
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Best Practices of Testing Database Manipulation Code

Gobert, Maxime; Nagy, Csaba; Rocha, Henrique; Demeyer, Serge; Cleve, Anthony

Published in:
Information Systems

DOI:
10.1016/j.is.2022.102105

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for pulished version (HARVARD):
Gobert, M, Nagy, C, Rocha, H, Demeyer, S & Cleve, A 2023, 'Best Practices of Testing Database Manipulation
Code', Information Systems, vol. 111, 102105. https://doi.org/10.1016/j.is.2022.102105

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1016/j.is.2022.102105
https://researchportal.unamur.be/en/publications/e0c3839c-3eb1-4c1c-bbd6-57e67858143b
https://doi.org/10.1016/j.is.2022.102105

Information Systems 111 (2023) 102105

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Best practices of testing databasemanipulation code
Maxime Gobert a, Csaba Nagy b,∗, Henrique Rocha c, Serge Demeyer d,e, Anthony Cleve a

a Namur Digital Institute, University of Namur, Namur, Belgium
b Software Institute, Università della Svizzera italiana, Lugano, Switzerland
c Loyola University Maryland, Baltimore, MD, USA
d Department of Computer Science, University of Antwerp, Antwerp, Belgium
e Flanders Make vzw, Belgium

a r t i c l e i n f o

Article history:
Received 7 March 2022
Accepted 20 July 2022
Available online 30 July 2022
Recommended by M. Weidlich

Keywords:
Testing
Database manipulation code
Empirical study

a b s t r a c t

Software testing enables development teams to maintain the quality of a software system while it
evolves. The database manipulation code requires special attention in this context. However, it is often
neglected and suffers from software maintenance problems.

In this paper, we study the current state-of-the-practice in testing database manipulation code.
We first analysed the tests of 72 open-source projects to gain insight into the coverage of database
access code. The database was poorly tested: 46% of the projects did not cover with tests half of their
database access methods, and 33% did not cover the database code at all. This poor coverage motivated
us to study developers’ challenges and best practices. (i) First, we analysed 532 questions on Stack
Exchange sites and deduced a taxonomy of issues. Developers mostly looked for general best practices
to test database access code. Their technical questions were related to database management, mocking,
parallelisation, or framework/tool usage. (ii) Next, we examined the answers to these questions. We
manually labelled 598 answers to 255 questions. We distinguished 363 solutions and organised them
in a taxonomy of best practices. Most of the suggestions considered the testing environment and
recommended various tools or configurations. The second largest category was database management,
where many addressed database initialisation and clean-up between tests. Other categories pertained
to code structure or design, concepts, performance, processes, test characteristics, test code, and
mocking. We illustrate the two taxonomies through intriguing examples.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Database manipulation code is usually seen as an outsider
in the codebase of an information system. It lies between the
programs and the database, so it belongs partially to both, but
not entirely to one. It can also involve multiple development
teams. For example, in larger systems, a complex database re-
quires a department of database administrators (DBAs) separated
from the software engineers who maintain the application code.
Both teams are in charge of maintaining their own side, but
they need to share responsibilities as far as program-database
communication is concerned.

Shared responsibilities come at a price, and the dual role
of database manipulation code leads to software maintenance
problems. Stonebraker et al. argue that it is the most significant

∗ Corresponding author.
E-mail addresses: maxime.gobert@unamur.be (M. Gobert),

csaba.nagy@usi.ch (C. Nagy), henrique.rocha@gmail.com (H. Rocha),
serge.demeyer@uantwerpen.be (S. Demeyer), anthony.cleve@unamur.be
(A. Cleve).

factor of database or application decay [1]. As they say, evolving
requirements result in changes in the schema, which in turn re-
quire adjustments in the database manipulation code. Developers
tend to minimise their effort to implement modifications, and the
application or the database quality suffers the consequences.

Several researchers have proposed approaches addressing the
evolution of database-centred systems [2–8]. Other authors have
developed methods specifically designed for testing database ap-
plications, with a focus on test case generation [9], test data
generation [10], test case prioritisation [11], and regression test-
ing [12].

Despite the undeniable benefits of these methods, no studies
have investigated how developers test database access code in
practice—which could direct researchers where automated assis-
tance is needed the most.

With the aim to fill this gap, in our previous work, we pre-
sented an empirical study on the challenges and perils of testing
database manipulation code [13]. First, we mined open-source
systems from Libraries.io and analysed 6626 projects that relied
on database access technologies. We found automated tests and
database manipulation code in only 332 of these projects. We

https://doi.org/10.1016/j.is.2022.102105
0306-4379/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.is.2022.102105
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102105&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:maxime.gobert@unamur.be
mailto:csaba.nagy@usi.ch
mailto:henrique.rocha@gmail.com
mailto:serge.demeyer@uantwerpen.be
mailto:anthony.cleve@unamur.be
https://doi.org/10.1016/j.is.2022.102105
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

further examined the 72 projects for which we could execute the
tests and collect coverage reports. The results indicated that the
database manipulation code was poorly tested: 46% of the projects
did not test half of their DB methods, and 33% did not test DB
communication.

Such a poor test coverage motivated us to understand the
reasons holding back the developers from testing database access
code [13]. We qualitatively analysed questions from popular Stack
Exchange websites and identified the problems that hampered
developers in writing tests. We distilled the results in a taxonomy
of issues with 83 different problems grouped into 7 main cate-
gories. We found that developers mostly looked for general best
practices.

In this paper, we extend our previous work [13] by looking at
the solutions proposed by the developers. We further analysed the
questions mined from Stack Exchange websites, focusing on the
best practices. We manually labelled the top three highest-ranked
answers of each question and built a taxonomy of best practices.
Overall, we examined 598 answers to 255 questions and listed
363 different practices in the taxonomy.

The category in the taxonomy with the highest number of tags
and questions was related to the testing environment, e.g., pro-
posed various tools and configurations. The second most exhaus-
tive category was database management, e.g., initialising or clean-
ing up a database between tests. Other categories included code
structure or design guidelines, concepts, performance, processes,
test characteristics, test code, and mocking.

This paper makes the following contributions:

• Motivational Study: An empirical study on the coverage of
database access code in the tests of open-source projects
[13].

• Study I: A qualitative assessment of developers’ challenges
when testing database access code and the resulting taxon-
omy of issues [13].

• Study II: An investigation of developers’ best practices
when testing database access code and the resulting tax-
onomy of best practices.

• Dataset: The dataset of the three studies is publicly avail-
able as an online appendix [14].

Paper structure. Section 2 presents our motivational study on
database manipulation code coverage in open-source systems.
Section 3 provides the first study about the challenges and prob-
lems when testing database access code. Section 4 presents the
second study about the best practices proposed by developers. In
Section 5, we discuss observations we made in the two studies,
together with directions for researchers and practitioners. In Sec-
tion 6, we examine the threats that could affect the validity of the
studies. In Section 7, we discuss the related literature. Finally, we
conclude the paper and outline future work in Section 8.

2. Motivational study: Test coverage of database access code
in open-source systems

We first explore how developers test their database manipula-
tion code in practice. Fig. 1 depicts an overview of the three main
steps we followed during this exploration: 1⃝ we selected a set of
open-source projects using databases, 2⃝ we identified which part
of their source code was involved in database communication and
3⃝ we analysed how automated tests covered it.

During step 1⃝ Project Selection, we mined open-source sys-
tems from Libraries.io.1 We chose it because they monitor a

1 https://libraries.io/data.

broad set of projects (not just libraries), and maintain an ex-
tensive database of dependencies among projects.2 We specif-
ically looked for applications using databases and automated
testing technologies. Libraries.io provides us with the possibility
of searching for such projects through their dependencies.

Selected projects had to satisfy four inclusion criteria: (i) be
written in Java, since we rely on tools that support only Java (i.e.,
to identify database code and measure test coverage); (ii) use
JUnit3 or TestNG,4 i.e., the top Java testing frameworks according
to the usage statistics of Maven central5; (iii) use database access
technologies, e.g., java.sql or javax.persistence; (iv) have
executable test suites, as required by JaCoCo,6 the test coverage
tool we rely on.

We relied on version 1.4.0 of the Libraries.io dataset published
in December 2018, which was the most recent release at the time
of conducting the survey. We cloned 6626 systems satisfying a
search query for Java projects with testing framework depen-
dencies. Then we filtered them, looking for imports of database
communication libraries. The list of imports can be found in
our replication package [14]. At this stage, we identified 905
candidate projects.

In step 2⃝ Database Access Code Analysis, we identified the
part of the source code involved in database communication. We
used SQLInspect7 for this purpose—a static code analyser for Java
applications using JDBC, Hibernate, or JPA [15]. This tool looks
for locations in the source code where queries are sent to a
database, extracts these queries, and analyses them for further
inspection, e.g., smell detection. In the remaining of the paper, we
call database access methods all methods that construct or execute
a DB query. We selected SQLInspect because (i) it supports pop-
ular database access technologies, (ii) it returns all the database
access methods of the project under analysis, and (iii) it relies on
a technique reaching a precision of 88% and a recall of 71.5% [4].

SQLInspect identified database access methods in 332 of the
905 projects selected at the first stage. It did not detect database
accesses in the other projects. The reason is that SQLInspect
looks for SQL, Hibernate, or JPA queries in the source code. An
import does not necessarily imply query executions, and other
DB communication means can be used (e.g., an object-relational
mapping; ORM), or the packages may not be used at all.

In step 3⃝ Test Coverage Analysis, we looked at how tests cover
the DB access methods. We used the JaCoCo Maven plugin that
can be integrated with the tests of a project to collect coverage
data at different granularity levels.

We implemented a script modifying the pom files of the 332
projects to execute tests with JaCoCo. Maven compilation or test
execution failures prevented generating a test report file for 178
projects. For example, many projects (82) did not have a pom file
or tests, despite dependency on a test framework. In the end, we
collected test coverage data for 72 systems. Then we processed
the reports along with the results of step 2⃝.

Table 1 summarises the main characteristics (with the mini-
mum, quartiles, median, and maximum values) of the analysed
projects. The projects are of various sizes ranging from 225 LOC
to 133 kLOC. The biggest project is Speedment,8 a Java Stream
ORM. The most popular project is MyBatis9 with 9152 stars.

2 At the time of writing, Libraries.io had 2.7M unique packages, 33M
repositories, and 235M interdependencies between them.
3 https://junit.org/.
4 https://testng.org/.
5 https://mvnrepository.com/open-source/testing-frameworks.
6 https://www.jacoco.org.
7 https://bitbucket.org/csnagy/sqlinspect.
8 https://github.com/speedment/speedment.
9 https://github.com/mybatis/mybatis-3.

2

https://libraries.io/data
https://junit.org/
https://testng.org/
https://mvnrepository.com/open-source/testing-frameworks
https://www.jacoco.org
https://bitbucket.org/csnagy/sqlinspect
https://github.com/speedment/speedment
https://github.com/mybatis/mybatis-3

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Fig. 1. Overview of the main steps for test coverage analysis of database access code.

Fig. 2. Test coverage rates of Non-DB access methods vs DB access methods.

Table 1
Overview of the projects (minimum, quartiles, median, and maximum values).
Metric Min Q1 Med Q3 Max

Java LOC (effective) 225 1476 3198 12,929 133,331
GitHub Stars 0 0 2 10 9,152
Methods 11 110 278 1,057 15,188
DB access methods (in prod. code) 1 2 4 7 80

Regarding database access code, we only considered methods
in production code, i.e., we excluded test classes. We intentionally
did not set a minimum threshold for the projects’ size or database
methods. Our goal was to see whether database access code is
tested or not in real-life projects. If the project had only one
method communicating with the DB, we wanted to see its tests.

Fig. 2 shows a scatter plot of all projects and their respective
test coverage rates. In total, 24 projects do not test database
access communication at all. A significant number of projects
with the highest coverage rate had, in fact, full coverage. We
found a mean value of 2.8 database methods for projects with
full coverage. There are slightly fewer projects (48.6%) in the
figure with lower coverage for database methods. However, con-
sidering only the projects above the median (i.e., with at least
five database methods), there is a more significant difference:
59% have a smaller coverage for database methods than regular
methods. Similarly, while 46% of the projects cover less than
half of their database methods, this number increases to 53% for
projects above the median. Moreover, 33% of the projects do not
test the database code at all, and it rises again to 35% for projects
with at least five database methods.

We assessed the relationship between the test coverage rates
of DB access methods vs regular methods using the Kendall
correlation, as the Shapiro–Wilk normality test showed a signif-
icant deviation from the normal distribution. The result was a
moderate positive correlation with a high statistical significance
(τ = 0.47, p < 0.0001).

In summary, we found a statistically significant correlation
between the test coverage of regular and database access meth-
ods, but it is a weak-moderate correlation, and there can be
substantial differences between the two. As our closer look at
the sample set showed, the coverage of database code is poor
in general together with regular methods. But it is even more
neglected when it comes to more complex database access code.

3. Study I: Challenges & problems when testing DB access code

Our first study aims to understand the difficulties of develop-
ers when considering database access code in their tests. We seek
to answer the following research question (RQ):

RQ1: What are the main challenges/problems when testing
database manipulation code?

We studied developers’ most common problems on popular
question-and-answer (Q&A) websites of the Stack Exchange net-
work. The outcome of this qualitative study is a taxonomy of
common issues faced by developers.

3.1. Context and data collection

We describe the method of building the taxonomy. We first
present the data collection phase, then discuss the main steps of
the manual labelling process.

3.1.1. Identification and extraction of questions
We targeted popular websites of the Stack Exchange network

for data collection: Stack Overflow,10 Software Engineering11
and Code Review.12 Stack Overflow is the largest Q&A website
in software engineering, making it a popular target of mining
studies. It included over 20M questions and 29M answers for
software developers at the time of our analysis. Questions can
be asked about specific programming problems, algorithms, tools
used by programmers, and practical problems related to software
development. Testing the database access code also falls into
these categories. However, the guidelines say that ‘‘the best Stack
Overflow questions have a bit of source code in them’’.13 More
generic questions, not closely related to source code, are often
discouraged as out-of-scope or opinion-based. General discus-
sions are preferred on Software Engineering. We included this
site as we were interested in higher, conceptual-level problems as
well, not only those related to the source code. Another valuable
source for discussions in the Stack Exchange network is Code
Review. There, developers can ask for suggestions on a given
piece of code. As they often include test code, we considered
questions from Code Review as well.

10 http://stackoverflow.com.
11 http://softwareengineering.stackexchange.com.
12 http://codereview.stackexchange.com.
13 https://stackoverflow.com/help/on-topic.

3

http://stackoverflow.com
http://softwareengineering.stackexchange.com
http://codereview.stackexchange.com
https://stackoverflow.com/help/on-topic

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Table 2
Overview of the questions selected from Stack Exchange sites.
Source Candidate Selected False

questions questions positives

Code Review 41 41 3
Software Engineering 174 140 25
Stack Overflow 1622 351 86

Total 1837 532 114

From these three Q&A websites, we selected our candidate
questions according to the following criteria:

(a) Scope. We decided to select questions if (i) they explicitly
mention testing in their title and (ii) they use database access
terms in their description (e.g., DAO, SQL). We loaded the dumps
of Stack Exchange sites into a database for this filtering. We cre-
ated full-text indices on both the titles and question bodies. Then
we queried them, so the description had to match (database |
(data & access) | sql | dao | pdo) & test and the title had
to match test. The full-text search handled normalised text, so
stemmed words were also considered (e.g., test-ing, database-s).
Notice that Stack Overflow has a tagging system for classification.
However, using these tags is up to the user, who can easily omit
them. Besides, the tagging system is different for the three sites
considered, which led us to our alternative approach.

(b) Impact and quality. Due to the potentially large number of
questions and limited resources, we targeted posts with higher
impact and better quality. For this reason, we relied on the
scoring system of Stack Exchange. No up-votes or a negative score
may indicate problems, e.g., an unclear or out-of-scope question.
Therefore, we excluded posts with zero or negative ratings.

We used the Stack Overflow dump published by Stack Ex-
change in December 2019 and the dumps of Software Engineering
and Code Review published in March 2020. A total number of
1837 questions matched the criteria: 41 on Code Review, 174 on
Software Engineering and 1622 on Stack Overflow (see Table 2).

We did a first manual screening of questions on the different
sites. We observed that Code Review and Software Engineering
questions were closer to our scope. Therefore, we selected more
questions from these sites and aimed for higher quality. To reach
a 99% confidence level with a 5% margin of error, we set a thresh-
old for a minimum score of 1 for Code Review, 3 for Software
Engineering, and 13 for Stack Overflow.

3.1.2. Manual classification of database testing issues
After collecting the 532 questions, we manually inspected

them. We followed an open coding process often applied to con-
struct taxonomies or systematic mapping studies [16,17]. In this
approach, participants apply labels to concepts found in the text
of artefacts. Then the tags are organised into an overall structure.
During the process, labels and categories might be merged and
renamed [16].

We performed the classification process in three rounds. First,
we carried out a trial round with a random set of 100 ques-
tions, wherein two of the authors assigned labels to the artefacts.
We wanted to test the classification platform and see whether
we needed to apply changes to our selection criteria. After this
trial round, we implemented a few adjustments to our platform.
Then, we labelled the remaining questions in a second round
by involving four authors. Each artefact was labelled by two au-
thors, randomly assigned to them. In the last round, we resolved
conflicts where needed.

We implemented a labelling platform for this purpose. It
showed the question, its relevant metadata (score, timestamp,
tags) and a link to the original discussion thread for further
inspection. We followed a multi-label approach. Each participant

could assign multiple labels to the artefact from the existing list
in the database. If needed, they could also create new tags. In
principle, existing labels should not be shown to participants.
But as we expected a high number of tags, showing the existing
ones could help us use consistent naming without introducing
substantial bias. Indeed, the participants were not aware of the
assignments.

After the second round, all 532 questions were labelled by two
participants. At this point, one author reviewed all the tags and
proposed merging those with identical meanings. This merging
was discussed among authors and applied to the database.

We finally agreed and used identical tags for 147 questions;
partially agreed for 77 posts (only a subset of identical labels)
and used entirely different tags for 308 questions. The high num-
ber of unique tags explains this relatively high number of con-
flicts (72.37%). Indeed, at this point, the database had 290 differ-
ent labels. Thus, participants took advantage of the multi-label
classification and captured various aspects of questions.

To resolve conflicts, a third tagger was assigned to review each
conflicting artefact. This third person was a randomly selected
author who took part in the classification but did not label the
same question beforehand. The system showed the labels of the
previous taggers, and the reviewer could accept or discard them.
Minor modifications were also allowed, if necessary.

At the end of the process, one author carefully reviewed all
the tags and organised them into categories. This categorisation
was then discussed among the authors in multiple rounds. As an
outcome, a taxonomy was constructed with 83 database testing
issues in 7 main categories. We present this taxonomy with
qualitative examples in the rest of this section.

3.2. Taxonomy of database testing issues

Usman et al. reviewed taxonomies in software engineering
and found the hierarchical form the most frequently used clas-
sification structure [17]. We adopted this representation as an
efficient approach to organise our findings. In this form, there is a
parent–child (is-a) relationship between categories, and one cate-
gory has additional subcategories. Categories correspond to issues
or problems raised in the question, and subcategories represent
subtypes of a problem. Consider, e.g., Mocking Persistence Layer as
a specialised type of Mocking-related issues.

Fig. 3 shows the final structure of the taxonomy. There are
a total number of 83 leaf issues organised in 7 main (root)
categories. We indicate the total number of questions labelled
with related problems for each root category. The distribution of
the corresponding questions over the three sites is also provided.
For example, the Mocking category had 54 questions, including 8
from Code Review, 17 from Stack Exchange, and 29 from Stack
Overflow. Recall that we had a multi-label approach, so one
question could represent mixed problems. Thus, a question can
belong to more categories in the hierarchical taxonomy.

We observe intriguing technical and conceptual difficulties,
differentiating between them in Fig. 3 as follows. We mark the
technical problems with and the conceptual ones with . It is
interesting to observe the origin of questions for those abstraction
levels. Higher-level conceptual problems mainly originate from
Software Engineering, especially for Maintainability/Testability or
Method. Technical problems are closer to the source code and
mostly originate from Stack Overflow, especially for the Frame-
work/Tool Usage category. Questions from Code Review cover
both abstraction levels, but most of them relate to the gen-
eral Best Practices category. None of them deals with Frame-
work/Tool Usage. Below, we describe and illustrate each main
problem category.

4

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Fig. 3. Taxonomy of issues faced by developers when testing database access code.

3.2.1. DB management
The most prevalent technical issues are related to database

management: we found 145 questions in this category. Indeed,
many have problems initialising the database before executing
the tests. This includes starting the database, configuring it, and
populating it with test data. The test database population was
often mentioned as a root cause of performance issues. These
initialisation steps are critical as they must be performed before
test executions. As a developer complained: ‘‘This whole thing
takes quite some time [. . .]. Having this run as part of our CI [. . .]
is not a problem, but running locally takes a long time and really
prohibits running them before committing code’’ (SE1).14

Questions also came from situations when the design did not
support data deletion (SE2). Others faced issues keeping a test DB
in synch with a production or development DB (SE3), while many
had problems handling the connection to a test DB (SE4, SE5, SE6).

3.2.2. Framework/tool usage
Many problems (75) concern using a concrete tool or frame-

work. Most of them relate to configuring a framework for a
dedicated database in a test/development or production environ-
ment (SE7,SE8). These questions have high scores suggesting that

14 We cite posts on Stack Exchange sites with SE notation. These references
can be found in Table A.5 of our appendix.

many developers suffer from such issues. A question to configure
Django (SE8) was voted up 59 times and stared by 16 users.

Similarly, developers ask help for different DB initialisation
(e.g., running scripts, using dumps or fixtures) or cleanup con-
figurations (SE9). Interestingly, in some cases, they want to keep
the test database after running their tests for debugging purposes
(SE10). Many also ask for guidance to solve a particular error
message in the testing framework, e.g., misusing transactional
tests (SE11) or configuring in-memory databases (SE12).

3.2.3. Mocking
Mocks can help by isolating the tests (i.e., cutting off depen-

dencies) and avoiding the performance drawbacks of databases
(e.g., avoiding IO). Many questions indicate that developers need
help in mocking the persistence layer. As a first step, an important
design decision they have to make is the level at which they
implement the mocks.

For example, a developer reasoned in a question as follows: ‘‘I
could either mock this object at a high level [. . .] so that there are no
calls to the SQL at all [. . .]. Or I could do it at a very low level, by
creating a MockSQLQueryFactory that instead of actually querying
the database just provides mock data back’’ (SE13). Recommen-
dations depend on the objectives, as an answer says: ‘‘Higher
level approaches are more appropriate for unit testing. Lower-level
approaches are more appropriate for integration testing ’’.

5

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Broader questions were also about the benefits of mocking
(SE14) or guidelines to mock the data access layer (SE15, SE16).
Technical questions tackled, for example, emulating exceptions
in a mocked database (SE17). When mocking is unfeasible, it can
indicate poor software design (SE18). Stored procedures (SE19)
and views (SE20) made mocking impossible in other systems.

3.2.4. Parallelisation
We observed some (12) technical problems related to parallel

test executions. These were closely related, so we grouped them
in this category. One of the highest-rated questions was about
turning off the parallel execution of tests in sbt (a build tool for
Scala and Java) (SE21). The developer complained that a project
‘‘mutates state in a test database concurrently, leading to the test
to fail’’. Likewise, asynchronous or lazy calculations led to chal-
lenging bug hunts (SE22). They also asked for advice to parallel
test execution, e.g., to handle a dedicated in-memory database per
thread (SE23).

3.2.5. Best practices
The most frequently used labels were about testing best prac-

tices for DB applications. Developers either look for general advice
or explicitly want to know about best practices. The highest-rated
question has 331 up-votes entitled ‘‘What’s the best strategy for
unit-testing database-driven applications?’’ (SE24). It generates dis-
cussion on mocking vs testing against an actual database. In the
answers, mocking is mainly recommended for unit testing, while
a copy of the database is favoured for more complex databases.
In other cases, a combined approach might be needed: ‘‘Ideally I
want to test the data access layer using mocking without the need
to connect to a database and then unit test the store procedure in a
separate set of tests’’ (SE15).

Best practices are also sought for performance improvements
(SE25, SE26, .SE27) In particular, where mocking is not an option,
solutions mainly advise using in-memory databases to reduce
IO operations. Other topics include testing for security vulner-
abilities, e.g., looking for static analysers to spot SQL injection
attacks (SE28). Likewise, some questions look for tools to measure
test coverage. They want to know, for example, the coverage
of executed queries in test cases (SE29). A majority of these
questions were grouped under Test/Validate. These are looking for
advice on testing or validating a specific code or DB entity, e.g.,
SQL queries embedded in code (SE30), database migration (SE31)
or transactions (SE32).

3.2.6. Maintainability/Testability
Several questions tried to address maintainability problems

or the testability of the database access code. In a question, a
developer struggled with a system that validated RESTful APIs
with SQL queries in its integration tests (SE33). As he summed
up his root problem: ‘‘A small change in the DB structure often
results in several man days wasted on updating the SQL and the SQL
building logic in the integration tests’’. The developer wanted to
wipe out the SQL code from the tests entirely. In the answer, they
discouraged him from doing so. They acknowledged that relying
on the queries can be a good practice to verify the database state.
Instead, it was recommended to improve the maintainability of
the tests: (i) by reducing the coupling inside the codebase (one
table per module), and (ii) by splitting the tests into smaller
pieces.

In another question, a developer wanted to reduce the main-
tenance effort by omitting the tests of the ORM layer. He was,
however, afraid of giving up on aiming for 100% coverage. As
he wrote it, ‘‘Our test databases are a bit messy and are never
reseted, hence it’s impossible to validate any data (and that is out of
my control)’’. In the answers, they supported him that balancing

coverage and prioritising efforts is important, then suggested
generating the tests for the ORM layer.

Other questions pointed out that preparing the environment of
testing the database access code is also troublesome. For example,
a developer complained: ‘‘The problem I ran into was that I spent a
lot of time maintaining the code to set up the test environment more
than the tests’’ (SE34).

Many questions were also related to the management of
changing schema or test data. As a general guideline, a recom-
mendation said: ‘‘I would apply a single rule: keep your test data
close to your test. Test is all about maintenance: they should be
designed with maintenance in mind, hence, keep it simple’’ (SE35).

3.2.7. Method
Many developers were concerned about the problems of their

testing method. The most frequent arguments were whether DB-
dependent code should be tested via unit or integration tests
(SE36, SE37, SE38, SE39, SE40) . A regular claim was that ‘‘unit
tests should not deal with the database, integration tests deal with
the database’’ (SE37). Recommendations target to maximise the
isolation of unit tests and decouple the database, e.g., through
mocking. In contrast, integration tests aim to test more complex
structures by relying on the database.

Interesting questions were related to populating a database
before tests, e.g., whether data should be dynamically generated
or pre-populated beforehand (SE41).

A recurring discussion was on using an in-memory database
versus a mocking strategy (SE42). When performance or decou-
pling the tests from the database was more critical, the choice
was to mock. Otherwise, we could see cases where mocking was
impossible (e.g., because of stored procedures or views). The in-
memory database was considered a good compromise to test the
database access. It indeed solves the portability issues of testing
against an actual DB and improves the performance. Compared
to mocking, the testing can be more extensive, e.g., it enables the
tests to validate embedded SQL queries. In some cases, however,
the in-memory database differs significantly from the production
database. This can be a problem as some DB-specific features
cannot be tested, e.g., a special SQL syntax (SE43).

4. Study II: Best practices when testing DB access code

In the previous study, we investigated the challenges of testing
database access code. Here, we study the solutions proposed by
developers. We seek to answer the following research question:

RQ2: What are the best practices when testing database manip-
ulation code?

We assessed RQ2 by studying answers to the StackExchange
sites’ questions in our previous study. The outcome is a hierarchi-
cal taxonomy of best practices recommended by the developers.

4.1. Method

We conduct this research with an open coding process similar
to the labelling in our first study (see Section 3.1.2). First, we
describe this process by presenting our dataset preparation, and
then we discuss the details of the manual labelling.

6

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Table 3
Overview of the selected answers and their scores.
Site Questions Answers Scores

Min Max Avg Median

Code Review 38 50 0 19 3.22 2
Software Engineering 115 243 0 182 5.70 3
Stack Overflow 265 691 0 545 21.10 10

Total 418 984 0 545 16.39 6

4.1.1. Dataset preparation
We took RQ1’s dataset of questions about database access

code testing from Stack Overflow, Software Engineering, and Code
Review. We loaded the same data dump versions into a database
to remain consistent with our previous research question. We
exported all the answers to the 418 questions labelled previously
(532 questions excluding 114 false positives). Again, we filtered
the answers with negative scores as they usually suffered from
quality issues, i.e., they could be wrong, incomplete, or irrelevant
to the question. Next, we picked the top three highest-rated
answers for each question. When the accepted answer was not
among the top three, we included it as a fourth answer.

Table 3 presents an overview of the answers to the ques-
tions after the selection process. The table shows, for each Stack
Exchange site, the number of questions, answers, and statistics
(min, max, average, and median) of their scores. Overall, we
had 984 answers to 418 questions in our database. The highest-
rated answer had 545 upvotes. It responded to a Stack Overflow
question about ‘‘MySQL—force not to use cache for testing speed of
query’’ (SE44). Also interesting to notice an answer to a Software
Engineering question, which had 182 likes. The question with the
title ‘‘Shouldn’t unit tests use my own methods?’’ addressed the unit
testing of Data Access Objects’ methods (SE45).

4.1.2. Manual labelling
We used a similar open coding process to RQ1 and man-

ually labelled the answers. However, we had some significant
differences, which we explain below.

First, we needed to adapt the labelling platform to the an-
swers, as it was designed for labelling questions. When someone
started tagging, the platform randomly assigned a question to the
user and showed it with the highest-rated answers. The platform
also displayed the metadata of the question (score, time, URL)
and its answers (score, URL, and whether it was accepted). It also
presented the problem categories assigned to the question in the
previous round.

We could assign multiple labels to each problem category
for each question, covering all answers. For example, if a ques-
tion had been labelled in RQ1 as ‘‘Best Practices > Test/Validate
> Queries’’ and ‘‘Mocking ’’, one could assign a ‘‘Don’t mock the
connection’’ tag to the mocking category and another ‘‘Avoid In-
Memory DB as it might not be fully compatible’’ tag to the query
validation.

This is a significant difference from RQ1, where we assigned
problem labels directly to the question.

Second, we added a feature to highlight relevant sentences in
questions or answers. We needed this feature as the answers had
many exciting ideas, guidelines, or takeaway messages, which
could easily get lost in the longer texts and code examples. After
our first trial round, we also anticipated that highlights would
be helpful when reviewing each others’ tags. We highlighted
835 text fragments, in the end, 3.27 on average per question.
The highlighted sentences are available with our tagging in the
replication package [14].

Table 4
Total and labelled questions per main issue categories.
Issue category Questions Answers

Total Labelled Total Labelled

Best practices 216 216 510 510
DB management 145 57 351 142
Framework/Tool usage 75 34 185 75
Maintainability/Testability 27 16 50 32
Method 44 21 106 56
Mocking 54 34 123 75
Parallelisation 12 3 29 7

Total 418 255 984 598

Third, we simplified the process, and each question was first
tagged by an author then reviewed by another one. In RQ1, two
authors labelled each question independently, and then a third
one reviewed it. We altered the process because we experienced
many conflicts due to the large number of tags, and the reviewing
typically meant merging the two authors’ tags. In RQ2, the second
tagger had an explicit reviewer role instead of an independent
tagger.

All five authors participated in the labelling. Like in the first
study, we conducted the process in three main rounds. First,
we had a trial round of 27 questions, adding the highlighting
feature and minor fixes to the platform. Then, we performed
the first labelling round, followed by the reviewing round. After
each round, we held discussions among all authors, shared our
experience, and renamed or merged tags where needed (e.g.,
because of their identical meaning).

We did not label all the questions from RQ1 because of limited
time constraints. Instead, we focused on Best Practices, the most
extensive and significant problem category (see Fig. 3).

Table 4 presents an overview of the labelled questions and
their answers per each main issue category. A question could
belong to multiple problem categories in RQ1. Thus, ‘‘Total’’ repre-
sents the union of the questions, and its figures do not necessarily
equal the sum of all categories. We labelled 598 answers of 255
questions, 61% of all the answers and 100% of the Best Practices
category. Among these, we found 4 questions without answers,
and 18 with irrelevant answers, e.g., they were unrelated to
database manipulation code.

Finally, one author carefully reviewed all the tags and organ-
ised them into a hierarchical taxonomy. This categorisation was
then discussed among the authors in multiple rounds. The final
taxonomy had 363 tags in 9 main categories. We present this
taxonomy through qualitative examples in Section 4.2.

4.2. Taxonomy of database testing best practices

Fig. 4 shows the main categories in the taxonomy of database
testing best practices. The taxonomy follows the same hierar-
chical structure as we described in Section 3.2. We had a total
number of 363 tags at the end of the manual labelling process.
Each tag represents a solution to a problem fitting into contexts
like ‘‘The developers recommend...’’ or ‘‘The solution to this problem
is...’’. We organised the tags into 9 root categories following a sim-
ilar classification to the taxonomy of issues. The figure presents
the number of questions (icon) and the number of tags (icon)
for the root categories. The lower-level tags, that are not in the
figure, are listed in the replication package [14]. In the rest of the
section, we describe each category through intriguing examples.

7

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Fig. 4. Taxonomy of best practices proposed by developers when testing database access code.

4.2.1. Test characteristics
Many answers expressed that sound tests should adhere to

specific characteristics and principles. Suggestions are mainly
general, such as the FIRST (Fast, Independent, Repeatable, Self
Validating, Thorough) principle (SE46), or that tests should be
atomic, small, simple, consistent and in compliance with require-
ments (SE47). Many highlighted that tests should be indepen-
dent/isolated. For example, an answer says that ‘‘if the tests can not
run independently, then they are not unit tests’’ (SE48). This is es-
pecially important for database-centred applications where it can
be tempting to write tests relying on a database state from a pre-
vious test, which would be against the rule of isolation. It can also
affect repeatability and further complicate test failures. An answer
points it out, ‘‘relying on the order of your tests indicates that you
are persisting state across tests. This is smelly’’ (SE49). Leaving the
database in a consistent state requires extra effort. Developers
have various suggestions, e.g., transactions, in-memory databases,
mocks, fakes, stubs. We have more specific tags for these in the
following taxonomy categories. It is also interesting to note the
up-to-date test property, highlighting the importance of syncing
tests with changes applied to the production database (SE50).

4.2.2. Code structure/design
This category contains recommendations targeting source

code structure or design. We grouped tags into three subcate-
gories: Coupling, Design Patterns, and Testability. Although they are

interrelated, we differentiated them based on the primary aim of
the suggestion.

Coupling was a primary concern for testing: 15 questions had
answers falling under this category. We identified tags such as
Design with loose coupling for better mocking, Decouple tests from
implementation. An answer noted: ‘‘Make sure you design them
[service classes] with loose coupling in mind so you can mock out
each dependency’’ (SE51).

We separated a subgroup where they specifically targeted cou-
pling With DB. Common recommendations were to Keep logic out
of the database, have a Separate data access layer, and Decouple the
data layer. As a developer said, ‘‘I would strongly suggest decoupling
it [the data access layer] from both the web and from the DB’’ (SE52).
Others added, ‘‘if your objects are tightly coupled to your data layer,
it is difficult to do proper unit testing ’’; (SE53) ‘‘The test knows
too much about intimate details of the implementation’’ (SE54).
Developers also proposed keeping logic out of the database (SE19,
SE55). An answer stressed that ‘‘too much business logic is making
its way into databases these days’’ (SE56).

Recommendations also aimed for general testability improve-
ments, such as a Design with single responsibility and Break the
code down to smaller testable units — for stored procedures too
(SE57).

Many suggestions mentioned Design Patterns. For example, de-
velopers recommended dependency injection in the answers to 14

8

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

questions. They employed it to automatically inject a connection
to a test database instead of the production database.

Developers said, ‘‘using dependency injection, have the unit
tests select a different database than what the production (or test,
or local) builds use’’ (SE58); ‘‘I’ve found that dependency injec-
tion is the design pattern that most helps make my code testable’’
(SE59). A design recommendation was also to have a dedicated
base class or template interface for tests involving database ac-
cess code, e.g., simplifying database initialisation, cleaning up, or
mocking (SE60).

4.2.3. Concepts
We found valuable discussion threads about definitions, var-

ious aspects of tests, and coverage. We grouped them under
the Concepts category. In particular, 34 questions were tagged
as Explanation of levels of tests: unit, interaction, integration, and
acceptance tests, the second most used tag.

Many answers state the differences between unit and integra-
tion testing when databases are involved. A common argument
is that unit tests should test their units in isolation; hence, they
should mock, fake, or stub the database. In contrast, integration
tests consist of an actual test database with test data reset in a
known state before and after each test.

An answer summarises it as follows: ‘‘A unit test deals with a
part of the code which is granular enough to be able to narrow the
search of a bug if the unit test fails. There is no long polling here.
No REST calls. No AJAX. No database access. REST, access to files,
database calls, and all those operations which are exterior to the
tested code are mocked, i.e. a mock or a stub is created for everything
your tested unit needs. [. . .] Once you have unit tests covering the
critical parts of the application, you can start assembling the parts.
Interfaces between different components of a system are good places
for mistakes, so the integration of components needs to be tested as
well. This is what integration tests are about ’’ (SE61).

We found interesting discussions about Coverage. They gener-
ally agreed that border and corner cases must be covered (SE62).
They also argued the importance of testing data access code: ‘‘If
you don’t test your database operations, how do you know that your
data access component works?’’ (SE63)

The Scope subcategory collects answers about What to or What
not to test. Developers suggested not to test (i) anything that can’t
fail (SE64), (ii) third-party code (SE65) and (iii) code without logic
(SE66). For example, an answer said, ‘‘there are many purists who
say that you shouldn’t test technologies such as EF and NHibernate.
They are right, they’re already very stringently tested and [. . .] it’s
often pointless to spend vast amounts of time testing what you don’t
own’’ (SE65). Another argued, ‘‘if it’s really thin and there’s no
interesting code there, don’t bother unit testing it. Don’t be afraid
to not unit test something if there’s no real code there’’ (SE66). The
data access layer has a special role in this case, as noted by a
developer: ‘‘Some people [. . .] say you should only test code which
has conditional logic (IF statements etc.), which may or may not
include your DAL [Data Access Layer]. Some people (often those doing
TDD [Test-Driven Development]) will say you should test everything,
including the DAL, and aim for 100% code coverage’’ (SE67).

What to test was more sparse with suggestions such as Check
both entities and queries, One test for each type of output resultset
(one row, multiple rows, empty resultset), Test DAO[Data Access
Object]/Repository normally if it performs any logic. Developers sug-
gested tests for pre- and postconditions (SE68), query correctness
(SE69, SE70, SE71), the connection string (SE5), database schema
(SE15), UI (SE72), and CRUD operations. The importance of the
latter one was highlighted in an answer as follows: ‘‘To really test
your service layer, I think your layer needs to go down to DLLs and
the database and write at least CRUD test ’’ (SE66).

We also found book recommendations, e.g., Growing Object-
Oriented Software, Guided by Tests (SE73, SE74), The Art of Unit
Testing (SE75 SE76), and xUnit Test Patterns (SE76).

4.2.4. Database management
The second most prevalent category was Database Manage-

ment. The same problem category was also significant in the
taxonomy of issues. We divided it into subcategories, i.e., the
preparation or clean up of a test database, the generation, storage,
and usage of test data, or handling the connection to the database.

The tags revolve around reaching a known state before each
test execution (e.g., SE77, SE78). Indeed, the recommendation to
Clean up before each test (known state) was the most prevalent,
with 20 occurrences. We have seen mainly two best practices as
follows. (i) Using an actual database, loading the schema and test
data before each test, then cleaning the database before the next
test case. There are various tuning practices. For example, one
can optimise database initialisation by loading the schema once
then populating only with necessary minimal data. Then clean up
only the modified records if there were any. Many also proposed
in-memory databases for performance reasons or simply because
they are easily destroyable after each test run. (ii) The other
thread was about transactions, i.e., load the schema and test data,
run the tests in transactions, then rollup changes. We tagged
these as Use transaction scopes (which revert the state of DB after
each test).

Interestingly, many frameworks provided support for these
techniques. We counted answers recommending setUp() & tear-
Down() methods for database initialisation and clean up in unit
tests. Spring also supports test execution through transaction
management.

Developers had intriguing arguments for these approaches
as follows. ‘‘Just remember: At the start of the test, everything is
created, at the end of the test everything is destroyed’’ (SE79). ‘‘I
suggest either connecting to an empty DB and filling with data in
the test set-up phase, then either emptying it or deleting it in the test
clean up phase or creating a copy of a constant DB, connecting to it
in the test set-up phase, then deleting in the test clean up phase. It is
important to do this per test, so that the tests are truly independent ’’
(SE55). ‘‘Using setUp() and tearDown() to get a consistent state for
your data before running your tests is (imho) a fine way to write
DB-driven unit tests’’ (SE80).

We also grouped generic DB-related recommendations in the
Test DB subcategory. For instance, an answer advised avoiding a
different type of DB than in production to prevent cross-platform
issues (SE81).

Finally, the Test data subcategory consists of recommendations
to generate, store, and use testing data. For example, Use the ORM
[Object-Relational Mapping] to initialise test data (SE65) or Generate
random but valid data entries (SE82).

4.2.5. Mocking
We separated a Mocking category in the taxonomy due to

the prevalence of these tags. The Use Mocking tag was assigned
to the most questions; we encountered it 46 times. A recurring
discussion of Concepts argued unit tests should imply mocking.
An answer stated it as follows: ‘‘If you test class B, which is a client
of A, then usually you mock the entire A object with something else,
[. . .]. Likewise, when you write a unit test for class C, which is a client
of B, you would mock something that takes the role of B’’ (SE5).

Answers proposed what to mock, e.g., ‘‘You shouldn’t mock calls
to the database because that would defeat the purpose. What you
SHOULD mock are, for example, calls to your DAO from, say, a service
layer. Mocking allows you to test methods in isolation’’. (SE83).
Others elaborated on how to mock and presented complete code
examples (SE84). Mocking frameworks (e.g., Easymock, Mockito,
Moq, Rhino Mocks) were often recommended. Many threads also
discussed the differences between mocks, stubs and fake objects
(SE85, SE86, SE27).

Interestingly, a few answers hinted that caution is needed
in using mocks (SE87, SE88). An answer argues that ‘‘I’d try to

9

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

use them [mocking] sparingly in unit tests since by using them
you actually try to test the function implementation and not the
adherence to its interface’’ (SE88).

4.2.6. Performance
We separated a group for performance tuning or optimisa-

tion recommendations. These were often context-specific or fine-
tuning alternatives. For example, an answer (SE81) recommended
using tmpfs (i.e., run the database on an in-memory filesystem)
when a per se in-memory database was not a viable option
(e.g., because of a different SQL dialect). Another answer sug-
gested using prepared statements in loops (SE82) or deferring
garbage collection for the tests (SE27). A recurring recommenda-
tion was using a lightweight database (in-memory) to optimise
performance (SE89, SE90).

4.2.7. Process
Process category groups tags about automatisation, continu-

ous integration, test failure debugging, or the testing process in
general (e.g., SE78 SE50). The most recurring discussions revolved
around integration and unit tests. In particular, they suggested
separating integration from unit tests (SE5), highlighted the im-
portance of automated UI tests (SE91), or proposed testing the
persistence layer manually (SE74).

Recommendations were also related to debugging, e.g., logging
failing or slow queries (SE92). They also suggested integration
testing in certain situations (SE93, SE31). As an example, an
answer says, ‘‘there’s no way to unit test Spring Data JPA [Java
Persistence API] repositories reasonably for a simple reason: it’s way
too cumbersome to mock all the parts of the JPA API we invoke
to bootstrap the repositories. Unit tests don’t make too much sense
here anyway, as you’re usually not writing any implementation
code yourself [. . .] so that integration testing is the most reasonable
approach’’ (SE94).

4.2.8. Test code
Recommendations also focused on the source code of the tests,

e.g., recommended specific APIs. We group these under the Test
Code category. The answers include configuration fixes, general
how-tos of APIs, code examples, or asserts in tests.

For example, developers often stress the importance of single
asserts. An answer says, ‘‘The tests are far more granular, each test
verifies one property [. . .] single asserts are good’’ (SE65). Another
developer argues that ‘‘there should only be one reason for a test to
fail’’ (SE95).

We learned that many testing frameworks actually provide
APIs to support database testing. In particular, we found API
recommendations for Android, Entity Framework, Django, LINQ,
Spring Framework, and NUnit.

4.2.9. Testing environment
We separated a group of Testing Environment recommenda-

tions. This group has the highest number of tags and questions
due to the several tools named in the answers. It consists of
advice about the application or build frameworks, configurations,
database management system, or various tool proposals.

Many answers recommended in-memory databases, e.g., H2,
HSQLBD, HyperSQL, Ephermal PG, and SQLite. These are not ex-
clusively relational. For example, a thread talks about using Mon-
goDB in memory mode (SE12).

Tool recommendation includes also mocking libraries (e.g.,
Easymock, Mockito, Moq, or Spring Data Mock). Database con-
figuration concerned various technologies such as Laravel (SE96),
JUnit (SE97), Spring Boot (SE98), Django (SE99, SE100). These
were mainly related to configuring a test database, fixtures, or
migrations. Flyway and Liquibase were also notable tools in this

context (SE81). They were mentioned to manage (track, version,
and deploy) database schema changes.

We also found tool recommendations for vulnerability testing,
e.g., SQL injections (SE101, SE102), and tools for virtualisation or
container environments (SE81).

Finally, it is interesting to notice that 24 answers proposed
DBUnit,15 a testing framework for database-centred applications
(SE103, SE89, SE77, SE81).

An answer remarks that ‘‘the DbUnit framework (a testing
framework allowing to put a database in a known state and to
perform assertion against its content) has a page listing database
testing best practices that, to my experience, are true’’ (SE78).

5. Discussion and implications

Below, we discuss the main observations we made in our
investigation, together with future directions for researchers and
practitioners.

Maintainability of database tests. Test maintenance was a fre-
quent issue. A developer aptly outlined, ‘‘if it is hard to maintain,
you’re doing it wrong ’’ (SE39). Many answers recommended fol-
lowing sound characteristics or principles. However, their imple-
mentation guidelines were often unclear. A common challenge
was to isolate tests. Best practices suggested mocking in unit
tests and a separate testing database for integration tests. They
preferred in-memory databases for this purpose. A well-designed
source code where the database access code is loosely coupled
to other parts also played a crucial role in maintainability. Many
struggled to keep tests in sync with database schema changes.
Indeed, developers hardly get any support for this task.

Our study is exploratory by nature. More studies are needed to
understand the factors affecting the maintainability of database-
related test code. Understanding more from the practices of the
developers and good, maintainable database test code [18,19] is
a promising direction. Alternatively, automated approaches could
help in regular tasks of developers. Some approaches aim to iden-
tify the system fragments impacted by schema changes [5,20].
Such methods could be extended to the testing context, e.g., to
maintain a mapping between schema elements and mocks.

In-memory database vs. actual database vs. mocking. We have seen
many arguments for and against mocking, in-memory databases,
or the actual database. In our motivational study, we found that
19 out of the 72 projects (26%) used mocks: 17 had Mock-
ito,16 and 2 had EasyMock tests.17 This low number surprised
us, as mocking was the recommended approach for unit tests
to decouple them from the database. This is in line with the
findings of Trautsch and Grabowski [21], who observed only
a small amount of unit tests in open source Python projects,
especially with mocks. A potential explanation is that it is easier
to set up an in-memory database and rely on integration tests;
instead of bothering with the implementation of mocks, despite
its advantages.

We also found positive examples when manually inspected
top-starred projects from the motivational study.

For instance, MyBatis,18 a popular project with 17k stars and
11.4k forks, had a 74% of its database access methods covered
with tests. It is a persistence framework, hence the high coverage.
They use mocking for unit testing19 and a test database with test

15 https://www.dbunit.org/.
16 https://site.mockito.org/.
17 https://easymock.org/.
18 https://github.com/mybatis/mybatis-3.
19 https://tinyurl.com/2dm37hv5.

10

https://www.dbunit.org/
https://site.mockito.org/
https://easymock.org/
https://github.com/mybatis/mybatis-3
https://tinyurl.com/2dm37hv5

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

data in scripts for integration testing.20 The test database is ini-
tialised before executing all tests, using the @BeforeAll annotation.
Finally, each test ends with a rollback function to get back to the
initial state of the database.21

As another example, AxonFramework,22 a framework for
building event-driven microsystems, has 2.6k stars and 699 forks.
They use dependency injection in the Spring framework to mock
the data source of tests.23 Their tests flush the database before
each test using the @BeforeEach annotation.24

In any respect, developers need help in the implementation of
database-related tests. They use frameworks’ features when avail-
able, but they would benefit from more automated support in
this context. Researchers have already explored generating tests
with mocks [22,23]. Such tools’ emergence and initial success
(e.g., EasyMock,17 MockNeat25) encourages similar approaches.

Database support in testing frameworks. In our motivational study,
we excluded projects with failing tests. Many failures were due to
misconfigured testing environments. The systems either (i) relied
on an external database for their tests or (ii) used in-memory
databases but did not set them up correctly. We observed related
problems in our qualitative study: many developers struggled
to configure frameworks with multiple database connections.
Consequently, our most extensive category among the solutions
was the testing environment. Almost half of the questions and a
third of the tags were related to this category.

Testing frameworks could provide more support to developers
with database-dedicated features. Especially if these are config-
urable from the build systems. Some frameworks already offer
similar functionalities. For example, Spring Test has JdbcTestU-
tils,26 a collection of JDBC-related functions. It also supports test
fixtures and transactional tests. Rails and Django offer similar
features.

Answers also mentioned dedicated tools to support databases
in unit or integration tests. For example, DBUnit is a JUnit ex-
tension targeted at database-driven projects, ‘‘an excellent way to
avoid the myriad of problems that can occur when one test case
corrupts the database and causes subsequent tests to fail or exac-
erbate the damage’’.15 PHPUnit’s database extension has similar
features.27

We observed that the most desired features pertained to the
initial configuration of databases and the efficient recovery of
the database state between successive tests. The high demand
and many problems related to such features indicate that devel-
opers’ needs remain unexplored in this field. Moreover, only a
few answers tackled trending technologies such as clouds and
virtualisation or docker containers. Such technologies could offer
robust solutions, but they appear to be unexploited.

Further research is necessary to improve testing practices as
far as database access is concerned. As an answer notes, ‘‘the
database is the bread and butter of most business’’ (SE104).

6. Threats to validity

In this section, we discuss threats to the validity of our moti-
vational study and two research questions.

20 https://tinyurl.com/39vkk8j2.
21 https://tinyurl.com/2p9ftswk.
22 https://github.com/AxonFramework/AxonFramework.
23 https://tinyurl.com/yckjv4h5.
24 https://tinyurl.com/5bs4nbzp.
25 https://github.com/nomemory/mockneat.
26 https://docs.spring.io/spring/docs/current/spring-framework-reference/
testing.html.
27 https://phpunit.de/manual/6.5/en/database.html.

Construct validity. In our motivational study, we rely on SQLIn-
spect to identify the database access methods of projects, i.e.,
methods involved in querying the database. As a static tool, it may
miss some DB methods, particularly in the case of highly dynamic
query construction.

For test coverage, we rely on JaCoCo, a state-of-the-art tool
used in industry and academia [24]. It might miss execution
paths, and its configuration can influence the coverage results
(e.g., missing classes from the classpath). To avoid this, we ex-
ecuted tests according to Maven standards and excluded projects
with failing tests.

Internal validity. In our qualitative analysis, the manual classifi-
cation of Stack Exchange questions is exposed to subjectiveness.
To mitigate this risk, two authors examined each post indepen-
dently, and a third author resolved conflicts in the first study. In
the second study, one author assessed a question first, and then a
second author reviewed it. Already assigned tags could influence
a reviewer. However, the statistics confirmed that reviewers did
not simply accept the taggings but also removed or added new
tags when needed. The questions had 2.51 tags on average in the
first round and 3.25 after the reviews. The total number of tags
has also increased 21% from 300 to 365.

External validity. Our motivational study is exploratory by nature.
It considers various types of projects in terms of their application
domain, size, and intensity of DB interactions. They are, however,
all from Libraries.io and limited to the Java programming lan-
guage. Projects not considered in our study might lead to other
results.

In our first qualitative study, we extracted questions from
three different Stack Exchange sites, intending to reach a higher
level of diversity. We selected higher-ranked questions which are
likely to influence more developers. Similarly, we labelled only
the top three answers in the second study. This might introduce
a bias towards the posts we selected. In reality, developers might
face even more diverse challenges when (not) testing database
code.

7. Related work

In this section, we overview the related work of our study.
First, we present empirical studies inspiring our research. Then,
we discuss approaches to support testing database applications
and present studies mining Stack Overflow.

7.1. Empirical studies on software testing

Our research got motivated and inspired by more general
studies analysing testing practices and maintainability issues.

In this context, Kochhar et al. [25] investigated the adoption
of testing in open source projects. They studied more than 20
thousand projects and explored the correlation of test cases with
project development characteristics, including project size, devel-
opment team size, number of bugs, number of bug reporters, and
the underlying programming languages.

Greiler et al. [26] conducted a qualitative study about testing
practices of plug-in based applications. They interviewed 25 se-
nior practitioners and surveyed more than 150 professionals. As
an outcome, they provide an overview of testing practices. They
identified obstacles limiting the adoption of automated tests and
proposed recommendations and areas for future research.

Beller et al. [27] conducted a large-scale field study on testing
practices, monitoring five months of activities from 416 software

11

https://tinyurl.com/39vkk8j2
https://tinyurl.com/2p9ftswk
https://github.com/AxonFramework/AxonFramework
https://tinyurl.com/yckjv4h5
https://tinyurl.com/5bs4nbzp
https://github.com/nomemory/mockneat
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
https://phpunit.de/manual/6.5/en/database.html

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

engineers. They observed, among others, that (i) developers rarely
run tests in the IDE, (ii) test-driven development is not widely
spread among the participants, and (iii) developers usually spend
25% of their time on testing.

Gonzalez et al. [28] analysed over 80k open-source projects.
They found that only 17% of those projects included test cases,
and 76% did not implement testing patterns that would ease
maintainability.

Trautsch and Grabowski [21] analysed more than 70k revisions
of 10 Python projects. They observed that most projects had
minimal unit tests, resulting in poor test coverage. They also
showed that developers tended to overestimate the coverage of
their tests and that mocks did not significantly influence the
number of unit tests.

Our qualitative analysis revealed that many Stack Exchange
questions concerned mocking, a testing technique often used to
isolate the component under test. Spadini et al. [29] empirically
analysed the usage of mocking dependencies on testing. Their
goal was to understand how and why developers used mocking.
They explored four projects with 2178 test dependencies and
surveyed 105 developers. Their results indicate that mocking is
often used on dependencies, complicating tests dependent on
external resources.

Alsharif et al. [18] studied the understandability of auto-
generated database tests. They argued that studies on creating
database tests did not consider the human cost to understand
such tests. They used five database test generators and asked
participants to explain the results. The authors highlighted two
main findings: (i) the values in insert statements affected under-
standability, and (ii) using null values with integrity constraints
may confuse human subjects on the outcome of tests.

7.2. Support for testing database applications

Several researchers have proposed approaches to support test-
ing database applications.

In this regard, Deng et al. [30] proposed a white-box testing
approach for web applications. They extracted URLs from the
application source code to create a path graph and generate test
cases.

Ran et al. [31] proposed a similar framework for black-box
testing of web applications. They used a directed graph of web
page transitions and database interactions to generate test se-
quences and capture how the database gets updated with the test
cases.

Marcozzi et al. [32] proposed an approach to symbolic execu-
tion of SQL statements integrated with the traditional symbolic
execution of the application source code. Their approach han-
dled interdependent interactions between the application and the
database. They also presented a symbolic execution algorithm
for a subset of Java and SQL, implemented as a testing tool for
generating test cases.

Another important aspect of testing database applications is
specialised coverage since standard coverage techniques appear
unsuitable for preserving all database constraints.

In this sense, Kapfhammer and Soffa [33] presented a test cov-
erage technique to monitor interactions with database elements.
They employed instrumentation of the application and test cases
to capture SQL statement usage. Then they collected database-
aware coverage reports of a test suite. Their coverage results
also considered database interactions from the test cases and the
program methods. They used six database-centric applications as
case studies and observed a testing time increase from 13% to 54%
as a drawback.

Tuya et al. [34] presented an approach to measure SQL query
coverage. They argued that SQL queries embedded in code are

not considered for test design, although queries implement an
important part of the business logic. Their approach identified
test data requirements for SQL statements and expressed them as
a set of predicate rules. They demonstrated it on an open-source
ERP application as a case study.

7.3. Mining stack exchange discussions

We collected and classified questions in Stack Exchange sites
through a multi-label approach, inspired by previous work in our
field.

Vasilescu et al. [35] investigated relationships between Stack-
Overflow questions/answers and GitHub commits. They argued
that developers could find suitable technical solutions in Stack-
Overflow, affecting their commit productivity on GitHub. Their
study showed a positive correlation indicating that develop-
ers’ activity on StackOverflow affected their commit activity on
GitHub.

Finally, Gonzalez et al. [36] proposed a five-way classifier ap-
proach assigning multiple tags to StackOverflow questions. They
used a dataset of over 3 million questions.

7.4. Summary

The analysis of related research shows that database access
code is sufficiently different from regular code to warrant spe-
cialised approaches. Several research works proposed approaches
to support testing database access code. Nevertheless, no research
has investigated how developers test database access code in
practice, the main issues they face in this context, and the best
practices recommended by the developer community.

Our previous work [13] tried to fill this gap by analysing how
tests in open-source systems cover the database access code and
investigating the challenges of testing database access code. In
this extension, we study the best practices of the developers.

8. Conclusion

We studied developers’ challenges and best practices in testing
database access code. In our first motivational study, we analysed
72 open-source Java projects and investigated how their tests
cover database access code. We found that 46% of those projects
did not test half of their database methods, and 33% of them did
not test the database communication at all.

We then conducted two qualitative studies. (i) First, we anal-
ysed 532 StackExchange questions about database code testing
and identified 83 issues, classified in a taxonomy of 7 main
categories. We found that developers mostly look for general
best practices to test DB access code. Concerning technical issues,
they ask mostly about DB handling, mocking, parallelisation, or
framework/tool usage. (ii) Next, we examined the answers to
the questions. We distinguished 363 best practices and organ-
ised them with 9 main categories in a taxonomy. Most of the
tags and questions were related to the testing environment and
proposed various tools or configurations. The second most signif-
icant category was about database management best practices for
initialising and cleaning a test database. The remaining categories
were code structure or design, concepts, performance, processes,
test characteristics, test code, and mocking.

We addressed an unexplored field of testing database com-
munication and identified developers’ main difficulties and best
practices. Further investigation is necessary, however, such as
the validation of the two taxonomies with testing practition-
ers. Feedback from practitioners could guide researchers towards
dedicated techniques and tools to assist developers when testing
DB access code.

12

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Table A.5
StackExchange posts.
Id Title URL

SE1 Integration Testing best practices http://www.stackoverflow.com/questions/1328730
SE2 TDD: ‘‘Test Only’’ Methods http://www.stackoverflow.com/questions/2295965
SE3 Good approach/Strategy to keep integration... https://softwareengineering.stackexchange.com/questions/302458
SE4 Managing database connections for unit tests https://codereview.stackexchange.com/questions/201711
SE5 Unit-Tests and databases: At which point do... https://softwareengineering.stackexchange.com/questions/206539
SE6 In JUnit 5, how to run code before all tests http://www.stackoverflow.com/questions/43282798
SE7 Spring integration tests with profile http://www.stackoverflow.com/questions/20551681
SE8 Different db for testing in Django? http://www.stackoverflow.com/questions/4650509
SE9 How to run Django tests on Heroku http://www.stackoverflow.com/questions/13705328
SE10 Django test to use existing database http://www.stackoverflow.com/questions/6250353
SE11 How to suppress... http://www.stackoverflow.com/questions/44080733
SE12 In-memory MongoDB for test? http://www.stackoverflow.com/questions/13607732
SE13 Should mock objects for tests be created at... https://softwareengineering.stackexchange.com/questions/216072
SE14 What’s the idea behind mocking data access... https://softwareengineering.stackexchange.com/questions/262686
SE15 Ways of unit testing data access layer http://www.stackoverflow.com/questions/15000908
SE16 How to Mock Test Data for complicated... https://softwareengineering.stackexchange.com/questions/405456
SE17 How to throw a SqlException when needed for... http://www.stackoverflow.com/questions/1386962
SE18 How to write unit tests without mocking data https://softwareengineering.stackexchange.com/questions/193614
SE19 Unit testing Systems with Logic Tightly... https://softwareengineering.stackexchange.com/questions/356087
SE20 Rethinking testing strategy https://softwareengineering.stackexchange.com/questions/212887
SE21 How to turn off parallel execution of tests... http://www.stackoverflow.com/questions/11899723
SE22 Unit testing Room and LiveData http://www.stackoverflow.com/questions/44270688
SE23 How to run tests in parallel in Django? http://www.stackoverflow.com/questions/5303819
SE24 What’s the best strategy for unit-testing... http://www.stackoverflow.com/questions/145131
SE25 How do you handle testing applications that... http://www.stackoverflow.com/questions/2393428
SE26 Integration Testing best practices http://www.stackoverflow.com/questions/1328730
SE27 Rails 3.0.7 -> How do you get your tests to... http://www.stackoverflow.com/questions/6087329
SE28 How can I automatically test my site for SQL... http://www.stackoverflow.com/questions/9685884
SE29 Django: is there a way to count SQL queries... http://www.stackoverflow.com/questions/1254170
SE30 Do you test your SQL/HQL/Criteria? https://softwareengineering.stackexchange.com/questions/33182
SE31 How do I test database migrations? http://www.stackoverflow.com/questions/2332400
SE32 How to show SQL query log generated by a... http://www.stackoverflow.com/questions/6884408
SE33 SQL queries in integration tests https://softwareengineering.stackexchange.com/questions/326003
SE34 Integrating Automated Web Testing Into Build... http://www.stackoverflow.com/questions/1240057
SE35 What is a good method of storing test data... https://softwareengineering.stackexchange.com/questions/238971
SE36 Do the terms ‘‘unit test’’ and ‘‘integration’’... https://softwareengineering.stackexchange.com/questions/302559
SE37 Databases and Unit/Integration Testing https://softwareengineering.stackexchange.com/questions/101273
SE38 How do you unit test business applications? http://www.stackoverflow.com/questions/38598
SE39 Unit Test vs Integration Test in Web... http://www.stackoverflow.com/questions/15292751
SE40 What’s the best strategy for unit-testing... http://www.stackoverflow.com/questions/145131
SE41 Should on each test create and nuke a... https://softwareengineering.stackexchange.com/questions/394145
SE42 Testing—In-Memory DB vs. Mocking https://softwareengineering.stackexchange.com/questions/358491
SE43 Unit testing a service to return items from... https://codereview.stackexchange.com/questions/98301
SE44 MySQL—force not to use cache for testing... http://www.stackoverflow.com/questions/181894
SE45 Shouldn’t unit tests use my own methods? https://softwareengineering.stackexchange.com/questions/330304
SE46 How to test data based on SQL queries? https://softwareengineering.stackexchange.com/questions/315178
SE47 Testing my VB.NET code? https://softwareengineering.stackexchange.com/questions/159943
SE48 Should each unit test be able to be run... https://softwareengineering.stackexchange.com/questions/64306
SE49 Is it bad form to count on the order of your... http://www.stackoverflow.com/questions/497699
SE50 My first model test in PHPUnit https://codereview.stackexchange.com/questions/59662
SE51 How do I unit test a WCF service? http://www.stackoverflow.com/questions/37375
SE52 unit/integration testing web service proxy... https://softwareengineering.stackexchange.com/questions/167906
SE53 How to unit test an object with database... http://www.stackoverflow.com/questions/30710
SE54 Unit test for a method that adds tweets to a... https://codereview.stackexchange.com/questions/128287
SE55 Unit/Integration Testing my DAL https://softwareengineering.stackexchange.com/questions/133448
SE56 Is Unit Testing your SQL taking TDD Too far? http://www.stackoverflow.com/questions/730488
SE57 Am I Unit Testing or Integration Testing my... https://softwareengineering.stackexchange.com/questions/81801
SE58 How to test the data access layer? https://softwareengineering.stackexchange.com/questions/219362
SE59 Is a class that is hard to unit test badly... http://www.stackoverflow.com/questions/2658859
SE60 Basic Unit Test of Application Service,... https://codereview.stackexchange.com/questions/234960
SE61 How to create unit/integration tests for my... https://softwareengineering.stackexchange.com/questions/214529
SE62 SQLite Database inserting + Unit tests in... https://codereview.stackexchange.com/questions/132742
SE63 Unit Testing—What not to test http://www.stackoverflow.com/questions/1316848
SE64 Unit Testing—What not to test http://www.stackoverflow.com/questions/1316848
SE65 How are people unit testing with Entity... http://www.stackoverflow.com/questions/22690877
SE66 How do I unit test a WCF service? http://www.stackoverflow.com/questions/37375
SE67 Should I Unit Test Data Access Layer? Is... http://www.stackoverflow.com/questions/3333120
SE68 How to add rigor to my testing? https://softwareengineering.stackexchange.com/questions/270422
SE69 How to write unit tests for database calls http://www.stackoverflow.com/questions/1217736
SE70 What kind of unit tests should be written... https://softwareengineering.stackexchange.com/questions/336880
SE71 Unit testing with MongoDB http://www.stackoverflow.com/questions/7413985

(continued on next page)

13

http://www.stackoverflow.com/questions/1328730
http://www.stackoverflow.com/questions/2295965
https://softwareengineering.stackexchange.com/questions/302458
https://codereview.stackexchange.com/questions/201711
https://softwareengineering.stackexchange.com/questions/206539
http://www.stackoverflow.com/questions/43282798
http://www.stackoverflow.com/questions/20551681
http://www.stackoverflow.com/questions/4650509
http://www.stackoverflow.com/questions/13705328
http://www.stackoverflow.com/questions/6250353
http://www.stackoverflow.com/questions/44080733
http://www.stackoverflow.com/questions/13607732
https://softwareengineering.stackexchange.com/questions/216072
https://softwareengineering.stackexchange.com/questions/262686
http://www.stackoverflow.com/questions/15000908
https://softwareengineering.stackexchange.com/questions/405456
http://www.stackoverflow.com/questions/1386962
https://softwareengineering.stackexchange.com/questions/193614
https://softwareengineering.stackexchange.com/questions/356087
https://softwareengineering.stackexchange.com/questions/212887
http://www.stackoverflow.com/questions/11899723
http://www.stackoverflow.com/questions/44270688
http://www.stackoverflow.com/questions/5303819
http://www.stackoverflow.com/questions/145131
http://www.stackoverflow.com/questions/2393428
http://www.stackoverflow.com/questions/1328730
http://www.stackoverflow.com/questions/6087329
http://www.stackoverflow.com/questions/9685884
http://www.stackoverflow.com/questions/1254170
https://softwareengineering.stackexchange.com/questions/33182
http://www.stackoverflow.com/questions/2332400
http://www.stackoverflow.com/questions/6884408
https://softwareengineering.stackexchange.com/questions/326003
http://www.stackoverflow.com/questions/1240057
https://softwareengineering.stackexchange.com/questions/238971
https://softwareengineering.stackexchange.com/questions/302559
https://softwareengineering.stackexchange.com/questions/101273
http://www.stackoverflow.com/questions/38598
http://www.stackoverflow.com/questions/15292751
http://www.stackoverflow.com/questions/145131
https://softwareengineering.stackexchange.com/questions/394145
https://softwareengineering.stackexchange.com/questions/358491
https://codereview.stackexchange.com/questions/98301
http://www.stackoverflow.com/questions/181894
https://softwareengineering.stackexchange.com/questions/330304
https://softwareengineering.stackexchange.com/questions/315178
https://softwareengineering.stackexchange.com/questions/159943
https://softwareengineering.stackexchange.com/questions/64306
http://www.stackoverflow.com/questions/497699
https://codereview.stackexchange.com/questions/59662
http://www.stackoverflow.com/questions/37375
https://softwareengineering.stackexchange.com/questions/167906
http://www.stackoverflow.com/questions/30710
https://codereview.stackexchange.com/questions/128287
https://softwareengineering.stackexchange.com/questions/133448
http://www.stackoverflow.com/questions/730488
https://softwareengineering.stackexchange.com/questions/81801
https://softwareengineering.stackexchange.com/questions/219362
http://www.stackoverflow.com/questions/2658859
https://codereview.stackexchange.com/questions/234960
https://softwareengineering.stackexchange.com/questions/214529
https://codereview.stackexchange.com/questions/132742
http://www.stackoverflow.com/questions/1316848
http://www.stackoverflow.com/questions/1316848
http://www.stackoverflow.com/questions/22690877
http://www.stackoverflow.com/questions/37375
http://www.stackoverflow.com/questions/3333120
https://softwareengineering.stackexchange.com/questions/270422
http://www.stackoverflow.com/questions/1217736
https://softwareengineering.stackexchange.com/questions/336880
http://www.stackoverflow.com/questions/7413985

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Table A.5 (continued).
Id Title URL

SE72 Beginning Automated Testing http://www.stackoverflow.com/questions/12907080
SE73 Does TDD include integration tests? http://www.stackoverflow.com/questions/18988040
SE74 Do we need test data or can we rely on unit... https://softwareengineering.stackexchange.com/questions/113441
SE75 Never written much unit tests, how can I... https://softwareengineering.stackexchange.com/questions/128859
SE76 Removing the ‘‘integration test scam’’ -... https://softwareengineering.stackexchange.com/questions/135011
SE77 How to test the data access layer? https://softwareengineering.stackexchange.com/questions/219362
SE78 How to do database unit testing? http://www.stackoverflow.com/questions/3772093
SE79 Should you hard code your data across all... https://softwareengineering.stackexchange.com/questions/212678
SE80 Phpunit testing with database http://www.stackoverflow.com/questions/4585345
SE81 How to simulate a DB for testing (Java)? http://www.stackoverflow.com/questions/928760
SE82 Creating many random test database entries https://codereview.stackexchange.com/questions/14411
SE83 Why do we write mock objects when writing... https://softwareengineering.stackexchange.com/questions/61366
SE84 How to test DAO methods using Mockito? http://www.stackoverflow.com/questions/28388204
SE85 How to create unit/integration tests for my... https://softwareengineering.stackexchange.com/questions/214529
SE86 Testing properties with private setters https://softwareengineering.stackexchange.com/questions/317121
SE87 Unit Testing with massive lookup tables? https://softwareengineering.stackexchange.com/questions/287735
SE88 Where is the line between unit testing... https://softwareengineering.stackexchange.com/questions/322909
SE89 How do I unit test jdbc code in java? http://www.stackoverflow.com/questions/266370
SE90 How to Test Web Code? http://www.stackoverflow.com/questions/2913
SE91 Unit testing database application with... http://www.stackoverflow.com/questions/2609204
SE92 Best practices for database testing with... http://www.stackoverflow.com/questions/3697815
SE93 Unit-testing an adapter https://codereview.stackexchange.com/questions/38906
SE94 How to test Spring Data repositories? http://www.stackoverflow.com/questions/23435937
SE95 Is this good practice with unit-testing? https://codereview.stackexchange.com/questions/37584
SE96 Laravel 5 : Use different database for... http://www.stackoverflow.com/questions/35227226
SE97 JUnit tests always rollback the transactions http://www.stackoverflow.com/questions/9817388
SE98 Initialising a database before Spring Boot... http://www.stackoverflow.com/questions/38262430
SE99 How can I specify a database for Django... http://www.stackoverflow.com/questions/4606756
SE100 How to create table during Django tests with... http://www.stackoverflow.com/questions/7020966
SE101 Do you have any SQL Injection Testing ‘‘Ammo’’? http://www.stackoverflow.com/questions/274659
SE102 Testing for security vulnerabilities in web... http://www.stackoverflow.com/questions/2351315
SE103 Best way to test SQL queries http://www.stackoverflow.com/questions/754527
SE104 How do you unit test your T-SQL http://www.stackoverflow.com/questions/2765212

Replication package. All data, scripts, and detailed results of our
study publicly are available in a replication package [14].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was supported by (i) the F.R.S.-FNRS (Fonds de la
Recherche Scientifique) and FWO-Vlaanderen EOS project SECO-
ASSIST (30446992), (ii) the F.R.S.-FNRS and SNF (Swiss National
Science Foundation) PDR project INSTINCT (35270712), and (iii)
Flanders Make vzw.

Appendix A. StackExchange References

See Table A.5.

References

[1] M. Stonebraker, D. Deng, M.L. Brodie, Application-database co-evolution:
A new design and development paradigm, in: New England Database Day,
2017.

[2] A. Cleve, A. Brogneaux, J. Hainaut, A conceptual approach to database
applications evolution, in: Proceedings of the 29th International Conference
on Conceptual Modeling (ER 2010), Springer Berlin Heidelberg, 2010, pp.
132–145, http://dx.doi.org/10.1007/978-3-642-16373-9_10.

[3] D. Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema
and code in database applications, in: Proceedings of the 9th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2013),
ACM, 2013, pp. 125–135, http://dx.doi.org/10.1145/2491411.2491431.

[4] L. Meurice, C. Nagy, A. Cleve, Static analysis of dynamic database usage
in Java systems, in: Proceedings of the 28th International Conference on
Advanced Information Systems Engineering (CAiSE 2016), Springer, 2016,
pp. 491–506, http://dx.doi.org/10.1007/978-3-319-39696-5_30.

[5] L. Meurice, C. Nagy, A. Cleve, Detecting and preventing program incon-
sistencies under database schema evolution, in: Proceedings of the 2016
IEEE International Conference on Software Quality, Reliability and Security
(QRS 2016), 2016, pp. 262–273, http://dx.doi.org/10.1109/QRS.2016.38.

[6] T.-H. Chen, W. Shang, A.E. Hassan, M. Nasser, P. Flora, Detecting problems
in the database access code of large scale systems, in: Proceedings of the
38th International Conference on Software Engineering (ICSE 2016), ACM,
2016, pp. 71–80, http://dx.doi.org/10.1145/2889160.2889228.

[7] P. Vassiliadis, A.V. Zarras, Survival in schema evolution: Putting the lives
of survivor and dead tables in counterpoint, in: Proceedings of the 29th
International Conference on Advanced Information Systems Engineering
(CAiSE 2017), Springer International Publishing, 2017, pp. 333–347, http:
//dx.doi.org/10.1007/978-3-319-59536-8_21.

[8] J. Delplanque, A. Etien, N. Anquetil, S. Ducasse, Recommendations for
evolving relational databases, in: Proceedings of the 32nd International
Conference on Advanced Information Systems Engineering (CAiSE 2020),
Springer International Publishing, 2020, pp. 498–514, http://dx.doi.org/10.
1007/978-3-030-49435-3_31.

[9] D. Chays, S. Dan, P.G. Frankl, F.I. Vokolos, E.J. Weber, A framework for
testing database applications, in: Proceedings of the 2000 International
Symposium on Software Testing and Analysis (ISSTA 2000), ACM, 2000,
pp. 147–157, http://dx.doi.org/10.1145/347324.348954.

[10] J. Castelein, M. Aniche, M. Soltani, A. Panichella, A. van Deursen, Search-
based test data generation for SQL queries, in: Proceedings of the 40th
International Conference on Software Engineering (ICSE 2018), ACM, 2018,
pp. 1220–1230, http://dx.doi.org/10.1145/3180155.3180202.

[11] D. Garg, A. Datta, Test case prioritization due to database changes in web
applications, in: Proceedings of the 5th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2012), IEEE, 2012, pp.
726–730, http://dx.doi.org/10.1109/ICST.2012.163.

[12] R.H. Rosero, O.S. Gómez, G.D.R. Rafael, Regression testing of database ap-
plications under an incremental software development setting, IEEE Access
5 (2017) 18419–18428, http://dx.doi.org/10.1109/ACCESS.2017.2749502.

[13] M. Gobert, C. Nagy, H. Rocha, S. Demeyer, A. Cleve, Challenges and
perils of testing database manipulation code, in: M. La Rosa, S. Sadiq,
E. Teniente (Eds.), Advanced Information Systems Engineering, Springer
International Publishing, 2021, pp. 229–245, http://dx.doi.org/10.1007/978-
3-030-79382-1_14.

[14] M. Gobert, C. Nagy, H. Rocha, S. Demeyer, A. Cleve, Replication
package, 2022, https://github.com/csnagy/infosys2022-db-manipulation-
testing, Accessed: March, 2022.

[15] C. Nagy, A. Cleve, Sqlinspect: a static analyzer to inspect database usage in
Java applications, in: Proceedings of the 40th International Conference on

14

http://www.stackoverflow.com/questions/12907080
http://www.stackoverflow.com/questions/18988040
https://softwareengineering.stackexchange.com/questions/113441
https://softwareengineering.stackexchange.com/questions/128859
https://softwareengineering.stackexchange.com/questions/135011
https://softwareengineering.stackexchange.com/questions/219362
http://www.stackoverflow.com/questions/3772093
https://softwareengineering.stackexchange.com/questions/212678
http://www.stackoverflow.com/questions/4585345
http://www.stackoverflow.com/questions/928760
https://codereview.stackexchange.com/questions/14411
https://softwareengineering.stackexchange.com/questions/61366
http://www.stackoverflow.com/questions/28388204
https://softwareengineering.stackexchange.com/questions/214529
https://softwareengineering.stackexchange.com/questions/317121
https://softwareengineering.stackexchange.com/questions/287735
https://softwareengineering.stackexchange.com/questions/322909
http://www.stackoverflow.com/questions/266370
http://www.stackoverflow.com/questions/2913
http://www.stackoverflow.com/questions/2609204
http://www.stackoverflow.com/questions/3697815
https://codereview.stackexchange.com/questions/38906
http://www.stackoverflow.com/questions/23435937
https://codereview.stackexchange.com/questions/37584
http://www.stackoverflow.com/questions/35227226
http://www.stackoverflow.com/questions/9817388
http://www.stackoverflow.com/questions/38262430
http://www.stackoverflow.com/questions/4606756
http://www.stackoverflow.com/questions/7020966
http://www.stackoverflow.com/questions/274659
http://www.stackoverflow.com/questions/2351315
http://www.stackoverflow.com/questions/754527
http://www.stackoverflow.com/questions/2765212
http://refhub.elsevier.com/S0306-4379(22)00088-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00088-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00088-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00088-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00088-6/sb1
http://dx.doi.org/10.1007/978-3-642-16373-9_10
http://dx.doi.org/10.1145/2491411.2491431
http://dx.doi.org/10.1007/978-3-319-39696-5_30
http://dx.doi.org/10.1109/QRS.2016.38
http://dx.doi.org/10.1145/2889160.2889228
http://dx.doi.org/10.1007/978-3-319-59536-8_21
http://dx.doi.org/10.1007/978-3-319-59536-8_21
http://dx.doi.org/10.1007/978-3-319-59536-8_21
http://dx.doi.org/10.1007/978-3-030-49435-3_31
http://dx.doi.org/10.1007/978-3-030-49435-3_31
http://dx.doi.org/10.1007/978-3-030-49435-3_31
http://dx.doi.org/10.1145/347324.348954
http://dx.doi.org/10.1145/3180155.3180202
http://dx.doi.org/10.1109/ICST.2012.163
http://dx.doi.org/10.1109/ACCESS.2017.2749502
http://dx.doi.org/10.1007/978-3-030-79382-1_14
http://dx.doi.org/10.1007/978-3-030-79382-1_14
http://dx.doi.org/10.1007/978-3-030-79382-1_14
https://github.com/csnagy/infosys2022-db-manipulation-testing
https://github.com/csnagy/infosys2022-db-manipulation-testing
https://github.com/csnagy/infosys2022-db-manipulation-testing

M. Gobert, C. Nagy, H. Rocha et al. Information Systems 111 (2023) 102105

Software Engineering: Companion Proceeedings (ICSE 2018), ACM, 2018,
pp. 93–96, http://dx.doi.org/10.1145/3183440.3183496.

[16] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Inf. Softw.
Technol. 64 (2015) 1–18, http://dx.doi.org/10.1016/j.infsof.2015.03.007.

[17] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software engi-
neering: A systematic mapping study and a revised taxonomy development
method, Inf. Softw. Technol. 85 (2017) 43–59, http://dx.doi.org/10.1016/j.
infsof.2017.01.006.

[18] A. Alsharif, G.M. Kapfhammer, P. McMinn, What factors make SQL test
cases understandable for testers? A human study of automated test data
generation techniques, in: Proceedings of the 35th IEEE International
Conference on Software Maintenance and Evolution (ICSME 2019), 2019,
pp. 437–448, http://dx.doi.org/10.1109/ICSME.2019.00076.

[19] M. Riaz, E. Mendes, E. Tempero, Towards maintainability prediction for
relational database-driven software applications: Evidence from software
practitioners, in: Proceedings of the 2010 International Conference on Ad-
vances in Software Engineering (ASEA 2010), Springer, 2010, pp. 110–119,
http://dx.doi.org/10.1007/978-3-642-17578-7_12.

[20] A. Maule, W. Emmerich, D.S. Rosenblum, Impact analysis of database
schema changes, in: Proceedings of the 30th ACM/IEEE International
Conference on Software Engineering (ICSE 2008), ACM, 2008, pp. 451–460,
http://dx.doi.org/10.1145/1368088.1368150.

[21] F. Trautsch, J. Grabowski, Are there any unit tests? An empirical study
on unit testing in open source python projects, in: Proceedings of the
10th IEEE International Conference on Software Testing, Verification and
Validation (ICST 2017), IEEE, 2017, pp. 207–218, http://dx.doi.org/10.1109/
ICST.2017.26.

[22] B. Pasternak, S. Tyszberowicz, A. Yehudai, GenUTest: a unit test and mock
aspect generation tool, Int. J. Softw. Tools Technol. Transf. 11 (4) (2009)
273, http://dx.doi.org/10.1007/s10009-009-0115-4.

[23] A. Arcuri, G. Fraser, R. Just, Private API access and functional mocking
in automated unit test generation, in: Proceedings of the 10th IEEE
International Conference on Software Testing, Verification and Validation
(ICST 2017), 2017, pp. 126–137, http://dx.doi.org/10.1109/ICST.2017.19.

[24] M. Ivanković, G. Petrović, R. Just, G. Fraser, Code coverage at google,
in: Proceedings of the 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE 2019), ACM, 2019, pp. 955–963, http://dx.doi.org/10.1145/
3338906.3340459.

[25] P.S. Kochhar, T.F. Bissyandé, D. Lo, L. Jiang, An empirical study of adoption
of software testing in open source projects, in: Proceedings of the 13th
International Conference on Quality Software (QSIC 2013), 2013, pp.
103–112, http://dx.doi.org/10.1109/QSIC.2013.57.

[26] M. Greiler, A. van Deursen, M.D. Storey, Test confessions: A study of testing
practices for plug-in systems, in: Proceedings of the 34th International
Conference on Software Engineering (ICSE 2012), IEEE Computer Society,
2012, pp. 244–254, http://dx.doi.org/10.1109/ICSE.2012.6227189.

[27] M. Beller, G. Gousios, A. Panichella, A. Zaidman, When, how, and why
developers (do not) test in their IDEs, in: Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015), ACM,
2015, pp. 179–190, http://dx.doi.org/10.1145/2786805.2786843.

[28] D. Gonzalez, J.C. Santos, A. Popovich, M. Mirakhorli, M. Nagappan, A large-
scale study on the usage of testing patterns that address maintainability
attributes: Patterns for ease of modification, diagnoses, and comprehen-
sion, in: Proceedings of the 14th International Conference on Mining
Software Repositories (MSR 2017), 2017, pp. 391–401, http://dx.doi.org/
10.1109/MSR.2017.8.

[29] D. Spadini, M. Aniche, M. Bruntink, A. Bacchelli, Mock objects for testing
Java systems, Empir. Softw. Eng. 24 (3) (2019) 1461–1498, http://dx.doi.
org/10.1007/s10664-018-9663-0.

[30] Y. Deng, P. Frankl, J. Wang, Testing web database applications, SIGSOFT
Softw. Eng. Notes 29 (5) (2004) 1–10, http://dx.doi.org/10.1145/1022494.
1022528.

[31] L. Ran, C. Dyreson, A. Andrews, R. Bryce, C. Mallery, Building test cases and
oracles to automate the testing of web database applications, Inf. Softw.
Technol. 51 (2) (2009) 460–477, http://dx.doi.org/10.1016/j.infsof.2008.05.
016.

[32] M. Marcozzi, W. Vanhoof, J.-L. Hainaut, Relational symbolic execution of
SQL code for unit testing of database programs, Science of Computer
Programming 105 (2015) 44–72, http://dx.doi.org/10.1016/j.scico.2015.03.
005.

[33] G.M. Kapfhammer, M.L. Soffa, Database-aware test coverage monitoring,
in: Proceedings of the 1st India Software Engineering Conference (ISEC
2008), ACM, 2008, pp. 77–86, http://dx.doi.org/10.1145/1342211.1342228.

[34] J. Tuya, M.J. Suárez-Cabal, C. de la Riva, Full predicate coverage for testing
SQL database queries, Softw. Test. Verif. Reliab. 20 (2010) 237–288, http:
//dx.doi.org/10.1002/stvr.424.

[35] B. Vasilescu, V. Filkov, A. Serebrenik, StackOverflow and GitHub: Associa-
tions between software development and crowdsourced knowledge, in:
Proceedings of the 2013 International Conference on Social Computing
(ICSC 2013), 2013, pp. 188–195, http://dx.doi.org/10.1109/SocialCom.2013.
35.

[36] J.R. Cedeño González, J.J. Flores Romero, M.G. Guerrero, F. Calderón,
Multi-class multi-tag classifier system for StackOverflow questions, in:
Proceedings of the 2015 IEEE International Autumn Meeting on Power,
Electronics and Computing (ROPEC 2015), 2015, pp. 1–6, http://dx.doi.org/
10.1109/ROPEC.2015.7395121.

15

http://dx.doi.org/10.1145/3183440.3183496
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1109/ICSME.2019.00076
http://dx.doi.org/10.1007/978-3-642-17578-7_12
http://dx.doi.org/10.1145/1368088.1368150
http://dx.doi.org/10.1109/ICST.2017.26
http://dx.doi.org/10.1109/ICST.2017.26
http://dx.doi.org/10.1109/ICST.2017.26
http://dx.doi.org/10.1007/s10009-009-0115-4
http://dx.doi.org/10.1109/ICST.2017.19
http://dx.doi.org/10.1145/3338906.3340459
http://dx.doi.org/10.1145/3338906.3340459
http://dx.doi.org/10.1145/3338906.3340459
http://dx.doi.org/10.1109/QSIC.2013.57
http://dx.doi.org/10.1109/ICSE.2012.6227189
http://dx.doi.org/10.1145/2786805.2786843
http://dx.doi.org/10.1109/MSR.2017.8
http://dx.doi.org/10.1109/MSR.2017.8
http://dx.doi.org/10.1109/MSR.2017.8
http://dx.doi.org/10.1007/s10664-018-9663-0
http://dx.doi.org/10.1007/s10664-018-9663-0
http://dx.doi.org/10.1007/s10664-018-9663-0
http://dx.doi.org/10.1145/1022494.1022528
http://dx.doi.org/10.1145/1022494.1022528
http://dx.doi.org/10.1145/1022494.1022528
http://dx.doi.org/10.1016/j.infsof.2008.05.016
http://dx.doi.org/10.1016/j.infsof.2008.05.016
http://dx.doi.org/10.1016/j.infsof.2008.05.016
http://dx.doi.org/10.1016/j.scico.2015.03.005
http://dx.doi.org/10.1016/j.scico.2015.03.005
http://dx.doi.org/10.1016/j.scico.2015.03.005
http://dx.doi.org/10.1145/1342211.1342228
http://dx.doi.org/10.1002/stvr.424
http://dx.doi.org/10.1002/stvr.424
http://dx.doi.org/10.1002/stvr.424
http://dx.doi.org/10.1109/SocialCom.2013.35
http://dx.doi.org/10.1109/SocialCom.2013.35
http://dx.doi.org/10.1109/SocialCom.2013.35
http://dx.doi.org/10.1109/ROPEC.2015.7395121
http://dx.doi.org/10.1109/ROPEC.2015.7395121
http://dx.doi.org/10.1109/ROPEC.2015.7395121

