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A B S T R A C T

Background: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent activator of the aryl hydrocarbon

receptor (AhR) and causes chloracne in humans. The pathogenesis and role of AhR in chloracne remains

incompletely understood.

Objective: To elucidate the mechanisms contributing to the development of the chloracne-like

phenotype in a human epidermal equivalent model and identify potential biomarkers.

Methods: Using primary normal human epidermal keratinocytes (NHEK), we studied AhR activation by

XRE-luciferase, AhR degradation and CYP1A1 induction. We treated epidermal equivalents with high

affinity TCDD or two non-chloracnegens: b-naphthoflavone (b-NF) and 2-(10H-indole-30-carbonyl)-

thiazole-4-carboxylic acid methyl ester (ITE). Using Western blotting and immunochemistry for filaggrin

(FLG), involucrin (INV) and transglutaminase-1 (TGM-1), we compared the effects of the ligands on

keratinocyte differentiation and development of the chloracne-like phenotype by H&E.

Results: In NHEKs, activation of an XRE-luciferase and CYP1A1 protein induction correlated with ligand

binding affinity: TCDD > b-NF > ITE. AhR degradation was induced by all ligands. In epidermal

equivalents, TCDD induced a chloracne-like phenotype, whereas b-NF or ITE did not. All three ligands

induced involucrin and TGM-1 protein expression in epidermal equivalents whereas FLG protein

expression decreased following treatment with TCDD and b-NF. Inhibition of AhR by a-NF blocked

TCDD-induced AhR activation in NHEKs and blocked phenotypic changes in epidermal equivalents;

however, AhR knock down did not reproduce the phenotype.

Conclusion: Ligand-induced CYP1A1 and AhR degradation did not correlate with their chloracnegenic

potential, indicating that neither CYP1A1 nor AhR are suitable biomarkers. Mechanistic studies showed

that the TCDD-induced chloracne-like phenotype depends on AhR activation whereas AhR knock down

did not appear sufficient to induce the phenotype.

� 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights

reserved.

Abbreviations: AhR, aryl hydrocarbon receptor; AHRR, aryl hydrocarbon repressor protein; a-NF, a-naphthoflavone; b-NF, b-naphthoflavone; CYP1A1, cytochrome P450

1A1; ITE, 2-(10H-indole-30-carbonyl)-thiazole-4-carboxylic acid methyl ester; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TGM-1, transglutaminase-1; XRE, xenobiotic
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1. Introduction

The aryl hydrocarbon receptor (AhR) is a highly conserved
member of the basic helix-loop-helix PER/ARNT/SIM family of
transcription factors. It is activated by a wide range of planar
polycyclic aromatic hydrocarbons (PAH) or halogenated aromatic
hydrocarbons (HAH), including the highly potent ligand 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD). AhR is known to mediate a
wide range of chemical toxicity in animals and humans [1–3].
Exposure to AhR ligands, mainly TCDD, has been linked to a range
of human toxicities which were particularly evident following
industrial accidents [4–6]. In humans, the most obvious toxicity
caused by TCDD is a severe skin acneform condition known as
chloracne [7–9], with the most famous case being former
Ukrainian President Victor Yushchenko [10].

Chloracne is characterised by two histological hallmarks: loss of
sebaceous glands and presence of epidermal cysts or comedones
[11,12]. Within the follicle wall, the open basket-weave pattern of
stratum corneum is lost and becomes thicker and compact
resulting in a follicular plug and the characteristic comedone
observed in involved skin [8,11,13,14]. The mechanisms underly-
ing this phenotype however, have not yet been fully characterised.
Because of significant differences between rodent and human skin
and the lack of suitable animal models, 3-D human skin equivalent
models have been evaluated for the further study of chloracne
pathogenesis. Although these models are not currently advanced
enough to contain structures such as sebaceous glands, nor do they
contain the potential to develop cysts, TCDD-treated epidermal
equivalents have been shown to develop key features found in
chloracne histology including: (1) hyperkeratinisation of the
stratum corneum and (2) a thinner viable cell layer [15]. In vivo,
these characteristics both appear within the follicle wall
[8,11,13,14], highlighting the potential of human 3-D models for
the study and elucidation of underlying pathogenic mechanisms.
In addition, during drug development, screening for chloracne-
genic potential of novel compounds is performed but current
assays are based on CYP1A1 induction in non-keratinocyte cell
lines.

While a causal relationship between exposure to TCDD and
chloracne is established, other AhR agonists such as b-NF, do not
appear to induce chloracne in humans and b-NF does not induce
chloracnegenic-associated changes in keratinocytes [16]. Struc-
turally, AhR ligands are typically planar hydrocarbons which may
be divided into halogenated or polycyclic aromatic hydrocarbons
(HAH or PAH respectively). HAHs (such as TCDD) can have AhR
binding affinities roughly 1000-fold higher than PAHs, reviewed in
[17,18]. As the majority of AhR studies to date have focused on the
effects of xenobiotic compounds on the AhR, in this study we opted
to include a physiological AhR ligand, 2-(10H-indole-30-carbonyl)-
thiazole-4-carboxylic acid methyl ester (ITE), which is a trypto-
phan derivative known to regulate responses in a variety of cell
types [19,20], for comparison with AhR ligands TCDD and b-NF. ITE
was originally isolated from porcine lung [21] and is a potent AhR
ligand. In primary mouse lung fibroblasts it has been shown to
elicit AhR-dependent responses at 0.2 mM comparable to those
elicited by 0.2 nM TCDD [22]. Its potency is roughly 2–4 orders of
magnitude less than TCDD in whole cell assays in a mouse
hepatoma cell line (depending on endpoint measured) [23] and it
has been shown to be 5 times more potent than b-NF [21].
Competitive binding studies showed that AhR binding affinities of
b-NF and ITE were of a similar magnitude whereas the AhR binding
affinity of TCDD was higher (ki for murine AhR:ITE = 3 nM,
b-NF = 2 nM, TCDD = 0.5 nM) [21]. ITE has been shown to induce
AhR degradation in primary mouse lung fibroblasts which
recovers after roughly 24 h, consistent with its rapid removal by
metabolism [22,23].

Although TCDD is a potent AhR ligand it remains unclear
whether cutaneous toxicity induced by TCDD is mediated by AhR.
Interestingly, AhR null mice exhibit a skin phenotype which has
similarities to chloracne including changes in the hair follicle [2],
suggesting that development of chloracne may be dependent on a
lack of AhR rather than a result of AhR activation causing up-
regulation of the AhR gene battery. These data may be relevant to
the pathophysiology of chloracne because AhR degradation occurs
following agonist-induced AhR activation [24,25]. However,
mouse skin differs significantly from human skin, re-enforcing
the need for further studies in models relevant to human skin.

AhR activity has been shown to increase as keratinocytes
differentiate [26–28] suggesting that monolayer keratinocytes
alone are not an ideal model for studying chloracnegenic effects. 3-
D epidermal equivalent models allow keratinocytes to differentiate
forming discrete viable cell layers and a fully differentiated
stratum corneum [29] and provide an environment to maintain
stem cells [30], thereby enabling their long-term culture. Epider-
mal stem cells are also hypothesised to be one of the main cell
types involved in chloracne development [31]. This model
therefore allows the direct study of pharmacological or agonist
treatment on cell proliferation, differentiation and death, in a
physiologically relevant context. In epidermal equivalents, TCDD
has been previously shown to induce aberrant and early onset of
differentiation and a phenotype consisting of a thin viable cell
layer, hyperkeratosis and stratum corneum thickening [15,32].

In this study we have utilised normal human epidermal
keratinocytes (NHEKs), an epidermal equivalent model of chloracne
and a combined pharmacological and genetic approach to gain
further mechanistic insight into chloracne pathophysiology. We
hypothesised that activation of the AhR would regulate the
chloracne-like phenotype in the epidermal equivalent model. By
comparing the effects of chloracnegenic and non-chloracnegenic AhR
ligands on AhR activation and on the phenotype and differentiation
of keratinocytes in an epidermal equivalent model, we show that the
chloracne-like phenotype depends on AhR activation whereas AhR
knock down is not sufficient to induce the phenotype.

2. Materials and methods

2.1. Primary cell and epidermal equivalent culture

Primary NHEKs were isolated from redundant skin samples,
following approval by the local ethical committee and informed
consent from the patient. Primary NHEKs were maintained in
Epilife (Lonza, Basel, Switzerland) supplemented with 60 mM
CaCl2, penicillin/streptomycin (1%) and Human Keratinocyte
Growth Supplement (Lonza) at 37 8C with 5% CO2 in a humidified
atmosphere, as described [33]. Cells were passaged at �70%
confluency and used from passage 1–4.

Three dimensional epidermal equivalents were formed by
seeding primary NHEKs at high confluency (maximum passage 4)
on to polycarbonate cell culture inserts (0.4 mm pore; Millicell,
Merck KGaA, Darmstadt, Germany) in Epilife supplemented with
1.5 mM CaCl2 (as described [33]) and grown at the air/liquid
interface in medium supplemented with 5 mg/ml Vitamin C for 5
days. The epidermal equivalents were then treated for a further 7
days, formalin fixed and embedded in paraffin or lysed for protein
or RNA extraction.

2.2. Chemicals and treatment regimens

AhR ligands were purchased from Sigma–Aldrich (Dorset, UK):
TCDD (48599), b-NF (N-3633), ITE (I-9283) and a-NF (N-5757).
AhR antagonist, 2-methyl-2H-pyrazole-3-carboxylic acid-(2-
methyl-4-o-tolyl-azophenyl)-amide (CH-223191) was purchased
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from Calbiochem, Merck KGaA. Stock solutions were prepared in
dimethyl sulfoxide (DMSO) and protected from light. Use of
plastics was minimised and cultures were treated with fresh
medium containing compound every 48 h.

2.3. Luciferase assays

AhR activation was measured using an AhR-dependent
luciferase reporter (pXRE4-SV40-Luc) [34]. Primary NHEKs were
co-transfected using TransIT Keratinocyte transfection reagent
(E7-0084; Geneflow, Staffordshire, UK) according to manufac-
turer’s instructions, with a renilla luciferase construct control
vector (pRLTK; Promega, Wisconsin, USA) to which firefly values
were normalised. Cells were treated with ligand for 48 h and
assayed using the Dual luciferase reporter system (E1910;
Promega), as previously described [33,35].

2.4. Western blot analysis

Primary NHEKs were treated with vehicle (DMSO), TCDD, b-NF or
ITE. Monolayer cell lysis was performed in RIPA buffer [35], epidermal
equivalents were lysed in urea buffer: 8 M Urea, 50 mM Tris (pH 8),
5 mM EDTA, 2.5% SDS, 1 mM sodium fluoride, 1 mM PMSF, 1 mM
sodium orthovanadate, plus a protease inhibitor cocktail.

Primary antibodies used were CYP1A1 (sc-25304; SantaCruz
Biotechnology, Santa Cruz, CA, USA), AhR (MA1-514; Affinity
Bioreagents, NY, USA), filaggrin and involucrin (Novocastra, Milton
Keynes, UK) or TGM-1 (Biomedical Technologies, Madrid, Spain).
Equal protein loading was confirmed with monoclonal b-actin (A
5316; Sigma–Aldrich) or GAPDH antibody (MAB 374; Merck
Millipore, Dormstadt Germany) and anti-mouse IgG peroxidise
conjugate secondary antibody (PI 2000; Vector Laboratories,
Peterborough, UK) Membranes were imaged using a Fujifilm
FLA-3000 fluorescence image analyser (Fujifilm, Dusseldorf,
Germany). Bands were analysed according to densitometry and
presented as a ratio of CYP1A1 or AhR:b-actin normalised to
vehicle using Multigauge V2.2 software (Fujifilm).

2.5. Histological analysis of epidermal equivalents

Paraffin embedded sections were stained with haematoxylin and
eosin. Images were taken on a Zeiss Axioimager light microscope.

For immunochemical analysis, the following antibodies were
used: AhR (SC-5579; SantaCruz) involucrin (NCL-INV, Novocastra),
filaggrin (FLG01, MS-449-P1; Lab Vision Neomarkers, MI, USA), or
transglutaminase-1 (BT-621; Biomedical Technologies) with 488-
conjugated alexafluor anti-rabbit or anti-mouse secondary anti-
bodies and To-Pro 3 nuclear stain (Life Technologies, Paisley, UK).
Images were captured using a Leica confocal inverted TC II SP2
system (Leica Microsystems, Germany), as described [35]. An
isotype control was included in each experimental and gain and
offset were set to this and kept constant throughout each imaging
set. Images shown for FLG and INV staining represent an overlay of
three z stacks to ensure clear representation of basal, upper viable
and cornified layers of the epidermal equivalent. This is referred to
hereafter as ‘‘sum of mid z’’. Images were processed using Adobe
Photoshop 6.0 (Adobe Systems Europe Ltd., Berkshire, UK)
maintaining equal colour settings. Quantification of AhR intensity
was performed in Volocity 6.1 (PerkinElmer, Cambridge, UK).

2.6. AhR knock down

2.6.1. Packaging and production of the shRNA vector in 293T cells

HEK293T cells were cultured in complete DMEM containing
10% foetal calf serum. GIPZ lentiviral shRNAmir vectors were
purchased from Open Biosystems (CO, USA) with distinct

sequences targeting AhR (RHS4531, individual clones referred to
as 1382 and 2320), empty GFP (RHS4349, EGFP) or non-silencing
(RHS4346, NS) control sequences. 293T cells were co-transfected
with pMD2.G envelope plasmid (5 mg), pCMVd8.91 packaging
plasmid (15 mg) and pGIPZ shRNA transfer plasmid (20 mg) using
the calcium chloride precipitation method as previously described
[17,18].

2.6.2. Transduction of primary NHEKs with lentiviral shRNA

At 70–80% confluence, primary NHEKs were spin transduced in
a DMEM (plus 10% FCS) solution containing 25% viral particles with
4 mg/ml polybrene and grown in selection medium (1 mg/ml
puromycin in complete Epilife) for 5 days. Transduced NHEKs were
then grown to form epidermal equivalents as described previously
in Materials and Methods and harvested in parallel for H&E
analysis or Western blotting. Lentiviral work was carried out in
accordance with safety requirements from the Health and Safety
Executive.

2.7. Measurement of CYP1A1 gene expression by real time-qPCR

Total RNA was extracted from epidermal equivalents using an
RNeasy micro kit (Qiagen) following the manufacturer’s instructions
and reverse transcribed using Superscript VILO Mastermix (Life
Technologies). Quantitative PCR was performed using the validated
Fam conjugated TaqMan gene expression assay for CYP1A1
(Hs00153120_m1, Life Technologies) with GAPDH (Life Technologies)
as a housekeeping control. For AhR, a validated exon-spanning probe
based assay was used with 18S as a housekeeping gene: forward
primer 50–30CGAATGGCTCATTAAATCAGTTATGG,  reverse primer
50–30TATTAGCTCTAGAATTACCACAGTTATCC (Integrated DNA Tech-
nologies Inc, UK) [36]. Samples were run in technical duplicates using
a Gene Amplification PCR System 9700 (Applied Biosystems).

2.8. Statistical analysis

2.8.1. Luciferase assay

Significant effects of ligand treatment were analysed using one-
way ANOVA to compare vehicle to ligand treatment (Fig. 1 and
Supplementary Figure 4) or ligand treatment alone to ligand plus
a-NF (Fig. 6) with Dunnett’s post hoc test or analysis of trend to
indicate dose dependency.

2.8.2. Western blotting

One-way ANOVA was used to compare vehicle to ligand treated
samples at each time-point. Two-way ANOVA was used to compare
ligand treatment and time-point (Fig. 1) or ligand treatment to a-
NF and time (Fig. 6 and Supplementary data, Figures 1–3).

2.8.3. RT-qPCR and quantification of viable cell layer thickness

One-way ANOVA was used to compare vehicle to ligand treated
samples with Dunnett’s post hoc test. If one-way ANOVA was
significant, post hoc tests were performed and indicated in figure
legends.

2.8.4. RT-qPCR for AhR

t-Test was used to compare EGFP to 1382 or 2320. Significance
is equal to P < 0.05. Statistical analysis was performed using
GraphPad Prism 5 (GraphPad, San Diego, CA, USA).

3. Results

3.1. Activation of the AhR by TCDD, b-NF and ITE in primary NHEKs

In order to determine the effects of the chloracnegenic AhR
agonist TCDD and the non-chloracnegenic AhR agonists b-NF and
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ITE on AhR activation in NHEKs and to determine dosimetry for use
in epidermal equivalents, transcriptional activation by XRE-
luciferase assay, CYP1A1 induction and AhR degradation were
initially studied in primary NHEK monolayer cultures.

TCDD, b-NF and ITE induced concentration dependent tran-
scriptional activation of the AhR reporter gene after 48 h exposure
in NHEKs (Fig. 1A) (one-way ANOVA P < 0.0001, analysis of trend
P < 0.0004). A preliminary time course study showed induction of
XRE-luciferase at 24 h, 48 h and 96 h. 48 h was selected for study as
this was the earliest time point at which reproducible and
consistent effects were observed (data not shown). The concen-
trations of ligand required for significant transcriptional activation
varied 1000-fold between ligands, consistent with different
affinities for the AhR. Based on molarity TCDD was most potent,
followed by b-NF and ITE (relative luminescence = 5, 1.5 and 1
respectively). Luciferase assays were performed with concentra-
tions of b-NF in the nM range. This was necessary because high
concentrations (2 mM and above) of b-NF quenched the XRE-
luciferase activity, as previously reported by Wang [37]. However,
as nM concentrations of b-NF had little phenotypic effect and
failed to robustly induce CYP1A1 in keratinocyte monolayers,
Western blotting experiments were performed using higher
concentrations (3 and 15 mM) of b-NF. These showed CYP1A1

induction and AhR degradation consistent with AhR activation by 3
and 5 mM b-NF (Fig. 1B).

Western blot analysis of NHEKs treated every 48 h for 8 days,
showed that compared to vehicle, TCDD (5 or 10 nM) induced
greater than 75% AhR degradation (P = 0.007, analysis of trend:
P = 0.02) while CYP1A1 was induced in a dose dependent manner
to 4-fold (Fig. 1B and C and supplementary Figure 1). Treatment
with b-NF (3 or 15 mM) resulted in �50% AhR degradation
(P = 0.02, analysis of trend: NS) but inconsistently induced CYP1A1
expression up to 2-fold but neither of the changes were statistically
significant (Fig. 1B and C and Supplementary Figure 2). The
Western blot in Fig. 1B is part of a complete time course shown in
its entirety in Supplementary Figure 2. ITE (1 or 5 mM) induced AhR
degradation by greater than 40% (P = 0.0002, analysis of trend:
P < 0.02) but induced little expression of CYP1A1 (Fig. 1B and C and
Supplementary Figure 3). Both basal and induced expression of
CYP1A1 varied between donors and therefore densitometry was
performed on blots from 3 independent donors and normalised to
their own vehicle treated controls (Fig. 1C). To ensure that CYP1A1
levels had not been induced earlier than 48 h and returned to basal
levels by the time of harvesting, we additionally tested time points
24 h post treatment with TCDD, b-NF or ITE; however no significant
CYP1A1 protein induction was detected (data not shown). In the

Fig. 1. TCDD, b-NF and ITE induce AhR activation in NHEK, (A) Primary normal human epidermal keratinocytes (NHEKs) were co-transfected with XRE4-SV40-luciferase and

renilla-luciferase constructs and treated with vehicle, TCDD, b-NF or ITE as indicated for 48 h. XRE-luciferase activity was measured and firefly:renilla luciferase ratio was

normalised to vehicle. Data shown are mean � sem, n = 9 (triplicate wells from 3 donors). Analysis of trend comparing vehicle to ligand, ***P < 0.0004. (B) Primary NHEKs were

treated every 48 h for 8 days (on days 0, 2, 4 and 6) with vehicle or ligand as indicated. Samples were lysed and Western blotting performed. (C) Densitometry was carried out on

blots probed with antibodies against AhR and CYP1A1 and normalised to b-actin. Densitometry represents mean � sem from 3 donors; graph shows results of one-way ANOVA.

Effects of TCDD on AhR: one-way ANOVA, **P = 0.007, analysis of trend P = 0.02. Effects of b-NF on AhR: one-way ANOVA, *P = 0.02, analysis of trend, NS. Effects of ITE on AhR: one-

way ANOVA, ***P = 0.0002, analysis of trend P < 0.02.
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repeated dosing (every 48 h) experiments conducted in NHEK
monolayer cultures, up regulation of CYP1A1 protein expression
was only robustly detected after 8 days of TCDD exposure but
AhR degradation (as a consequence of AhR activation) was detected
from day 2 by all ligands.

In summary, all ligands degraded AhR from an early time point
(Supplementary Figures 1–3) but only TCDD robustly induced
CYP1A1, although all ligands showed the capacity to induce
CYP1A1 in a donor dependent manner.

3.2. TCDD induced a chloracne-like phenotype in epidermal

equivalents

To compare the phenotypic effects of different AhR ligands, we
treated epidermal equivalents with TCDD, b-NF or ITE every 48 h for
7 days. In TCDD treated epidermal equivalents, the histological
phenotype, consisting of a thin viable cell layer and a thicker and
compacted stratum corneum with parakeratosis (Fig. 2), showed
strong resemblance to changes observed within vellus follicles and
comedones in chloracne [8,11,13]. The chloracne phenotype was
quantified using the two parameters: viable cell layer thickness and
stratum corneum compaction (Fig. 2B–D). After treatment with
10 nM TCDD for 7 days, the stratum corneum became compacted
and thicker compared to vehicle, with 54% of the samples exhibiting
a completely compact phenotype, only 8% exhibiting the open
basket-weave phenotype and others mid compaction (based on
basket-weave characterisation as described in Fig. 2B). Stratum
corneum compaction in b-NF treated samples did not differ from
control, with both vehicle and b-NF treated equivalents exhibiting a
combination of open and mid compacted stratum corneum
phenotypes. Following treatment with 1 mM ITE 29% of epidermal
equivalents were classified as open phenotypes, 43% were classified
as mid and 28% were classified as compacted (Fig. 2A and D). This
suggests that at this concentration, ITE interacted with the
mechanisms leading to stratum corneum compaction but to a
lesser extent than TCDD, while b-NF did not induce stratum
corneum compaction. Lower doses of ITE were tested in this system
and resulted in no phenotypic effects (data not shown).

The viable cell layer in TCDD treated samples was significantly
thinner than in vehicle treated samples (one-way ANOVA with
Dunnett’s post hoc test P < 0.0001). Notably this significant
reduction in the thickness occurred solely in TCDD treated
epidermal equivalents and not in b-NF or ITE treated samples
(Fig. 2A and C). Parakeratosis, indicating disrupted differentiation
was often present in TCDD, b-NF and ITE treated epidermal
equivalents. Consistent with induction of apoptosis-independent
cell death by TCDD [38], we also failed to detect caspase 3 activation
(data not shown).

To investigate the mechanism of thinning of the viable cell layer
andthe involvement of altered cellular differentiation in the observed
phenotype, expression of the differentiation markers filaggrin,
involucrin and TGM-1 were measured by Western blot (Fig. 3A).
TCDD and b-NF down-regulated filaggrin expression while ITE had
little effect. Levels of involucrin expression remained unaffected
following AhR ligand treatment. On average from Western blots
quantified from three donors, TGM-1 protein expression was
increased by all three ligands (Fig. 3A and B). However TCDD
induced consistent up-regulation of TGM-1 in all three donors
studied, while b-NF and ITE only induced TGM-1 in some donors.

To investigate changes to the localisation of filaggrin,
involucrin and TGM-1 within the keratinocyte layers undergoing
differentiation, immunochemistry was performed. All ligands
induced aberrant changes in expression of involucrin and filaggrin
to different degrees. Involucrin was expressed in closer proximity
to the basal cell layer in response to TCDD and b-NF. Consistent
with Western blot data, filaggrin expression was reduced by TCDD

and b-NF and to a lesser extent by ITE. Filaggrin puncta were also
decreased in number and became unevenly distributed throughout
the granular cell layer and in cell layers in closer proximity to the
basal layer, particularly in response to TCDD. TGM-1 was
expressed on the inner edge of the spinous and granular cells in
vehicle controls. In TCDD-treated epidermal equivalents, TGM-1
expression appeared increased in spinous and granular layers and
its localisation was less evenly distributed around the cell
membrane, while b-NF and ITE induced little change (white
arrows, Fig. 3C). Together, these data indicate that TCDD induced
aberrant and early onset of differentiation in primary NHEKs most
consistently, with b-NF and ITE inducing early differentiation to a
lesser extent in the spinous and granular layers.

3.3. TCDD, b-NF and ITE induce AhR activation in epidermal

equivalents, but the chloracne-like phenotype is not a result of AhR

degradation

To verify AhR activation by TCDD, b-NF and ITE in epidermal
equivalents, protein expression and pattern of AhR expression
were determined by immunochemistry (Fig. 4A) and AhR
expression was quantified by measuring green fluorescence
intensity in the viable cell layer, normalised to number of nuclei
present (Fig. 4B). In vehicle treated samples, AhR was mainly
localised in the nuclei of basal cells, with low levels of cytoplasmic
staining, while in the suprabasal layers cytoplasmic AhR staining
was evident. This pattern of localisation was consistent across
donors (white arrows, Fig. 4A). Although nuclear translocation of
AhR in keratinocytes may be induced by AhR agonists including
TCDD and coal tar [27,39], transcriptional regulation is tightly
regulated. Thus, AhR nuclear localisation does not necessarily
identify cells in which AhR is bound to promoters and inducing
transcriptional activation. TCDD treatment over 7 days decreased
basal nuclear AhR staining, consistent with AhR down-regulation
following activation. b-NF and ITE also induced down-regulation
of AhR in the basal layer (Fig. 4A and B).

As a robust measurement of AhR transcriptional activation in
epidermal equivalents, we utilised RT-qPCR to measure levels of
CYP1A1 after 7 days of repeated treatment of epidermal
equivalents with vehicle, TCDD, b-NF or ITE (Fig. 4C). Expression
of CYP1A1 mRNA was significantly increased by all ligands,
analysed by one-way ANOVA (P < 0.0001), indicating the presence
of AhR activation in epidermal equivalents and confirming the
ability of all ligands tested to induce CYP1A1 in this model.

Currently it is unknown whether AhR-dependent toxicity is a
consequence of down-regulation of AhR or up-regulation of AhR
regulated genes by AhR activation, or a combination thereof. In
order to study the potential role of reduced AhR expression, we
used lentiviral shRNA constructs to knock down AhR in epidermal
equivalents and determined the consequent effect on the
phenotype (Fig. 5). Fig. 5A shows H&E staining of AhR knock
down epidermal equivalents compared to empty GFP and non
silencing control epidermal equivalents. AhR knock down in
NHEKs (utilised for seeding of epidermal equivalents) was verified
by RT-qPCR (Fig. 5C) and Western blotting (Fig. 5D and E).
Construct 2320 induced consistent knock down across donors,
inducing on average �60% knock down by RT-qPCR and on average
�40% by Western blotting (P � 0.01) which was comparable to the
effects of TCDD on AhR protein levels in NHEKs (Fig. 1B and C). A
second shRNA construct against AhR (1382) was less effective,
inducing on average �50% knock down by RT-qPCR (Fig. 5C) and
�20% knock down by Western blot (Fig. 5E), and was variable
across donors. AhR protein expression was unaffected following
transduction of empty GFP and non-silencing control constructs by
Western blot (Fig. 5D and E), although by RT-qPCR empty GFP
transfection induced a small degree of AhR down regulation
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(Fig. 5C). For this reason we normalised fold changes of AhR
expression to the non silencing control in RT-qPCR experiments.

Using the same parameters as used earlier in this paper to
measure presence of the chloracne phenotype (stratum corneum
compaction (Fig. 5A) and decreased viable cell layer thickness
(Fig. 5B)), we observed that AhR knock down did not induce any
chloracne-like changes in epidermal equivalents (Fig. 5A and B).

These data suggest that down-regulation of AhR per se is
insufficient to induce the chloracniform phenotypic changes
observed in the epidermal equivalent model.

3.4. a-NF blocks TCDD-induced chloracne-like phenotype

To further investigate the AhR dependence of the effects of
TCDD in NHEKs, we inhibited ligand-induced AhR activation with
a-NF [40,41]. a-NF alone (30 nM–24 mM) induced low levels of
AhR transcriptional activation at 48 h, although this was not
significant (one-way ANOVA, Supplementary Figure 4). a-NF has
been shown in previous studies to elicit the most effective
inhibition of ligand-induced AhR activation at concentrations that
also induce some degree of AhR activation [40]. Therefore, despite

Fig. 2. TCDD caused decreased thickness of the viable cell layer and compaction of the stratum corneum in the epidermal equivalent model. (A) Epidermal equivalents were

grown as described in materials and methods and treated with vehicle, TCDD, b-NF or ITE every 48 h for 7 days. After 7 days, equivalents were fixed, paraffin embedded and

stained with H&E. (A) viable cell layer (VCL) and stratum corneum (SC) are marked by labelled black lines. Images are representative of effects in 3 donors. Scale bar = 20 mm.

(B) Basket-weave formation of the stratum corneum of each section were characterised as open, mid way or compact. (C) Using Image J, 6 measurements of the viable cell

layer were taken from 2 images per treatment for each donor. Individual values and mean (�sem) are shown for 3 independent donors. Dunnett’s post hoc test compared vehicle

to ligand, TCDD: ***P < 0.0001. (D) Compaction of the stratum corneum for each treatment per donor were characterised as demonstrated in (B). Values represent percentage of

sections analysed from a minimum of 6 donors.

A.R. Forrester et al. / Journal of Dermatological Science 73 (2014) 10–22 15



low AhR activation induced by a-NF (Supplementary Figure 4), we
used 5 and 10 mM a-NF at 8 days to measure inhibition of TCDD
induced AhR activation (Fig. 6).

a-NF (5 and 10 mM) significantly inhibited TCDD-induced AhR
transcriptional activation (P < 0.001) (Fig. 6A) as well as TCDD-
induced AhR degradation and CYP1A1 induction, most markedly at
later time points, day 8 (Fig. 6B and C).

Together, this data is consistent with partial agonist activity of
a-NF and indicates that alone a-NF may induce low AhR
activation. However, when added in combination with a potent
AhR agonist such as TCDD, the data clearly demonstrate that a-NF
acts as an AhR antagonist and inhibits agonist-induced AhR
activation in NHEKs.

To define the role of transcriptional AhR activation in the
development of the chloracne-like phenotype, epidermal equiva-
lents were co-treated with 10 nM TCDD and 5 mM a-NF. a-NF
partially blocked the development of the TCDD-induced pheno-
type (Fig. 7A), resulting in less thinning of the viable cell layer (one-
way ANOVA, P = 0.0004) and partially reinstated the open basket-
weave phenotype of the stratum corneum. a-NF alone caused a
slight decrease in thickness of the viable cell layer, corresponding
with the low levels of AhR activation shown in Supplementary

Figure 4. However, this was not statistically significant and
importantly, the thickness of the viable cell layer in TCDD and a-NF
co-treated epidermal equivalents was not significantly different to
vehicle (Fig. 7B). This data indicates that a-NF acted as an AhR
antagonist in epidermal equivalents and inhibited the TCDD-
induced chloracne phenotype.

In summary, a-NF blocked TCDD-dependent AhR degradation
and CYP1A1 induction in monolayer NHEKs. Co-treatment of TCDD
and a-NF in epidermal equivalents partially reinstated the normal
phenotype.

4. Discussion

Chloracne is a recognised human toxicity of TCDD but the
dependence on AhR and the relationship between AhR transcrip-
tional activation and AhR down-regulation in the pathogenesis of
chloracne remains ill-defined. In this study, we compared the
effects of potent chloracnegen TCDD (which has high affinity for
the AhR and high potency), the non-chloracnegen b-NF (which has
a low affinity for the AhR and low potency), and non-chloracnegen
and endogenous compound ITE (a highly potent AhR agonist [42])
in NHEKs and an epidermal equivalent model. The main findings of

Fig. 3. AhR activation induces dysregulated expression of involucrin, filaggrin and transglutaminase-1. Epidermal equivalents were grown and treated with vehicle, 10 nM

TCDD, 15 mM b-NF or 1 mM ITE every 48 h for 7 days. (A) Western blotting was performed and blots were probed with antibodies against filaggrin (FLG), involucrin (INV) and

transglutaminase-1 (TGM-1), with GAPDH as loading control. (B) Densitometry was carried out on blots probed with antibodies against FLG, INV and TGM-1 and normalised

to GAPDH. Densitometry represents mean (�sem) from 2 donors. (C) Immunochemistry was performed using antibodies against FLG (left column), INV (centre column) or TGM-1

(right column) with Oregon green (488) tagged secondary antibody and To-pro-3 (blue) nuclear stain. Mid z section (TGM-1) and sum of 3 mid z (FLG, INV) images were captured by

confocal microscopy and are representative of epidermal equivalents from 3 donors. Inserts show images at higher magnification (115�). Dotted white lines represent junction

between basal layer and polycarbonate membrane and white arrows indicate points of interest. Scale bars = 20 mm.
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this study are that: (1) neither CYP1A1 induction nor AhR
degradation by AhR agonists in NHEKs correlated with the
ligand-induced chloracne phenotype in the epidermal equivalent
model or documented chloracne potential, (2) the TCDD-induced
chloracne-like phenotype in epidermal equivalents was blocked by
pharmacological inhibition (by a-NF) of AhR transcriptional
activation and is therefore AhR dependent and (3) development
of the chloracne phenotype is a result of AhR activation, not AhR
down-regulation as demonstrated by the lack of phenotypic
changes induced by AhR knock down in epidermal equivalents.

When treated with TCDD, the epidermal equivalent model used
in this study robustly exhibited the two main characteristic
phenotypes of chloracne observed in vellus follicles: (1) a
thickened and compacted stratum corneum and (2) a thin viable
cell layer [8,11,13]. Therefore, our data underscores the utility of
this model for studying the underlying pathogenic mechanisms of

chloracne. As demonstrated in this paper, monolayer NHEKs are
useful for studying pathway activation including AhR, but a more
physiologically relevant model allows extrapolation to disease
phenotypes and delineation of effects on cellular differentiation in
a 3-D context. AhR activation has not previously been defined in
the epidermal equivalent model. By immunofluorescence, we
observed that AhR showed nuclear localisation with epidermal
equivalents, predominantly within the basal layer. To the best of
our knowledge, localisation of AhR protein has not been previously
reported within skin or epidermis. AhR agonists, including TCDD
and coal tar have previously been shown to induce nuclear
localisation of AhR in keratinocytes [27,39]. Additionally, loss of
cell–cell contact and signalling through E-cadherin may also
regulate AhR nuclear localisation in keratinocytes [43,44]. The
functional significance of nuclear AhR within basal keratinocytes
remains to be explored but nuclear localisation of AhR does not

Fig. 4. TCDD, b-NF and ITE induce AhR activation in epidermal equivalents. Epidermal equivalents were grown and treated with vehicle, 10 nM TCDD, 15 mM b-NF or 1 mM

ITE every 48 h for 7 days. (A) Immunochemistry was performed using an antibody against AhR, Oregon green (488) tagged secondary antibody and To-pro-3 (red) nuclear

stain. Mid z sections were captured by confocal microscopy and some of 3 mid-sections are shown. Dotted white lines represent polycarbonate membrane and white arrows

indicate points of interest. Scale bars = 20 mm. (B) Intensity of AhR fluorescence within the viable cell layer was quantified in Volocity software and normalised to number of

nuclei present within the region of interest. Graph represents quantification from 2 donors. (C) mRNA was isolated from ligand treated epidermal equivalents and relative

expression measured by RT-qPCR. Dunnett’s post hoc test compared vehicle to ligand, ***P < 0.0001. Error bars represent mean (�sem) from 3 donors.
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necessarily equate to transcriptional activation driven by AhR. For
example, the negative regulatory AhR repressor protein (AHRR)
competitively inhibits transcription driven by AhR activation
[34,45]. AHRR is itself induced by AhR and provides a negative
feedback loop; thus the relative levels and localisation of AhR and
AHRR may be critical to the regulation of down-stream signalling. On
the other hand, following nuclear translocation and transcriptional

activation, AhR undergoes degradation (Fig. 1) [25,43] and this does
provide a readout of recent AhR activation. Consistent with this, AhR
immunofluorescence within the basal nuclei was decreased by AhR
agonist treatment and most substantially by TCDD (Fig. 4A and B).

The full chloracne-like phenotype was induced only by TCDD,
although ITE partially induced the chloracne-like phenotype, as
shown by induction of partial stratum corneum compaction in the

Fig. 5. Development of the chloracne phenotype is not a direct result of AhR down-regulation. (A) Primary NHEKs were transduced with lentiviral shRNA constructs against

AhR (1382, 2320), empty GFP (EGFP) or non-silencing (NS) control sequences and used to form epidermal equivalents. Samples were harvested, paraffin embedded and H&E

stained. Scale bars = 20 mm. (B) 6 measurements of the viable cell layer were taken from 2 images per treatment for each donor. Individual values and mean (�sem) are shown.

(C) mRNA was isolated from NHEK monolayers in parallel with epidermal equivalent cultures and knock down of AhR measured by RT-qPCR and normalised to 18S. Results

presented as fold change relative to cells transfected with NS vector (NS). t-Test compared EGFP to 1382 (not significant) or 2320 (**P < 0.01) bars represent mean values from 2

donors. (D) AhR knock down epidermal equivalents were harvested in RIPA buffer and Western blotting performed. Blots were probed with antibodies against AhR and loading

control b-actin. Images are representative of 3 donors. (E) Densitometry was carried out on blots probed with antibodies against AhR and normalised to b-actin. Results presented as

fold change relative to cells transfected with empty GFP vector (note alternate order of bars). Densitometry represents mean (�sem) from 3 donors.
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epidermal equivalent model. This may be attributed to the
relatively high concentrations of ITE that we used in these
experiments, which are higher than the low basal levels expected
to be found physiologically [21]. At nM concentrations, ITE had no
phenotypic effect in the epidermal equivalent model.

In monolayer NHEKs, all ligands showed the capacity to up-
regulate CYP1A1 protein (see Supplementary Figures 1–3)
although CYP1A1 protein was only robustly up-regulated by
TCDD. We can be confident that the CYP1A1 induction did not
occur at an earlier time point because of three reasons: (1) samples
were tested for CYP1A1 induction 24 h post treatment in addition
to 48 h post treatment, (2) in HepG2s, that have a higher metabolic
capacity than keratinocytes [46], half life of CYP1A1 protein is
roughly 9 h [47] and therefore would not have decreased
completely by 24 h and (3) as previously published by Du et al.
[16] and in agreement with our data, CYP1A1 was only robustly
induced by TCDD after 8 days treatment [16]. In contrast, CYP1A1
mRNA was clearly induced by all ligands in the epidermal
equivalent model, however this most likely reflects the high
sensitivity of RT-qPCR compared to Western blotting. The
induction of CYP1A1 by TCDD at 8 days may be a result of TCDD

accumulation within the cell which is a known characteristic of
TCDD (reviewed in [48]). This is an important differential
characteristic between TCDD and the non-chloracnegenic ligands
tested in this study. However, these results may also reflect the
increased endogenous activity of AhR activation in more differen-
tiated cells [16], or be a result of relatively low levels of
endogenous CYP1A1 protein in keratinocytes compared to
hepatocytes [46,49,50].

We observed inter-individual variation in levels of basal and
induced CYP1A1 protein detected by Western blotting (Fig. 1B and
C and Supplementary Figures 1–3) and in qRT-PCR (Fig. 4C). We
controlled for this by normalising data to their own untreated
controls and utilising multiple (at least 3) donors in each
experiment. Inter-individual variation may be due to AhR
polymorphisms within the population [51] or potentially to
previous exposure to ultraviolet radiation [52] or exogenous
AhR agonists such as benzo[a]pyrene that is found in cigarette
smoke [53]. However, the latter are less likely to be relevant as
keratinocytes studied were derived from normal skin (usually
discarded from operations on sun-protected sites). AhR polymor-
phisms are known to affect levels of induced CYP1A1 within the
population, as described by Smart and Daly [51] in a study of a
similar geographical population to our study. They reported a 103-
fold variation in induced CYP1A1 in human lymphocytes which
significantly correlated with two polymorphisms in the AhR [51].
In line with previous studies showing induction of CYP1A1 protein
by b-NF and ITE in human keratinocytes and mouse lung
fibroblasts [22,49], we can conclude that although CYP1A1 is a
marker of AhR activation and correlated with ligand potency in our
studies, it is not a specific biomarker of chloracnegenic potential.

Metabolism of TCDD is known to be low [54] (a factor that
contributes to the persistence of chloracne [7]) but inducible by
AhR activation [10,55], while the metabolism of b-NF is known to
be more rapid, through cytochromes P450 1A1 and 1A2 [56,57].
Xenobiotic metabolising cytochrome P450 enzymes in keratino-
cytes and in human epidermal equivalents are of low activity [46]
and with the multiple dosing regimen used in these studies the
concentrations of ligands would have been maintained.

a-NF inhibited TCDD-induced AhR activation and chloracne-
like phenotype in epidermal equivalents, providing evidence that
TCDD-induced effects in NHEKs are AhR-dependent and that AhR
activation itself, not AhR down-regulation, is responsible for the
chloracne-like phenotype. This is further supported by the
observation that a chloracne phenotype was not induced by AhR
knock down in the epidermal equivalent model. Although a-NF is
known to exhibit both agonistic and antagonistic activity, it is a
well characterised partial AhR agonist [41,58]. For example, a-NF
has been shown to induce AhR-XRE complex formation in HepG2s
from 1 mM, while at the same concentration it begins to inhibit
formation of the AhR-XRE complex induced by 2 nM TCDD [58]. As
we have shown in NHEKs, XRE-luciferase activity was induced at
low levels from roughly 120 nM to 12 mM, while 5 and 10 mM a-
NF robustly inhibited TCDD induced AhR activation (Supplemen-
tary Figure 4). Together with studies in a variety of cell types
[41,58] and further publications in NHEKs which utilise concen-
tration ranges of a-NF spanning those used in this study [56,59] we
can be confident that our results reflect antagonist activity of a-NF.
In recent years, new AhR antagonists have emerged which are
claimed to exert no agonist activity. However, we have shown that
in NHEKs, one such compound CH-223191 [60] activates XRE-
luciferase at concentrations of 3 mM and above (Supplementary
Figure 4B), similar to a-NF.

Early onset of terminal differentiation induced by TCDD in
keratinocytes and epidermal equivalents has been previously
reported in the literature [15,16,32,61,62]. Consistent with these
findings, we found that filaggrin and involucrin expression were

Fig. 6. TCDD-induced AhR activation is inhibited by a-NF in primary NHEKs. (A)

Primary NHEKs were co-transfected with XRE4-SV40-luciferase and renilla-

luciferase control constructs and treated with vehicle or TCDD and/or a-NF as

indicated for 48 h. Luciferase activity was measured and the firefly:renilla luciferase

ratio was normalised to vehicle. Data shown are mean (�sem), n = 9 (triplicate wells

from 3 donors). Two-way ANOVA: post hoc tests comparing vehicle to TCDD � a-NF,

Dunnett’s: **/*, analysis of trend: ***P < 0.0001. (B) Primary NHEKs were treated with

vehicle, TCDD and/or a-NF every 48 h as indicated for 8 days. Cells were lysed and

proteins separated by Western blotting. Blots were probed with AhR and CYP1A1

antibodies with b-actin as loading control. Western blot is representative of duplicate

blots from 3 donors. (C) Densitometry was performed on blots from 3 donors probed

with antibodies against AhR (black bars) and CYP1A1 (white bars) and normalised to b-

actin. Two-way ANOVA and analysis of trend: effects of TCDD on AhR, *P = 0.02.

Densitometry is represents mean (�sem) from 3 donors.
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altered by TCDD and b-NF. New findings in this paper indicate that
ITE also influenced filaggrin and involucrin expression. A factor
contributing to the regulation of keratinocyte differentiation by
AhR may be the recently identified AhR dependent regulation of
filaggrin by an upstream XRE domain [62]. Additionally, Du et al.
[16] described that in human keratinocytes TCDD induced
expression and activation of TGM-1, while b-NF did not. However,
in contrast to their findings, we have shown by Western blot that
b-NF also up-regulates TGM-1 expression, and additionally that
ITE can also induce TGM-1, although there was more donor
variation in response to b-NF and ITE than TCDD. Together, these
data are consistent with early onset of terminal differentiation
being a contributory mechanism to the development of the
chloracne phenotype. However, the changes in filaggrin, involucrin
or TGM-1 expression did not appear specific to TCDD and they did
not correlate with chloracne potential.

The MAPK-ERK pathway is involved in epidermal homeostasis
[63] and has been proposed as a mechanism of chloracne
lesion development. Previous studies have shown activation of
EGFR/c-src/MAPK/c-Fos pathways by AhR agonists [64,65] but
reports vary [66] and robust and complete AhR-induced activa-
tion of the pathway remains to be demonstrated. Interestingly in
studies of biopsies taken from chloracne lesions of patients
putatively exposed to dioxins, Tang et al. [67] showed up
regulation of c-Fos and Liu et al. showed an increase in pEGFR
and p-MAPK [67,68]. However, nowadays TCDD-induced chlor-
acne is extremely rare and in recent case studies, exposure to a
‘‘cocktail’’ of compounds hinders interpretation of the patho-
physiological role of TCDD and AhR activation. Although not the
subject of our study, epidermal equivalent models allow specific
putative pathways to be studied in the context of controlled
chemical exposure and defined AhR activation. It would therefore

Fig. 7. Inhibition of AhR activation by a-NF partially blocks TCDD-induced phenotype in epidermal equivalents. (A) Epidermal equivalents were grown and treated with

vehicle, 10 nM TCDD and/or 5 mM a-NF every 48 h for 7 days. After 7 days, equivalents were fixed, embedded in paraffin and stained with H&E. (B) Using Image J, 6

measurements of the viable cells layer were taken from 2 images per treatment for each donor. One-way ANOVA: Dunnett’s post hoc test comparing vehicle to ligand,

***P = 0.0004. Individual values and mean (�sem) are shown for 3 donors.
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be of interest to study the activation of EGFR/MAPK/c-Fos and how
this relates to phenotype development.

In conclusion, the data presented in this paper further
underscore the utility of epidermal equivalents for the study of
chloracne pathogenesis and indicate that the development of the
chloracne phenotype in epidermal equivalents in response to AhR
agonists appears to be a result of AhR activation rather than AhR
down regulation. However, neither CYP1A1 induction nor AhR
degradation appear to be specific biomarkers for the chloracne-
genic potential of compounds.
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