃ 2
1 (0))

]
= 0. (6.4.9)

The non positivity of each term of the previous expression entails that

lim
t→∞

θ̃1(1, t) = 0, lim
t→∞

θ̃1(0, t) = 0.

Let us take (6.4.1) and define the function g(t) :=
∫ 1

0 θ̃1dz. According to (6.4.1), the
time derivative of g is subject to the following differential equation

ġ(t) =−θ̃1(1, t)+ θ̃1(0, t)−βg(t)
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6.5 Numerical simulations

Notation Value Notation Value
L 1m Cin 0.02 mol

l
v 0.025 m

s Tin 340K
E 11250 kJ

kg
4h

ρCpd 0.2 1
s

k0 106 1
s

∆H
ρCp

4250 m3K
kg

R 1.986 kJ
kgK

Table 6.1 – Simulation parameters.

+δ
∫ 1

0

[
f (θ̃1(z, t)+θ e

1 (z), θ̃2(z, t)+θ e
2 (z))− f (θ e

1 (z),θ
e
2 (z))

]
dz

+βkI z̃(t)+β ũ(t). (6.4.10)

Taking the limit for t going to ∞ both sides of (6.4.10) yields that

lim
t→∞

ũ(t) =
1
β

lim
t→∞

ġ(t).

Since the function g converges to a real number (which in particular is 0) and the limit
of its derivative exists, it can only be 0. Consequently, limt→∞ ũ(t) = 0. �

6.5 Numerical simulations
The results presented in Section 6.4 are illustrated in this section by means of numer-
ical simulations. The values of the parameters used in the model are given in Table
6.1, see Aksikas (2005) for instance. We took the two following functions as initial
conditions for T and C:

T (ζ ,0) = Tin +0.08Tin

(
−
(

ζ
L

)3

+

(
ζ
L

)2

+
ζ
L

)
,

C(ζ ,0) =Cin−0.7Cin

(
−
(

ζ
L

)3

+

(
ζ
L

)2

+
ζ
L

)
.

They can be viewed as perturbations around the inlet temperature and concentration,
respectively. Note that the values presented in Table 6.1 entails that

µ = 16.6607,α = 2.3248,δ =−0.25,β = 8.

For the parameters of the controller, we choosed

kI =−0.125,kC = 6,η = 6,κ = 0.01,λ = 75,
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Chapter 6 Control of a plug-flow reactor

Figure 6.1 – Temperature T (ζ ,τ)[K] as a function of space ζ [m] and time τ[s].

in such a way that the condition 4βη − (βkI + 1− e−λ )2 > 0 is satisfied. The refer-
ence value that has to be tracked by the dimensionless output, yr, is 0.2. Note that
the equilibria, θ e

1 ,θ
e
2 and ze have been computed first. Then, the system (6.2.3) in

closed-loop with (6.3.3) where ũ is given in (6.4.7), has been discretized in the space
coordinate via finite differences and then integrated via the Matlab routine ode15s.
The number of discretization points has been fixed to 200 for the z−coordinate while
it has been chosen by the algorithm for the t−coordinate (variable step numerical in-
tegration method). The final dimensionless time that has been chosen is 1.4, which
corresponds to 56s. Note that the simulations have been performed without taking dis-
turbances into account, i.e. by considering wT = 0,wC = 0. The temperature T (τ,ζ )
and the concentration C(τ,ζ ) are depicted in Figures 6.1 and 6.2, respectively, wherein
the corresponding equilibria, T e(ζ ) and Ce(ζ ), are overlaid. Moreover, the value of
the reference is highlighted in the figure corresponding to the temperature, see Figure
6.1.

Figure 6.3 aims at showing the approximated output (which approximates the tem-
perature at ζ = L(= 1)) together with the temperature trajectory at the outlet of the
reactor, i.e. for ζ = L, which corresponds to the real output/measurment on the system
(6.2.1). Let us highlight the link between the approximation of the dimensionless and
dimensional output trajectories. It holds that

yλ (t) :=Cλ θ1(·, t) = λ
∫ 1

0
e−λ (1−z)θ1(t,z)dz

= λ
∫ 1

0
e−λ (1−z) T (zL, tL/v)−Tin

Tin
dz

ζ=Lz
=

λ
L

∫ L

0
e−

λ
L (L−ζ ) T (ζ , tL/v)−Tin

Tin
dζ
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6.5 Numerical simulations

Figure 6.2 – Concentration C(ζ ,τ)[mol/l] as a function of space ζ [m] and time τ[s].
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Figure 6.3 – Approximated output trajectory, ỹλ̃ (τ) := [Cλ θ1]Tin +(1− e−λ )Tin to-
gether with the temperature at ζ = L,T (τ,L). The reference to be tracked is denoted
by r = yrTin +(1− e−λ )Tin.
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Chapter 6 Control of a plug-flow reactor

τ=tL/v,λ̃= λ
L=

1
Tin

λ̃
∫ L

0
e−λ̃ (L−ζ )T (ζ ,τ)dζ − λ̃

∫ L

0
e−λ̃ (L−ζ )dζ

=
1

Tin
λ̃
∫ L

0
e−λ̃ (L−ζ )T (ζ ,τ)dζ − (1− e−λ ) =:

ỹλ̃ (τ)− (1− e−λ )Tin

Tin
,

where ỹλ (τ) represents an approximation of the temperature for ζ = L. This means
that regulating the approximated dimensionless temperature at the outlet, yλ (t), is
equivalent in regulating the scaled approximated and dimensional outlet temperature,
ỹλ̃ (τ)−Tin

Tin
, with an additional correction term which comes from the approximation of

the output, e−λ . Consequently, the approximated dimensional output, ỹλ̃ (τ) may be
expressed as

ỹλ̃ (τ) = yλ (t)Tin +(1− e−λ )Tin, (6.5.1)

with τ = tL/v. Note that the limit for τ going to ∞ of (6.5.1) is yrTin +(1− e−λ )Tin,
where yr is a reference value that has been chosen. From a practical point of view, the
value that has to be tracked asymptotically by the dimensional approximated output, r,
is chosen at the beginning of the procedure. Then, the corresponding reference value,
yr, is computed as

yr =
r− (1− e−λ )Tin

Tin
.

That value of yr combined with the second part of Proposition 6.4.1 ensures that the
reference r is tracked asymptotically by ỹλ̃ (τ). These facts are summarized in Figure
6.3. It can be observed that the approximation of T (L,τ), denoted by ỹλ̃ (τ) is quite
accurate since its maximal deviation from T (τ,L) is about 0.7811K. The dimension-
less value yr = 0.2 corresponds to an asymptotic dimensional reference of 408K. Note
that the function ỹλ̃ (τ) is also represented in Figure 6.1 on the surface corresponding
to the temperature.

In Figure 6.4 the input trajectory Tw(τ) is depicted. According to the change of
variable u = Tw−Tin

Tin
, the relation u(t) = kIz(t)+ ũ(t) (6.4) and Proposition 6.4.2, the

asymptotic value of Tw is kIz
eTin +Tin.

It can be observed that the control action lies within the values 368.6861K and
410.7719K, which correspond to 95.5360◦C and 137.6219◦C, respectively. These
bounds are quite realistic from a physical point of view despite that no constraints
have been put on the control action. A perspective would be the introduction of control
constraints in order to ensure that the input is realistic at any time. This would lead to
rethink the proof of the exponential stability.

The Lyapunov functional V has been represented in Figure 6.5. The estimate
e−ΩtV (0) is also highlighted in order to show that (6.4.8) is satisfied. Note that Ω= 12.

Figure 6.6 is dedicated to the X −norm of the state trajectory ( θ̃1 θ̃2 z̃)T . It means
that the control input kIz(t)+ ũ(t) steers the X −norm of ( θ̃1 θ̃2 z̃)T to 0 exponentially
fast as it is stated in Proposition 6.4.1. More specifically it steers also the X−norm
of ( θ̃1 θ̃2 )

T to 0. Interpreting these quantities with the original dimensions entails that
the heat exchanger control variable Tw(τ) = Tin +Tin(kIz(τv/L)+ ũ(τv/L)) drives the
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Figure 6.4 – Input trajectory, Tw(τ) together with its asymptotic value, kIz
eTin +Tin.
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Figure 6.5 – Lyapunov functional V (t) defined in (6.4.4) together with the function
e−ΩtV (0).
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Figure 6.6 – X −norm of the state trajectory (θ̃1 θ̃2 z̃)
T .

L2([0,L];R)×L2([0,L];R)−norm of

( 1
Tin

(T (ζ ,τ)−T e(ζ )) 1
Cin

(Ce(ζ )−C(ζ ,τ)))T

to 0 when τ goes to ∞. The link between the X− and the L2([0,L];R)×L2([0,L];R)−
norms can be made by noticing that for any f ∈ L2([0,L];R) and f̃ ∈ L2([0,1];R)
defined by f̃ (z) = f (Lz),z ∈ [0,1], it holds

‖ f‖2
L2(0,L) =

∫ L

0
f 2(ζ )dζ =

∫ L

0
f 2
(

L
ζ
L

)
dζ

=
∫ L

0
f̃ 2
(

ζ
L

)
dζ =

∫ 1

0
f̃ 2(λ )Ldλ = L‖ f̃‖2

L2(0,1).

Note that due to condition 4βη−(βkI +1−e−λ )> 0, there exists a continuum of ad-
missible values for kI which ensures exponential stability together with output regula-
tion. This interval of admissible values is [−1.8571,1.6071] for the set of parameters
chosen in this section.

Let us now introduce setpoint changes during the time integration. We define the
following times for which the reference r changes:

−→
T = {52s,104s,156s,208s}=: {Ti}4

i=1.

At these time instants, the value of the reference have been fixed as
−→r = {408K,425K,399.5K,414.8K}=: {ri}4

i=1. (6.5.2)

Consequently, the reference may be defined as follows

r(τ) = r11[0,T1](τ)+
4

∑
i=2

ri1[Ti−1,Ti](τ). (6.5.3)
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6.5 Numerical simulations

Figure 6.7 – Temperature T (ζ ,τ)[K] as a function of space ζ [m] and time τ[s].

In Figures 6.7 and 6.8 the surfaces corresponding to the temperature and the concen-
tration are depicted, respectively. It can be seen that the outlet temperature tracks each
reference on their corresponding time intervals. The equilibria are also shown in these
figures.

The output of the system, i.e. the approximated outlet temperature, is represented
in Figure 6.9 while the associated control action, Tw(τ), is presented in Figure 6.10.

We end this chapter by presenting the X −norm of the state vector ( θ̃1 θ̃2 z̃) as a
function of time, see Figure 6.11. One observes that the equilibrium corresponding to
each reference value of the vector (6.5.2) is reached exponentially fast on each subin-
terval [0,T1v/L] and [Ti−1v/L,Tiv/L], i = 2,3,4. The dimensionless values {yri}4

i=1
associated to {ri}4

i=1 are computed as

yri =
ri− (1− e−λ )Tin

Tin
.

We conclude by insisting on the fact that the approach that has been considered
here assumes a complete knowledge of the equilibria of (6.2.1), i.e. the knowledge
of the solution of (6.2.6). Even more, it is supposed that the entire dynamics are
known, even the perturbations, which is often a bit strong to assume, particularly
when working with chemical reactions. Indeed, due to slowness of the reaction, the
reaction rates are complicated to estimate and a priori knowledge of the dynamics is
a strong assumption. Moreover, since perturbations are especially entering the system
in a probabilistic way, these are not known a priori.

Therefore, state estimators and in particular Kalman filters are often a good man-
ner to overcome these difficulties and fit better the reality. However, this can be really
challenging to construct when working with nonlinear infinite-dimensional systems.
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Chapter 6 Control of a plug-flow reactor

Figure 6.8 – Concentration C(ζ ,τ)[K] as a function of space ζ [m] and time τ[s].
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Figure 6.9 – Approximated output trajectory, ỹλ̃ (τ) := [Cλ θ1]Tin +(1− e−λ )Tin to-
gether with the temperature at ζ = L,T (L,τ). The reference to be tracked is denoted
by r(τ) and is defined in (6.5.3).
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Figure 6.10 – Input trajectory, Tw(τ) together with each asymptotic values, kIz
e
i Tin +

Tin.
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Figure 6.11 – X −norm of the state trajectory (θ̃1 θ̃2 z̃)
T .
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Chapter 6 Control of a plug-flow reactor

This is induced by the unboundedness of the output operator which renders the op-
erator dynamics nonlinear and unbounded. The literature is quite not well developed
now for such topics and even the well-posedness is a complicated and involved ques-
tion for such types of dynamical systems. Recently this question has been adressed
in Schwenninger (2020) where the notion of nonlinear boundary control system has
been defined. Results on Luenberger-type observers for semilinear systems can also
be found in Meurer (2013). For more general aspects of state estimators we refer to
Dochain (2003) or Mohd Ali et al. (2015) among others.
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This part of the thesis is a continuation of the study of the question raised at the
end of Chapter 6 concerning the knowledge of the equilibria and of the dynamics
of a system when performing regulation of some output trajectory. The chapter is
concerned with the development of an adaptive control law that aims at forcing the
scalar output of semilinear infinite-dimensional systems to track some reference signal
that satisfies some regularity assumptions. The control method that will be developed
is known as funnel control. It will bring our attention for systems that can be written
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in an abstract way as nonlinear infinite-dimensional systems, whose description will
be given here below. In particular, global Lipschitz continuity of the nonlinear part as
well as bounded-input-state bounded-output (BISBO) property of the system will be
required in order to ensure feasability of the proposed control method.

7.1 General considerations on funnel control
Based on an abstract differential relation between the input and the output of a dy-
namical system, a funnel controller is an adaptive model-free output feedback control
whose objective aims at letting evolve the output error tracking in a prescribed funnel
for which the boundaries are bounded away from 0. This does not guarantee asymp-
totic tracking of the reference but control of the transient behavior of the tracking
error. This control method has attracted a lot of attention in the last few years.

It has been thoroughly developed in Ilchmann et al. (2002) for systems with rel-
ative degree one (see the definition below). Since then, a lot of attention has been
given to the identification of classes of systems for which funnel control is feasible.
In particular, in Ilchmann et al. (2002) they have shown that the funnel control ap-
proach is feasible for linear finite-dimensional systems, infinite-dimensional linear
regular systems, nonlinear finite-dimensional systems, nonlinear delay systems and
systems with hysteresis. Details for nonlinear systems with relative degree one are
also available in Ilchmann et al. (2005). A few years later, funnel control has been
extended and widely developed for MIMO nonlinear systems with known strict rela-
tive degree in Berger et al. (2018). The new funnel controller they introduced involves
the r− 1 derivatives of the tracking error, where r stands for the relative degree of
the system. Note that a very recent survey on funnel control for different types of
systems can be found in Berger et al. (2021c). Funnel control has also been consid-
ered in several fields of aplications due to its quite simple architecture. It has been
shown appropriate for the regulation of the reaction temperature in chemical reac-
tors, see Ilchmann and Trenn (2004). More recently, the position of a moving water
tank has been controlled via a funnel controller in Berger et al. (2022). A linearized
version of the Saint-Venant Exner infinite-dimensional dynamics has been used as in-
ternal dynamics. This shows that funnel control becomes more and more attractive
for systems driven by infinite-dimensional internal dynamics. In that way, this topic
has been considered in Berger et al. (2020) wherein it is proved that some class of
infinite-dimensional linear systems fits the required assumptions for funnel control to
be feasible. Moreover, they proved that linear-infinite dimensional systems that can
be written in Byrnes-Isidori form, see Ilchmann et al. (2016), are encompassed in that
new class. Meanwhile, funnel control for a class of boundary control (BC) systems has
been developed in Puche et al. (2021). There, thanks to appropriate tools of nonlin-
ear functional analysis, the authors show that a class of hyperbolic port-Hamiltonian
systems controlled and observed at the boundary is contained in the class of BC sys-
tems they consider. More recently, funnel control has also been applied to a nonlinear
infinite-dimensional reaction-diffusion equation coupled with the nonlinear Fitzhugh-
Nagumo model, which represent together defibrillation processes of the human heart,
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see Berger et al. (2021a). As another recent attraction for funel control, Berger (2021)
developed a funnel controller for the Fokker-Planck equation corresponding to a multi-
dimensional Ornstein–Uhlenbeck process on an unbounded spatial domain. This con-
stitues another application of funnel control to an infinite-dimensional model. Note
also that funnel control has been lately coupled to model-predictive-control (Funnel
MPC) for nonlinear systems with relative degree one, see Berger et al. (2021b).

In what follows, we shall introduce here a quite general class of nonlinear infinite-
dimensional systems to which funnel control can be applied. Based on the Byrnes-
Isidori form for linear systems, some change of variables that aims at extracting the
output dynamics of the system, which is assumed to be finite-dimensional, is per-
formed. Based on this transformation, funnel control is shown to be feasible provided
that the remaining part of the dynamics satisfies a BISBO stability assumption. More-
over, a way of getting this BISBO stability condition is presented.

7.2 Mathematical description of funnel control
Here we introduce the differential relation we consider to make the link between the
input and the output of a (not necessarily known) dynamical system together with the
control objective that will be of interest in the sequel of the chapter.

Let us start by recalling the notion of relative degree for a linear time invariant
finite-dimensional system (LTI system).

Definition 7.2.1 Consider real matrices A∈Rn×n,B∈Rn×m and C∈Rp×n, with
n,m and p are natural numbers. The system Σ whose internal dynamics are given
by {

ẋ(t) = Ax(t)+Bu(t),
y(t) =Cx(t),x0 ∈ Rn,

(7.2.1)

where the inputs and the outputs are given by the functions u(t) and y(t), respec-
tively. Σ is said to have relative degree r ∈N if CA jB = 0 for j = 1, · · · ,r−2 and
CAr−1B 6= 0.

This notion can be generalized for nonlinear finite-dimensional systems and also
for linear infinite-dimensional systems, see e.g. Isidori (1995) or Ilchmann et al.
(2016) among others. Intuitively speaking, the relative degree of a system is the min-
imal number of times the output has to be differentiated in order to see the input
appearing explicitely.

7.2.1 General framework
The scalar differential equation making the connection between the input and the out-
put of a dynamical system whose internal dynamics are not necessarily known (model-
free) are assumed to be given as{

ẏ(t) = N(d(t),T (y)(t))+Γ(d(t),T (y)(t))u(t),
y(0) = y0,

(7.2.2)
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where the following conditions are assumed to hold.

Assumption 7.2.1 The disturbance d ∈ L∞(R+,R), the nonlinear function N is
in C(R2,R) and the gain function Γ ∈C(R2,R) is positive in the sense that

Γ(d,ρ)> 0

for all (d,ρ) ∈ R2.

Assumption 7.2.2 The map T : C(R+,R)→ L∞
loc(R+,R) is a (possibly nonlin-

ear) operator which satisfies the following conditions:

1. Bounded trajectories are mapped into bounded trajectories (BIBOa prop-
erty), i.e. for all k1 > 0, there exists k2 > 0 such that for all y ∈C(R+,R),

sup
t∈R+
|y(t)| ≤ k1⇒ sup

t∈R+
|T (y)(t)| ≤ k2. (7.2.3)

2. The operator T is causal, i.e. for any t ∈ R+ and any y, ŷ ∈C(R+,R)

y|[0,t) = ŷ|[0,t)⇒ T (y)|[0,t) = T (ŷ)|[0,t), (7.2.4)

where f|I denotes the restriction of the function f to the interval I.

3. T is locally Lipschitz in the sense that for all t ∈R+ and all y∈C([0, t],R)
there exist positive constants τ,δ and ρ such that for any y1,y2 ∈C(R+,R)
with yi|[0,t] = y, i = 1,2 and |yi(s)−y(t)|< δ for all s∈ [t, t+τ] and i = 1,2
it holds that

‖(T (y1)−T (y2))|[t,t+τ]‖∞ ≤ ρ‖(y1− y2)|[t,t+τ]‖∞, (7.2.5)

where ‖ f|[t,t+τ]‖∞ := sups∈[t,t+τ] | f (s)|.
aBounded-Input Bounded-Output

The class of systems governed by (7.2.2) with Assumptions 7.2.1–7.2.2 is presented in
(Berger et al., 2020, Section 1) for systems with (possible) memory and relative degree
r ∈ N. Here we consider systems with no memory and relative degree one. This class
is quite general and encompasses systems with infinite-dimensional internal dynamics
as shown in Berger et al. (2020) and Ilchmann et al. (2016) for instance. However it is
still not clear which classes of distributed-parameter systems (DPS) may be written as
the input-output equation (7.2.2) as it is explicitly mentioned in Berger et al. (2020).
To this question we shall give a partial answer hereafter.
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7.2.2 Control objective
The control objective for a system whose output differential equation admits the rep-
resentation (7.2.2) consists in developing an output error feedback u(t) = G (t,e(t))
with e(t) = y(t)− yref(t) for a reference signal yref ∈W 1,∞(R+,R), such that, when
connected to (7.2.2), it results in a closed-loop system for which the error e(t) evolves
in a prescribed performance funnel

Fφ :=
{
(t,e) ∈ R+×R, φ(t)|e(t)|< 1

}
, (7.2.6)

where the function φ is assumed to belong to

Φ :=
{

φ ∈C(R+,R), φ , φ̇ ∈ L∞(R+,R),

φ(t)> 0,∀t ∈ R+ and liminf
t→∞

φ(t)> 0
}
. (7.2.7)

This control objective is also considered in (Berger et al., 2020, Section 1) for systems
with arbitrary relative degree r ∈ N. As described in Berger et al. (2020), Ilchmann
et al. (2016) and Berger et al. (2018), a controller that achieves the output tracking
performance described above is expressed as

u(t) =
−e(t)

1−φ 2(t)e2(t)
, (7.2.8)

with φ ∈ Φ and φ(0)|e(0)| < 1. The controller (7.2.8) is called a funnel controller
and can be viewed as the output error feedback u(t) = −k(t)e(t) with a time-varying
(adaptive) gain k(t) = 1

1−φ2(t)e2(t) . The following theorem, coming from Berger et al.
(2018) with r = 1, characterizes the effectiveness of the controller (7.2.8) in terms of
existence and uniqueness of solutions of the closed-loop systems and also in terms of
output tracking performance.

Theorem 7.2.1 Consider a system (7.2.2) with Assumptions 7.2.1–7.2.2. Let
yref ∈W 1,∞(R+,R),φ ∈ Φ and y0 ∈ R such that the condition φ(0)|e(0)| < 1
holds. Then the funnel controller (7.2.8) applied to (7.2.2) results in a closed-
loop system whose solution y : [0,ω)→ R,ω ∈ (0,∞], has the following proper-
ties:

1. The solution is global, i.e. ω = ∞;

2. The input u : R+ → R, the gain function k : R+ → R and the output y :
R+→ R are bounded;

3. The tracking error e : R+ → R evolves in the funnel Fφ and is bounded
away from the funnel boundaries in the sense that there exists ε > 0 such
that, for all t ≥ 0, |e(t)| ≤ 1

φ(t) − ε .

This theorem will be a paramount tool in the next section, in order to prove output
tracking control of the scalar output of some class of nonlinear DPS.

159



Chapter 7 Funnel control for distributed-parameter systems

7.3 Systems driven by nonlinear infinite-dimensional
dynamics

The main novelty here relies on the fact that we shall consider a class of nonlinear
infinite-dimensional systems that admits an input-output differential description of
the form (7.2.2). This consitutes also the difference with respect to e.g. Berger et al.
(2020) wherein a class of operators T is introduced, which comes from systems mod-
eled by linear infinite-dimensional internal dynamics. Our contribution enlarges the
class of systems for which funnel control is feasible since, to the best of our knowl-
edge, our class of nonlinear infinite-dimensional systems is shown to be appropri-
ate for funnel control for the first time here. However, examples in which nonlinear
infinite-dimensional systems are considered have already been studied for funnel con-
trol in Berger et al. (2021a). Our work also extends the Byrnes Isidori form studied
in Ilchmann et al. (2016) to nonlinear infinite-dimensional systems that satisfy some
relatively standard assumptions.

7.3.1 Abstract description and related assumptions
Here we introduce a class of nonlinear infinite-dimensional systems to which funnel
control will be considered. The ad hoc assumptions that enable funnel control are also
presented.

Let H be a real (separable) Hilbert space equipped with the inner product 〈·, ·〉H .
The nonlinear systems that we consider are governed by the following controlled and
perturbed abstract ordinary differential equation

Σ :

 ẋ(t) = Ax(t)+ f (x(t))+b(u(t)+d(t)),
y(t) = 〈x(t),c〉H ,
x(0) = x0 ∈ H,

(7.3.1)

for which we make the following three assumptions.

Assumption 7.3.1 The (unbounded) linear operator A : D(A) ⊂ H → H is the
infinitesimal generator of a strongly continuous (C0) semigroup of bounded lin-
ear operators on H.

Assumption 7.3.2 The nonlinear operator f : H → H is uniformly Lipschitz
continuous on H.

Assumption 7.3.3 The vectors b and c are in D(A) and D(A∗), respectively,
where D(A∗) is the domain of the adjoint of the operator A. Moreover, it is as-
sumed without loss of generality that 〈b,c〉H > 0. The disturbance d is bounded,
i.e. d ∈ L∞(R+,R).
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7.3 Systems driven by nonlinear infinite-dimensional dynamics

Note that the scalar functions u and y stand for the input and the output, respec-
tively. The way the disturbance d enters the system may be interpreted as uncertainties
on the input function for instance. According to (Curtain and Zwart, 2020, Theorem
11.1.5), Assumptions 7.3.1 and 7.3.2 implies that the homogenenous(1) part of (7.3.1)
has a unique mild solution on [0,∞) which can even be a classical one provided that
x0 ∈ D(A). We emphasize the fact that, despite that Assumption 7.3.3 may be seen
as restrictive, if the shape functions b and c do not lie in D(A) and D(A∗), it is al-
ways possible to approximate them, as accurately as desired, by functions of D(A)
and D(A∗) since they are both dense subspaces of H. However, in the case where b
and c should be approximated, the controller (7.2.8) could be affected even by small
variations and produce undesirable effects. This should be taken into account in the
design procedure.

7.3.2 Byrnes-Isidori decomposition
It is shown in this subsection how the abstract differential equation (7.3.1) can be
transformed into (7.2.2) by using a change of variables as it is made for linear systems
in Ilchmann et al. (2016).

Let us therefore consider the following proposition that enables us to decompose
the state space H into the direct sum of two linear subspaces, see e.g. Ilchmann et al.
(2016) and Byrnes et al. (1998).

Proposition 7.3.1 Let Assumption 7.3.3 holds. Then the state space H can be
decomposed as

H := span{c}⊕{b}⊥ =: C ⊕I , (7.3.2)

where {b}⊥ := { f ∈ H,〈 f ,b〉H = 0}.

Proof. We start by showing that the intersection between C and I is reduced to
the origin of H. Assume by contradiction that there exists f 6= 0 such that f ∈ C and
f ∈ I . Since f ∈ C , there exists λ ∈ R0 such that f = λc. As f is in I too, f is
orthogonal to b, i.e. 〈 f ,b〉H = 0. According to f = λc, there holds 〈c,b〉H = 0, which
contradicts Assumption 7.3.3. Now we show that the direct sum C ⊕I is contained
in H. This follows directly by noting that c ∈ H and by the definition of {b}⊥. Let us
end the proof by demonstrating the inclusion H ⊆C ⊕I . Take any f ∈H. Obviously
f may be written as

f =
( 〈 f ,b〉H
〈c,b〉H

c
)
+

(
f − 〈 f ,b〉H〈c,b〉H

c
)
, (7.3.3)

where it is easy to see that 〈 f ,b〉H〈c,b〉H c ∈ C and f − 〈 f ,b〉H〈c,b〉H c ∈I . �

According to (7.3.3) let us introcude the operator cP and I− cP =: PI where the
projection operator P : H→ R is defined as

P f =
〈 f ,b〉
〈c,b〉 ,

(1)By "homogenenous" we mean uncontrolled and unperturbed.
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for any f ∈ H. Then the decomposition (7.3.3) may be written as f = cP f +PI f .
One shall now consider the following proposition that characterizes the subspaces C
and I .

Proposition 7.3.2 The subspaces C and I satisfy C = cPH and I = PI H,
respectively.

Proof. We start by showing that C = cPH. First let us take f ∈ C . Then there exists
λ ∈R such that f = λc. Now observe that there exists g ∈H such that f = cPg. This
g is given by λc. Conversely, let us consider g ∈ cPH. This entails that there exists
h ∈ H such that g = cPh. Then it is easy to see that g ∈ C since the constant λ such
that g = λc is given by λ = Ph. Now we focus on the equality I = PI H. Consider
f ∈I . The question of existence of a function g ∈ H such that f = PI g is solved by
taking g = f because the relation 〈 f ,b〉H = 0 holds true. The inclusion PI H ⊆I is
proved as follows. Take any f ∈ PI H. Then there exists h ∈ H such that f = PI h,
that is, f = h− 〈h,b〉H〈c,b〉H c. This is straightforward to see that this f is orthogonal to b, i.e.
f ∈I . �

According to Propositions 7.3.1 and 7.3.2 any element f ∈H may be decomposed
uniquely in C ⊕I as

f = cP f +PI f .

Moreover, observe that for any function f ∈ H there holds 〈PI f ,b〉H = 0. Note that
the operator PI is not an orthogonal projector on I . Such a projector will be denoted
by P⊥ : H → I and defined as P⊥ f = f − b 〈 f ,b〉H〈b,b〉H for any f ∈ H. Now we shall
introduce some operators that will be of importance in order to transform the system
(7.3.1). Let us consider the operator U : H→ R×I defined as

U f =
(

P f
PI f

)
. (7.3.4)

This operator is boundedly invertible, see Ilchmann et al. (2016), with inverse U−1 :
R×I → H expressed as

U−1
(

α
η

)
= αc+η . (7.3.5)

The adjoint of U−1, denoted by U−∗ : H→ R×I , reads as follows

U−∗ f =
(
〈 f ,c〉H
P⊥ f

)
. (7.3.6)

Consequently, the operator U∗ : R×I → H is given by

U∗
(

α
η

)
= α

b
〈c,b〉H

+η−〈c,η〉H
b

〈c,b〉H
. (7.3.7)

Like the operators U and U−1, the operators U∗ and U−∗ are linear and bounded.
This allows us to perform the change of variables for system (7.3.1) defined by x =
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U∗ξ ,ξ ∈ R×I . By the invertibility of U∗, one gets

ξ =U−∗x =
(
〈x,c〉H

P⊥x

)
. (7.3.8)

By setting η := P⊥x, one has that ξ = (
y
η ). Now we take a look at the dynamics of

the variable ξ . In the new variables (7.3.8), the system (7.3.1) reads as

Σ̃ :

 ξ̇ (t) =U−∗AU∗ξ (t)+U−∗ f (U∗ξ (t))+U−∗bu(t)+U−∗bd(t),
y(t) = (1 0)ξ (t),
ξ (0) =U−∗x0 =: ξ0.

(7.3.9)

Note that the systems Σ and Σ̃ are equivalent according to the state transformation
induced by U−∗. By using the definitions of U−∗ and U∗, see (7.3.6) and (7.3.7), the
linear operator U−∗AU∗ can be rewritten as

U−∗AU∗ξ =

(
〈AU∗ξ ,c〉H

P⊥AU∗ξ

)
=

(
〈ξ ,UA∗c〉R×I

P⊥AU∗ξ

)
=

(
y 〈A

∗c,b〉H
〈c,b〉H + 〈η ,PI A∗c〉H

y P⊥Ab
〈c,b〉H +P⊥Aη− 〈c,η〉H〈c,b〉H P⊥Ab

)

=:
(

P0 S
R Q

)
ξ ,

where the operators P0,S,R and Q are defined as follows

P0 : R→ R,P0y = y
〈A∗c,b〉H
〈c,b〉H

,

S : I → R,Sη = 〈η ,PI A∗c〉H ,

R : R→I ,Ry = y
P⊥Ab
〈c,b〉H

,

Q : D(Q)⊂I →I ,Qη = P⊥Aη− 〈c,η〉H〈c,b〉H
P⊥Ab, (7.3.10)

where D(Q) = D(A)∩I . According to Ilchmann et al. (2016), the operator Q is
the infinitesimal generator of a C0−semigroup(2) (TQ(t))t≥0 on I . Moreover, since

the operators P0,S and R are bounded, the operator
(

P0 S
R Q

)
is still the generator of

a C0−semigroup, see e.g. Curtain and Zwart (2020); Pazy (1983); Engel and Nagel
(2006). By using (7.3.6) and (7.3.7), we can write the nonlinear part of (7.3.9) as

U−∗ f (U∗ξ (t)) =

(
〈 f (U∗ξ (t)),c〉H

f (U∗ξ (t))− 〈 f (U∗ξ (t)),b〉H〈b,b〉H b

)
(2)Without loss of generality there exist constants M ≥ 1 and ω ∈ R such that ‖TQ(t)‖ ≤Meωt .
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=:

(
〈 f̃ (y(t),η(t)),c〉H

f̃ (y(t),η(t))− 〈 f̃ (y(t),η(t)),b〉H
〈b,b〉H b

)
,

where the nonlinear operator f̃ : R×I → H is defined as f̃ (y,η) = f (y b
〈c,b〉H +η−

〈c,η〉H b
〈c,b〉H ). By using Assumption 7.3.2 and the fact that U−∗ and U∗ are lin-

ear bounded operators, the nonlinear operator U−∗ f (U∗·) is still uniformly Lipschitz
continuous from R×I into R×I . This entails that the homogeneous part of (7.3.9)
possesses a unique mild solution on [0,∞). Taking any initial condition in R×D(Q)
implies that this solution is classical. Now observe that the term U−∗b is expressed as
( 〈b,c〉H 0)T . From these observations it follows that the dynamics of y and η may be
written as

ẏ(t) = P0y(t)+Sη(t)+ 〈 f̃ (y(t),η(t)),c〉H + γu(t)+ γd(t) (7.3.11)

and

η̇(t) = Ry(t)+Qη(t)+ f̃ (y(t),η(t))− 〈 f̃ (y(t),η(t)),b〉H
〈b,b〉H

b, (7.3.12)

with initial conditions y(0) = y0 and η(0) = η0, respectively, where γ := 〈b,c〉H .

7.3.3 Feasability of funnel control
The main theorem of this chapter is stated and proved here. That is, by considering
some quite easily checkable assumptions, it is proved that the transformed equations
(7.3.11)–(7.3.12) satisfy Assumptions 7.2.1–7.2.2, which implies that funnel control
is feasible for (7.3.1) according to Theorem 7.2.1.

Therefore, observe that (7.3.11) admits the representation (7.2.2), where

1. The gain function Γ : R2→ R is defined as Γ(d,ρ) = γ > 0;

2. The well-defined nonlinear operator T : C(R+,R)→ L∞
loc(R+,R) has the form

T (y)(t) = P0y(t)+Sη(t)+ 〈 f̃ (y(t),η(t)),c〉H , (7.3.13)

where η(t) is the mild solution of (7.3.12);

3. The function N : R2→ R reads as N(d,ρ) = γd +ρ .

This shows that Assumption 7.2.1 on system (7.2.2) is satisfied. It remains to show
that the nonlinear operator T given by (7.3.13) possesses the three properties of As-
sumption 7.2.2. This constitutes the main result of this section. Before going into the
details of this result, we shall denote by Σy→η the system which can be viewed as a
system with input y and output η and whose dynamics are described by (7.3.12). We
make the following assumption on that system.
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Assumption 7.3.4 The system Σy→η whose dynamics are governed by (7.3.12)
is BISBO stable in the following sense: for all k > 0 and all k̂ > 0, there exists
k̃ > 0 such that for all y ∈C(R+,R) and all η0 ∈I ,

sup
t∈R+
|y(t)| ≤ k and ‖η0‖ ≤ k̂⇒ sup

t∈R+
‖η(t)‖ ≤ k̃. (7.3.14)

Theorem 7.3.3 The operator T defined in (7.3.13), which arises from the non-
linear system (7.3.1) via the change of variables (7.3.8), satisfies Assumption
7.2.2.

Proof. The proof is divided into three steps, according to the three items of Assump-
tion 7.2.2.
Step 1: In order to show that T maps bounded trajectories into bounded ones, let us
fix k1 > 0, k̂ > 0 and y∈C(R+,R),η0 ∈I such that supt∈R+ |y(t)| ≤ k1 and ‖η0‖≤ k̂.
There exists a positive k̃ such that, for this y, the mild solution of (7.3.12) with ini-
tial condition η0 ∈ I satisfies supt∈R+ ‖η(t)‖ ≤ k̃, according to Assumption 7.3.4.
Thanks to the expression (7.3.13) of T , the boundedness of the operator S and the
Cauchy-Schwarz inequality, one may write that

|T (y)(t)| ≤ |P0||y(t)|+‖S‖L (I ,R)‖η(t)‖+‖ f̃ (y(t),η(t))‖H‖c‖H .

Assumption 7.3.2 allows us to write

|T (y)(t)| ≤ |P0||y(t)|+‖S‖L (I ,R)‖η(t)‖
+‖ f̃ (y(t),η(t))− f̃ (0,0)‖H‖c‖H +‖ f̃ (0,0)‖H‖c‖H

≤ |P0||y(t)|+‖S‖L (I ,R)‖η(t)‖+(l1|y(t)|+ l2‖η(t)‖)‖c‖H +σ‖c‖H ,

(7.3.15)

where l1 > 0 and l2 > 0 denote the Lipschitz constants of the operator f̃ associated
with y and η , respectively, and where the positive constant σ is such that(3) ‖ f (0)‖H ≤
σ . Consequently,

sup
t∈R+
|T (y)(t)| ≤ |P0|k1 +‖S‖L (I ,R)k̃+ σ̃‖c‖H =: k2,

where σ̃ = σ + l1k1 + l2k̃, which proves that T satisfies the BIBO condition required
in Assumption 7.2.2.
Step 2: The causality can be easily established by noting that, for a fixed y∈C(R+,R)
the corresponding mild solution of (7.3.12) is unique. This entails that for y, ŷ ∈
C(R+,R) such that y|[0,t) = ŷ|[0,t), the corresponding mild solutions of (7.3.12), de-
noted by η and η̂ , respectively, satisfy η|[0,t) = η̂|[0,t). In view of the expression
(7.3.13) of T , it follows that (7.2.4) holds.

(3)This is valid since the nonlinear operator f maps the whole space H into itself, meaning that any point
in H has a finite image by f in the H−norm.
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Step 3: For the local Lipschitz continuity, let us consider t ≥ 0 and y ∈C([0, t],R).
Now let us take y1,y2 ∈C(R+,R) such that yi coincides with y up to time t for i = 1,2.
The mild solutions of (7.3.12) with input yi and starting at time t are given by

ηi(t̃) = TQ(t̃− t)ηi,t +
∫ t̃

t
TQ(t̃− s)Ryi(s)ds+

∫ t̃

t
TQ(t̃− s)P⊥ f̃ (yi(s),ηi(s))ds

for any t̃ ∈ [t, t+τ] with τ being an arbitrary positive constant. Note that the functions
η1,t and η2,t correspond to η1(t) and η2(t), respectively. Since, by assumption, y1(t)=
y(t) = y2(t) and η1(0) = η0 = η2(0) and by the uniqueness of the mild solution of
(7.3.12), the relation η1,t = η2,t holds true. Consequently,

‖η1(t̃)−η2(t̃)‖ ≤
∫ t̃

t
‖TQ(t̃− s)R(y1(s)− y2(s))‖ds

+
∫ t̃

t
‖TQ(t̃− s)P⊥( f̃ (y1(s),η1(s))− f̃ (y2(s),η2(s)))‖ds.

Assumption 7.3.2 together with the boundedness of the operator R implies that

‖η1(t̃)−η2(t̃)‖ ≤ (‖R‖L (R,I )+2l1)
∫ t̃

t
Me|ω|(t̃−s)|y1(s)− y2(s)|ds

+2l2
∫ t̃

t
Me|ω|(t̃−s)‖η1(s)−η2(s)‖ds,

where l1 and l2 are the positive constants introduced in (7.3.15). We shall use the
notation ‖R‖L (R,I )+ 2l1 =: g in what follows. Applying Gronwall’s lemma to the
function e−|ω|t̃‖η1(t̃)−η2(t̃)‖ yields the inequality

‖η1(t̃)−η2(t̃)‖ ≤ gMe|ω|t̃e2Ml2(t̃−t)
∫ t̃

t
e−|ω|s|y1(s)− y2(s)|ds.

Taking the supremum over all t̃ in [t, t + τ] on both sides yields the estimate

sup
t̃∈[t,t+τ]

‖η1(t̃)−η2(t̃)‖ ≤ gMe(|ω|+2Ml2)τ τ sup
t̃∈[t,t+τ]

|y1(t̃)− y2(t̃)|. (7.3.16)

The notation fτ := gMe(|ω|+2Ml2)τ τ will be used for the sake of simplicity. According
to the definition (7.3.13) of the nonlinear operator T , it holds that

|T (y1)(t̃)−T (y2)(t̃)| ≤ |P0||y1(t̃)− y2(t̃)|
+‖S‖L (I ,R)‖η1(t̃)−η2(t̃)‖+ l1‖c‖H |y1(t̃)− y2(t̃)|+ l2‖c‖H‖η1(t̃)−η2(t̃)‖,

which, combined with (7.3.16), leads to

sup
t̃∈[t,t+τ]

|T (y1)(t̃)−T (y2)(t̃)| ≤ ρ sup
t̃∈[t,t+τ]

|y1(t̃)− y2(t̃)|,

where ρ := |P0|+‖S‖L (I ,R)fτ + l1‖c‖H + l2‖c‖H fτ . �

This means that funnel control is feasible for a nonlinear infinite-dimensional sys-
tem of the form (7.3.1) which satisfies Assumptions 7.3.1, 7.3.2, 7.3.3 and 7.3.4.
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7.3 Systems driven by nonlinear infinite-dimensional dynamics

ẏ(t) = T (y)(t)+ γu(t)+ γd(t)
T (y)(t) = P0y(t)+Sη(t)+ 〈 f̃ (y(t),η(t)),c〉H
y(0) = y0

η̇(t) = Ry(t)+Qη(t)+P⊥ f̃ (y(t),η(t))
η(0) = η0

−e
1−φ2e2

e(t)

d(t)

y(t)

yref(t)

η(t)

−+

u(t)

Σy→η

Σ̃

Figure 7.1 – Interconnection of Σ̃ and the funnel controller (7.2.8).

Moreover the closed-loop system which consists of the interconnection of (7.3.1),
described by (7.3.11)–(7.3.12) (system Σ̃), with the funnel controller (7.2.8) has the
properties described in Theorem 7.2.1. This system is depicted in Figure 7.1.

We state hereafter a useful criterion for checking Assumption 7.3.4.

Proposition 7.3.4 Assuming that the semigroup (TQ(t))t≥0 is exponentially sta-
ble on I and that the nonlinear operator f satisfies ‖ f (x)‖H ≤ σ̂ , for some
constant σ̂ > 0 independent of x, for any x ∈ H, is sufficient to ensure that As-
sumption 7.3.4 is satisfied.

Proof. Let us fix k1 > 0, k̂ > 0 and y∈C(R+,R),η0 ∈I such that supt∈R+ |y(t)| ≤ k1
and ‖η0‖ ≤ k̂. As the semigroup (TQ(t))t≥0 is exponentially stable, the inequality
‖TQ(t)‖ ≤ M̃e−ω̃t holds for some M̃ ≥ 1 and ω̃ > 0. Moreover the mild solution of
(7.3.12) with initial condition η0 ∈I and with the function y fixed above is given by

η(t) = TQ(t)η0 +
∫ t

0
TQ(t− s)Ry(s)ds+

∫ t

0
TQ(t− s)P⊥ f̃ (y(s),η(s))ds.

By taking the H−norm (restricted to I ) on both sides and by using the exponential
stability of (TQ(t))t≥0, one gets that

‖η(t)‖ ≤ M̃e−ω̃t‖η0‖+
∫ t

0
M̃e−ω̃(t−s)‖Ry(s)‖ds

+
∫ t

0
M̃e−ω̃(t−s)‖P⊥ f̃ (y(s),η(s))‖ds.
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The boundedness of the operator R combined with the definition of P⊥ and the as-
sumption on the operator f entails that

‖η(t)‖ ≤ M̃e−ω̃t‖η0‖+ M̃e−ω̃t‖R‖L (R,I )

∫ t

0
eω̃s|y(s)|ds+2σ̂M̃e−ω̃t

∫ t

0
eω̃sds.

It follows, by using the estimate supt∈R+ |y(t)| ≤ k1, that

‖η(t)‖ ≤ M̃e−ω̃t
(
‖η0‖+(‖R‖L (R,I )k1 +2σ̂)

∫ t

0
eω̃sds

)
.

Hence

‖η(t)‖ ≤ M̃
(

e−ω̃t‖η0‖+
‖R‖L (R,I )k1 +2σ̂

ω̃
(1− e−ω̃t)

)
≤ κ, (7.3.17)

where κ := M̃
(

k̂+
‖R‖L (R,I )k1+2σ̂

ω̃

)
does not depend on t. �

7.4 Applications: from wave to hyperbolic systems
Here we consider different nonlinear infinite-dimensional systems to which the funnel
control (7.2.8) is applied. The first control problem we are dealing with is the regu-
lation of the average temperature in a nonisothermal plug-flow tubular reactor whose
dynamics are given by the unperturbed part of (6.2.3). Then two different versions of
the damped sine-Gordon equation will be considered, one in which Dirichlet boundary
conditions are taken into account and the other involving mixed boundary conditions,
Dirichlet at one boundary and Neumann at the other. After writing any system in an
abstract way, one shall verify that Assumptions 7.3.1, 7.3.2 and 7.3.3 are satisfied.
Moreover, Proposition 7.3.4 will be used to characterize the BISBO stability required
in Assumption 7.3.4.

7.4.1 A nonlinear plug-flow tubular reactor model
Let us consider the unperturbed(4) and dimensionless dynamics of a PFTR described
by (6.2.3), i.e.

∂tθ1 =−∂zθ1 +δ f (θ1,θ2)+β (1[0,1](z)θw(t)−θ1)
∂tθ2 =−∂zθ2 + f (θ1,θ2)
θ(0, t) = 0,θ2(0, t) = 0,

(7.4.1)

where the dimensionless temporal and spatial variables satisfy t ≥ 0 and z ∈ [0,1].
Note that the same notations as those considered in Chapter 6 for ∂t and ∂z are consid-
ered here. As it is explained in Chapter 6 the state components θ1 and θ2 stand for the
dimensionless temperature and reactant concentration, respectively. What is different

(4)By unperturbed we mean that 1+dT = 0 and 1−dC = 0.
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from (6.2.3) here is that the nonlinear operator is not only defined on the closed and
convex subset D = {θ := (θ1 θ2)

T ∈ X ,−1 ≤ θ1,0 ≤ θ2 ≤ 1} but it is extended on
the whole space X := L2([0,1];R)×L2([0,1];R) in the following way

f (θ1,θ2) =


0 if θ1 <−1

αe
µθ1

1+θ1 if θ1 ≥−1 and θ2 < 0

α(1−θ2)e
µθ1

1+θ1 if θ1 ≥−1 and 0≤ θ2 ≤ 1
0 otherwise.

(7.4.2)

Note that this definition of f implies that the latter is uniformly Lipschitz continuous
as a pointwise function defined from R2 into R. Hence it possesses that property
viewed as an operator from X into X . Moreover, it satisfies | f (x,y)| ≤ αeµ for any
(x y)T ∈ R2. The positive constants α,β ,µ and δ depend on the model parameters
as in (2.3.4). The scalar control variable, denoted by θw(t), is due to a heat exchanger
that acts as a distributed control input along the reactor through the characteristic
function 1[0,1](z).

The control objective that is taken into account here consists in the tracking of
the following output function which corresponds to the mean value of the temperature
along the reactor:

y(t) =
∫ 1

0
θ1(z, t)dz. (7.4.3)

In order to reach this goal, we shall develop a funnel controller producing an input
θw(t) which will take the form (7.2.8) for some reference signal yref ∈W 1,∞(R+,R).
First observe that (7.4.1) admits the abstract representation ẋ(t) = Ax(t)+F(x(t))+Bu(t)

x(0) = x0 ∈ X
y(t) = 〈c,x(t)〉X ,

(7.4.4)

where the state space is chosen as being X equipped with the inner product〈(
x1
x2

)
,

(
w1
w2

)〉
X

:= 〈x1,w1〉L2 + 〈x2,w2〉L2 , (7.4.5)

for (x1 x2)
T ,(w1 w2)

T ∈X . Note that 〈x1,w1〉L2 stands for the standard inner prod-
uct on L2([0,1];R) defined by

〈x1,w1〉L2 =
∫ 1

0
x1(z)w1(z)dz. (7.4.6)

The unbounded linear operator A is given by A =
(
−dz−β I 0

0 −dz

)
on the dense linear

subspace

D(A) =
{
(x1 x2)

T ∈ H1([0,1];R)×H1([0,1];R),x1(0) = 0 = x2(0)
}
.
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From that definition of (A,D(A)) and according to Example 2.1.3, the operator A is the
infinitesimal generator of a contraction (and even exponentially stable) C0−semigroup
on X . Hence Assumption 7.3.1 is satisfied. The nonlinear operator F : X→ X is given
by F(x1,x2) = (δ f (x1,x2) f (x1,x2))

T . Due to the definition of f given in (7.4.2),
the nonlinear operator F is uniformly Lipschitz continuous on X . Moreover, it satis-
fies ‖F(x1,x2)‖X ≤ αeµ

√
δ 2 +1 for any (x1 x2)

T ∈ X as a same kind of property
holds for the pointwise component f : R2 → R. This implies that Assumption 7.3.2
is fulfilled. The control operator B : R→ X is given by Bu = (β1[0,1](z) 0)T u while
the observation operator C : X → R takes the form

C(x1 x2)
T =

〈(
1[0,1]

0

)
,

(
x1
x2

)〉
X
. (7.4.7)

Hence the functions b and c satisfy b(z) = βc(z) = (β1[0,1](z) 0)T . Note that the
domain D(A∗) of the adjoint operator of A is given by{

(x1 x2)
T ∈ H1([0,1];R)×H1([0,1];R),x1(1) = 0 = x2(1)

}
.

It is obvious that b and c do not lie in D(A) and D(A∗), respectively. In order to
overcome this difficulty, we approximate the function 1[0,1](z) by a linear combination

of elements of the orthonormal basis
{√

2sin(nπz)
}

n∈N0
of L2([0,1];R). For a fixed

N ∈ N0, the N−th order approximation of 1[0,1](z), denoted by 1N(z), is given by

1N(z) =
N

∑
n=1
〈1[0,1](·),

√
2sin(nπ·)〉L2(0,1)

√
2sin(nπz) =

N

∑
n=1

n odd

4
nπ

sin(nπz). (7.4.8)

As this approximation lies in H1([0,1];R) and vanishes both for z = 0 and z = 1, the
approximations of b(z) and c(z), denoted by bN(z) and cN(z) and whose expressions
are given by (β1N(z) 0)T and (1N(z) 0)T are in D(A) and D(A∗), respectively.
Now observe that the inner product between bN and cN is given by

〈bN ,cN〉X = β 〈1N ,1N〉L2(0,1) = β
N

∑
n=1

n odd

8
n2π2 > 0,

which implies that Assumption 7.3.3 is satisfied. Now it remains to show that the
system Σy→η is BISBO stable in the sense of Assumption 7.3.4. We shall use the
characterization of Proposition 7.3.4 to reach this aim. To this end, let us first introduce
the decomposition of the state space X as in (7.3.2), which is given here by:

X = span{cN}⊕{bN}⊥ = span{cN}⊕{cN}⊥

= span
{(1N

0

)}
⊕
{
( x1

x2 ) ∈ X ,
〈
( x1

x2 ) ,
(1N

0

)〉
X = 0

}
= C ⊕I ,

where I may also be written as

I =
{

x1 ∈ L2([0,1];R),〈x1,1N〉L2 = 0
}
×L2([0,1];R). (7.4.9)
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The operator Q : D(Q) = D(A)∩I → I whose definition is given in (7.3.10) is
expressed as

Qη = P⊥Aη− 〈cN ,η〉X
〈cN ,bN〉X

P⊥AbN ,

for η = (η1 η2)
T ∈ D(Q). Expanding the application of Q to η gives rise to

Qη = Aη− 〈Aη ,bN〉X
〈bN ,bN〉X

bN

=

(
−dzη1−βη1
−dzη2

)
+
〈dzη1,1N〉L2(0,1)

〈1N ,1N〉L2(0,1)

(
1N
0

)
=:
(

Q1 0
0 Q2

)(
η1
η2

)
,

where the relation 〈η1,1N〉L2 = 0 has been used. The operator Q1 : D(Q1)⊂{1N}⊥→
{1N}⊥ is defined as

Q1η1 =−dzη1−βη1 +
〈dzη1,1N〉L2

〈1N ,1N〉L2
1N ,

for η1 ∈ D(Q1) given by

D(Q1) =
{

x1 ∈ H1([0,1];R),x1(0) = 0
}
∩{1N}⊥ ,

whereas Q2η2 =−dzη2 on

D(Q2) =
{

x2 ∈ H1([0,1];R),x2(0) = 0
}
.

According to Lyapunov’s Theorem, see e.g. (Curtain and Zwart, 2020, Theorem
4.1.3), the semigroup generated by the operator Q is exponentially stable if and only
if there exists a positive self-adjoint operator P ∈L (I ) such that

〈Qη ,Pη〉I + 〈Pη ,Qη〉I ≤−〈η ,η〉I ,

for all η ∈ D(Q). Note that, for any two functions in I , their inner product on I
is the same as the one defined in (7.4.5). Let us propose the following form for the
operator P

P =

(
P1 0
0 P2

)
.

Let us define P1 as P1η1 =
1

2β η1 and P2 as

(P2η2)(z) = (1− z)η2(z),z ∈ [0,1].

Now observe that, for η1 ∈ D(Q1), there holds

〈Q1η1,P1η1〉+ 〈P1η1,Q1η1〉= 2〈Q1η1,P1η1〉

=− 1
β
〈dzη1,η1〉−〈η1,η1〉+

1
β
〈dzη1,1N〉L2

〈1N ,1N〉L2
〈1N ,η1〉
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=− 1
2β

η2
1 (1)−〈η1,η1〉 ≤ −〈η1,η1〉,

where the fact that η1 and 1N are orthogonal has been used. Moreover, for any η2 ∈
D(Q2), one has that

〈Q2η2,P2η2〉+ 〈P2η2,Q2η2〉

=−2
∫ 1

0
(1− z)η2(dzη2)dz =

[
−(1− z)η2

2 (z)
]1

0−〈η2,η2〉=−〈η2,η2〉.

Thus the semigroup generated by the operator Q is exponentially stable. This fact
combined with the properties of the nonlinear operator F and Proposition 7.3.4 ensures
that Assumption 7.3.4 is satisfied. Hence funnel control is feasible for the system
(7.4.1) in which the indicator function 1[0,1] is approximated by 1N , which means that
considering a heat exchanger temperature expressed as

θw(t) =
−e(t)

1−φ 2(t)e2(t)
, (7.4.10)

where e(t) = y(t)−yref(t),yref ∈W 1,∞(R+,R),φ ∈Φ, and y is given by (7.4.3), yields
a closed-loop system which possesses the properties stated in Theorem 7.2.1.

As an illustration of the results, we shall report numerical simulations hereafter.
The parameters related to the model (7.4.1) have been chosen as follows:

δ = 0.25,α = 2.3248,µ = 16.6607,β = 8,

see Aksikas (2005). The number of basis functions N in the approximation of the
function b has been set at N = 100. As initial conditions for θ1 and θ2 we consider the
following functions

θ1(z,0) = 0.02(−z3 + z2 + z),θ2(z,0) = 0.7(−z3 + z2 + z).

The reference signal that has to be tracked by the output (7.4.3) is

yref(t) =
1
20

+
1

20
arctan(t).

The funnel boundary is chosen as 1
φ(t) = e−2t +0.0025. Obviously, there holds yref ∈

W 1,∞(R+,R)) while φ ∈Φ defined in (7.2.7).
The output trajectory (7.4.3) and the reference signal yref(t) are depicted in Figure

7.2 and the funnel control, θw(t), given by (7.4.10), is shown in Figure 7.3. The
tracking error is depicted in Figure 7.4. The state trajectories corresponding to θ1(t,z)
and θ2(t,z) are represented in Figures 7.5 and 7.6, respectively.

Remark 7.4.1 The method that has been used to compute numerically the state
trajectories is based on a finite-dimensional approximation of the operators A
and F by means of finite differences. The spatial coordinate has been discretized
into n equal pieces, n = 50. Based on this, a finite-dimensional approximation
of the operator A has been obtained, let us denote it by Ân ∈ R2n×2n. Let us also
denote by Xn ∈ R2n the approximation of the state vector X. Its components are
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given by

X i
n(t) = θ1((i−1)h, t),X i+n

n (t) = θ2((i−1)h, t), i = 1, . . . ,n,

where h stands for the discretization step (h = 1
n−1 ). The nonlinear term, F, has

been discretized in order to obtain a vector, F̂n, whose action on the state Xn is
given by

F i
n(Xn) = δ f (X i

n,X
i+n
n ),F i+n

n (Xn) = f (X i
n,X

i+n
n ), i = 1, . . . ,n.

The control operator bN has been discretized too, yielding a control vector, b̂N,n ∈
R2n, whose components are expressed as

b̂i
N,n = β1N((i−1)h), b̂N,i+n = 0, i = 1, . . . ,n.

The corresponding output function, (7.4.7), has also been computed numerically
via the routine trapz of Matlab c©. It gives a numerical approximation of the
integral of a function via the trapezium method. Let us denote by yn(t) the ap-
proximation of the output function. Then, the linear finite-dimensional approxi-
mation of (7.4.4), Ẋn(t) = ÂnXn(t)+ F̂n(Xn(t))+ b̂N,nun(t), has been numerically
integrated via the routine ode15s of Matlab c©, where the approximated funnel
controller is given by

un(t) =
−en(t)

1−φ 2(t)e2
n(t)

,en(t) = yn(t)− yre f (t),

which constitutes an approximation of the funnel controller (7.4.10).

7.4.2 Different models of damped sine-Gordon equations
Two sine-Gordon PDEs are considered here, involving the same PDEs but with differ-
ent boundary conditions. For any of these two models we consider uniform distributed
actuation by a scalar input function designed as a funnel control that aims at regulating
some average quantity which can be viewed as the average of a linear combination of
the state components.

7.4.2.1 Mixed-boundary conditions

The model that will be of interest here is governed by the following dynamics{
∂ 2

tt x = ∂ 2
zzx−α∂tx+ν sin(x)+b(z)u(t)

x(0, t) = 0,∂zx(1, t) = 0, (7.4.11)

where the space variable z ∈ [0,1] and t ∈ R+ denotes the time variable. The parame-
ters ν and α are such that ν ∈R0 and α > π . The homogeneous part of this nonlinear
PDE (u ≡ 0) has already been introduced in (2.2.4), for which well-posedness has
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Figure 7.2 – Output trajectory (7.4.3) with the reference signal yref(t).
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Figure 7.3 – Input trajectory.
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Figure 7.4 – Output error trajectory y(t)− yref(t) with the funnel boundaries 1
φ(t) and

− 1
φ(t) .

Figure 7.5 – Closed-loop state trajectory θ1(t,z).

175



Chapter 7 Funnel control for distributed-parameter systems

Figure 7.6 – Closed-loop state trajectory θ2(t,z).

been studied in terms of existence and uniqueness of a mild solution (even a classical
solution) on the positive real line R+. The latter encompasses many phenomena in
physics as the dynamics of a Josephson junction driven by a current source, see e.g.
Temam (1997); Cuevas-Maraver et al. (2014), as well as the dynamics of mechan-
ical transmission lines, see Cirillo et al. (1981) among others. The stability of the
homogeneous dynamics of (7.4.11) has been investigated for Dirichlet and Neumann
boundary conditions in Dickey (1976) and Callegari and Reiss (1973). For control
problems related to (7.4.11), we refer to Dolgopolik et al. (2016) and Efimov et al.
(2019) for instance, where boundary energy control and robust input-to-state stability
are developed.

Let us consider the operator A0 =− d2

dz2 on the domain

D(A0) =

{
x ∈ H2([0,1];R),x(0) = 0 =

dx
dz

(1)
}
.

As the operator A0 is self-adjoint and coercive(5), it admits a unique nonnegative
square-root, see e.g. (Curtain and Zwart, 2020, Lemma A.3.82), which satisfies

D(A
1
2
0 ) =

{
x ∈ H1([0,1];R),x(0) = 0

}
.

This allows us to consider the Hilbert state space Z = D(A
1
2
0 )×X equipped with the

inner product(6) 〈(
ζ1
ζ2

)
,

(
w1
w2

)〉
Z

:= 〈dzζ1,dzw1〉X + 〈ζ2,w2〉X , (7.4.12)

(5)By using Poincaré’s inequality it can be seen that, for any x ∈D(A0), the relation 〈A0x,x〉L2 ≥ π2

4 ‖x‖2
L2

holds.
(6)The equality 〈dzζ1,dzw1〉X = 〈A

1
2
0 ζ1,A

1
2
0 w1〉X holds.
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where ζ1,w1 ∈ D(A
1
2
0 ) and ζ2,w2 ∈ X with X := L2([0,1];R), see (2.1.37). The inner

product on X is the same as the one defined in (7.4.6). Let us consider the state variable
ζ =

( x
∂t x
)
=:
(

ζ1
ζ2

)
. Hence, as is has already been shown in Chapter 2, Section 2.2,

the PDE (7.4.11) may be written as (7.4.4), where the operator A is given by

A =

(
0 I
−A0 −αI

)
(7.4.13)

on D(A) = D(A0)×D(A
1
2
0 ). According to (Curtain and Zwart, 2020, Example 2.3.5),

the operator A is the generator of a contraction C0−semigroup on Z. Note that the
adjoint operator of A, denoted by A∗, is expressed as A∗=

(
0 −I

A0 −αI

)
on D(A∗)=D(A).

The nonlinear operator F : Z→ Z is expressed as F(ζ1,ζ2) =
(

0
ν sin(ζ1)

)
. The latter is

uniformly Lipschitz continuous and satisfies ‖F(ζ1,ζ2)‖Z ≤ |ν | for any (ζ1 ζ2)
T ∈

Z. Consequently, Assumptions 7.3.1 and 7.3.2 are satisfied.
Here we consider that the operator B : R→ Z is defined for u∈R by Bu = b(z)u =(
0

bN(z)

)
u where bN(z) = 1N(z) = ∑

N
n=1

n odd

4
nπ sin(nπz) is the function defined in (7.4.8).

Obviously b ∈ D(A). For the function c, we choose the expression

c(z) =
( 2

π2 (α +
√

α2−π2)sin(π
2 z)

sin(π
2 z)

)
,

so that the output trajectory corresponding to (7.4.11) is given by

y(t) = 〈c,ζ (t)〉Z

=
α +
√

α2−π2

π

∫ 1

0
cos
(π

2
z
)

∂zx(t,z)dz+
∫ 1

0
sin
(π

2
z
)

∂tx(t,z)dz. (7.4.14)

As it is shown later, this choice of c is made in order to obtain a particular form of the
operator

(
P0 S
R Q

)
and it does not necessarily has a meaningful physical interpretation in

terms of measurements on the system (7.4.11). It can be easily seen that the function
c ∈ D(A∗). A straightforward computation shows that

〈b,c〉Z =
N

∑
n=1

n odd

16
π2(4n2−1)

> 0,

which entails that Assumption 7.3.3 is satisfied. Before showing that funnel control is
feasible in our context, let us introduce the decomposition of the state space

Z = span{c}⊕{b}⊥ = C ⊕I ,

with
I = D(A

1
2
0 )×{x ∈ X ,〈x,bN〉L2 = 0} . (7.4.15)
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According to (7.3.8) the system (7.4.11) admits the representation (7.3.11)–(7.3.12),
in which we shall focus on the linear part, i.e. the operator

(
P0 S
R Q

)
. In order to show

that funnel control is feasible for (7.4.11), one should use the criterion of BISBO sta-
bility stated in Proposition 7.3.4. Therefore it remains to show that the C0−semigroup
generated by the operator Q, see (7.3.10), is exponentially stable. First observe that
the operator P0 takes the form P0y = p0y, where

p0 =
〈A∗c,b〉Z
〈b,c〉Z

=
〈 1

2 (α +
√

α2−π2)sin
(π

2 z
)
−α sin

(π
2 z
)
,bN(z)〉X

〈sin
(π

2 z
)
,bN(z)〉X

=−α
2
+

1
2

√
α2−π2 < 0,

which means that the semigroup generated by P0, which is given by(
e(−

α
2 +

1
2

√
α2−π2)t

)
t≥0

,

is exponentially stable. Secondly, let us compute the operator S : I → R,Sη =
〈η ,PI A∗c〉Z . Observe that

PI A∗c = A∗c−P0c

=
( −1
− α

2 +
1
2

√
α2−π2

)
sin
(π

2
z
)

+

(
α
2
− 1

2

√
α2−π2

)(
2

π2 (α+
√

α2−π2)

1

)
sin
(π

2
z
)
=
(

0
0

)
.

Consequently, the operator
(

P0 S
R Q

)
is a triangular operator of the form

(
P0 0
R Q

)
. As it is

similar to the operator A, the corresponding semigroups are also similar, i.e. denoting
by (S(t))t≥0 and by (S̃(t))t≥0 the C0−semigroups generated by A and

(
P0 S
R Q

)
, respec-

tively, the relation S̃(t) =U−∗S(t)U∗ holds for all t ≥ 0. Consequently, (S(t))t≥0 and
(S̃(t))t≥0 have the same growth bounds. In that way, let us have a look at the sign
of the growth bound of the semigroup (S(t))t≥0. The latter is negative according to
Propositions 2.1.7 and 2.1.5. As the growth bound of the semigroup generated by P0
is negative too, the growth bound of the semigroup generated by Q is also negative,
showing that this semigroup is exponentially stable. Thanks to Proposition 7.3.4 the
system Σy→η is BISBO stable in the sense of Assumption 7.3.4. As a consequence,
funnel control is feasible for the sine-Gordon equation (7.4.11) with the output given
in (7.4.14).

We shall now illustrate the feasability of funnel control on (7.4.11) with some
numerical simulations. Let us consider the following set of parameters: α = π +
1
6 ,ν =−1. The initial conditions for the variables x and ∂tx have been chosen as

x(z,0) =
1
6

sin
(π

2
z
)
,∂tx(z,0) =

1
5
(2z2− z4),
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while the reference signal yref(t) = 1
5 cos(e−

t
4 ) ∈W 1,∞(R+,R). The function φ(t),

whose inverse determines the funnel boundaries, is fixed to

φ(t) =
1

e−2t +0.0025
.

The relation φ ∈ Φ holds true. Moreover, it can be shown easily that the vector of

initial conditions (x(z,0) ∂tx(z,0))T lie in D(A) = D(A0)×D(A
1
2
0 ).

The output trajectory (7.4.14) with the reference signal yref(t) are represented in
Figure 7.7 whereas the corresponding funnel control is given in Figure 7.8. It can be
seen that the output tracks the reference quite well. The tracking error is depicted in
Figure 7.9 wherein one observes that it remains within the funnel boundaries, as was
to be expected. The state trajectories corresponding to x(z, t) and ∂tx(z, t) are shown
in Figures 7.10 and 7.11, respectively.

Remark 7.4.2 The method that has been used to compute numerically the state
trajectories is based on a finite-dimensional approximation of the operators A
and F by means of finite differences. The spatial coordinate has been discretized
into n equal pieces, n = 50. Based on this, a finite-dimensional approximation
of the operator A has been obtained, let us denote it by An ∈ R2n×2n. Let us also
denote by Xn ∈ R2n the approximation of the state vector X. Its components are
given by

X i
n(t) = x((i−1)h, t),X i+n

n (t) =
∂x
∂ t

((i−1)h, t), i = 1, . . . ,n,

where h stands for the discretization step (h = 1
n−1 ). The nonlinear term, F, has

been discretized in order to obtain a vector, Fn, whose action on the state Xn is
given by

F i
n(Xn) = 0,F i+n

n (Xn) = ν sin(X i
n), i = 1, . . . ,n.

The control operator bN has been discretized too, yielding a control vector, bN,n ∈
R2n, whose components are expressed as

bi
N,n = 0,bN,i+n = 1N((i−1)h), i = 1, . . . ,n.

The corresponding output function has also been computed numerically via the
routine trapz of Matlab c©. Let us denote by yn(t) the approximation of the
output function. Then, the linear finite-dimensional approximation of (7.4.11),
Ẋn(t) = AnXn(t)+Fn(Xn(t))+bN,nun(t), has been numerically integrated via the
routine ode15s of Matlab c©, where the approximated funnel controller is given
by

un(t) =
−en(t)

1−φ 2(t)e2
n(t)

,en(t) = yn(t)− yre f (t).
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Figure 7.7 – Output trajectory (7.4.14) with the reference signal yref(t).
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Figure 7.8 – Input trajectory.
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Figure 7.9 – Output error trajectory y(t)− yref(t) with the funnel boundaries 1
φ(t) and

− 1
φ(t) .

Figure 7.10 – Closed-loop state trajectory x(t,z).
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Figure 7.11 – Closed-loop state trajectory ∂tx(t,z).

7.4.2.2 Dirichlet boundary conditions

In contrast to the model introduced in the previous section, the dynamics that are of
interest here are expressed as{

∂ 2
tt x = ∂ 2

zzx−α∂tx+ν sin(x)+b(z)u(t)
x(0, t) = 0,x(1, t) = 0. (7.4.16)

Obviously that model admits the same abstract representation as (7.4.11), i.e. ζ̇ (t) =
Aζ (t)+F(ζ (t))+Bu(t),ζ (0) = ζ0, where the state vector ζ =

( x
∂t x
)

is considered on

the state space Z = D(A
1
2
0 )×X , while the operator A0 is defined as A0 =− d2

dζ 2 on the
domain

D(A0) =
{

x ∈ H2([0,1];R),x(0) = 0 = x(1)
}
.

It can be seen that the operator A0 is self-adjoint and coercive. In particular, thanks to
the Poincaré’s inequality there holds

〈A0x,x〉X =
∫ 1

0

(
dx
dz

)2

dz≥ π2‖x‖2
X ,

which means that A0 is coercive. Hence defining the square root of A0 makes sense in
this context, see (Curtain and Zwart, 2020, Lemma A.3.82). In particular, its domain
is given by

D(A
1
2
0 ) =

{
x ∈ H1([0,1];R),x(0) = 0 = x(1)

}
= H1

0 ([0,1];R).

The operator A : D(A) = D(A0)×D(A
1
2
0 ) ⊂ Z → Z is still given by A =

( 0 I
−A0 −αI

)
.

Thanks to (Curtain and Zwart, 2020, Example 2.3.5) the newly defined operator A is
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the infinitesimal generator of a C0−semigroup on the Hilbert space Z. The nonlinear
operator F : Z→ Z is the same operator as the one defined in Section 7.4.2.1, meaning
that Assumptions 7.3.1 and 7.3.2 are satisfied here. As operator B, we consider the
operator that sends the scalar input u into Z as Bu = b(z)u =

(
0

bN(z)

)
u with bN being

expressed as bN(z) = ∑
N
n=1

n odd

4
nπ sin(nπz) for a fixed natural number N. Is is easy to

see that this definition of b is such that b ∈ D(A). As function c we shall consider the
following

c(z) =

(
α+
√

α2−4π2

2π2 sin(πz)
sin(πz)

)
,

which is such that the output trajectory is expressed as

y(t) = 〈c,ζ (t)〉Z

=
α +
√

α2−4π2

2π

∫ 1

0
cos(πz)∂zx(z, t)dz+

∫ 1

0
sin(πz)∂tx(z, t)dz. (7.4.17)

As it has already been explained in the previous example, again this choice of func-
tion c does not have particular physical meanings when interpreted as measurements
but it is used in order to get a desired form of the operator

(
P0 S
R Q

)
. This function c

lies in D(A∗) since both the first and the second components are in H2([0,1];R) and
vanishes for z = 0 and z = 1. Moreover, it is such that the Z−inner product between
b and c is given as 〈b,c〉Z = 2

π > 0. This has the consequence that Assumption 7.3.3
is satisfied. As it is been explained in Section 7.4.2.1, the state space Z admits the de-
composition Z =C ⊕I where I is given by (7.4.15). These facts imply that (7.4.11)
may be written as (7.3.11)–(7.3.12). In order to show that funnel control is feasible
for (7.4.16), it remains to prove that Assumption 7.3.4 is satisfied in the present ex-
ample. According to the definition of the operator F , it holds that ‖F

(
ζ1
ζ2

)
‖Z ≤ |ν |

for any
(

ζ1
ζ2

)
∈ Z. As a consequence, showing that the operator Q defined in (7.3.10)

is the infinitesimal generator of an exponentially stable C0−semigroup is a sufficient
condition for BISBO stability to hold, see Proposition 7.3.4.

Therefore, let us expand the operator
(

P0 S
R Q

)
. Observe that the operator P0 : R→

R,P0y = p0y where p0 = 〈A∗c,b〉Z
〈c,b〉Z . By computing the explicit expression of p0, one

gets the following

p0 =
〈A∗c,b〉Z
〈c,b〉Z

=

〈(
−sin(πz)(

α
2 +

√
α2−4π2

2

)
sin(πz)−α sin(πz)

)
,
( 0

bN

)〉
Z

〈sin(πz),bN〉X

=−α
2
+

√
α2−4π2

2
,

which means that p0 is the generator of the exponentially stable C0−semigroup(
e(−

α
2 +

√
α2−4π2

2 )t
)

t≥0
.
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Going one step further, the computation of the operator S : I →R reveals that for any
η ∈I there holds

Sη = 〈η ,PI A∗c〉Z =
〈

η ,
( −1

− α
2 +

√
α2−4π2

2

)
sin(πz)− p0c

〉
Z

=

〈
η ,
( −1

− α
2 +

√
α2−4π2

2

)
sin(πz)−

(
− α

2 +

√
α2−4π2

2

)( α+
√

α2−4π2

2π2
1

)
sin(πz)

〉
Z

=

〈
η ,sin(πz)

(
−1+ 1

4π2

(
α−
√

α2−4π2
)(

α+
√

α2−4π2
)

− α
2 +

√
α2−4π2

2 + α
2 −
√

α2−4π2
2

)〉
Z

=
〈

η ,sin(πz)
(
−1+ 1

4π2 (α2−α2+4π2)
0

)〉
Z
= 0,

which means that (
P0 S
R Q

)
=

(
−α

2 +

√
α2−4π2

2 0
R Q

)
.

Thanks to the same arguments used in Section 7.4.2.1, the growth bound of the C0−
semigroup generated by the operator Q is negative provided that the same conclusion
holds for the growth bound of the C0− semigroup generated by

(
P0 0
R Q

)
. According to

the similarity transformation
(

P0 0
R Q

)
= U−∗AU∗ and thanks to Proposition 2.1.7, we

conclude that the C0− semigroup generated by the operator Q is exponentially stable,
which implies that funnel control is feasible for (7.4.16).

Let us now illustrate the feasability of funnel control on (7.4.16) with numerical
simulations. We consider the following set of parameters: α = 2π + 1

16 ,ν =−1. Note
that this choice of the damping parameter α entails that the condition α2− 4π2 > 0
is satisfied, which guarantees that the output is real. The initial conditions for the
variables x and ∂tx have been chosen as

x(z,0) = 2z3−3z2 + z,∂tx(z,0) = z2− z4,

while the reference signal yref(t) = sin(4πt)e−2t +0.2 which lies in W 1,∞(R+,R). The
function φ(t), whose inverse determines the funnel boundaries, is fixed to

φ(t) =
4

e−2t +0.005
.

Thanks to this definition of the function φ , it is easy to see that φ belongs to the
class Φ introduced in (7.2.7). Furthermore, it can be shown easily that the vector of

initial conditions (x(z,0) ∂tx(z,0))T lies in D(A) = D(A0)×D(A
1
2
0 ). Moreover, the

initial conditions together with the definition of the reference signal and the funnel
boundaries are such that φ(0)|e(0)|= 0.4812 < 1. Note also that the number of basis
functions in the approximation of the indicator function, N, has been fixed to 50.

The output trajectory (7.4.17) with the reference signal yref(t) are represented in
Figure 7.12 whereas the corresponding funnel control is given in Figure 7.13. The
tracking error is depicted in Figure 7.14 wherein one observes that it remains within
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the funnel boundaries, as was to be expected. The state trajectories corresponding to
x(z, t) and ∂tx(z, t) are shown in Figures 7.15 and 7.16, respectively.

For the numerical method that has been used, we refer to Remark 7.4.2. The same
tools have been set, the only difference is in the approximation of the operator A,
which has yield another matrix, Ãn, due to the other type of boundary conditions.
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Figure 7.12 – Output trajectory (7.4.14) with the reference signal yref(t).
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Figure 7.13 – Input trajectory.
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Figure 7.14 – Output error trajectory y(t)−yref(t) with the funnel boundaries 1
φ(t) and

− 1
φ(t) .

Figure 7.15 – Closed-loop state trajectory x(z, t).
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Figure 7.16 – Closed-loop state trajectory ∂tx(z, t).

187



Chapter 7 Funnel control for distributed-parameter systems

188



Conclusion and perspectives

Conclusion
In this thesis, nonlinear infinite-dimensional systems are studied. A particular at-
tention to the illustration of the theoretical results is taken into account, while the
manuscript is relatively more theory oriented.

As a first door to enter the world of nonlinear distributed parameter systems, Chap-
ter 1 is dedicated to the presentation of different types of chemical reactor models. As
it is highlighted, the plug-flow tubular reactor with axial dispersion is the conducting
application on which most of the theoretical concepts are applied all along the thesis.

Chapter 2 is dedicated to the presentation of the most needed concepts for the
understanding of the technicalities of this thesis, going from the well-posedness of ab-
stract Cauchy problems to the characterization of the stability of strongly-continuous
semigroups. Therein we pay attention to the presentation of pertinent tools for the rest
of the manuscript.

The way that goes from equilibria to the control aspects starts in Chapter 3. There,
the equilibria of the plug-flow tubular reactor with axial dispersion are characterized
in terms of existence and multiplicity. Moreover, approximated solutions of the equi-
libria are given and a linear stability analysis is performed by considering equal Peclet
numbers. To this end, perturbation theory is used and a large diffusion phenomenon
is considered.

The next concept that has been studied is how to make the link between the sta-
bility properties of a linearized model with the corresponding nonlinear model. This
is located in Chapter 4 in which we build a completely new framework to tackle this
question, thanks to a newly defined concept of differentiability for nonlinear operators.
Based on the work of Al Jamal and Morris (2018) and on the difficulty of checking
Fréchet differentiability for nonlinear operators defined on Hilbert spaces, a continu-
ously embedded space often chosen as a multiplicative algebra allows to simplify the
problem in order to get satisfactory stability results in the norm of the original state
space. As a consequence a new notion of local exponential stability is also introduced.
The theory that is developed here is applied to fill the gap between the conclusion ob-
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tained on the linear stability of the equilibria for the tubular reactor in Chapter 3 and
their stability with respect to the corresponding nonlinear system.

Moving to the field of control, Chapter 5 is the direct extension of the results
presented in Chapter 4. Control inputs expressed as state feedbacks are considered
and perturbation based results are obtained. In particular, it is shown how the Fréchet
differentiability (in the adapted sense) of the nonlinear operator semigroup is useful
to deduce Fréchet differentiability of the nonlinear closed-loop semigroup provided
that the latter is continuously dependent on the initial condition at 0. A particular
class of linear quadratic optimally controlled systems is shown to fulfill the required
assumptions provided a series convergence result holds.

The last topic that is considered in this thesis is related to adaptive control and
is studied in Chapters 6 and 7. Under the assumption of a completely known plug-
flow tubular reactor model, an adaptive nonlinear integral controller is developed in
Chapter 6. This extends the classical proportional integral control action since we take
into account the nonlinear nature of the studied infinite-dimensional model. This is
done by incorporating an additional term whose objective is to manage the nonlinear
Arrhenius law and to make the derivative of a particular Lyapunov functional the same
as it should have been if the system was linear. This is performed with the aim of
tracking constant reference signals by the scalar output which consitutes an average
temperature in the reactor.

Chapter 7 aims at continuing the work of Chapter 6 but by enlarging the feasability
of funnel control, which reveals to be an appropriate tracking output control method
for model-free dynamical systems whose input - output differential relation has to
fulfill some quite smooth assumptions. This chapter has been considered both from
theoretical and application points of view. In particular, the new theoretical framework
is applied to an output tracking problem for a nonlinear plug-flow tubular reactor and
for two models of damped sine-Gordon equations.

This thesis aims at answering some questions related to nonlinear functional anal-
ysis coupled together with systems and control theory. Some fundamental questions
are addressed and new developments and/or points of view are considered, enlarging
the applicability of some analysis tools or control approaches. However, a lot of work
remains to be done in this very rich field of mathematics. Some ideas, suggestions and
improvements are discussed in the following section.

Suggestions for future research
A first perspective we want to mention concerns the study of the equilibria of the non-
linear plug-flow tubular reactor with axial dispersion, and especially their stability.
The linearized stability analysis that has been performed considers the assumption that
the Peclet numbers are equal, which is, as already mentioned, not really meaningful
from an application point of view. The extension of these results to the case of differ-
ent Peclet numbers is a very interesting open question and can be really challenging
since the change of variables χ(z, t) = ζ1(z, t)− δζ2(z, t) does not decouple the sys-
tem (3.2.15) anymore. This complicates a lot the stability analysis. A Lyapunov based
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approach could be an idea to investigate, which should rely on an extension of a Lya-
punov function used for equal Peclet numbers and which should contain an additional
term that should vanish when Peh = Pem.

As second further research topic we move to Chapter 4 where a more systematic
way of choosing the alternative space Y could be interesting. The advantage of being
a degree of freedom in the analysis could be even better if some canonical choice was
available. For instance, an a priori good choice for this space could be the domain of
the linear operator A equipped with the graph norm ‖ · ‖A. Checking the assumptions
for this choice in the case of a general operator A could be the first way of getting an
extension to that theory. Another choice could also be the domain of Aα , for α ∈ R+,
which is invariant under the semigroup generated by A. What is also imagined as
further research is to try to recover the classical local stability result with the new
framework of this thesis. In other words, one should be interested in considering
initial conditions small in X−norm that are not necessarily small in Y−norm (or that
are even not in Y ) for which exponential stability holds. This should enlarge the class
of admissible initial conditions. Also studying the basin of attraction of the equilibria
should be an interesting topic to look at.

Another interesting question to look at is related to Chapter 5 and, in particular, to
the class of LQ-optimally controlled systems that we introduce. There, the assump-
tion that the linearized operator dynamics A := A+ d f (xe) is of Riesz-spectral type
is made. This could be a great progress to tackle other classes of systems. A first idea
could be to consider operators which are the generators of holomorphic semigroups,
see (Curtain and Zwart, 2020, Definition 2.5.1). Checkable conditions ensuring that
the resulting computed stabilizing state feedback K stabilizes the linearized system on
Y should be investigated. In the same chapter, other perspectives aim also at consider-
ing other types of control inputs than state feedbacks to stabilize locally the nonlinear
system around an equilibrium. If state feedbacks are maintained, other manners of
stabilizing the linearized system than using a LQ-optimal control approach could be
interesting to investigate. We think for instance at the positive stabilization approach
developed in Abouzaïd et al. (2021). The condition infn,m∈N,n 6=m |λn− λm| = µ > 0
could also probably be relaxed. In that way, ideas related on how to preserve the
spectrum determined growth assumption in closed-loop without assuming a minimal
spectral gap should be envisaged.

Other perspectives related to Chapter 7 are numerous. We notice that consider-
ing nonlinear infinite-dimensional systems with higher relative degrees than 1 should
enlarge considerably the applicability of funnel control. Therefore, the extension of
the Byrnes-Isidori form should be a good way to start with, finding inspiration in
Ilchmann et al. (2016). The consideration of unbounded control or observation op-
erators should also lead to a very difficult but interesting control problem. Since the
funnel controller is a model-free control approach that is based on the input-output
description of a dynamical system, the difficulties related to an unbounded control or
observation operator should be a bit easier than expected by looking at the transfer
function of the system. In that way, the transcription of the Assumptions 7.2.1 - 7.2.2
in the temporal domain to the frequency domain should also be made in order to be
able to work directly on the transfer function of the system. The assumption of global
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Lipschitz continuity of the operator dynamics is also an interesting question to look at.
Especially, a result considering only local Lipschitz continuity would be appreciable.
As another perspective we think of an extension to the case of multi-input multi-output
systems. This should lead to require the invertibility of some matrix related to the in-
put and the output operators, which should extend the condition 〈b,c〉X > 0 in the
one-dimensional case.

The perspectives we want to emphasize now are more general and not necessar-
ily related to particular chapters of this thesis. As it has been mentioned in Chapter
1, investigating other types of chemical reactions could be valuable and of primor
importance. For instance, one could take a closer look at the Van der Vusse or the
Williams-Otto reactions, whose are of interest in Hudon et al. (2008) and Williams
and Otto (1960) or Hudon et al. (2005), respectively. The most complicated scheme
of the Van der Vusse reaction is given by

A→ B→C

2A→ D,

and the dynamics that should be considered are expressed as
∂τ T (ζ ,τ) =−v∂ζ T (ζ ,τ)− 1

ρCp
∆HT R(C,T )+ 4h

ρCpd (1[0,L](ζ )Tw(τ)−T (ζ ,τ)),
∂τCA(ζ ,τ) =−v∂ζCA(ζ ,τ)+(−1 0 −1)R(C,T ),
∂τCB(ζ ,τ) =−v∂ζCB(ζ ,τ)+(1 −1 0)R(C,T ),

(7.4.18)
where ∆H = [∆H1 ∆H2 ∆H3]

T contains the enthalpies of each reaction and the
vector of reaction rates R(C,T ) is explained with the Arhenius law, i.e.

R(C,T ) =
(

k1CAe
−E1

T k2CBe
−E2

T k3C2
Ae
−E3

T

)T
,

with C = (CA CB)
T containing the concentrations of A and B, respectively. The

variable T stands for the temperature whereas ζ ∈ [0,1] and t ≥ 0 are the spatial
and temporal variables, respectively. We should associate to the PDEs (7.4.18) the
following boundary conditions

T (0,τ) = Tin,CA(0,τ) =CA,in,CB(0,τ) =CB,in, (7.4.19)

where Tin,CA,in and CB,in are the inlet temperature and inlet concentrations, respec-
tively. The values of the different parameters involved in the Van der Vusse reaction
are presented in Hudon et al. (2008). The scalar variable Tw plays the role of a con-
trol variable. It should be designed for instance in order to maximize or minimize
the outlet concentration of A or B while regulating the temperature inside the reac-
tor. This objective has already been taken into account in Hudon et al. (2008) where
an extremum-seeking control approach has been considered. A comparison of this
control technique with a funnel controller could be interesting to look at. Steps like
well-posedness or open-loop stability of the homogeneous dynamics should be also
investigated. Existence and multiplicity of equilibria, their linear and nonlinear stabil-
ity are open questions that should be studied for further research thanks to the theories
developed in this thesis.
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By invoking the adaptive extremum-seeking control (ESC) approach, we think of
possible perspectives too. This field has attracted a lot of attention, with contributions
by Krstic et al. (1995b), Ariyur and Krstic (2003), Hudon et al. (2005), Hudon et al.
(2008) and Dochain et al. (2011). As studied in these two last references and more
recently in Oliveira and Krstic (2021), it can be observed that ESC has captured more
and more attention for infinite-dimensional systems. Despite this fact, no rigourous
framework has been built yet for ESC applied to distributed parameter systems. This
could be a challenging step to investigate from a control point of view.

When speaking of applications, one thinks automatically of state observers. This
should be an important question to explore when dealing with real-life systems for
which all the state is not available. A lot of literature is already available for such
questions. However, this is different when working with nonlinear infinite - dimen-
sional systems. A first way to start with such a topic could be the natural extension
of the Luenberger-type observer for the class of systems (4.1.2). In that way, the
dynamics of the estimated state should take the form{ ˙̂x(t) = Ax̂(t)+ f (x̂(t))+L(ŷ(t)− y(t)),

x̂(0) = x̂0,

where ŷ(t) denotes an estimated output given by ŷ(t) =Cx̂(t) with C ∈L (X ,R) and
L ∈L (R,X), X being the state space. As a consequence, the dynamics of the state
error trajectory e := x− x̂ should be expressed as{

ė(t) = Ae(t)+ f (e(t)+ x̂(t))− f (x̂(t))−LCe(t),
e(0) = e0 := x0− x̂0.

(7.4.20)

The objective here should be the design of an appropriate operator L such that the
X−norm of the error dynamics e converges to 0 as t tends to ∞. This should be par-
ticularly challenging as the system is nonlinear and infinite-dimensional. A possible
approach to start with should consist in linearizing the dynamics (7.4.20) around the
null state and then designing the operator C on the linearized dynamics. Then by using
the framework developed in Chapter 5 based on the adapted Fréchet differentiability
of the nonlinear operator f , one should try to deduce conclusions on the local expo-
nential stability of (7.4.20). Note that Luenberger-type state observers have already
been considered for semilinear systems of the form (4.1.2) by Meurer (2013). Other
references that are more focused on state observer design in the field of process engi-
neering are Dochain et al. (1992), Bastin (2013), Dochain (2003) or Mohd Ali et al.
(2015).

Going still one step further, extending what has been done in this thesis to the case
where the control and/or the observation operators are unbounded should lead to a
great perspective. A lot of work should be done to consider properly the framework
of boundary controlled and observed nonlinear infinite-dimensional systems, to char-
acterize the well-posedness, the stability and the control of such a class of systems.
Preliminary answers to these kinds of questions are already available in Schwenninger
(2020) or in Hastir et al. (2019). This should be continued to questions like stability
and stabilization.
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The question of nonautonomous nonlinear dynamical systems on infinite dimen-
sional spaces could also be envisaged as perspective, that is the consideration of oper-
ators A and f in (2.2.1) that depend explicitely on the time. The different ideas of this
thesis should then be extended appropriately.

One last thing we would like to mention is related to the Koopman operator. For a
finite-dimensional dynamical system

ẋ(t) = F(x(t)),x(0) = x0 ∈ Rn, (7.4.21)

the semigroup of Koopman operators (T (t))t≥0 is defined on an infinite-dimensional
space X by T (t) f = f ◦φ t , where f ∈X and φ t : Rn→ Rn represents the flow of
the nonlinear dynamical system (7.4.21). This powerful tool is useful to transform a
nonlinear finite-dimensional system into a linear infinite-dimensional one. A lot of
properties of the infinitesimal generator of (T (t))t≥0 are able to give informations on
the nonlinear system (7.4.21) such as the asymptotic behavior of the state trajectories
for instance. A comprehensive overview of what has been done with the Koopman
operator is available in Mauroy et al. (2020). More recently, the question of exact lin-
earization of a nonlinear system thanks to the Koopman operator has been considered
for nonlinear PDEs in Mauroy (2021). Such an extension could be a possible perspec-
tive of this thesis, seeing which machinery needs to be built in order to work on a linear
system instead of a nonlinear one without losing any information. Another interesting
question thanks to the Koopman operator and the ideas of Mauroy (2021) should be
the transcription of the results of this thesis to a linear setting in some appropriate
functional space.
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