
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

MuTEd

A Comparative Study of Classic and Extreme Mutation Testing for Teaching Software
Testing

LUYCX, Pierre; Balfroid, Martin

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/3cba651e-af7c-47f7-826b-3ff6d3865449

MuTEd: A Comparative Study of
Classic and Extreme Mutation Testing

for Teaching Software Testing

Balfroid Martin
Luycx Pierre

RUE GRANDGAGNAGE, 21 ● B-5000 NAMUR (BELGIUM)

Résumé

Bien que le test soit une activité essentielle du génie logiciel, des études ont
montré un écart important entre les connaissances des étudiants et les besoins
de l’industrie en la matière. Cela souligne la nécessité d’explorer de nouvelles
approches pour enseigner le test logiciel. Parmi celles-ci, le mutation testing clas-
sique s’est déjà avéré efficace pour aider les étudiants. Nous supposons que le
mutation testing extrême pourrait être plus efficace, car il génère des mutants qui
seraient plus évidents à tuer. Afin d’étudier cette question, nous avons organisé
une expérience avec deux classes de premier cycle comparant l’utilisation de deux
outils, l’un appliquant du mutation testing classique et l’autre du mutation testing
extrême. Les résultats ont contredit notre hypothèse. En effet, les étudiants ayant
accès à l’outil de mutation testing classique ont obtenu un meilleur score de mu-
tation, tandis que les autres semblent surtout avoir couvert plus de code. Enfin,
nous avons publié et annonymisé les suites de tests des étudiants dans le respect
des bonnes pratiques de l’open-science, et nous avons élaboré des conseils sur base
de nos résultats et des travaux antérieurs.

Mots-clés : Software Testing, Software Testing Education, Mutation Testing, Ex-
treme Mutation Testing

Abstract

Although software testing is critical in software engineering, studies have shown a
significant gap between students’ knowledge of software testing and the industry’s
needs, hinting at the need to explore novel approaches to teach software testing.
Among them, classical mutation testing has already proven to be effective in
helping students. We hypothesise that extreme mutation testing could be more
effective by introducing more obvious mutants to kill. In order to study this
question, we organised an experiment with two undergraduate classes comparing
the usage of two tools, one applying classical mutation testing, and the other one
applying extreme mutation testing. The results contradicted our hypothesis.
Indeed, students with access to the classic mutation testing tool obtained a better
mutation score, while the others seem to have mostly covered more code. Finally,
we have published and anonymised the students’ test suites in adherence to
best open-science practices, and we have developed guidance based on previous
evaluations and our own results.

Keywords: Software Testing, Software Testing Education, Mutation Testing, Ex-
treme Mutation Testing

Acknowledgements

We would like to thank all the people who have contributed directly or indirectly
to the realisation of this master thesis:

First, we show our gratitude to Julie Henry who reviewed our experimental
design and helped improve it, to Julien Albert and Thibaut Septon who gave very
valuable feedback on our work and allowed us to see the mistakes we did not see,
and to Patrick Heymans and Tony Leclercq who very kindly allowed us to take
some of their lecture time to carry out our experiment.

Then, we would also like to thank Antoine, Basile, and Maxime who helped
us calibrating the experience and let us foresee what we had not foreseen. More
generally, we would like to thank all the anonymous students who participated
in the experiment and without whom nothing would have been possible.

We want to express our thanks to our relatives who supported us during the
research, design, execution, and writing of this work.

But, most of all, we would like to thank our research supervisors, Xavier
Devroey and Benoît Vanderose, for their regular help, their helpful proofreading,
their quick and wise answers, and, finally, their welcome to the team during our
internship.

Contents

1 Context 3
1.1 Introduction . 3
1.2 Contributions . 4

2 Background 5
2.1 Why Do We Test Software? . 5
2.2 What Types of Testing Techniques Exist? 6
2.3 How to Write a Good Test? . 7
2.4 Who Will Test the Tests? . 8

2.4.1 Control Flow Adequacy Criteria 9
2.4.2 Mutation Testing . 9
2.4.3 PIT . 11
2.4.4 Reachability, Infection, Propagation, and Revealability . . . 12
2.4.5 Pseudo-Tested Methods and Extreme Mutation 12
2.4.6 Reneri . 13

2.5 How to Teach Software Testing? . 15
2.5.1 Common Challenges . 15
2.5.2 Usage of Mutation Testing . 17

3 Experimental Evaluation 19
3.1 Experimental Design . 19

3.1.1 Overview . 20
3.1.2 First Presentation . 21
3.1.3 System Under Test . 22
3.1.4 First Testing Session . 23
3.1.5 Group Separation . 23
3.1.6 Second Presentation . 24
3.1.7 Second Testing Session . 24
3.1.8 Subsequent Questionnaire . 25
3.1.9 Summary . 25

1

CONTENTS

3.2 Dry Runs . 26
3.2.1 First Student . 26
3.2.2 Second Student . 27
3.2.3 Third Student . 27

3.3 Changes Made to Reneri . 27

4 Dataset 30

5 Results 32
5.1 Participants . 32
5.2 Hypothesis Testing . 33
5.3 Mutation Score . 34
5.4 Instruction Coverage . 36
5.5 Self-Evaluation . 37
5.6 Questionnaire . 39
5.7 Findings . 41

6 Discussion 43
6.1 Learning with Mutation Testing . 43

6.1.1 A Comparison of the Tools 43
6.1.2 Reneri Hint Types . 45
6.1.3 A Look Back at the Results 48

6.2 Teaching with Mutation Testing . 49
6.3 Experimenting with Students . 50
6.4 Threats to Validity . 51

7 Conclusion 54

A Full Data 56

B Versions and Mutation Operators 67

Bibliography 68

2

Chapter 1

Context

1.1 Introduction

Today, activities rely on software, whether it is economics, health, commerce,
education, energy, banking, marketing, design, entertainment, transportation,
management, communication, research, etc. If some applications are without real
consequences, others are critical. Society, money, and even lives all depend on
software. However, we cannot assume that all software is reliable. Verifying if a
piece of code is trustworthy is the goal of software testing and is an essential skill
for computer science students to learn [1].

Yet, studies have shown gaps, or rather mismatches, in computer science
students’ knowledge relative to industry needs. In particular, software testing is
one of the main subjects of software engineering where such deficiencies are to be
found. Practical activities seem to be missing more than theoretical ones, mainly
in web application testing, functionality testing, and deriving tests from client’s
requirements [2].

Therefore, original methods of software testing education must be explored.
Among others, some novel approaches in both software engineering education
and software testing include using mutation testing, the RIP model, and gamification.

In this master thesis, we explore the usage of Reneri [3] as a means to teach
unit testing to undergraduate students. Reneri is an extreme mutation testing tool
that uses automatic fault infection and propagation analysis. It can automatically
generate text reports that help improve an existing test suite.

Classical mutation testing introduces fine-grained modifications in the source
code, assuming it represents minor faults a real programmer could do. In con-
trast, extreme mutation testing creates coarse-grained modifications, removing en-
tire method bodies at once. Thus, we suppose that extreme mutation testing could
generate “more obvious” mutants to kill for learning students.

3

CHAPTER 1. CONTEXT

We thus ran a comparative experiment between Reneri and PIT (a common
mutation testing tool for Java) with learning students. In the following chapters,
we will present previous works, detail the experiment process, provide the results,
and discuss them.

1.2 Contributions

The contributions of this master thesis are the following:

1. A comparison between classic mutation operators and extreme mutation
operators in the context of software testing education.

2. Recommendations on how to use a mutation testing tool in a testing course
based on our results and previous evaluations.

3. Lessons learned from conducting such an experiment with students.

4. Open Data. Our results contain Java test code written by students, their
mutation score, instruction coverage, automatically generated reports, as
well as answers to a questionnaire and self-evaluations made by the students.
These are all anonymised. See Chapter 4 for more information.

4

Chapter 2

Background

2.1 Why Do We Test Software?

“To err is human”, as the famous Latin expression goes. Yet, programmers are
also human beings and are thus prone to error. However, Cicero would add
that “only the fool persists in his fault”. So, programmers being (generally)
reasonable people, it is not surprising that they have been trying to find ways
for years to know if they did not make any of these errors which can sometimes
be catastrophic. Determining whether a program behaves as expected is called
software testing, which should be distinguished from debugging, i.e., determining
the cause of the error and removing it [4].

Naively, beginners will often resort to print statements to check if their program
is working correctly. For instance, in Listing 2.1, to check that list.size() is returning
2, a novice programmer would write a print statement like in line 6 and look at
the console to see if “2” is actually displayed.

Listing 2.1: Manual Testing of list.size()
1 public class Main {

2 public void main(String[] args) {

3 MyList list = new MyList();

4 list.add(5);

5 list.add(23);

6 System.out.println(list.size()); // Should print "2"

7 }

8 }

However, this is a poor practice because, for a more complex program with
thousands of lines of code, this process quickly becomes tedious, if not impossible.
Moreover, it must be repeated after each modification of the source code. Thus,
experienced programmers rely on tools to automate this process instead. These

5

CHAPTER 2. BACKGROUND

tools use assertions to check if programs behave as expected, failing in case of error.
This is called test automation [4]. Listing 2.2 shows a more suitable version of the
same example test.

Listing 2.2: A JUnit Test Case for list.size()
1 @Test

2 public void testMyListSize() {

3 MyList list = new MyList();

4 list.add(5);

5 list.add(23);

6 assertEquals(2, list.size());

7 }

2.2 What Types of Testing Techniques Exist?

In his book “Foundations of Software Testing”, A. Mathur [4] proposed to classify
testing techniques according to a set of five classifiers:

1. The source of the test generation. This is usually the requirements or the
source code. In the first case, we talk about black-box testing and white-box
testing in the second.

2. The phase of the software life cycle during which testing takes place. During
coding, we talk about unit testing. It is called integration testing during
the integration phase, system testing during the system integration phase,
regression testing during maintenance, and beta-testing after the release. Unit
testing, which will be the concern of this work, focuses on small independent
units, such as functions or methods in a source code.

3. The goal of the specific testing activity. They can be grouped into two
broad categories: functional and non-functional testing. The first group tar-
gets the software’s functionalities. The second concerns safety, reliability,
performance, localisation, acceptability, etc.

4. The characteristics of the artefact under test. For instance, we use the term
component testing if we focus on application components, client-server testing
for a client-server architecture, or object oriented testing for an object oriented
software.

5. The test process model. Testing can be integrated into different development
processes. In the waterfall model, testing is done last. In the V-model, testing
is done at each phase. In spiral testing, it is applied to each increment.

6

CHAPTER 2. BACKGROUND

Agile testing (in agile methodologies) give specific guidelines. And finally,
test driven development (TDD) requires writing tests before the code, as they
represent the requirements.

In this master thesis, we will only focus on white-box functional unit testing.
Regarding the characteristics of the artefact under test which will be described in
Section 3.1.3, we will be looking at object oriented testing. Finally, our study does
not fit into a specific development process model.

2.3 How to Write a Good Test?

In the book “Clean Code: A Handbook of Agile Software Craftsmanship”, R.C. Mar-
tin [5] devotes a chapter to writing “clean” unit tests. He insists that test code is just
as critical as production code because it is what makes it flexible, maintainable,
and reusable. It reduces the fear of inadvertently introducing a bug when altering
the code. He also emphasizes readability, which he says is more important in a
unit test than in production code. What makes a test readable is the same as any
code: clarity, simplicity, and the bare minimum of expressions. He presents five
rules for writing good tests, known by the easy-to-remember acronym FIRST:

1. A test must be Fast because if it is not, developers are less likely to run it
frequently, and thus to find problems quickly.

2. A test must be Isolated because it must deal with only one feature and
should not be dependent on other tests. Indeed, if a test depends on another
one, it will crash if the previous test crashes, making the diagnosis more
difficult.

3. A test must be Repeatable, i.e., it must give the same result every time to
build confidence in the testing process. For instance, randomness should be
avoided in a test.

4. A test must be Self-validating, i.e., it must assert that both the output values
and the final state are correct.

5. A test must be written Timely, i.e., the test should be written before or
shortly after production. Waiting any longer almost guarantees that it will
never be written.

R. Osherove [6] proposes quite similar properties of a good unit test. He adds
that it must be easy to implement, easy to identify the problem in case of failure,
and that the test must have total control of the unit under test.

7

CHAPTER 2. BACKGROUND

One way to improve the readability of a test is to standardize the way a test
is structured. The most common structure is by splitting the unit test into three
parts: (1) setting up the initial state, (2) operate on the initial state, and (3) check
that the resulting state is the one expected. In the literature, there are various
names for these three steps such as Arrange, Act, Assert (AAA) [7], Given, When,
Then [5], or Build, Operate, Check [5].

Listing 2.3: A Example Test Case Structured According to AAA
1 @Test

2 public void testMyListSize() {

3 // Arrange

4 MyList list = new MyList();

5 list.add(1);

6
7 // Act

8 int size = list.size();

9
10 // Assert

11 assertEquals(1, size);

12 }

2.4 Who Will Test the Tests?

When one runs a program against a test suite and all the tests pass, it does not
mean the program is correct. Indeed, if a test fails, it proves the presence of a
defect. However, if no tests fail, it does not prove the absence of all defects [1].
To even consider such a conclusion, one would have to write a practically infinite
number of tests. Therefore, an important question in software testing research is
how to evaluate whether a test suite is complete and adequate [1].

It is impossible to have a completely exhaustive test suite, as this would require
an enormous number of tests. However, regarding the adequacy of a test suite,
scientists have proposed many criteria to measure it quantitatively over the years.
Indeed, even if the total input domain is vast, and effectively infinite, it can
be subdivided into smaller input domains. Each input in one input domain is
considered to be equivalent, and each of these input domains represents a test
requirement that must be covered by the test suite. This makes testing feasible [1].

Test requirements can take several forms in source code. They are criteria that
are generally used as adequacy metrics, objectives that testers should attain to
achieve a certain level of trust in a program.

8

CHAPTER 2. BACKGROUND

2.4.1 Control Flow Adequacy Criteria

The most common criteria for evaluating the adequacy of a test suite are based
on control flow coverage. One of its simplest form is line coverage. The idea is
to calculate the ratio of executed lines to the total number of lines in the source
code when the test suite is run. There also exist other simple forms of coverage:
statement coverage, block coverage, method coverage focuses respectively on statements,
blocks, and methods in the source code. More elaborated forms also exist. We can
think of branch coverage where we consider the two outcomes for each if-statement.
There are also forms of path coverage where every possible path should be covered,
with the limitation that there can exist unfeasible paths [1]. To overcome this
limitation, basic path coverage [8] can be used. It considers the coverage of the basic
paths, i.e., paths which, taken in combination, generate all possible paths. It is
related to cyclometric complexity [9], a measure of complexity.

These techniques rely on code instrumentation. During compilation, special
instructions are inserted at certain locations. When executed, they record that
some sort of node (method, block, line, statement, branch, etc.) is covered. The
test suite is executed against this instrumented version of the program, and results
can then be reported.

It has been shown that some forms of coverage are stronger than others in
terms of revealing faults [10]. For example, branch coverage yields higher fault
revelation than statement coverage. The same study shows that “mutation testing”
(Section 2.4.2 below) is more effective that control flow criteria.

2.4.2 Mutation Testing

Mutation testing is a testing technique for assessing the quality of a test suite
by artificially introducing defects, called mutants, into the source code of a pro-
gram [11]. The test suite is then run against these mutants. On the one hand, if
at least one test fails, the mutant is said to be killed or detected. On the other hand,
if no test fails, the mutant is said to be live. In this case, the test suite must be
improved to kill the mutant.

Defects are inserted using mutation operators that generate small variations in
the source code. A typical example is to switch a “+” into a “−” in an arithmetic
expression. A basic set proposed by Offutt et al. [12] can be seen in Table 2.1 with
some examples applied to Java code. The original code is presented on top and its
mutant below. This set is usually considered a minimum standard for mutation
testing [11].

After running a test suite against the mutants, its mutation score can be calcu-

9

CHAPTER 2. BACKGROUND

Table 2.1: Basic Operators Set with Non-Exhaustive Examples

Name Example Mutant

Absolute Value Insertion (ABS)
return x;

return Math.abs(x);

Arithmetic Operator Replacement (AOR)
int b = x + y;

int b = y;

Logical Connection Replacement (LCR)
if (x >= 0 && x < 10)

if (x >= 0 || x < 10)

Relational Operator Replacement (ROR)
for (int i = 0; i < size; i++)

for (int i = 0; i <= size; i++)

Unary Operator Insertion (UOI)
return x * x;

return x * -x;

lated. It is the percentage of mutants killed out of the total number of mutants.
It can be used to measure test completeness and can also be used as an adequacy
metric [1]. Roughly speaking, mutation score tells (1) what to test (2) when to stop
testing and (3) if a test suite can be trusted. Chekam et al. [10] empirically showed
that mutation testing leads to high fault revelation whereas statement and branch
testing do not.

Unfortunately, not all mutants have the same value, which biases the final
mutation score [13]. On the one hand, some mutants, called equivalent mutants,
are impossible to kill as they return the same output values and have the same
side effects as the original program [1]. Detecting these mutants is one of the
main challenges in mutation testing [13, 14], as it is an undecidable problem [15].
Listings 2.4 and 2.5 shows an example of an equivalent mutant.

On the other hand, some mutants do not contribute to the testing process
because the test suite kills them along with other mutants. These types of mutants
are said to be redundant. Papadakis et al. [14] identify two subtypes of redundant
mutants: duplicated mutants and subsumed/joint mutants. Duplicated mutants are
equivalent to each other but not to the original program [16]. Subsumed or joint
mutants are mutants who, when another mutant is killed, are also killed [13, 17].

Mutation testing is effective in revealing a software’s faults. This effectiveness
comes from 3 different assumptions:

• Under the Competent Programmer Hypothesis [18], programmers create nearly
correct programs. Only a few minor syntactic changes are necessary to get
the correct version. Consequently, if a test suite can detect all generated
defects, it proves that such defects are not present in the system under test
(SUT). The creation of minor variations simulates the type of frequent defects

10

CHAPTER 2. BACKGROUND

Listing 2.4: Original Code
1 public class Scoreboard {

2 private int highscore = 0;

3
4 public void updateScore(int newScore) {

5 if (newScore > this.highscore) {

6 this.highscore = newScore;

7 }

8 }

9 }

Listing 2.5: An Equivalent Mutant
1 public class Scoreboard {

2 private int highscore = 0;

3
4 public void updateScore(int newScore) {

5 if (newScore >= this.highscore) {

6 this.highscore = newScore;

7 }

8 }

9 }

we seek.

• Due to the Mutant Coupling Effect [19], a test suite that reveals simple defects
may reveal more complex ones. Indeed, the coupling between first-order
mutants (i.e., mutants with only one variation) and complex mutants (multi-
ple variations) is such that killing simple mutants reveals a large proportion
of complex mutants. This phenomenon has been studied theoretically and
practically.

• Based on the RIPR model [20] (detailed in Section 2.4.4), designing test cases
specifically to kill mutants encourages developers to place assertions at each
point where a failure could occur. This makes the test cases more robust
because, in automated testing, failures can only be revealed by assertions.

2.4.3 PIT

PIT [21], alternatively known as PITest, is an open-source1 mutation testing tool
for Java. It operates directly on Java virtual machine (JVM) bytecode and it is well

1It is available at https://pitest.org/.

11

https://pitest.org/

CHAPTER 2. BACKGROUND

integrated with development tool such as Maven, making it fast and applicable to
real-world software. Furthermore, it is actively developed and maintained, not
like other tools.2 PIT uses a mutation engine to generate mutants based on mutation
operators. Its default mutation engine is called Gregor.

2.4.4 Reachability, Infection, Propagation, and Revealability

According to the Reachability, Infection, Propagation model (or RIP model) [22], there
are three necessary conditions for a program fault to be detected. Firstly, the fault
should be reached during the execution. Secondly, it should infect the program
by changing its state. Lastly, this state change should propagate to the program’s
output.

Li et al. [20] proposed an extended version of the RIP model called RIPR,
where the additional “R” stands for Revealability. As the name implies, the first
three conditions stay the same. The added condition states that a fault must not
only be propagated but also revealed. When talking about automated testing (and
more specifically unit testing), revealing a fault implies writing an assertion that
covers it. Indeed, a fault could propagate to the program state of a test case, but
if no assertion reveals it, the test misses the point.

The standard condition for killing a mutant is that the mutant has an observable
difference in the output of the program. In that case, we say that the mutant is
strongly killed. However, this condition could be relaxed by asserting that only
the program state has changed without necessarily propagating the changed state
to the output. If the program state comparison is performed immediately after
a mutant is executed, we say that the mutant is weakly killed. Otherwise, if
it is performed at a later point, we say that the mutant is firmly killed. One
might expect that weak and firm mutations would be less effective than strong
mutations and would require fewer tests to satisfy coverage. Yet, experimentation
has shown that, in reality, the difference is minimal in most cases. From the RIP
model’s perspective, killing a mutant satisfies all three conditions strongly, while
killing a mutant weakly or firmly satisfies only the first two: reachability and
infection [14, 1].

2.4.5 Pseudo-Tested Methods and Extreme Mutation

Niedermayr et al. [23] introduced pseudo-tested methods and extreme mutation
operators as a way to detect them. A method is pseudo-tested when the test suite

2See https://pitest.org/java_mutation_testing_systems/.

12

https://pitest.org/java_mutation_testing_systems/

CHAPTER 2. BACKGROUND

covers it, yet no test fails when removing its body. This means that the test suite
is only testing this method side effects superficially.

Extreme mutation operators are the operators that completely remove void
methods’ bodies and replace non-void methods with trivial return statements.
A basic example can be seen in Listings 2.6 and 2.7. These operators have been
created to automate the detection of pseudo-tested methods.

The authors applied extreme mutation to 14 Java open-source projects in their
study. They found that, on average, 11.41% of methods are pseudo-tested in unit
tests and 35.48% in system tests.

Vera-Pérez et al. introduced Descartes [24], an alternative mutation engine for
PIT replacing Gregor, its original mutation engine (see Section 2.4.3). Descartes
specializes in creating extreme mutants for the Java programming language. Us-
ing Descartes, the same authors reproduced Niedermayr’s experiment on 21 sub-
jects [25]. They drew similar conclusions and found that 1% up to 46% of methods
are pseudo-tested in their dataset. Furthermore, they directly asked the develop-
ers for feedback and confirmed that some of these methods are troublesome.

The issue with pseudo-tests is that, while being covered, the methods are not
well tested and could cause failures. They are executed, yet the test cases do not
assess their effects. It also means that code coverage at the method level is not a
valid metric to measure a test suite’s quality.

With the mutant in Listing 2.7 above, one way this method could be pseudo-
tested is when no test actually calls equals with two different instances of the
class. In that case, every call to equals in every test case will always return true.
Thus, replacing the entire method body with “return true;” does not change
the outcome of the test suite’s execution.

According to the RIPR model (Section 2.4.4), we can say that the fault is reached
but does not cause an infection to the program state. To fix that, we must add a
new test where equals returns false, propagate this return value to the test case, and
finally reveal it with an assertion.

2.4.6 Reneri

Vera-Pérez et al. [3] created Reneri, a tool that leverages Descartes to generate
automatic reports based on test execution and the RIPR model. It uses static
analysis, bytecode manipulation, source code modification, and code instrumen-
tation. These reports provide insightful advice for improving a test suite. The
tool follows a similar reasoning to what we just did in the previous section.

First, Descartes is used to generate and run extreme mutants. This step pro-
duces the list of all surviving mutants. Then, Reneri instruments methods by

13

CHAPTER 2. BACKGROUND

Listing 2.6: Original Code
1 public class Amount {

2 private int value = 0;

3
4 @Override

5 public boolean equals(Object that) {

6 if (that == null) return false;

7 if (!(that instanceof Amount)) return false;

8 return this.value == ((Amount)that).value;

9 }

10 }

Listing 2.7: Same Code with an Extreme Mutation Applied
1 public class Amount {

2 private int value = 0;

3
4 @Override

5 public boolean equals(Object that) {

6 return true;

7 }

8 }

modifying their bytecode using Javassist [26] and tests by modifying their source
code using Spoon [27]. Instrumentation is used to observe the program’s state:
during execution, at the very end of each method, the state is observed and
dumped into a file. More specifically, the observed state consists of the instance
on which a method is invoked (if not static), every argument of the method, and
its return value. Tests are also instrumented to observe the program state at every
possible location.

Then, Reneri generates hints that are related to the RIPR model (see Sec-
tion 2.4.4). Non-mutated and mutated methods are run against the test suite. For
each mutated method, the program state is observed and compared to the pro-
gram state without mutants. If there is no observable difference in the program
state whether we use a mutant or not, then the infection condition is not fulfilled.
If there is an observable difference in the method but not in the tests, it means
that the fault is not propagated. Moreover, if there is an observable difference in
a test, but no assertion fails, then the fault is not revealed. Therefore, there exist
3 different kinds of hints: not-infected hints, not-propagated hints, and not-revealed
hints. Please note that the tool does not generate any hint for the reached condition.

Finally, these hints are used to produce a human-readable report. For each

14

CHAPTER 2. BACKGROUND

hint, it contains the problem, a diagnosis, and a suggested solution. An example
of such a report can be seen in Figure 2.1. In this case, it actually is a not-infected
hint.

Figure 2.1: Example Report from Reneri [3]

Reneri has been evaluated with open-source software [3]. Fifteen projects
were used as study subjects. For four of them, the developers were contacted and
presented with some generated suggestions about their respective projects. It has
been shown that the suggestions are helpful and could even point to the exact
solution in some cases.

2.5 How to Teach Software Testing?

Scatalon et al. [2] made a survey aimed at Brazilian practitioners. The authors
found that there were gaps between what is learned and what is actually used
in industry concerning software testing. The study separated theoretical and
practical knowledge and noted that most subjects are facing negative gaps on
the theoretical side, and that all subjects are facing larger negative gaps on the
practical side. A negative gap means that a topic is not presented in sufficient
detail in relation to what is expected in the industry. On the contrary, some
theoretical subjects, such as finite state machines and control flow graphs, show
positive gaps, which means that the respondents feel that there is too much focus
on these. We thus think that there is a need for innovative ways to teach software
testing.

2.5.1 Common Challenges

Garousi et al. [28] conducted a systematic literature mapping (SLM) of over 200
articles between 1992 and 2019 about software testing in education. This review
aims to help educators identify best practices for their software testing courses. It
also aims to help researchers further research the subject.

15

CHAPTER 2. BACKGROUND

From the reviewed papers, the authors gathered common challenges and in-
sights on how to meet them. Some challenges come from the students’ point of
view, others from that of the instructors, and some come from both. The paper
modeled these and their relationships in Figure 2.2.

Figure 2.2: Challenges and Insights About Software Testing Education [28]

Generally, it has been observed that software testing is not well accepted by
students. Indeed, they often feel that writing unit tests is tedious or even boring. In
addition, simultaneously learning to program and to test represents a significant
cognitive load for students. Another challenge for novice testers is the use of new
tools. Lastly, students often think that testing a small software is uninteresting
while testing a large-scale software is intimidating.

A key challenge for instructors is integrating software testing into other courses
and allocating (or even finding) the time required. Secondly, assessing students’
tests is complex. Automated grading has been used, but coverage testing is not a
suitable metric. Mutation testing could help in that regard, but there is still a lack
of adequate tools.

The reviewed articles can give us insights into how to meet these challenges.
Gamification has been used to address students’ motivation. Such examples in-
clude, among others, CodeDefenders [29] where some students introduce faults
(playing as attackers) and the remaining players write unit tests (playing as defend-
ers). The goal is to create as many surviving mutants for the first team and, for
the latter, to achieve the highest mutation score. The authors found that students
were actively involved in the game and that they improved their testing skills.

16

CHAPTER 2. BACKGROUND

Another example is the JPacman framework [30] used in a testing course at
TU Delft in the Netherlands. The idea is to give students a gamified SUT, which
contains bugs on purpose. The students are assessed based on the quality of
the test suite they write for this Pacman implementation. This paper’s goal is to
highlight common mistakes and challenges, hard topics to learn, and favourite
learning activities. Thus, JPacman has not been directly evaluated. Yet, it is open-
source3 and we think it is an inspiring way to bring gamification to software
testing education through the SUT.

2.5.2 Usage of Mutation Testing

First, some studies [31, 32, 33] showed that mutation testing can help towards
better test suites for safety-critical software. The study cases were an aeronautical
software system, a mechatronic software system, and the Linux kernel. In more
general terms, studies tend to show a correlation between high mutation scores
and fault detection rates [11]. Therefore, mutation testing helps with writing
better test suites.

More specifically, in the field of education, Oliveira et al. [34] conducted an
experiment with novice students. The authors compared two groups of students.
The control group used a classical Pascal compiler, while the treatment group
used “Pascal Mutants”. In brief, this tool allows to create and manage test cases
for the SUT, and generate and run mutants. All students were given a source
code with no documentation and could run it with any inputs. Afterwards, they
were asked to answer a questionnaire to see if they understood the algorithm.
Students using mutation testing gave more correct answers than the other group.
The authors also surveyed senior students about their opinion on mutation testing
for teaching programming fundamentals. They concluded that mutation testing
is beneficial in teaching novice students the basics of programming.

By combining mutation testing, self-assessment, and peer-assessment in their
software testing course, Delgado-Pérez et al. [35] were able to get students to
perceive the benefits of writing quality tests. In this experiment, students were
given a C++ SUT and participated in two successive testing sessions. In the first
session, they manually wrote unit tests without being guided by any coverage
criteria. In the second session, they improved their existing test suite with access
to the mutation score. After each session, students were asked to carry out two
evaluations: one on the test suite they had written (self-assessment), and the other
on the test suite another student had written (peer-assessment). Finally, students
completed a questionnaire adapted from Oliveira et al. [34]. The results show

3And available at https://github.com/serg-delft/jpacman-framework.

17

https://github.com/serg-delft/jpacman-framework

CHAPTER 2. BACKGROUND

that exposure to the mutation score made students aware of the need of using
advanced testing techniques.

Finally, we already presented CodeDefenders [29] in the previous section (Sec-
tion 2.5.1). It can be seen as a gamification of mutation testing where players
manually create and kill mutants in teams.

Extreme mutation testing was not yet used in the context of software testing
education. We think however that it may be an effective way to teach testing. In-
deed, extreme mutation operators generate coarse-grained mutants by removing
methods’ entire bodies, in contrast to classical mutation testing which generates
much more mutants which are fine-grained. Consequently, we expect that ex-
treme mutants would be more obvious, more easy, and more accessible to novice
computer science students.

18

Chapter 3

Experimental Evaluation

3.1 Experimental Design

So far, Reneri has only been evaluated with open-source developers [3] (see Sec-
tion 2.4.6). We want to assess its effectiveness on undergraduate computer science
students, thus shifting the target group from expert developers to apprenticeship
students. The comparison baseline we consider is classical mutation testing. Our
research questions are:

RQ1: To what extent are the results of Oliveira et al. [34] and Delgado-Pérez et
al. [35] (i.e., classical mutation testing is effective for teaching the basics
of software testing) replicable in our context (i.e., beginner students at the
University of Namur)?

RQ2: What is the impact of extreme mutation testing on students’ unit testing
learning?

RQ3: Compared to classical mutation testing, to what extent does extreme muta-
tion testing have a larger, smaller, or similar impact on students learning to
write unit tests?

The mutation testing tools used in the evaluation are PIT and Reneri. The
former uses the Gregor mutation engine (classical mutation operators, see Sec-
tion 2.4.3), the latter uses the Descartes engine (extreme mutation operators, see
Section 2.4.6). We will measure the tests’ quality using instruction coverage and
mutation score, and use self-evaluation and a questionnaire to measure the impact
on learning.

Our hypothesis is that Reneri is clearer for novice testers, as it is more user-
friendly (being text-based) and generates “more obvious” mutants (being coarse-
grained). Consequently, we hypothesise that Reneri will be more effective than

19

CHAPTER 3. EXPERIMENTAL EVALUATION

PIT for undergraduate students. To check this, we designed and carried out an
experiment which is described in this chapter.

We planned to conduct the experiment with students taking the “Object Ori-
ented Design and Programming” course at our faculty. This is an introductory
course to object oriented programming in Java for undergraduate second-year
students in computer science and business engineering. We made this choice
because students learning programming and testing are our target audience. In
case we need more participants, we also planned to include third-year computer
science students taking the “Introduction to Scientific Research Seminar” course.
The latter is an introduction to research through practical exercises. This choice is
justified because it provides them with an example of an experimental evaluation.

3.1.1 Overview

Students

First presentation
(Software testing,
Unit testing, SUT)

First testing session
(without testing tool)

First self-evaluation

Control

group

Second testing session
(with testing tool)

Treatment

group

Second self-evaluation
and questionnaire

PIT

Second presentation
(Mutation testing)

Reneri

Test suite
(part 1)

Self-evaluation
criteria (part 1)

Test suite
(part 2)

Self-evaluation
criteria (part 2)

Questionnaire
answers

Part 1

Part 2

Mutation score

PIT

Figure 3.1: Experiment Design

Our goal is thus to determine whether the Descartes/Reneri approach [24, 3]
helps undergraduate students in learning software testing and whether it is more
or less effective than a traditional mutation testing tool.

The experiment was inspired by that of Delgado-Pérez et al. [35] which itself
took inspiration from Oliveira et al. [34]. Testing sessions were organised with
undergraduate students. Each session lasted 3 hours and consisted of two parts.

20

CHAPTER 3. EXPERIMENTAL EVALUATION

During the first part, students were asked to manually write unit tests on a given
system under test (SUT) without any tool. During the second part, they were
asked to improve their test suite by adding or editing the test cases they wrote,
using a mutation testing tool to help.

Before the first part, there is a presentation where we introduce the students to
unit tests. Topics covered include (1) why do we need automated testing, (2) what
is a unit test and how to write one, and (3) an applied example. Then, we also
present the SUT. We chose and adapted a Java version of the 2048 game. The
original implementation can be found on Rosetta Code.1

Students were split into a control group and a treatment group during the
break. In order to preserve a similar distribution of skills, we classified students
according to their mutation scores after the first part, and separated similar stu-
dent pairs into different groups. On the one hand, the control group received
a traditional mutation testing tool, PIT, while on the other hand, the treatment
group received Reneri.

The experimental process is illustrated in Figure 3.1. We describe it in more
detail in the following sections. Finally, a summary of the experiment and the
duration of each of its stages can be found in Section 3.1.9.

3.1.2 First Presentation

The first presentation was a brief introduction to unit testing and highlighted
the advantage of automated testing over manual testing. An example of manual
testing is described while we explore its main limitations, i.e., the amount of time
it takes to do a manual check-up, the uncertainty of the process, and the need to
redo it every time the source code changes.

Next, we show how to make a unit test using the same example. We use the
Arrange, Act, Assert pattern [7] (or AAA pattern, see Section 2.3). It is presented
as a guide to design tests. We recommend that students use it but we do not
enforce it. The emphasis is on the similarity of writing such a test compared to a
manual one. We insist that they both have the same form, except for the assertion:
where we used a print statement in the first place for manual check of the output,
a JUnit assertion was used in the latter to automate the check. Moreover, in order
to simplify, we only use assertTrue, ignoring other JUnit forms of assertion (i.e.,
assertFalse, assertEquals, assertNull, assertSame, etc.).

By insisting on the similarity of automated and manual tests and by presenting
only a (very) small subset of JUnit features, we aim to address one challenge
previously seen in Figure 2.2: the increased cognitive load when learning a new

1It is available at https://www.rosettacode.org/wiki/2048#Java.

21

https://www.rosettacode.org/wiki/2048#Java

CHAPTER 3. EXPERIMENTAL EVALUATION

tool. We hope to give students a positive image of software testing, as it can be
accessible and valuable.

3.1.3 System Under Test

This introduction was followed by a presentation of the system under test: 2048,
a video game by Gabriele Cirulli made in 2014 that quickly became very popular.
The goal is to combine tiles numbered from 2 to 2048. The tiles are placed on a
4×4 grid and can be merged when they contain the same number. When two tiles
are merged, their numbers are added together. Thus, all tiles are powers of two.
The player may move all tiles simultaneously up, down, left, or right. Finally, if
no more moves are possible, the game is lost. A screenshot of the implementation
we used can be seen in Figure 3.2.

Figure 3.2: An In Progress Game of the Provided 2048 Implementation

2048 has been chosen because it is widely known, and its rules are easy to
grasp. In addition, using a game as a SUT is a way to introduce gamification. This
was inspired by the JPacman framework [30] mentioned earlier. Gamification,
both with the ease of use presented above, are ways to overcome the fact that
software testing is often not well accepted by students. This is another challenge
from Garousi et al. [28] (Figure 2.2).

However, the original 2048 game contains randomness. Indeed, new tiles
appear at a random position. They also have a 10% chance of having an initial
value of 4 instead of 2. However, as unit tests should be repeatable (the “R” in

22

CHAPTER 3. EXPERIMENTAL EVALUATION

FIRST principles, see Section 2.3), we chose to alter the rules and avoid these
random behaviours. Thus, new tiles always appear in the first available location
in the provided implementation, starting from the top left. Besides, the value
of new tiles follows a pattern: the first tile will contain 4, the nine subsequent
tiles contain 2, and then the pattern starts over again. That way, we eliminate
the probabilistic nature of the original ruleset and simplify the testers’ work. The
adapted source code is available in the “SUT” folder on our Zenodo [36] repository
(see Chapter 4).2

3.1.4 First Testing Session

Students had to write unit tests for the SUT throughout this session until they
felt it was enough. They could run the tests whenever they wanted but could not
see the code’s mutation score or statement coverage. To help novice testers, we
suggested that they start with a specific method of a specific class: namely, the
equals method of the Tile class.

After one hour, we asked them to stop and complete a self-assessment of
their work based on five criteria inspired by Delgado-Pérez et al. [35], rating
themselves from 1 (poor) to 4 (good) for each criterion. Since the students were
not expected to be fluent in English, we translated the criteria into French to avoid
language-related interpretation problems (English version in Table 3.1). After the
assessment, the students were given a short break with refreshments before the
second part of the experiment.

3.1.5 Group Separation

During the break, students were separated into two groups. In the second testing
session, one group will have access to PIT reports and the other to Reneri reports.
We used the mutation score to split them equally and have as many students with
a high, medium, or low score in both groups. This is based on the idea that the
score represents the real competence of the student

In concrete terms, the mutation score was calculated for each test suite. Then
the students were sorted in ascending order according to their score. Finally, the
first student was selected for group 1, the next for group 2, then again for group 1,
and so on.

2This repository can be found at https://doi.org/10.5281/zenodo.6629272.

23

https://doi.org/10.5281/zenodo.6629272

CHAPTER 3. EXPERIMENTAL EVALUATION

Table 3.1: Self-Evaluation Criteria [35]

Name Definition

C1. Correctness
The tests do not cause errors when they are executed
on the original program.

C2. Completeness
The tests represent a sufficiently large portion of the
different use scenarios of the program.

C3. Assertions
The tests contain a sufficient number of assertions that
cover all the changes of state of the program due to its
execution.

C4. Design

Each test is designed to verify a specific functionality
(i.e., a test does not combine several unrelated usage
scenarios) and there are no tests that are redundant or
overlapping.

C5. Legibility
The programming style is clear and makes it possible
to understand the purpose of the tests and their asser-
tions.

3.1.6 Second Presentation

The second part began with an introduction to the basics of mutation testing.
Reusing an example from the first presentation, we explained that mutation testing
consists of artificially introducing “bugs” into the SUT and then checking whether
the test suite can detect these bugs. We insisted that at least one test case should
fail and that the test suite is inadequate if no test fails.

Since most of the students were novice testers, we tried to avoid overwhelming
them with too much information and technical or theoretical considerations. For
example, we simplified by using the term “bugs” instead of “defects”. Also, issues
such as redundant or equivalent mutants (see Section 2.4.2) were not addressed.

3.1.7 Second Testing Session

After the break, we asked the students to improve the test suite they wrote in the
first session by adding new tests or editing existing ones. However, now they have
access to a mutation testing tool, either PIT or Reneri, depending on their assigned
group. During this session, the actual experiment took place as it allowed us to
compare the evolution of the students according to the tool they used.

We adapted Reneri to translate its reports into French and make it generate
HTML directly, whereas it originally made text-only reports. In addition, the
content of the reports were clearly separated into three parts: problem, diagnosis,

24

CHAPTER 3. EXPERIMENTAL EVALUATION

and solution. These changes aim to adapt the tool from expert to novice program-
mers while keeping the information from the original reports. The changes are
illustrated and described further in Section 3.3.

At the end of the session, we asked the students to self-evaluate their first test
suite with the same criteria again (Table 3.1). We stressed that the evaluation
was done on the test suite from the first part and not on the one they had just
written. Indeed, our objective is to measure the evolution, after introducing a
tool, of students’ perception of their original test suite written without help.

3.1.8 Subsequent Questionnaire

Lastly, we adapted and used the survey from Delgado-Pérez et al. [35] which itself
was adapted from Oliveria et al. [34]. We added two questions. The first one (Q1)
focuses on Java skills. It was added because some students struggled with Java
more than JUnit itself during dry runs (see Section 3.2). Besides, we had students
from different educational backgrounds. We wanted to assess that to be possibly
able to analyse data based on the students’ initial level. The second question we
added (Q12) is about the understandability of the generated report (whether by
PIT or Reneri). We wanted to compare the two, wondering if a text-based report
(Reneri) is more understandable or clearer than a code-based report (PIT).

The actual questions and answers will be presented in Chapter 5 (Table 5.1).

3.1.9 Summary

All tasks with their duration are summarised in Table 3.2 below. The experiment
lasts 3 hours in total.

Table 3.2: Experiment Steps and Duration

Task Duration
Unit testing introduction and SUT presentation 30 minutes
Testing session without tool 60 minutes
First self-evaluation 5 minutes
Break, mutation score generation, and separation into groups 15 minutes
Mutation testing introduction 10 minutes
Testing session with PITest/Reneri 45 minutes
Second self-evaluation 5 minutes
Questionnaire 10 minutes

25

CHAPTER 3. EXPERIMENTAL EVALUATION

3.2 Dry Runs

Dry runs were conducted with three students to test and improve the experience
and Reneri’s outputs. These took place in a more informal context, but we tried to
respect the protocol as closely as possible. Care has been taken to select students
who will not participate in the actual experiment.

3.2.1 First Student

The first person is a graduate computer science (CS) student with a cybersecurity
background. During the first part of the experiment, we observed some confusion
between debugging and testing. Indeed, the student felt that his tests were useless
because the SUT seemed not to contain any bugs. His mindset was to erase bugs
instead of checking if the program worked. It is a commonly reported problem
in students’ perception of software testing [28]. We also noticed some difficulties
with the Java programming language in itself. The student said it had been a
while since he had used Java and that he could have gone further if he had not
wasted time understanding the source code. Furthermore, the first actual unit
test was written after 45 minutes.

During the second testing session, Reneri generated only one hint. The stu-
dent managed to resolve it. Then, we stopped the experiment as the report was
blank because there were no more pseudo-tested methods, and any form of code
coverage was not yet implemented in Reneri.

Throughout this first run, we helped the student as little as possible. We
wanted to see how he would do on his own. However, to address the difficulties he
encountered with Java, we decided at that point to give help to students in the same
situation. We would tell them beforehand that we can give them help if they need
it, and, during the following experiments, we would give guidance on problems
related to programming in Java, but not on the design of unit tests themselves. In
this way, we believe we will not bias the results with misunderstandings of Java,
nor will we directly give test solutions. In addition, we also refactored the source
code a bit to make it more accessible.

Finally, we implemented method coverage into Reneri, thus adding not-reached
hints on top of not-infected, not-propagated, and not-revealed hints (see Section 2.4.6).
Not-reached hints would appear only after any other hint types. This choice was
made to avoid the blank report we had. We assumed that once solved by adding
a test case, not-reached hints would lead to more specific Reneri hints.

26

CHAPTER 3. EXPERIMENTAL EVALUATION

3.2.2 Second Student

We also ran the experiment with an undergraduate business engineer student. He
did not have a computer science background except for an introductory course on
Java. We first considered including every student taking this course. However,
the experiment was quite challenging for him, as he was having trouble under-
standing the source code. In the end, he did not manage to write a single unit test
by himself.

As a result, we decided to focus on computer science students only. We judged
that the SUT was too complicated for non-CS profiles and that the results would
be useless as part of this experiment.

3.2.3 Third Student

A third and final dry run was made with an undergraduate computer science
student, representative of our target group, and with modifications described in
Section 3.2.1. This student had a good knowledge of Java because he had used it
recently in other projects. So, the first testing session went smoothly.

During the second session, the introduction of Reneri led to the generation of
a few non-coverage hints. By adding a single test case, the student solved them.
Then, and until the end of the time limit, he encountered coverage hints only.
He went on writing new tests. We noticed that some more complicated methods
were causing problems for him, especially in the GameController class.

After this run, we decided to sort not-reached hints by class in increasing com-
plexity. Hints about the Tile class will be presented first, then those about the Grid
class. In this way, only the most experienced students will be confronted with the
most complex code.

3.3 Changes Made to Reneri

In its original version, Reneri produced text-only English reports as seen in Fig-
ure 3.3. We wanted to make the reports more acceptable for learning students.
This intention is reflected in Figure 3.4. The two figures present the exact same
hint.

Reneri only generates JSON files containing hints information and a Python
script is actually used to transform that information into a readable report. On
one hand, we modified Reneri to also produce information about not-reached
(i.e., uncovered) methods. On the other hand, we adapted the Python script to
(1) directly generate an HTML report, (2) include the information concerning

27

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.3: Example of an Original Reneri Report

Figure 3.4: Example of an Adapted Reneri Report

28

CHAPTER 3. EXPERIMENTAL EVALUATION

uncovered methods, and (3) translate it into French. With the exception of the
format and translation, the content of the report remains essentially the same. By
doing so, we hope to make the reports more accessible to novice students.

The adaptations we made to Reneri is publicly available on our Zenodo [36]
repository (see Chapter 4). More specifically, it can be found in the “descartes-
reneri” folder.3

3That can itself be found at https://doi.org/10.5281/zenodo.6629272.

29

https://doi.org/10.5281/zenodo.6629272

Chapter 4

Dataset

Following the best practices of open-science, we decided to publicly share the
raw results of the experiment and the source codes used during it. This ensures
replicability, as we provide a replication package containing the very code we
used to compute the data that we present in the following chapter. In addition, it
allows readers to take a look at the system under test (see Section 3.1.3) and at the
changes we made to Reneri (see Section 3.3). Finally, it represents a contribution
to open data, as we are sharing the students’ test suites which could be used in
other studies on the topic.

The platform we chose to share our data on is Zenodo [36]. Zenodo is a website
tailored for open-science, allowing the deposit of open access archives. It was
commissioned by the European Commission in a effort to support its open-data
policy. The data described below can therefore be found in our repository at
https://doi.org/10.5281/zenodo.6629272.

The primary data generated by this experiment are therefore the students’
written tests, their questionnaire responses, and their two self-evaluations. The
“tests” folder contains the test suite for each student and for both parts. Please
note that everything has been anonymised.

From the tests, and using automated scripts, we derived secondary data such as
reports found in the directory of the same name. There are three types of reports:
reports for statement coverage (from JaCoCo), reports for mutation coverage (from
PIT), and reports with hints (from Reneri). Again, the data is generated for each
student and for each part, regardless of their assigned group.

Finally, from these reports, we derived tertiary data as comma-separated values
files (CSV files), such as “coverage.csv” from the JaCoCo reports, “hints.csv” from
the Reneri reports, and “mutants.csv” from the PIT reports.

From these CSV files, we generated the tables and plots presented in this
document. We used Python in a Jupyter [37] notebook using the pandas [38, 39]

30

https://doi.org/10.5281/zenodo.6629272

CHAPTER 4. DATASET

and seaborn [40, 41] libraries. The contents of the different columns in each file are
described below.

Common columns

• id: The student’s ID, completely anonymous (from “1” to “43”).

• group: The student’s group (“pit” or “reneri”, see Figure 3.1).

• part: The session number of the experiment (“1” or “2”, see Figure 3.1).

Answers to the questionnaire (in “questions.csv”)

• q1 to q14: The 14 answers to the questionnaire (see Table 5.1).

Self-evaluations (in “criteria.csv”)

• c1 to c5: The five self-evaluation criteria (see Table 3.1).

Reneri hint types (in “hints.csv”)

• not_reached to not_revealed: The number of hint types related to the RIPR
model (see Section 2.4.4).

Mutation scores (in “mutants.csv”)

• total: The total number of killed mutants.

• Tile and Grid: The number of mutants killed in the respective class.

• returns.BooleanFalseReturnValsMutator, etc.: The number of killed mu-
tants of the respective mutator type.1

• Tile.getNearestPower2 to Grid.clearMerged: The number of killed mu-
tants in the respective method.

Code coverage (in “coverage.csv”)

• class: The covered class (“Tile” or “Grid”).

• instruction_missed to method_missed: The number of missed nodes ac-
cording to the respective coverage metric.2

• instruction_covered to method_covered: The number of covered nodes
according to the same metrics.

1Refer to https://pitest.org/quickstart/mutators/.
2Refer to https://www.jacoco.org/jacoco/trunk/doc/counters.html.

31

https://pitest.org/quickstart/mutators/
https://www.jacoco.org/jacoco/trunk/doc/counters.html

Chapter 5

Results

5.1 Participants

We ran the experiment at the computer science faculty at the University of Na-
mur (UNamur, in Belgium). It was run twice, the first time with 26 second-year
undergraduate students and the second time with 17 third-year students, which
makes a total of 43 students. The students were split equally into groups based
on their results after the first testing session: 21 in the control group (PIT, clas-
sical mutation testing) and 22 in the treatment group (Reneri, extreme mutation
testing).

Based on their answers to the questionnaire (Table 5.1, Q1, Q2, and Q7), 28
(68%) of them had a no prior or only basic knowledge of Java, and 13 (32%)
had more than intermediate or advanced knowledge. The high proportion of
beginners can be attributed to the fact that they are still undergraduates. Among
them, 32 (79%) had no prior knowledge about software testing or had only basic
knowledge, while 9 (22%) had intermediate or advanced knowledge. Indeed, in
their curriculum, the second-year students had not yet attended a lecture teach-
ing unit testing concepts. As for third-year students, they were introduced to
these concepts in two different programming courses, neither of which focuses
exclusively on software testing. This could explain why they feel that software
testing is not sufficiently or not at all introduced during their studies, as 27 (64%)
students stated in Q7.

In a perfect world, complete data would be available for each participant.
However, this is not the case, as some students submitted a failing test suite,
giving blank values in datasets, and others did not complete the self-evaluation
for one or more criteria. We adopted a fairly standard approach to deal with
missing data [42] by excluding them from the analysis when there was an empty
value for one or both parts for a given metric. Therefore, we were left with groups

32

CHAPTER 5. RESULTS

of 16 and 15 students for mutation scores, coverage, and hint types, and with
groups of 20 and 19 students for self-evaluation criteria (down to 18 for C4 and
17 for C5 in the second group).

5.2 Hypothesis Testing

We defined three research questions in Chapter 3. They are repeated here as
a reminder. The way in which we will answer these questions is illustrated in
Figure 5.1 below. It illustrates the link between the research questions and the
metrics used.

RQ1: To what extent are the results of Oliveira et al. [34] and Delgado-Pérez et
al. [35] (i.e., classical mutation testing is effective for teaching the basics
of software testing) replicable in our context (i.e., beginner students at the
University of Namur)?

RQ2: What is the impact of extreme mutation testing on students’ unit testing
learning?

RQ3: Compared to classical mutation testing, to what extent does extreme muta-
tion testing have a larger, smaller, or similar impact on students learning to
write unit tests?

R
en

er
i g

ro
up

PI
T

gr
ou

p

First part

(without tool)

Second part

(with tool)

RQ1

R
Q
3

RQ2

Figure 5.1: RQ1 evaluates the evolution between the first and second part for
students who used PIT. RQ2 does the same thing but for Reneri users. RQ3
compares the evolution of the PIT group to that of the Reneri group.

In order to validate our different hypotheses, we used two non-parametric rank
tests depending on whether the observations were independent or not. On the

33

CHAPTER 5. RESULTS

one hand, we are comparing groups to each other (RQ3). As they are independent,
we used a Mann-Whitney U test [43] (we also provided the U-value for this test).
On the other hand, we are observing the evolution of the same group across the
two parts (RQ1 and RQ2). In that case, the observations are dependent, so we
used a Wilcoxon signed-rank test [44] (we also provided the W-value for this test).
We used the implementations from Python’s scipy library [45]. Finally, we used
the fairly standard value of 0.05 for the p-value threshold.

To interpret the effect size, we will use Vargha-Delaney’s 𝐴̂12 [46]. It measures
the stochastic dominance, i.e., how often, on average, the treatment technique
outperforms the control one. For instance, an 𝐴̂12 = 0.7 means that there is a 70%
chance that a random student from the treatment group outperforms a random
one from the control group. Consequently, if 𝐴̂12 = 0.5, it means both techniques
are equal. If 𝐴̂12 < 0.5, the control outperforms the treatment. And 𝐴̂12 > 0.5
means the opposite. We will use the rule of thumbs given in the original paper,
i.e., 𝐴̂12 > 0.56 or 𝐴̂12 < 0.44 is small, 𝐴̂12 > 0.64 or 𝐴̂12 < 0.36 is medium, and
𝐴̂12 > 0.71 or 𝐴̂12 < 0.29 is large.

5.3 Mutation Score

Mutation score is the first metric we analysed to measure the test suite’s quality. It
was computed for each student at the end of the first and second testing sessions
(i.e., before and after introducing the mutation testing tool). This allowed us to
compare the evolution according to the tool in use. Tables containing the full data
can be found in appendix (Tables A.1 to A.6). These tables contain the ratio of
mutants killed (i.e., mutation score) in total, in each class, and in each method, as
represented by the mean, the first quartile, the median, the third quartile, and the
interquartile range (IQR). Finally, these data are illustrated in Figure 5.2.

In regards to RQ1, we see that students using PIT during the second part quite
significantly improved their test suite’s mutation score (𝑊 = 0.00, 𝑝 < .001). This
might have been expected simply because they received extra time to write unit
tests. So, it is more interesting to look at the effect size. In this case, it can be
considered large (𝐴̂12 = 0.84). This observation is consistent with the works of
Oliveira et al. [34] who showed that mutation testing is beneficial to learning for
novice programmers.

In regards to RQ2, we observed that students also improved their test suite.
The same statistical test was performed and this improvement was shown to be
quite significant as well (𝑊 = 0.00, 𝑝 = .001). However, this time, the effect size
was found to be medium (𝐴̂12 = 0.66).

34

CHAPTER 5. RESULTS

pit reneri
group

5

10

15

20

25

30

35

40

m
ut

at
io

n
sc

or
e

part
1
2

Figure 5.2: Evolution of the distribution of killed mutants at the end of the first
and second part for each group. The red line represents the total number of
killable mutants. Green triangles represent the means.

In regards to RQ3, we have just seen that PIT has a larger effect size than Reneri.
At first glance, the mutation score differences between the two sessions seem to
rather be lower for Reneri users compared to PIT users (𝑈 = 160.50, 𝑝 = .057, with
a medium effect size of 𝐴̂12 = 0.33). However, we must be cautious: this result is
not as clear-cut as the previous ones, as we have a much higher p-value, slightly
above the threshold. We cannot conclude that there is a significant difference.

However, if we look at the interquartile ranges (visually on Figure 5.2 and in
raw numbers in Table A.6), we see that there is more variability in the results for
Reneri users. Indeed, for PIT users the IQR goes from 7.8 to 6.5 mutants (Δ = −1.2)
while for Reneri users it goes from 11.5 to 13.5 (Δ = +2.0).

To further understand what is going on, we have separated the results accord-
ing to the two classes in the SUT’s source code, i.e., Tile and Grid (in the same order
the students were told to test them). This separation can be seen in Figure 5.3.

On the one hand, as far as the Tile class is concerned, we see that the students’
mutation scores improved significantly more for PIT users than for Reneri users
(𝑈 = 225.00, 𝑝 < .001, with a large effect size of 𝐴̂12 = 0.06). The p-value indicates
that this result is much stronger for this specific class than for the mutation score
of both classes combined.

On the other hand, if we focus solely on the Grid class, it seems that Reneri
users improved their mutation score more than PIT users. However, the Mann-
Whitney U test failed to reveal that it is actually the case (𝑈 = 103.00, 𝑝 = .223, with
a small effect size of 𝐴̂12 = 0.57). Therefore, we cannot clearly draw a conclusion
for this case.

35

CHAPTER 5. RESULTS

pit reneri
group

0

5

10

15

20

25

m
ut

at
io

n
sc

or
e

class = Tile

pit reneri
group

class = Grid

part
1
2

Figure 5.3: Evolution of the distribution of mutation scores per class at the end of
the first and second part for each group. Red lines represent the total number of
killable mutants. Green triangles represent the means.

By further looking at mutation scores method by method (see Figure A.1 in
appendix, the methods are sorted in the same order as in the source code), we can
indeed see that Reneri users seem to have made progress on more methods than
PIT users, especially regarding the Grid class.

Simply by looking at the graph, however, we see a difference concerning the
mutation scores after the first testing session and before the second one. The
third quartiles confirm this by showing us that only a few outliers of the PIT
group started testing this class during the first part (𝑄3 = 0, Table A.5) whereas a
quarter of the Reneri group had already started testing it then (𝑄3 = 2, Table A.5).

Therefore, since the statistical test failed to reject the null hypothesis, and since
there seems to be an imbalance between the PIT and Reneri groups from the start,
we must bear in mind that any result concerning the Grid class should be taken
with caution.

5.4 Instruction Coverage

The previous observation shows that Reneri could thus lead to better coverage
than PIT. To verify this, we calculated the code coverage of each test suite using the
JaCoCo coverage library. Detailed numbers can be found in appendix (Tables A.7
and A.8). They are reported on Figure 5.4 which shows the evolution of instruction
coverage per class and for each group.

Concerning the Tile class, PIT users clearly improved their instruction coverage
more than Reneri users (𝑈 = 171.50, 𝑝 = .020, with a medium to large effect size of

36

CHAPTER 5. RESULTS

pit reneri
group

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

in
st

ru
ct

io
n

co
ve

ra
ge

class = Tile

pit reneri
group

class = Grid

part
1
2

Figure 5.4: Evolution of the instruction coverage ratio for each class before and
after the introduction of the tool. Means are represented as green triangles.

𝐴̂12 = 0.29, being just at the threshold). For the Grid class, we fail to prove that
the Reneri group performed significantly better (𝑈 = 112.50, 𝑝 = .379). This can
be attributed to the fact that a part of this group had already started testing this
class during the first testing session, unlike the other group. This left them with
an initial advantage. Even if it had been proven, the effect size seems insignificant
(𝐴̂12 = 0.53). However, we still cannot draw any conclusion. These observations
are consistent with the previous section (Section 5.3).

5.5 Self-Evaluation

As explained in Sections 3.1.4 and 3.1.7, students were asked to rate the tests they
wrote during the first session from 1 (poor) to 4 (good) on five criteria, namely
Correctness, Completeness, Assertions, Design, and Legibility (see Table 3.1 for their
definitions). This rating took place once after the first testing session and again
after the second one. It allowed us to compare the evolution of the students’
perception of their work depending on the tool in use. Figure 5.5 presents the
evolution of the ratings. We will mainly focus on C2 and C3, as we can see
interesting patterns concerning these two. Refer to Figure A.2, Table A.9, and
Table A.10 in appendix for the evolution of the other criteria.

On the one side, on average, students slightly increased their evaluation of
the Completeness criterion (C2) with PIT while it remained at a comparable level
for students using Reneri. This criterion is defined as the test suite’s coverage of
all testing scenarios. With regards to RQ1, its increase in the PIT group means
that students eventually felt they were more complete than they had initially

37

CHAPTER 5. RESULTS

1 2
part

1 (poor)

2 (mediocre)

3 (fair)

4 (good)

ra
tin

g

criterion = Completeness (C2)

1 2
part

criterion = Assertions (C3)

group
pit
reneri

Figure 5.5: Evolution of the C2 and C3 self-evaluation criteria by tool. Points rep-
resent means. Vertical bars are confidence intervals covering standard deviations.

thought. On the contrary, for RQ2, the Reneri group did not significantly change
its evaluation of the same criterion.

On the other side, the Assertions criterion (C3) is defined as the level of ade-
quacy of assertions in the test cases. A good level implies that all the changes in
the program state were covered. While C2 evaluates global coverage of the SUT,
C3 instead evaluates the strength of individual test cases. Regarding RQ1, we see
that C3 decreased with PIT. Regarding RQ2, we see that it increased with Reneri.
This means that the first group became aware of some limitations of their original
test cases, whereas the latter had the opposite effect.

Finally, to complete our answer to RQ1, we compared our results from the
PIT group with Delgado-Pérez et al. [35], from whom the evaluation criteria were
taken. They ran a similar experiment where students created tests using mutation
testing on a C++ SUT. The authors wrote that “the knowledge of the mutation
score significantly decreased the expectations the students had on the test suites,
especially concerning their coverage of functionalities and possible changes in
the internal state of the program”. Indeed, they observed that C2 and C3 both
decreased when students used classical mutation testing. We got similar results
for C3 but observed the opposite trend for C2, which increased instead. This could
be due to using a different SUT with a different level of complexity. Delgado-Pérez
et al.’s [35] SUT is described as two C++ classes, but its source code is not public.
However, even if one was negative and the other positive, both results indicate
that mutation testing impacts C3.

The other criteria (C1, C4, and C5) showed a similar evolution in both groups
and are on par with the previous study’s results. This is expected, as the tools
should impact coverage (C2) and assertions (C3) but not correctness (C1), design

38

CHAPTER 5. RESULTS

(C4), nor legibility (C5).

5.6 Questionnaire

Table 5.1 contains the questions and answers from the questionnaire that is given
at the end of the experiment. In this table, we present the responses for all
students, for the PIT group, and for the Reneri group separately. The students
received a French translation, but we translated it back to English here.

Table 5.1: Questions and Answers by Group

Both PIT Reneri
Q1. What was your knowledge of Java before you started this experiment?

No knowledge 1 (2%) 0 (0%) 1 (5%)
Basic knowledge 27 (66%) 14 (67%) 13 (65%)
Intermediate knowledge 11 (27%) 5 (24%) 6 (30%)
Advanced knowledge 2 (5%) 2 (10%) 0 (0%)

Q2. What was your knowledge of software testing before you started this experiment?
No knowledge 8 (20%) 4 (19%) 4 (20%)
Basic knowledge 24 (59%) 12 (57%) 12 (60%)
Intermediate knowledge 8 (20%) 4 (19%) 4 (20%)
Advanced knowledge 1 (2%) 1 (5%) 0 (0%)

Q3. Do you think it is interesting to present the concepts of mutation testing together with the
basics of programming?

Yes 17 (41%) 9 (43%) 8 (40%)
Yes but superficially 20 (49%) 10 (48%) 10 (50%)
No 4 (10%) 2 (10%) 2 (10%)

Q4. What could be the consequences of the use of mutation testing by novice programmers?
Better programs 10 (24%) 3 (14%) 7 (35%)
More competent programmers 6 (15%) 2 (10%) 4 (20%)
Better programs and more competent programmers 24 (59%) 15 (71%) 9 (45%)
Neither 1 (2%) 1 (5%) 0 (0%)

Q5. Do you consider classical testing tools (JUnit) to be useful for teaching programming funda-
mentals?

Yes 21 (51%) 10 (48%) 11 (55%)
Yes, but only with basic functionality 17 (41%) 9 (43%) 8 (40%)
No 3 (7%) 2 (10%) 1 (5%)

Q6. Do you consider mutation testing tools to be useful for teaching the fundamentals of pro-
gramming?

Yes 15 (37%) 7 (33%) 8 (40%)
Yes, but only with basic functionality 21 (51%) 12 (57%) 9 (45%)
No 5 (12%) 2 (10%) 3 (15%)

Continued on next page

39

CHAPTER 5. RESULTS

Both PIT Reneri
Q7. Considering your background so far (without taking this presentation into account), you feel
that the concepts of software testing have been:

Fairly well presented 14 (34%) 8 (38%) 6 (30%)
Insufficiently presented 26 (63%) 13 (62%) 13 (65%)
Not presented 1 (2%) 0 (0%) 1 (5%)

Q8. Do you think that using software testing tools for learning purposes could be useful for
creating good programming habits?

Yes 41 (100%) 21 (100%) 20 (100%)
No 0 (0%) 0 (0%) 0 (0%)

Q9. Do you think that creating test cases through mutation testing is useful for improving the
learning ability of novice programmers?

Yes 39 (95%) 21 (100%) 18 (90%)
No 2 (5%) 0 (0%) 2 (10%)

Q10. How did you find creating tests manually, without the help of a tool?
Easy in general 13 (32%) 8 (38%) 5 (25%)
Difficult, especially with regard to the completeness
of my tests (sufficient code coverage)

20 (49%) 9 (43%) 11 (55%)

Difficult, especially to follow a logical order in the
design of test cases

8 (20%) 4 (19%) 4 (20%)

Q11. What is your perception of software testing after applying mutation testing to your tests?
It has changed the way I design tests 6 (15%) 2 (10%) 4 (20%)
This allowed me to discover parts of the code that were
not sufficiently tested

30 (73%) 15 (71%) 15 (75%)

The mutants do not seem to me to be particularly
useful for improving the quality of my tests

5 (12%) 4 (19%) 1 (5%)

Q12. The reports generated by the tool used in the second session:
Were sufficiently understandable 39 (95%) 20 (95%) 19 (95%)
Lacked comprehensibility but were still usable 2 (5%) 1 (5%) 1 (5%)
Were not understandable enough to be usable 0 (0%) 0 (0%) 0 (0%)

Q13. Compared to your original self-assessment, you feel:
You have assessed yourself correctly 26 (63%) 13 (62%) 13 (65%)
You have overestimated yourself 11 (27%) 6 (29%) 5 (25%)
You have undervalued yourself 4 (10%) 2 (10%) 2 (10%)

Q14. From a practical point of view, mutation testing:
Is very useful 32 (78%) 17 (81%) 15 (75%)
Is very useful but not comfortable to use 8 (20%) 4 (19%) 4 (20%)
Does not compensate for the effort required to use it 1 (2%) 0 (0%) 1 (5%)

A total of 21 students (51%) think that using classical testing tools (like JUnit)
helps to teach basic programming concepts (Q5), while only 15 students (37%) felt
the same way about mutation testing tools (Q6). On the other side, 17 (41%) stu-
dents think that using classical testing tools only with basic functionality is helpful
(Q5), and 21 (51%) students find mutation testing with basic functionality helpful
(Q6). Thus, on average, the same proportion of students think that using classical

40

CHAPTER 5. RESULTS

or mutation testing tools, at least partially, is helpful for learning. However, they
mostly feel that mutation testing should be kept to basic functionality. This might
be due to the increased cognitive load of such a tool for novice programmers [28].

Students were unanimous (100%) that using testing tools for learning can create
good programming habits (Q8). Almost all students (95%) think that designing
test cases through mutation testing helps improve the learning capacity of novice
programmers (Q9). Hence, they recognise that they have learned something by
using the tools. However, in the PIT group, 18 students (86%) think it leads to
better programs, and 17 students (81%) think it leads to better programmers.
While in the Reneri group, 16 students (80%) think it leads to better programs,
and 13 students (65%) think it leads to better programmers (Q4). This could mean
that some students felt that Reneri could only improve the test suite but that they
would get nothing out of it in terms of learning.

From a practical point of view, 32 students (78%) think that mutation testing is
beneficial, and 8 students (20%) think it is useful yet not comfortable to use (Q14).
Finally, concerning understandability, both groups (39 students, 95%) equally
think that the reports were sufficiently understandable (Q12). We were expecting
a difference between code-based reports from PIT and text-based reports from
Reneri, but there seems to be none in that regard.

5.7 Findings

We can summarise our findings from this chapter in regards to each research
question. Based on mutation scores, instruction coverage, self-evaluation ratings,
and the responses to the questionnaire, we have drawn the following conclusions:

RQ1: Classical mutation testing has a large effect on improving the students unit
testing skills. This is on par with Oliveira et al. [34]. On the one hand,
PIT users found shortcomings in the assertions of the tests they had written
without the tool. In addition, most students feel that they have learned
something using PIT. On the other hand, they also felt that their test suite
was more complete than they initially thought. Delgado-Pérez et al. [35]
observed the same effect concerning assertions but the opposite one for
completeness.

RQ2: Extreme mutation testing only has a medium impact on students’ unit testing
skills. Reneri did not change the students’ self-evaluation ratings of the
completeness of their test suites. However, it did increase the confidence
they had in the assertions written prior to the introduction of the tool.

41

CHAPTER 5. RESULTS

RQ3: Classical mutation testing would rather help students improve their muta-
tion score more than extreme mutation testing. On the other side, extreme
mutation testing could help to improve instruction coverage more than clas-
sical mutation testing. The questionnaire shows that, compared to PIT, a
slightly smaller amount of students found Reneri useful for learning. On
the contrary, the same number of students in both groups found the reports
sufficiently clear, suggesting that there is no difference between code-based
and text-based reports in this respect.

42

Chapter 6

Discussion

6.1 Learning with Mutation Testing

This first section is based upon the results from Chapter 5 and from a student’s
perspective.

6.1.1 A Comparison of the Tools

PIT seems to be more effective than Reneri to improve students’ skill set. To
discuss this initial finding, we must first have a look at reports generated by both
tools. Figure 6.1 is a code-based PIT report, and Figure 6.2 a text-based Reneri
report.

As we can see, PIT reports consist of a main page on which global and per
class mutation scores can be found (see Figure 6.1a). By selecting a class, one can
browse its source code. Lines where a mutant is still alive are marked in red, and
line where all mutants are killed are marked in green (see Figure 6.1b). Finally, by
hovering a line number, one can see specific mutants (see Figure 6.1c). This kind
of report resembles those found in coverage testing tools.

On the other side, Reneri generates textual reports. Figure 6.2 is divided in
three parts: issue, diagnosis, and solution. The first part, the issue part, describes
that removing the entire body of Tile.equals and replacing it with “return false;”
did not provoke any failure. Reneri detected that two tests (testTileEquals and
testGridd) did not fail, yet they called that method. In the diagnosis part, the report
explains that there were no observable difference whether the original program
or the mutated one was executed. Then, in the solution part, Reneri suggests
creating a variant of one of the two test cases to produce a different return value
for Tile.equals.

A significant difference between the two reports is that the first one directly

43

CHAPTER 6. DISCUSSION

(a) Main Page

(b) Specific Method

(c) Live Mutants

Figure 6.1: Student 35 PIT Report

Figure 6.2: Student 35 Reneri Report

44

CHAPTER 6. DISCUSSION

gives line coverage, mutation score, and test strength.1 This difference could
explain the bigger impact PIT has on student’s tests mutation scores than Reneri.
PIT students have direct access to their mutation score, making it easier to improve
it. In addition, PIT, which is fine-grained (traditional mutation operators), shows
specific mutants and their exact location in code, in contrast with Reneri, which
is coarse-grained (extreme mutation operators). As for Reneri, we will see in
Section 6.1.2 that students were mainly encouraged to test uncovered methods
instead of improving existing tests.

A second notable difference between the two tools is that Reneri is injunctive
whereas PIT is informative. Indeed, Reneri describes a surviving mutant and
makes suggestions for adding a new test case or assertion to kill it. PIT only
describes mutants and whether they were killed or not. In the first case, the user
is told what to do. In the second, they implicitly understand what to do. And,
again, as we’ll see in Section 6.1.2 below, Reneri users were mostly told to cover
uncovered methods.

6.1.2 Reneri Hint Types

During dry runs and the actual experiment, we were under the impression that
Reneri users were primarily confronted with not-reached hints. We even noticed
that some users did not have any other type of hints. The problem is that not-
reached hints are, in fact, only method coverage hints. We hypothesised that the
users were biased due to the low number of pseudo-tested methods in their test
suites, as Reneri only makes suggestions for pseudo-tested methods.

To verify this, Reneri was run on every single submitted test suite. Then
generated hints were classified according to their type: not-reached, not-infected,
not-propagated, or not-revealed. Figure 6.3 contains the resulting distribution.

The results reveal that, except for a few outliers, no students received not-
infected, not-propagated, or not-revealed hints (i.e., extreme mutation hints). Thus,
most students only received not-infected hints (i.e., method coverage hints). Hence,
it is as if most of the students in Reneri’s group had only used a coverage method
tool, and not a mutation testing tool. Figure 6.4 shows an example of a not-infected
hint: it says, in French, that no test executed this method, thus simply suggesting
to write a new test to cover it.

Out of 43 students’ test suites, 28 (65%) did not produce any mutation-related
hint. Ignoring coverage, only 4 students (9%) had one hint, 3 students (7%) had
two hints, and 1 student (2%) had three hints. Consequently, this gives us a

1PIT defines “Test Strength” the same way as mutation score with the difference that it ignores
uncovered mutants.

45

CHAPTER 6. DISCUSSION

6

8

10

12

14

16

18

hi
nt

s
hint type = not_reached

0.0

0.5

1.0

1.5

2.0

2.5

3.0

hint type = not_infected

reneri pit
group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

hi
nt

s

hint type = not_propagated

reneri pit
group

0

10

20

30

40

50

60

70

80
hint type = not_revealed

part
1
2

Figure 6.3: Distribution of Reneri Hint Types

Figure 6.4: Example of a Not-Reached Hint

46

CHAPTER 6. DISCUSSION

new point of view on the results we obtained. In our case, extreme mutation
testing did not produce a satisfactory number of mutants that were left unkilled
by students. Therefore, Reneri placed great emphasis on method coverage by
providing feedback and suggestions mostly focused on this criterion.

Another point came to our attention: the analysis reveals that some test suites
generate many not-revealed hints. For instance, student 36 generated 78 hints of
that type at the end of the first testing session. As for the others, students 6, 31,
and 32 generated 14 or 12 hints. Almost every other student generated none. We
thus explored the corresponding test suites and generated reports.

Concerning student 36, we noticed that 77 of the not-revealed hints concern
the same method, Tile.getNearestPower2. This method is called within Tile’s con-
structor and ensures that every tile will have a value that is a power of two. Two
extreme mutants were generated, the first changed the body of the method to
“return 1;”, the second to “return 0;”, effectively changing the initialization
of the tiles’ value. An example test case is presented on Listing 6.1. We can see
that the student created two tiles, “v1” and “v2”, and then compared their values.
After the mutations, these values were changed to 1 or 0, yet the test did not fail.
Indeed, student 36 never wrote any assertion concerning a tile’s value. Reneri
detected this on lines 4 and 5 and reported 2 hints for both lines, one for each mu-
tant. Reneri also noticed a difference on line 8. More specifically, it detected that
the value of the expressions “v1.getValue()” and “v2.getValue()” changed. In
the same expression, it also noticed that “v1” and “v2” themselves had changed.
Reneri thus reported 4 observable differences for each mutant and for line 9 as
well. This explains why a single test case produced 20 different not-revealed hints.
During the second testing session, student 36 added assertions and all the hints
were solved simultaneously.

Listing 6.1: Student 36 Example Test Case
1 @Test

2 public void testTileGetValue() {

3 // Arrange

4 Tile v1 = new Tile(2); // 2 hints

5 Tile v2 = new Tile(4); // 2 hints

6
7 // Act

8 boolean check = v1.getValue() == v2.getValue(); // 8 hints

9 boolean check2 = v1.getValue() == v1.getValue(); // 8 hints

10
11 // Assert

12 assertTrue(check2 == true);

13 }

47

CHAPTER 6. DISCUSSION

By looking at the other students’ test cases, we see that they encountered the
same situation. Their high number of not-revealed hints is also due to combinatorial
explosion.

6.1.3 A Look Back at the Results

With this new perspective in mind, we can interpret some results of Chapter 5.
On the one hand, PIT users had direct insights on the mutants left alive after the
execution of their tests. On the other hand, Reneri users were mostly instructed
to cover uncovered methods.

Mutation Score and Instruction Coverage

In Sections 5.3 and 5.4, we saw that, in terms of mutation score and instruction
coverage, the PIT group globally improved more than the Reneri group. This
can be explained if we consider that PIT students used classical mutation testing
while most Reneri students mainly used method coverage. Indeed, the first group
had their mutation score at their disposal as well as the exact surviving mutants
to kill to improve this score. The latter did not. Consequently, we can expect that
PIT’s reports make killing mutants easier.

Students were told to test two classes: first Tile, then Grid. By grouping by
class, we noticed that the PIT group killed more mutants in the first class than
the Reneri group but the Reneri group killed more mutants in the second one. It
seemed that Reneri users went on testing this second class after finishing testing
all methods in the first one. Again, this could be explained by the fact that Reneri
reports mostly focused on uncovered code, whereas PIT reports have led to a
focus on improving existing test cases. However, we also noticed that the initial
mutation score and instruction coverage were actually lower in the PIT group
than in the Reneri group, even before part 2 (i.e., before introducing any mutation
testing tool). This means that the first group tested Grid more than the latter
before any mutation testing tool was introduced (𝑄2 = 40% for Reneri, 𝑄2 = 0%
for PIT, Table A.4).

Concerning instruction coverage, the results were similar to those of mutation
score. This is not surprising, as we know that mutation score subsumes instruction
coverage [10]. This is an intuitive fact if one considers that a mutant can only be
killed if it is covered.

48

CHAPTER 6. DISCUSSION

Self-Evaluation

In Section 5.5, we observed an increase of the Completeness criterion (C2) when
using PIT and no significant change with Reneri. It means that PIT users felt they
were more complete than they initially thought while Reneri users did not change
their evaluation. It can be attributed the fact that the first group (PIT) is directly
exposed to the mutation score, unlike the latter (Reneri). We think that direct
exposure to this metric influences the way a programmer considers his code. It
was the conclusion of Delgado-Pérez et al. [35].

As for the Assertions criterion (C3), we observed a decrease for the PIT group
and an increase for the Reneri group. First, PIT users felt that their assertions
were less sufficient than they initially thought. It can be explained by the fact that
mutation testing exposes them with surviving mutants, implying that there is a
lack of assertions. These users have thus corrected this shortcoming. In contrast,
Reneri users felt the other way. We think that it is caused by the fact that Reneri
reports mostly suggested improvement with uncovered methods and not covered
ones. From the tester’s point of view, this would imply that existing test cases do
not require any improvement, and this positively impacts self-evaluation.

Questionnaire

In Section 5.6, we saw that most students think that PIT leads to better programs
and more skilled programmers while they think that Reneri leads to better pro-
grams a bit more than competent programmers. Once more, we can understand
the difference between the two groups by considering that most Reneri users
were simply told to test more methods. As test cases were written within a lim-
ited amount of time, students weren’t able to attain full coverage. Consequently,
when Reneri reports only contained a list of uncovered methods, students did not
feel like they were learning something or improving themselves.

6.2 Teaching with Mutation Testing

We have explored the results from a student’s point of view. We will now discuss
what this means from a teacher’s perspective based on the results and conclusions
of related works [28, 34, 35].

First, in our case, students seem to get more out of PIT than Reneri. Classical
mutation testing actually help students to improve themselves. It is a promising
lead. With similar experiments, Oliveira et al. [34] and Delgado-Pérez et al. [35]
got similar results. Respectively, they wrote that “the analysis states that mutation

49

CHAPTER 6. DISCUSSION

testing can be seen as a promising testing criterion to support teaching program-
ming foundations to novice students” and that, “as the main lesson learned, this
experience shows that applying mutation testing after the manual design of test
cases is an effective method to make students more aware of the need of using
advanced testing techniques to increase the quality of the test suites.”

Garousi et al. [28] summarised common challenges found in the literature. We
highly recommend this paper to teachers who want to give a course on software
testing. One of the mentioned challenges is that giving specific feedback to every
student is important yet time-consuming. An automated report generation tool,
such as a PIT or Reneri, can actually help in that regard. Another common
challenge—the most common one—is that testing is often considered boring or
tedious by students. Mutation testing can be presented as a game where the
objective is to kill as most mutants as possible. This could be used to motivate
students. For instance, this kind of approach has already been used with Code-
Defenders [29] (see Section 2.5.1).

As we have seen in Section 6.1.2, Reneri proved to generate an insufficient
amount of valuable insights. Therefore, we would rather encourage the use of
classical mutation testing instead of extreme mutation testing. Yet, we think that
extreme mutation testing can still be useful in some cases, especially with bigger
test suites. Indeed, it could be the case that the SUT we used was too simple
and that generated extreme mutants were consequently too coarsed-grained for
students to miss them. Our hypothesis was that extreme mutants would be more
obvious to kill than classical ones. Maybe, they were too obvious, making them
irrelevant. One solution could be to mix the use of PIT and Reneri by using PIT
first, when the test suite is small, and Reneri afterwards to go further with certain
problematic tests. Stand-alone use of Reneri, however, seems ineffective.

Finally, in Section 5.6, students reported the same level of understandability
regardless of whether they were exposed to PIT or Reneri reports. This indicates
that code-based reports don’t seem to be a problem for learning students. How-
ever, these are the only results we have on this subject, and the question needs to
be investigated further.

6.3 Experimenting with Students

Conducting an experiment with students is challenging. In this section, we pro-
vide insights into how we addressed those challenges.

Firstly, if the experiment consists of a comparison of two groups, care must
be taken in distribution of the groups. Experimenters must avoid having one

50

CHAPTER 6. DISCUSSION

group with much more skills than the other. To cope with that, we decided to use
mutation score as a criterion to separate students. This step is described in detail
in Section 3.1.5. As we saw in Section 5.3, it gave us a similar distribution in both
groups.

Secondly, we put our experimental design to the test with dry runs. As
described in Section 3.2, three students helped us calibrating some details of the
experiment. Doing this helped us to assess the actual level of students and to
select an SUT according to it. In addition, it showed us that students needed help
with Java itself. By not giving that help, students would have more trouble to
write unit tests and results would reflect that, leading to some bias. Finally, it
revealed some limitations of the tools that we had not anticipated beforehand.
Therefore, we believe that it is essential to carry out dry runs before the actual
experiment.

Thirdly, another challenge mentioned by Garousi et al. [28] was the difficulty
for students to learn using a new tool along with learning basic concepts of
software testing. To mitigate this problem, we provided students with scripts to
automate the process of running PIT or Reneri with Maven. These scripts can be
run directly from Visual Studio Code at the touch of a button, further simplifying
the process.

A fourth challenge we faced was the difficulty of managing a large group
of students (up to 26 in our case). It is necessary to be well prepared, as a
large number of questions can be asked simultaneously. Dry can be useful in
this regard. Another simple solution is to reduce the number of students by
conducting the experiment in several rounds with smaller subgroups, at the
expense of experimentation time. Finally, if a metric is to be used to separate the
groups, care should be taken not to become overwhelmed by the rapid collection
of all this data. One way to speed up this process is to have the students generate
the metric themselves on their own machines (again, at the touch of a button) and
to collect it afterwards.

6.4 Threats to Validity

Conclusion validity

For a start, there is a threat to validity related to the sample size. Indeed, although
one might consider 40 participants a decent number, we had to split into two
groups, so we had less than 20 participants in each group. Therefore, a single
student represents 5% of their group, which may lead to the belief in some cases
that there is a significant difference when it is only one student. Thus, in our

51

CHAPTER 6. DISCUSSION

analysis, we always included absolute numbers in addition to ratios.
As recommended by Papadakis et al. [11], the mutation tools in use and their

mutation operators must be specified, as they can highly vary the results. See
Appendix B for the exact versions and mutation operators we used.

The same authors [13] recommend dealing with equivalent and redundant mu-
tants (see Section 2.4.2) which can pose a significant threat. We paid attention
to equivalent mutants and found only one in the GameController class, which we
did not even include in the presented results because almost no students tested
it. However, we did not pay particular attention to redundant mutants. This
represents a threat.

Another threat to validity lies in how we deal with missing data. Indeed,
we naively assumed that the data were missing completely at random [42] for
simplicity. However, this may not be the case, as some students are more likely to
skip the questionnaire, for instance.

Internal validity

The experiment took place in our faculty’s computer pool in which we required
the students to use a provided computer. This ensures that everyone had a
similar environment avoiding an internal threat. We also made them use Visual
Studio Code without any extensions, which meant that they received no help from
their IDE besides syntax highlighting. Nevertheless, some of them experienced
software crashes, which slowed them down while we intervened.

Cooperation between students would bias their results. Therefore, we made
it clear that sharing answers was not allowed at the beginning of the experiment.
However, as many students were in the room, ensuring that none of them actually
cooperated was challenging. Nevertheless, if some students gave each other
answers, they would have a similar mutation score and thus be separated into
different groups.

Construct validity

A common threat to validity with students is their motivation. If an exercise is
not graded, students tend to take it less seriously. However, although the session
was not graded, the teachers explained to the students that participating in the
experiment would help them to pass the exam. Indeed, the introductory object-
oriented programming course has an exam question asking students to write
a unit test, while the introductory scientific research course has a question on
conducting such an experiment. We think that this has encouraged motivation
enough to produce significant results.

52

CHAPTER 6. DISCUSSION

External validity

A common threat to validity in software testing is the software under test, whether
because of its complexity, size, or programming language. Previously, in Sec-
tion 6.2, we saw that larger test suites with more pseudo-tested methods could
lead to more insightful hints from Reneri. Thus, a system of a different size could
have given a different result. However, as our participants were undergraduates
and time was limited, we needed an SUT that was not too large and, at the same
time, attractive enough so they would not lose interest. So a video game in the
size of 2048 seemed relevant. In addition, TU Delft’s JPacman [30] project is quite
similar in size (see Section 2.5.1).

Our experiment was inspired by Delgado-Pérez et al. [35] who gave 90 minutes
for the students’ first testing session and 75 minutes for the second. For our
experiment, we gave 60 minutes for the first part and 45 minutes for the second
part (see Section 3.1.9). This is a threat to validity, as some students may have run
out of time. For instance, this could impact the self-evaluation criteria: a student
who has not achieved full coverage may still feel that he or she has achieved a
sufficient level for the time allocated. On the contrary, some students may have felt
that the time allocated was too long. Indeed, not everyone has the same attention
span. Some students may have been distracted and performed worse than they
could have.

Finally, all students participating in our experiment come from the same insti-
tution. However, as the results are similar to those in the literature, this does not
seem to be a problem.

53

Chapter 7

Conclusion

In Chapter 1, we saw that software testing is an important field of computer
science [1]. Yet, novel approaches in software testing education are needed to
address identified gaps in learning [2]. We have also seen that there exist such
approaches using mutation testing [29, 30].

In Chapter 2, we saw that extreme mutation testing [23] is a special case of
mutation testing where entire bodies of methods are removed at once to high-
light pseudo-tested methods. It is a coarse-grained technique whereas classical
mutation testing is fine-grained. We wanted to know if such mutants were more
obvious to kill for students, and could thus help in learning software testing
fundamentals.

We designed an experiment based on previous works [34, 35] in Chapter 3 to
compare the effect of two Java mutation testing tools, PIT [21] and Reneri [3], on
undergraduate computer science students. The first tool uses classical mutation
operators and the latter uses extreme operators. We ran the experiment with 43
second and third year students in our university while making the hypothesis
that Reneri would be more effective.

However, our results in Chapter 5 indicate that students using PIT improved
their test suites further than those using Reneri, thus contradicting our hypothesis.
On the one hand, this reinforces the conclusions of Oliveira et al. [34] that mutation
testing is effective to teach programming fundamentals and those of Delgado-
Pérez et al. [35] that mutation testing helps to raise awareness of the usefulness
of testing tools. On the other hand, it means that the students did not benefit as
much from extreme mutation.

By looking at the results in more detail in Chapter 6, we observed that, most of
the time, Reneri actually only generated method coverage hints, thus not taking
advantage of what mutation testing can provide. We think this can be explained
by the scale of the system under test and the allotted time of our experiment.

54

CHAPTER 7. CONCLUSION

Therefore, our conclusion only applies to small-scale software and test suites.
Finally, we contributed to open data by publishing all the results, students’

test suites, and generated reports to Zenodo [36] (see Chapter 4). We summarised
lessons learned concerning experimenting and the usage of mutation testing tools
with students.

As for future works, we think that it would be interesting to vary parameters
and see what happens with a different size SUT, an initial test suite, or more time
to write test cases. Another lead that came up during the preparation of this
master thesis is the comparison between code-based and text-based reports. In
that matter, we could consider comparing two classical mutation testing reports:
a traditional code-based one (from PIT) and a text-based one (from a tool inspired
by Reneri).

55

Appendix A

Full Data

The following pages contain the full data on mutation scores, instruction coverage,
and self-assessment criteria. If you wish to find the source data (test suites written
by students, Reneri reports, detailed data per student, etc.), they are available on
Zenodo (see Chapter 4).

56

APPENDIX A. FULL DATA

pit reneri
group

0

1

2

3

4

5

6

7

m
ut

at
io

n
sc

or
e

method = Tile.getNearestPower2

pit reneri
group

method = Tile.getValue

pit reneri
group

method = Tile.isMerged

pit reneri
group

method = Tile.canMergeWith

part
1
2

pit reneri
group

0

1

2

3

4

5

6

m
ut

at
io

n
sc

or
e

method = Tile.mergeWith

pit reneri
group

method = Tile.toString

pit reneri
group

method = Tile.equals

(a) Tile

pit reneri
group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ut

at
io

n
sc

or
e

method = Grid.getTile

pit reneri
group

method = Grid.getRow

pit reneri
group

method = Grid.getCol

pit reneri
group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ut

at
io

n
sc

or
e

method = Grid.setTile

pit reneri
group

method = Grid.getLength

pit reneri
group

method = Grid.clearMerged
part

1
2

(b) Grid

Figure A.1: Distribution of Killed Mutants per Method

57

APPENDIX A. FULL DATA

Ta
bl

e
A

.1
:A

ve
ra

ge
N

um
be

ro
fK

ill
ed

M
ut

an
ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
15

.8
/3

9
(4

0%
)

24
.4

/3
9

(6
2%

)
+8

.6
(+

22
%

)
16

.2
/3

9
(4

1%
)

22
.1

/3
9

(5
6%

)
+5

.9
(+

15
%

)

Ti
le

15
.2

/2
4

(6
3%

)
22

.1
/2

4
(9

2%
)

+6
.9

(+
28

%
)

14
.4

/2
4

(6
0%

)
16

.9
/2

4
(7

0%
)

+2
.5

(+
10

%
)

G
rid

0.
6/

15
(4

%
)

2.
3/

15
(1

5%
)

+1
.7

(+
11

%
)

1.
8/

15
(1

2%
)

5.
1/

15
(3

4%
)

+3
.3

(+
22

%
)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

1.
8/

2
(8

7%
)

2.
0/

2
(1

00
%

)
+0

.2
(+

12
%

)
1.

5/
2

(7
6%

)
1.

8/
2

(9
0%

)
+0

.3
(+

13
%

)
Ti

le
.g

et
Va

lu
e

0.
9/

1
(8

7%
)

1.
0/

1
(1

00
%

)
+0

.1
(+

12
%

)
0.

8/
1

(8
0%

)
0.

9/
1

(9
3%

)
+0

.1
(+

13
%

)
Ti

le
.is

M
er

ge
d

0.
8/

2
(3

7%
)

1.
6/

2
(8

1%
)

+0
.9

(+
43

%
)

0.
9/

2
(4

6%
)

1.
1/

2
(5

6%
)

+0
.2

(+
9%

)
Ti

le
.c

an
M

er
ge

W
ith

5.
3/

7
(7

5%
)

6.
7/

7
(9

5%
)

+1
.4

(+
19

%
)

4.
9/

7
(6

9%
)

5.
8/

7
(8

2%
)

+0
.9

(+
13

%
)

Ti
le

.m
er

ge
W

ith
2.

4/
5

(4
8%

)
4.

6/
5

(9
1%

)
+2

.1
(+

42
%

)
2.

6/
5

(5
2%

)
3.

3/
5

(6
5%

)
+0

.7
(+

13
%

)
Ti

le
.to

St
rin

g
0.

2/
1

(2
5%

)
0.

7/
1

(6
8%

)
+0

.4
(+

43
%

)
0.

2/
1

(2
0%

)
0.

2/
1

(2
0%

)
+0

.0
(+

0%
)

Ti
le

.e
qu

al
s

3.
8/

6
(6

3%
)

5.
6/

6
(9

2%
)

+1
.8

(+
29

%
)

3.
5/

6
(5

7%
)

3.
8/

6
(6

3%
)

+0
.3

(+
5%

)
G

rid
.g

et
Ti

le
0.

4/
4

(9
%

)
1.

2/
4

(2
9%

)
+0

.8
(+

20
%

)
0.

9/
4

(2
1%

)
1.

9/
4

(4
6%

)
+1

.0
(+

25
%

)
G

rid
.g

et
Ro

w
0.

0/
1

(0
%

)
0.

1/
1

(6
%

)
+0

.1
(+

6%
)

0.
1/

1
(6

%
)

0.
3/

1
(2

6%
)

+0
.2

(+
20

%
)

G
rid

.g
et

C
ol

0.
0/

4
(0

%
)

0.
2/

4
(6

%
)

+0
.2

(+
6%

)
0.

0/
4

(0
%

)
0.

7/
4

(1
8%

)
+0

.7
(+

18
%

)
G

rid
.se

tT
ile

0.
2/

2
(1

2%
)

0.
5/

2
(2

5%
)

+0
.2

(+
12

%
)

0.
5/

2
(2

6%
)

0.
9/

2
(4

6%
)

+0
.4

(+
20

%
)

G
rid

.g
et

Le
ng

th
0.

0/
1

(0
%

)
0.

1/
1

(1
2%

)
+0

.1
(+

12
%

)
0.

1/
1

(1
3%

)
0.

3/
1

(3
3%

)
+0

.2
(+

20
%

)
G

rid
.c

le
ar

M
er

ge
d

0.
0/

3
(0

%
)

0.
2/

3
(6

%
)

+0
.2

(+
6%

)
0.

2/
3

(6
%

)
1.

0/
3

(3
3%

)
+0

.8
(+

26
%

)

58

APPENDIX A. FULL DATA

Ta
bl

e
A

.2
:S

ta
nd

ar
d

D
ev

ia
tio

n
N

um
be

ro
fK

ill
ed

M
ut

an
ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
6.

9/
39

(1
7%

)
6.

0/
39

(1
5%

)
-0

.9
(-2

%
)

8.
4/

39
(2

1%
)

10
.0

/3
9

(2
5%

)
+1

.6
(+

3%
)

Ti
le

6.
3/

24
(2

6%
)

3.
2/

24
(1

3%
)

-3
.1

(-1
2%

)
7.

0/
24

(2
9%

)
5.

7/
24

(2
3%

)
-1

.3
(-5

%
)

G
rid

1.
7/

15
(1

1%
)

4.
1/

15
(2

7%
)

+2
.4

(+
15

%
)

3.
2/

15
(2

1%
)

5.
4/

15
(3

5%
)

+2
.2

(+
14

%
)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

0.
7/

2
(3

4%
)

0.
0/

2
(0

%
)

-0
.7

(-3
4%

)
0.

8/
2

(4
1%

)
0.

6/
2

(2
8%

)
-0

.3
(-1

3%
)

Ti
le

.g
et

Va
lu

e
0.

3/
1

(3
4%

)
0.

0/
1

(0
%

)
-0

.3
(-3

4%
)

0.
4/

1
(4

1%
)

0.
3/

1
(2

5%
)

-0
.2

(-1
5%

)
Ti

le
.is

M
er

ge
d

0.
9/

2
(4

6%
)

0.
8/

2
(4

0%
)

-0
.1

(-6
%

)
1.

0/
2

(4
8%

)
0.

9/
2

(4
5%

)
-0

.0
(-2

%
)

Ti
le

.c
an

M
er

ge
W

ith
2.

2/
7

(3
1%

)
0.

8/
7

(1
1%

)
-1

.4
(-2

0%
)

2.
7/

7
(3

9%
)

1.
8/

7
(2

6%
)

-0
.9

(-1
3%

)
Ti

le
.m

er
ge

W
ith

2.
2/

5
(4

3%
)

1.
3/

5
(2

6%
)

-0
.8

(-1
6%

)
1.

9/
5

(3
8%

)
1.

5/
5

(2
9%

)
-0

.4
(-8

%
)

Ti
le

.to
St

rin
g

0.
4/

1
(4

4%
)

0.
5/

1
(4

7%
)

+0
.0

(+
3%

)
0.

4/
1

(4
1%

)
0.

4/
1

(4
1%

)
+0

.0
(+

0%
)

Ti
le

.e
qu

al
s

1.
8/

6
(3

0%
)

0.
7/

6
(1

2%
)

-1
.1

(-1
8%

)
2.

0/
6

(3
3%

)
2.

1/
6

(3
4%

)
+0

.0
(+

0%
)

G
rid

.g
et

Ti
le

1.
1/

4
(2

7%
)

1.
8/

4
(4

3%
)

+0
.7

(+
16

%
)

1.
5/

4
(3

6%
)

1.
9/

4
(4

8%
)

+0
.5

(+
11

%
)

G
rid

.g
et

Ro
w

0.
0/

1
(0

%
)

0.
2/

1
(2

5%
)

+0
.2

(+
25

%
)

0.
3/

1
(2

5%
)

0.
5/

1
(4

5%
)

+0
.2

(+
19

%
)

G
rid

.g
et

C
ol

0.
0/

4
(0

%
)

1.
0/

4
(2

5%
)

+1
.0

(+
25

%
)

0.
0/

4
(0

%
)

1.
5/

4
(3

8%
)

+1
.5

(+
38

%
)

G
rid

.se
tT

ile
0.

7/
2

(3
4%

)
0.

9/
2

(4
4%

)
+0

.2
(+

10
%

)
0.

9/
2

(4
5%

)
1.

0/
2

(5
1%

)
+0

.1
(+

5%
)

G
rid

.g
et

Le
ng

th
0.

0/
1

(0
%

)
0.

3/
1

(3
4%

)
+0

.3
(+

34
%

)
0.

4/
1

(3
5%

)
0.

5/
1

(4
8%

)
+0

.1
(+

13
%

)
G

rid
.c

le
ar

M
er

ge
d

0.
0/

3
(0

%
)

0.
8/

3
(2

5%
)

+0
.8

(+
25

%
)

0.
8/

3
(2

5%
)

1.
5/

3
(4

8%
)

+0
.7

(+
22

%
)

59

APPENDIX A. FULL DATA

Ta
bl

e
A

.3
:F

irs
tQ

ua
rt

ile
N

um
be

ro
fK

ill
ed

M
ut

an
ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
12

.8
/3

9
(3

2%
)

21
.0

/3
9

(5
3%

)
+8

.2
(+

21
%

)
10

.5
/3

9
(2

6%
)

15
.5

/3
9

(3
9%

)
+5

.0
(+

12
%

)

Ti
le

12
.8

/2
4

(5
3%

)
21

.0
/2

4
(8

7%
)

+8
.2

(+
34

%
)

10
.5

/2
4

(4
3%

)
14

.0
/2

4
(5

8%
)

+3
.5

(+
14

%
)

G
rid

0.
0/

15
(0

%
)

0.
0/

15
(0

%
)

+0
.0

(+
0%

)
0.

0/
15

(0
%

)
0.

0/
15

(0
%

)
+0

.0
(+

0%
)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

2.
0/

2
(1

00
%

)
2.

0/
2

(1
00

%
)

+0
.0

(+
0%

)
1.

5/
2

(7
5%

)
2.

0/
2

(1
00

%
)

+0
.5

(+
25

%
)

Ti
le

.g
et

Va
lu

e
1.

0/
1

(1
00

%
)

1.
0/

1
(1

00
%

)
+0

.0
(+

0%
)

1.
0/

1
(1

00
%

)
1.

0/
1

(1
00

%
)

+0
.0

(+
0%

)
Ti

le
.is

M
er

ge
d

0.
0/

2
(0

%
)

2.
0/

2
(1

00
%

)
+2

.0
(+

10
0%

)
0.

0/
2

(0
%

)
0.

0/
2

(0
%

)
+0

.0
(+

0%
)

Ti
le

.c
an

M
er

ge
W

ith
5.

0/
7

(7
1%

)
7.

0/
7

(1
00

%
)

+2
.0

(+
28

%
)

4.
0/

7
(5

7%
)

5.
0/

7
(7

1%
)

+1
.0

(+
14

%
)

Ti
le

.m
er

ge
W

ith
0.

0/
5

(0
%

)
5.

0/
5

(1
00

%
)

+5
.0

(+
10

0%
)

1.
0/

5
(2

0%
)

2.
0/

5
(4

0%
)

+1
.0

(+
20

%
)

Ti
le

.to
St

rin
g

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

Ti
le

.e
qu

al
s

3.
8/

6
(6

2%
)

5.
0/

6
(8

3%
)

+1
.2

(+
20

%
)

3.
0/

6
(5

0%
)

3.
0/

6
(5

0%
)

+0
.0

(+
0%

)
G

rid
.g

et
Ti

le
0.

0/
4

(0
%

)
0.

0/
4

(0
%

)
+0

.0
(+

0%
)

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
G

rid
.g

et
Ro

w
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
G

rid
.g

et
C

ol
0.

0/
4

(0
%

)
0.

0/
4

(0
%

)
+0

.0
(+

0%
)

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
G

rid
.se

tT
ile

0.
0/

2
(0

%
)

0.
0/

2
(0

%
)

+0
.0

(+
0%

)
0.

0/
2

(0
%

)
0.

0/
2

(0
%

)
+0

.0
(+

0%
)

G
rid

.g
et

Le
ng

th
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
G

rid
.c

le
ar

M
er

ge
d

0.
0/

3
(0

%
)

0.
0/

3
(0

%
)

+0
.0

(+
0%

)
0.

0/
3

(0
%

)
0.

0/
3

(0
%

)
+0

.0
(+

0%
)

60

APPENDIX A. FULL DATA

Ta
bl

e
A

.4
:M

ed
ia

n
N

um
be

ro
fK

ill
ed

M
ut

an
ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
15

.0
/3

9
(3

8%
)

24
.0

/3
9

(6
1%

)
+9

.0
(+

23
%

)
17

.0
/3

9
(4

3%
)

22
.0

/3
9

(5
6%

)
+5

.0
(+

12
%

)

Ti
le

15
.0

/2
4

(6
2%

)
24

.0
/2

4
(1

00
%

)
+9

.0
(+

37
%

)
14

.0
/2

4
(5

8%
)

18
.0

/2
4

(7
5%

)
+4

.0
(+

16
%

)
G

rid
0.

0/
15

(0
%

)
0.

0/
15

(0
%

)
+0

.0
(+

0%
)

0.
0/

15
(0

%
)

6.
0/

15
(4

0%
)

+6
.0

(+
40

%
)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

2.
0/

2
(1

00
%

)
2.

0/
2

(1
00

%
)

+0
.0

(+
0%

)
2.

0/
2

(1
00

%
)

2.
0/

2
(1

00
%

)
+0

.0
(+

0%
)

Ti
le

.g
et

Va
lu

e
1.

0/
1

(1
00

%
)

1.
0/

1
(1

00
%

)
+0

.0
(+

0%
)

1.
0/

1
(1

00
%

)
1.

0/
1

(1
00

%
)

+0
.0

(+
0%

)
Ti

le
.is

M
er

ge
d

0.
0/

2
(0

%
)

2.
0/

2
(1

00
%

)
+2

.0
(+

10
0%

)
1.

0/
2

(5
0%

)
1.

0/
2

(5
0%

)
+0

.0
(+

0%
)

Ti
le

.c
an

M
er

ge
W

ith
6.

0/
7

(8
5%

)
7.

0/
7

(1
00

%
)

+1
.0

(+
14

%
)

6.
0/

7
(8

5%
)

6.
0/

7
(8

5%
)

+0
.0

(+
0%

)
Ti

le
.m

er
ge

W
ith

2.
5/

5
(5

0%
)

5.
0/

5
(1

00
%

)
+2

.5
(+

50
%

)
3.

0/
5

(6
0%

)
3.

0/
5

(6
0%

)
+0

.0
(+

0%
)

Ti
le

.to
St

rin
g

0.
0/

1
(0

%
)

1.
0/

1
(1

00
%

)
+1

.0
(+

10
0%

)
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

Ti
le

.e
qu

al
s

4.
0/

6
(6

6%
)

6.
0/

6
(1

00
%

)
+2

.0
(+

33
%

)
4.

0/
6

(6
6%

)
4.

0/
6

(6
6%

)
+0

.0
(+

0%
)

G
rid

.g
et

Ti
le

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
0.

0/
4

(0
%

)
2.

0/
4

(5
0%

)
+2

.0
(+

50
%

)
G

rid
.g

et
Ro

w
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
G

rid
.g

et
C

ol
0.

0/
4

(0
%

)
0.

0/
4

(0
%

)
+0

.0
(+

0%
)

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
G

rid
.se

tT
ile

0.
0/

2
(0

%
)

0.
0/

2
(0

%
)

+0
.0

(+
0%

)
0.

0/
2

(0
%

)
0.

0/
2

(0
%

)
+0

.0
(+

0%
)

G
rid

.g
et

Le
ng

th
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
G

rid
.c

le
ar

M
er

ge
d

0.
0/

3
(0

%
)

0.
0/

3
(0

%
)

+0
.0

(+
0%

)
0.

0/
3

(0
%

)
0.

0/
3

(0
%

)
+0

.0
(+

0%
)

61

APPENDIX A. FULL DATA

Ta
bl

e
A

.5
:T

hi
rd

Q
ua

rt
ile

N
um

be
ro

fK
ill

ed
M

ut
an

ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
20

.5
/3

9
(5

2%
)

27
.5

/3
9

(7
0%

)
+7

.0
(+

17
%

)
22

.0
/3

9
(5

6%
)

29
.0

/3
9

(7
4%

)
+7

.0
(+

17
%

)

Ti
le

19
.2

/2
4

(8
0%

)
24

.0
/2

4
(1

00
%

)
+4

.8
(+

19
%

)
20

.5
/2

4
(8

5%
)

21
.0

/2
4

(8
7%

)
+0

.5
(+

2%
)

G
rid

0.
0/

15
(0

%
)

3.
8/

15
(2

5%
)

+3
.8

(+
25

%
)

2.
0/

15
(1

3%
)

10
.0

/1
5

(6
6%

)
+8

.0
(+

53
%

)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

2.
0/

2
(1

00
%

)
2.

0/
2

(1
00

%
)

+0
.0

(+
0%

)
2.

0/
2

(1
00

%
)

2.
0/

2
(1

00
%

)
+0

.0
(+

0%
)

Ti
le

.g
et

Va
lu

e
1.

0/
1

(1
00

%
)

1.
0/

1
(1

00
%

)
+0

.0
(+

0%
)

1.
0/

1
(1

00
%

)
1.

0/
1

(1
00

%
)

+0
.0

(+
0%

)
Ti

le
.is

M
er

ge
d

2.
0/

2
(1

00
%

)
2.

0/
2

(1
00

%
)

+0
.0

(+
0%

)
2.

0/
2

(1
00

%
)

2.
0/

2
(1

00
%

)
+0

.0
(+

0%
)

Ti
le

.c
an

M
er

ge
W

ith
7.

0/
7

(1
00

%
)

7.
0/

7
(1

00
%

)
+0

.0
(+

0%
)

7.
0/

7
(1

00
%

)
7.

0/
7

(1
00

%
)

+0
.0

(+
0%

)
Ti

le
.m

er
ge

W
ith

4.
2/

5
(8

5%
)

5.
0/

5
(1

00
%

)
+0

.8
(+

15
%

)
4.

0/
5

(8
0%

)
4.

5/
5

(9
0%

)
+0

.5
(+

10
%

)
Ti

le
.to

St
rin

g
0.

2/
1

(2
5%

)
1.

0/
1

(1
00

%
)

+0
.8

(+
75

%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
Ti

le
.e

qu
al

s
5.

0/
6

(8
3%

)
6.

0/
6

(1
00

%
)

+1
.0

(+
16

%
)

5.
0/

6
(8

3%
)

5.
5/

6
(9

1%
)

+0
.5

(+
8%

)
G

rid
.g

et
Ti

le
0.

0/
4

(0
%

)
2.

5/
4

(6
2%

)
+2

.5
(+

62
%

)
1.

5/
4

(3
7%

)
4.

0/
4

(1
00

%
)

+2
.5

(+
62

%
)

G
rid

.g
et

Ro
w

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
0.

0/
1

(0
%

)
0.

5/
1

(5
0%

)
+0

.5
(+

50
%

)
G

rid
.g

et
C

ol
0.

0/
4

(0
%

)
0.

0/
4

(0
%

)
+0

.0
(+

0%
)

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
G

rid
.se

tT
ile

0.
0/

2
(0

%
)

0.
5/

2
(2

5%
)

+0
.5

(+
25

%
)

1.
0/

2
(5

0%
)

2.
0/

2
(1

00
%

)
+1

.0
(+

50
%

)
G

rid
.g

et
Le

ng
th

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
0.

0/
1

(0
%

)
1.

0/
1

(1
00

%
)

+1
.0

(+
10

0%
)

G
rid

.c
le

ar
M

er
ge

d
0.

0/
3

(0
%

)
0.

0/
3

(0
%

)
+0

.0
(+

0%
)

0.
0/

3
(0

%
)

3.
0/

3
(1

00
%

)
+3

.0
(+

10
0%

)

62

APPENDIX A. FULL DATA

Ta
bl

e
A

.6
:I

nt
er

qu
ar

til
e

Ra
ng

e
N

um
be

ro
fK

ill
ed

M
ut

an
ts

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

To
ta

l
7.

8/
39

(1
9%

)
6.

5/
39

(1
6%

)
-1

.2
(-3

%
)

11
.5

/3
9

(2
9%

)
13

.5
/3

9
(3

4%
)

+2
.0

(+
5%

)

Ti
le

6.
5/

24
(2

7%
)

3.
0/

24
(1

2%
)

-3
.5

(-1
4%

)
10

.0
/2

4
(4

1%
)

7.
0/

24
(2

9%
)

-3
.0

(-1
2%

)
G

rid
0.

0/
15

(0
%

)
3.

8/
15

(2
5%

)
+3

.8
(+

25
%

)
2.

0/
15

(1
3%

)
10

.0
/1

5
(6

6%
)

+8
.0

(+
53

%
)

Ti
le

.g
et

N
ea

re
st

Po
w

er
2

0.
0/

2
(0

%
)

0.
0/

2
(0

%
)

+0
.0

(+
0%

)
0.

5/
2

(2
5%

)
0.

0/
2

(0
%

)
-0

.5
(-2

5%
)

Ti
le

.g
et

Va
lu

e
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
0/

1
(0

%
)

+0
.0

(+
0%

)
Ti

le
.is

M
er

ge
d

2.
0/

2
(1

00
%

)
0.

0/
2

(0
%

)
-2

.0
(-1

00
%

)
2.

0/
2

(1
00

%
)

2.
0/

2
(1

00
%

)
+0

.0
(+

0%
)

Ti
le

.c
an

M
er

ge
W

ith
2.

0/
7

(2
8%

)
0.

0/
7

(0
%

)
-2

.0
(-2

8%
)

3.
0/

7
(4

2%
)

2.
0/

7
(2

8%
)

-1
.0

(-1
4%

)
Ti

le
.m

er
ge

W
ith

4.
2/

5
(8

5%
)

0.
0/

5
(0

%
)

-4
.2

(-8
5%

)
3.

0/
5

(6
0%

)
2.

5/
5

(5
0%

)
-0

.5
(-1

0%
)

Ti
le

.to
St

rin
g

0.
2/

1
(2

5%
)

1.
0/

1
(1

00
%

)
+0

.8
(+

75
%

)
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

Ti
le

.e
qu

al
s

1.
2/

6
(2

0%
)

1.
0/

6
(1

6%
)

-0
.2

(-4
%

)
2.

0/
6

(3
3%

)
2.

5/
6

(4
1%

)
+0

.5
(+

8%
)

G
rid

.g
et

Ti
le

0.
0/

4
(0

%
)

2.
5/

4
(6

2%
)

+2
.5

(+
62

%
)

1.
5/

4
(3

7%
)

4.
0/

4
(1

00
%

)
+2

.5
(+

62
%

)
G

rid
.g

et
Ro

w
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

0.
5/

1
(5

0%
)

+0
.5

(+
50

%
)

G
rid

.g
et

C
ol

0.
0/

4
(0

%
)

0.
0/

4
(0

%
)

+0
.0

(+
0%

)
0.

0/
4

(0
%

)
0.

0/
4

(0
%

)
+0

.0
(+

0%
)

G
rid

.se
tT

ile
0.

0/
2

(0
%

)
0.

5/
2

(2
5%

)
+0

.5
(+

25
%

)
1.

0/
2

(5
0%

)
2.

0/
2

(1
00

%
)

+1
.0

(+
50

%
)

G
rid

.g
et

Le
ng

th
0.

0/
1

(0
%

)
0.

0/
1

(0
%

)
+0

.0
(+

0%
)

0.
0/

1
(0

%
)

1.
0/

1
(1

00
%

)
+1

.0
(+

10
0%

)
G

rid
.c

le
ar

M
er

ge
d

0.
0/

3
(0

%
)

0.
0/

3
(0

%
)

+0
.0

(+
0%

)
0.

0/
3

(0
%

)
3.

0/
3

(1
00

%
)

+3
.0

(+
10

0%
)

63

APPENDIX A. FULL DATA

Ta
bl

e
A

.7
:A

ve
ra

ge
N

um
be

ro
fI

ns
tr

uc
tio

ns
C

ov
er

ed

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

Ti
le

86
.5

/1
14

(7
5%

)
10

5.
4/

11
4

(9
2%

)
+1

8.
9

(+
16

%
)

85
.5

/1
14

(7
5%

)
95

.1
/1

14
(8

3%
)

+9
.6

(+
8%

)
G

rid
6.

7/
12

1
(5

%
)

21
.9

/1
21

(1
8%

)
+1

5.
2

(+
12

%
)

19
.7

/1
21

(1
6%

)
45

.5
/1

21
(3

7%
)

+2
5.

8
(+

21
%

)

Ta
bl

e
A

.8
:S

ta
nd

ar
d

D
ev

ia
tio

n
N

um
be

ro
fI

ns
tr

uc
tio

ns
C

ov
er

ed

G
ro

up
pi

t
re

ne
ri

Pa
rt

1
2

Δ
1

2
Δ

Ti
le

21
.3

/1
14

(1
8%

)
8.

9/
11

4
(7

%
)

-1
2.

4
(-1

0%
)

23
.1

/1
14

(2
0%

)
15

.8
/1

14
(1

3%
)

-7
.3

(-6
%

)
G

rid
14

.7
/1

21
(1

2%
)

32
.9

/1
21

(2
7%

)
+1

8.
2

(+
15

%
)

28
.8

/1
21

(2
3%

)
47

.2
/1

21
(3

9%
)

+1
8.

4
(+

15
%

)

64

APPENDIX A. FULL DATA

1 2
part

1 (poor)

2 (mediocre)

3 (fair)

4 (good)

ra
tin

g

criterion = Design (C4)

1 2
part

criterion = Correctness (C1)

group
pit
reneri

1 2
part

1 (poor)

2 (mediocre)

3 (fair)

4 (good)

ra
tin

g

criterion = Legibility (C5)

Figure A.2: Evolution of C1, C4, and C5

65

APPENDIX A. FULL DATA

Table A.9: Average Rating

Group pit reneri
Part 1 2 Δ 1 2 Δ

Correctness (C1) +3.35 +3.15 -0.20 +3.89 +3.58 -0.32
Completeness (C2) +1.75 +2.10 +0.35 +2.21 +2.13 -0.08
Assertions (C3) +2.45 +2.25 -0.20 +2.53 +2.87 +0.34
Design (C4) +2.90 +2.75 -0.15 +3.50 +3.22 -0.28
Legibility (C5) +2.90 +2.85 -0.05 +3.15 +3.26 +0.12

Table A.10: Standard Deviation Rating

Group pit reneri
Part 1 2 Δ 1 2 Δ

Correctness (C1) +1.09 +1.18 +0.09 +0.57 +0.69 +0.13
Completeness (C2) +1.07 +1.12 +0.05 +0.92 +0.88 -0.04
Assertions (C3) +0.94 +1.12 +0.17 +0.84 +0.94 +0.10
Design (C4) +0.97 +1.07 +0.10 +0.62 +0.79 +0.17
Legibility (C5) +0.91 +1.18 +0.27 +0.79 +1.03 +0.25

66

Appendix B

Versions and Mutation Operators

• Java 11.

• JUnit 4.13.2.

• JaCoCo 0.8.8.

• PIT 1.7.4.

• Descartes 1.3.2.

• Visual Studio Code 1.52.1.

• PIT default mutation operators (i.e., Conditionals Boundary, Increments, Invert
Negatives, Math, Negate Conditionals, Return Values, Void Method Calls, Empty
returns, False Returns, True returns, Null returns, Primitive returns).1

• Descartes default mutation operators (i.e., void, null, true, false, empty,
0, 1, (byte)0, (byte)1, (short)0, (short)1, 0L, 1L, 0.0, 1.0, 0.0f, 1.0f,
’\40’, ’A’, "", "A").2

1Refer to https://pitest.org/quickstart/mutators/.
2Refer to https://github.com/STAMP-project/pitest-descartes#specifying-operators.

67

https://pitest.org/quickstart/mutators/
https://github.com/STAMP-project/pitest-descartes#specifying-operators

Bibliography

[1] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge Univer-
sity Press, 2016.

[2] L. P. Scatalon, M. L. Fioravanti, J. M. Prates, R. E. Garcia, and E. F. Barbosa, “A
survey on graduates’ curriculum-based knowledge gaps in software testing,”
in 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–8, 2018.

[3] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry, “Suggestions on
test suite improvements with automatic infection and propagation analysis,”
arXiv preprint arXiv:1909.04770, 2019.

[4] A. P. Mathur, Foundations of software testing, 2/e. Pearson Education India,
2013.

[5] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[6] R. Osherove, The Art of Unit Testing: with examples in C. Simon and Schuster,
2013.

[7] V. Khorikov, Unit Testing Principles, Practices, and Patterns. Simon and Schuster,
2020.

[8] A. H. Watson, D. R. Wallace, and T. J. McCabe, Structured testing: A testing
methodology using the cyclomatic complexity metric, vol. 500. US Department of
Commerce, Technology Administration, National Institute of . . . , 1996.

[9] T. J. McCabe, “A complexity measure,” IEEE Transactions on software Engineer-
ing, no. 4, pp. 308–320, 1976.

[10] T. T. Chekam, M. Papadakis, Y. L. Traon, and M. Harman, “An empirical study
on mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption,” in Proceedings of the 39th International
Conference on Software Engineering, ICSE ’17, p. 597–608, IEEE Press, 2017.

68

BIBLIOGRAPHY

[11] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Chapter six - mutation testing advances: An analysis and survey,” vol. 112
of Advances in Computers, pp. 275–378, Elsevier, 2019.

[12] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experimen-
tal determination of sufficient mutant operators,” ACM Trans. Softw. Eng.
Methodol., vol. 5, p. 99–118, apr 1996.

[13] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon, “Threats to
the validity of mutation-based test assessment,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, (New
York, NY, USA), p. 354–365, Association for Computing Machinery, 2016.

[14] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman, “Mu-
tation Testing Advances: An Analysis and Survey,” in Advances in Computers,
vol. 112, pp. 275–378, Elsevier, 2019.

[15] T. A. Budd and D. Angluin, “Two notions of correctness and their relation to
testing,” Acta informatica, vol. 18, no. 1, pp. 31–45, 1982.

[16] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler equiva-
lence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique,” in 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, vol. 1, pp. 936–946, IEEE, 2015.

[17] M. Kintis, M. Papadakis, and N. Malevris, “Evaluating mutation testing
alternatives: A collateral experiment,” in 2010 Asia Pacific Software Engineering
Conference, pp. 300–309, IEEE, 2010.

[18] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help
for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[19] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM
Trans. Softw. Eng. Methodol., vol. 1, p. 5–20, jan 1992.

[20] N. Li and J. Offutt, “Test oracle strategies for model-based testing,” IEEE
Transactions on Software Engineering, vol. 43, no. 4, pp. 372–395, 2017.

[21] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
A practical mutation testing tool for java (demo),” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016, (New
York, NY, USA), p. 449–452, Association for Computing Machinery, 2016.

69

BIBLIOGRAPHY

[22] L. Morell, “A theory of fault-based testing,” IEEE Transactions on Software
Engineering, vol. 16, no. 8, pp. 844–857, 1990.

[23] R. Niedermayr, E. Juergens, and S. Wagner, “Will my tests tell me if i break
this code?,” in 2016 IEEE/ACM International Workshop on Continuous Software
Evolution and Delivery (CSED), pp. 23–29, 2016.

[24] O. L. Vera-Pérez, M. Monperrus, and B. Baudry, “Descartes: A pitest engine to
detect pseudo-tested methods: Tool demonstration,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 908–911,
2018.

[25] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry, “A comprehen-
sive study of pseudo-tested methods,” Empirical Software Engineering, vol. 24,
no. 3, pp. 1195–1225, 2019.

[26] S. Chiba and M. Nishizawa, “An easy-to-use toolkit for efficient java byte-
code translators,” in International Conference on Generative Programming and
Component Engineering, pp. 364–376, Springer, 2003.

[27] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A Library for Implementing Analyses and Transformations of Java
Source Code,” Software: Practice and Experience, vol. 46, pp. 1155–1179, 2015.

[28] V. Garousi, A. Rainer, P. Lauvås, and A. Arcuri, “Software-testing education:
A systematic literature mapping,” Journal of Systems and Software, vol. 165,
p. 110570, 2020.

[29] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a software test-
ing course with code defenders,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, SIGCSE ’19, (New York, NY, USA),
p. 571–577, Association for Computing Machinery, 2019.

[30] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic software testing
education,” in Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE ’19, (New York, NY, USA), p. 414–420, Association
for Computing Machinery, 2019.

[31] R. Baker and I. Habli, “An empirical evaluation of mutation testing for im-
proving the test quality of safety-critical software,” IEEE Transactions on Soft-
ware Engineering, vol. 39, no. 6, pp. 787–805, 2013.

70

BIBLIOGRAPHY

[32] R. Ramler, T. Wetzlmaier, and C. Klammer, “An empirical study on the appli-
cation of mutation testing for a safety-critical industrial software system,” in
Proceedings of the Symposium on Applied Computing, SAC ’17, (New York, NY,
USA), p. 1401–1408, Association for Computing Machinery, 2017.

[33] I. Ahmed, C. Jensen, A. Groce, and P. E. McKenney, “Applying mutation anal-
ysis on kernel test suites: An experience report,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 110–115, 2017.

[34] R. A. P. Oliveira, L. B. R. Oliveira, B. B. P. Cafeo, and V. H. S. Durelli, “Evalua-
tion and assessment of effects on exploring mutation testing in programming
courses,” in 2015 IEEE Frontiers in Education Conference (FIE), pp. 1–9, 2015.

[35] P. Delgado-Pérez, I. Medina-Bulo, M. A. Álvarez-García, and K. J. Valle-
Gómez, “Mutation testing and self/peer assessment: Analyzing their effect
on students in a software testing course,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET), pp. 231–240, 2021.

[36] European Organization For Nuclear Research and OpenAIRE, “Zenodo,”
2013.

[37] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
and C. Willing, “Jupyter notebooks – a publishing format for reproducible
computational workflows,” in Positioning and Power in Academic Publishing:
Players, Agents and Agendas (F. Loizides and B. Schmidt, eds.), pp. 87 – 90, IOS
Press, 2016.

[38] T. pandas development team, “pandas-dev/pandas: Pandas,” feb 2020.

[39] Wes McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference (Stéfan van der Walt and
Jarrod Millman, eds.), pp. 56 – 61, 2010.

[40] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source
Software, vol. 6, no. 60, p. 3021, 2021.

[41] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science
& Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[42] J. Scheffer, “Dealing with missing data,” 2002.

71

BIBLIOGRAPHY

[43] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The annals of mathematical
statistics, pp. 50–60, 1947.

[44] F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs
in statistics, pp. 196–202, Springer, 1992.

[45] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and
SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[46] A. Vargha and H. Delaney, “A critique and improvement of the cl common
language effect size statistics of mcgraw and wong,” Journal of Educational and
Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

72

