
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Behavioral Maps

Lima dos Santos, Edilton; Fortz, Sophie; Schobbens, Pierre-Yves; Perrouin, Gilles

Published in:
Software Architecture - 15th European Conference, ECSA 2021 Tracks and Workshops, Revised Selected
Papers

DOI:
10.1007/978-3-031-15116-3_8

Publication date:
2022

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Lima dos Santos, E, Fortz, S, Schobbens, P-Y & Perrouin, G 2022, Behavioral Maps: Identifying Architectural
Smells in Self-Adaptive Systems at Runtime. in P Scandurra, M Galster, R Mirandola, D Weyns & D Weyns
(eds), Software Architecture - 15th European Conference, ECSA 2021 Tracks and Workshops, Revised
Selected Papers: 15th European Conference, ECSA 2021 Tracks and Workshops; Växjö, Sweden, September
13–17, 2021, Revised Selected Papers. Lecture Notes in Computer Science edn, vol. 13365, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 13365 LNCS, Springer Nature Switzerland AG, pp. 159-180. https://doi.org/10.1007/978-3-
031-15116-3_8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1007/978-3-031-15116-3_8
https://researchportal.unamur.be/en/publications/59e0b6ba-4af5-4c9c-be1c-3ca93865fe46
https://doi.org/10.1007/978-3-031-15116-3_8
https://doi.org/10.1007/978-3-031-15116-3_8

Behavioral Maps: Identifying Architectural
Smells in Self-Adaptive Systems at Runtime

Edilton Lima dos Santos1[0000−0003−2231−3852], Sophie
Fortz1[0000−0001−9687−8587], Pierre-Yves Schobbens1[0000−0001−8677−4485], and

Gilles Perrouin1[0000−0002−8431−0377]

PReCISE, NaDI,
Faculty of Computer Science, University of Namur, Namur, Belgium

{edilton.limados,sophie.fortz,pierre-yves.schobbens,gilles.perrouin}@unamur.be

Abstract. Self-adaptive systems (SAS) change their behavior and struc-
ture at runtime, depending on environmental changes and reconfigura-
tion plans and goals. Such systems combine architectural fragments or
solutions in their (re)configuration process. However, this process may
negatively impact the system’s architectural qualities, exhibiting archi-
tectural bad smells (ABS). Also, some smells may appear in only par-
ticular runtime conditions. This issue is challenging to detect due to the
combinatorial explosion of interactions amongst features. We initially
proposed the notion of Behavioral Map to explore architectural issues
at runtime. This extended study applies the Behavioral Map to analyze
the ABS in self-adaptive systems at runtime. In particular, we look for
Cyclic Dependency, Extraneous Connector, Hub-Like Dependency, and
Oppressed Monitor ABS in various runtime adaptations in the Smart
Home Environment (SHE) framework, Adasim, and mRUBiS systems
developed in Java. The results indicate that runtime ABS identifica-
tion is required to fully capture SAS architectural qualities because the
ABS are feature-dependent, and their number is highly variable for each
adaptation. We have observed that some ABS appears in all runtime
adaptations, some in only a few. However, some ABS only appear in the
publish-subscribe architecture, such as Extraneous Connector and Op-
pressed Monitor smell. We discuss the reasons behind these architectural
smells for each system and motivate the need for targeted ABS analyses
in SAS.

Keywords: Architectural Smells · Dynamic Software Product Lines ·
Runtime Validation · Self-adaptive Systems · Behavioral Maps.

1 Introduction

Self-adaptive systems (SAS) must adjust their structure or behavior, depending
on environmental changes and (re)configuration plans to work in such envi-
ronments. Moreover, (re)configurations may also negatively affect architectural
qualities at runtime. It happens because the (re)configuration process combines
different architectural fragments or solutions via feature binding/unbinding at

2 Dos Santos, Edilton Lima et al.

runtime. Thus, Architectural Bad Smells (ABS) may emerge, implying reduced
system maintainability [12, 1]. ABS result from a set of architectural design de-
cisions that negatively impact system lifecycle properties, such as understand-
ability, testability, maintainability, extensibility, and reusability [1, 6, 9]. Conse-
quently, ABS indicate possible design and implementation issues and fixing them
can improve the system’s quality. ABS are well-studied for single systems [12, 1,
6, 9, 8, 13]. Yet, fewer works exist for SAS [15, 21, 19, 16, 20]. Additionally, these
studies do not analyze the impact of runtime variability on smell detection and
evolution as the SAS adapts.

In this paper, we extend our previous work [19] to analyze the Architectural
Bad Smell in self-adaptive systems at runtime. In particular, we described the
feature identification process used to instrument the source code of the self-
adaptive systems to detect architectural bad smells at runtime. We look for
Cyclic Dependency (CD), Extraneous Connector (EC), Hub-Like Dependency
(HL), and Oppressed Monitor (OM) architectural bad smells in various runtime
adaptations in the Smart Home Environment (SHE) framework [17], Adasim
[24], and mRUBiS [23] systems developed in Java.

Our results suggest that runtime ABS assessment is required to fully capture
SAS architectural qualities because the ABS occurrences vary along each self-
adaptation. In summary, this paper provides the following contributions:

1. A first study to identify architectural bad smells for SAS at runtime;
2. An analysis based on two runtime adaptations of SHE, 40 runtime adapta-

tions of Adasim, and 16 runtime adaptations of mRUBiS, demonstrate that
runtime variability affect the type and occurrence of smells found;

3. A replication package containing the results and scripts to process behavioral
maps is also available:
https://github.com/edilton-santos/BehavioralMapExtendedStudy.

The remainder of the paper is as follows. Section 2 formally defines the Be-
havioral Map (BM) and presents the framework. Section 3 discusses the studied
systems, and the architectural bad smells identified through the BM and illus-
trated on the SHE framework [17]. We describe our results in Section 4. Section
5 addresses the threats to validity. Section 6 presents the related work. Finally,
Section 7 wraps up the paper.

2 Behavioral Map

Inspired by Dynamic Software Product Lines (DSPLs) [5, 4, 3, 17], we consider
SAS adaptations as configurations of interacting features. In a (D)SPL, one de-
scribes features and their dependencies in Feature Model (FM) [11] and trace
their realization in the code via e.g.,, annotations. Not all SASs are DSPLs, and
FM as well as traceability of features throughout the implementation may be
absent. Our BM process copes with this issue (see Section 2.2). Then, the role
of a Behavioral Map is to capture interactions between features of a specific
(re)configuration to be analyzed before it gets deployed [18]. Such configurations

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 3

Fig. 1: Behavioral Map (BM) process overview.

are produced within an adaptation loop. We rely on the well-known MAPE-K
loop (Monitor, Analyze, Plan, and Execute over a shared Knowledge base) pro-
posed by IBM in [10]. We depicted it left side of Figure 1, though any type of
control loop may interact with a BM. Thus, the BM needs to interact with
the component responsible for defining the Change Plan used in the adaptation
process at runtime and retrieving the configuration rules. We used the Change
Plan of the self-adaptive system selected to create the map based on its con-
figuration rules. This strategy was adopted because we assume that the system
implements a MAPE-K loop [10] to manage the adaptation process at runtime.
We thus avoid building a Behavioral Map for an invalid configuration. Further-
more, the Behavioral Map can look for architectural bad smells in a self-adaptive
system independently of the adaptation mechanism employed in the reconfigura-
tion process at runtime. However, to facilitate the presentation of the Behavioral
Map process, we decided to use MAPE-K loop because it is more intuitive and
the most used adaptation mechanism for developing SASs.

To build a BM, we follow the process described in Figure 1. The MAPE-K
loop monitors continuously a set of managed resources and gathers the results
in symptoms. Then the loop analyses symptoms and determines if an adaptation
is necessary based on Knowledge (which in our case includes the DSPL feature
model). If such an adaptation is necessary, it will issue a change request for the
plan phase that will determine the appropriate configuration (a set of enabled
and disabled features) to execute as prescribed by its Change Plan. The BM
building process (right side of Figure 1) interacts with this Change Plan contain-
ing, besides the candidate configuration, a set of configuration rules noted CR.
These rules contain information on the features and their dependencies (versions,
imported and exported packages) obtained via extraction (see Section 2.3). The
map building process comprises the following steps: Feature Identification, Detec-
tion, Analysis and Map Building. In the following, we define the BM formalism
and explain the BM building process.

4 Dos Santos, Edilton Lima et al.

2.1 Behavioral Map Definition

A BM is a hybrid structure, mixing structure, data, and control information
about one configuration of the DSPL. Formally, a BM is a tuple:

BM = (C, V, V Types, vtype, E,ETypes,A, vattributes), where:

– C is a configuration, i.e. a selection of interacting features in a given planned
SAS adaptation,

– V ⊆ C is a set of vertices,
– V Types = {Core, Controller, Sensor, Actuator, Presenter},
– vtype : V ×P(V Types)\∅ is a function giving the types of a vertice. We sup-

pose that a vertice/feature can have multiple types. For example, a feature
can be core (i.e., present in all configurations) and also serves as a controller,

– E is a set of edges such as ∀e ∈ E, e = (v, v′, r) where v, v′ ∈ V and r ∈
ETypes = {Controls, Reads, Suppresses, Requires},

– A is the set of all attributes,
– vattributes : V × P{A} is a function giving the value of all the attributes

for a given vertice.

2.2 Behavioral Map Building Process

In the remaining, we describe the BM process shown in the right side of the
figure 1.

Feature Identification. We describe the manual process used to identify fea-
tures in source code based on information available in the system’s repository.
The feature identification process uses the Feature Trace provide by Data Ex-
tractor (see Section 2.3 for details) to track features at runtime. This process
is necessary because the self-adaptive systems available in Self-adaptive System
Community1 do not use a feature model to define their features. The feature
identification process consists of four steps.

Step 1 - Identifying the features: We first identify the features available
in the selected systems by examining articles (published in the literature), soft-
ware requirements documents, architecture descriptions, and other information
provided by developers in the software repository (e.g., GitHub) used to describe
the software requirements and implementation. These documents describe the
systems, including adaptive mechanisms, applicability, test scenarios, and source
code.

Step 2 - Identifying the core features in the source code: We used
the feature name (or description) identified in step 1 and adaptive mechanisms
(see the Table 1) implemented in the system to guide the identification of
the core features in the source code. The Core features are executed in every
(re)configuration of the system. In addition, we selected only the main concrete
class responsible for implementing the feature behavior because the class is the
1 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 5

main point for the feature implementation. Consequently, we use this class to
identify the hierarchy of dependencies at runtime via Data Extractor.

Step 3 - Identifying the optional features in the source code: We
used the feature name (or description) and the scenario where each feature is
activated to define the optional features in the source code. Also, we analyzed
the source code comments used to describe the class or method implementation
to support feature identification in the source code. Thus, we associated the
information collected in step 1 with the source code information to find each
feature. We selected the main concrete class responsible for implementing the
optional feature.

Step 4 - Behavioral Map Feature Trace: The features (class) identified in
steps 2 and 3 are included in the Feature Trace provided by the Data Extractor.

Detection. Detection determines interacting features using pairwise analy-
sis [22] and their directed relationships based on the configuration rules CR.
Moreover, we assume that in the CR, there are all features and their config-
uration policy (including feature dependencies) required to address a specific
context at runtime. For example, the feature installation process used the con-
straints available in the manifest file to identify the feature and its dependencies.
Besides, this process can use complementary information defined in the Change
Plan to guide the installation, configuration, and adaptation processes at run-
time.

In this context, we will use the CR defined in the Change Plan to identify the
features and directions of each relationship. Thus, the Detection process selects
a feature in the CR and identifies its dependencies based on the configuration
information of the feature. Let us consider a Feature A, which requires loading
a Feature B at runtime. This dependency is defined in the CR file and used by
the Detection process to create an arrow from feature A to feature B, indicating
the direction of the relationship between the features. The process repeats for
each feature until all interactions are detected and created on the map.

Analysis. During the analysis stage, we further refine the interactions identified
during detection in categories. We identify several relationship types (ETypes)
as relevant to highlight runtime interaction problems. The currently supported
types are: i) Controls: a relationship where a feature has control over another
feature, but does not suppress its behavior; ii) Suppresses: a relationship where
a feature suppresses the behavior of another one. Also, we consider as suppressed
the relationship between features where one controlled feature needs to be unin-
stalled or unbound by its controlling feature; iii) Requires: a relationship in
which a feature is part of another feature’s implementation. In this relationship,
there is no suppression or control over the feature’s behavior that is part of the
main feature; iv) Reads: This type of relationship occurs when one feature
reads data produced by another feature, but there is no control or suppression
of the feature’s behavior.

6 Dos Santos, Edilton Lima et al.

Map Building. Based on interaction detection and analysis, we can build the
Behavioral Map for a configuration of the SAS. We represent this map as a
directed graph where features form the vertices and relationships form the edges.

1 table ← loadConfigurationRulesFile(CRfile);
2 verticesOnMap ← createVerticesOnMap(table);
3 foreach vertex in verticesOnMap do
4 foreach row in table do
5 if row.name.equals(vertex.name) then
6 foreach relation in row.getAllRelationships() do
7 if relation.relationship is not null then
8 createEdge(vertex, relation.relationship_type, relation.featureName);
9 end

10 end
11 end
12 end
13 end

Algorithm 1: Behavioral Map algorithm.

Algorithm 1 captures the whole BM building process. The algorithm begins
by loading the CR file as a table (line 1 at algorithm 1) and instantiates the
vertices (features) on the map (createVerticesOnMap, line 2). The next step
is to look for each created vertex (feature) and identify its relationships in the
Configuration Rules (table). Consequently, we create three loops, as shown
lines 3, 4, and 6. The first loop selects a vertex on the map and then looks for
its information in the table using the second loop. Line 5 checks whether each
row of the table contains the selected vertex. Line 6 retrieves all relationships
(row.getAllRelationships()) related to the selected vertex on the map. For
each relationship, createEdge creates an edge in the map based on the following
arguments: i) the vertex from which the edge starts; ii) the relationship type
represented by the edge; iii) the destination vertex (relation.featureName in
line 8). The loop on line 6 will repeat until all edges are created.

2.3 Framework Implementation

We conceived a framework to infer Behavioral Maps whose architecture is shown
in Figure 2. The framework uses the Neo4J2 platform and its Cypher3 query
language. The top-most layers, Map Builder, Analyzer, and Interaction
Detector perform the processes defined in Section 2. In the following, we focus
on the remaining elements of the framework.

The Integration Layer (IL) serves as an interface between the DSPL and
the map building components, receiving the data used to build the map. Also,
this layer defines the CR file data type used to build the map as follows: i) name
is the feature name in the system; ii) friendly_name is friendly name of feature
2 Neo4j - https://neo4j.com/product/
3 Cypher - https://neo4j.com/docs/cypher-manual/current/introduction/

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 7

Fig. 2: Behavioral Map Architecture overview.

shown to the user; iii) exported_packages lists the exported packages or
services offered via features; iv) imported_packages lists the packages used
by features to compose their functionality; v) version represents the feature
version; vi) status defines if the feature is active or inactive; vii) type defines
the feature type; viii) relationships is a collection composed of relationship
types and associated features as describe as follows: a) relationship_type
represents the relationship type, as defined in ETypes; b) feature_name is
the feature name associated with the relationship_type field. The IL reads data
via Data Extractor or CR file in formats XML, JSON, or CSV.

The Data Extractor (DE) realizes the runtime integration between the
Integration Layer and the Self-Adaptive system. The DE runs over the Plan
function (see Figure 1), reading the Change Plan information at runtime and
relating the features and CR after the system triggers the adaptation process.
Hence, the DE identifies all features used and their relationships regarding the
Change Plan configuration to be deployed. Thereafter, the DE builds a CR file
including all involved features and sends it to the Integration Layer. Listing 1.1
shows a small part of the CR (in JSON format), created by DE with one feature
(Presence), some properties (e.g., name, status, and type), and relationships at
runtime (e.g., line 9).

1 {
2 "name" : "Presence " ,
3 " friendly_name" : " presence "
4 " exported_packages " : ["com . she . core . pre sence "] ,
5 " imported_packages" : ["com . she . core . l i s t e n e r "] ,
6 " ve r s i on " : "1 . 0 . 0" ,
7 " s t a tu s " : "Act ive " ,
8 " type" : " Sensor " ,

8 Dos Santos, Edilton Lima et al.

9 " r e l a t i o n s h i p s " : [{" r e l a t i onsh ip_type " : "Requires " , "
feature_name" : " L i s t en e r "}]

10 }
11 . . .

Listing 1.1: Presence feature configuration rules.

The DE component performs static analysis using the WALA API4. Static
analysis allows to identify the dependency relationships among the class hierar-
chy used by selected features or perform interprocedural dataflow analysis and
identify relationships’ types. Also, manifest files, used to install each feature of
the candidate configuration before its deployment, are exploitable. The DE com-
ponent can be implemented for all types of adaptation processes because this
component receives as a parameter the features and their V Types, the features
implementation path in the packages, and Jar files. Also, we used these param-
eters to maps the relation between features and components that implements
each feature. Besides, the DE provides a Feature Trace used to identify the fea-
tures executed at runtime based on the features identified in the source code by
the developers or researchers following the process defined in section 2.2. The
Feature Trace gets all the information used to build the CR file at runtime and
sends all collected information to DE for each monitored adaptation.

The BM framework allows to compute a graph depicting core and variable
features as well as the different interactions between them (see the figures 3, 4, 5,
6, 7, and 8). Though these maps may be used for visual inspection, they mainly
serve as support for further analyses thanks to the Neo4J graph database5.

3 BM-Based ABS Detection

This section presents the SAS under study and describes the architectural bad
smells that the Behavioral Map can identify. Furthermore, we describe the pro-
cess for identifying each architectural smell and discuss its impact on the SAS’
architecture.

3.1 SAS under study

We applied our BM framework on SHE [17], Adasim [24] and mRUBiS [23]
systems, all written in Java programming language. The motivation for these
choices also relies on the fact that these systems have different adaptive mecha-
nisms, and their description and implementation are available. Furthermore, the
last two systems were selected as part of a previous study on ABS for SAS [15].
Table 1 shows the main characteristics of each selected system as follows: i) Sys-
tem - the name of the system; ii) Architectural Model - The type of architectural
model used to implement the system under evaluation; iii) Adaptive Mechanisms

4 WALA - https://github.com/wala/WALA
5 https://neo4j.com/product/neo4j-graph-database/

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 9

Table 1: Systems used in this study.

System Architectural
Model

Adaptive
Mechanisms

Application
Domain

SHE Publish-Subscribe MAPE-K Internet Of Things

Adasim Agent-based Parameter-based
routing algorithm

Automated traffic
routing

mRUBiS Architectural
model-based

Architecture-based
MAPE-K
Event-Condition-Action
State based feedback
loop

Marketplace

- The mechanisms used to trigger the adaptations at runtime; iv) Application
Domain - Information about the application domain of the systems selected in
this study. These characteristics are essential to help us understand the impact
of each smell in the selected systems. We present each selected system and its
configurations under evaluation in the following.

SHE is a smart home system that uses the MAPE-K loop to identify changes
(such as a new sensor being plugged in) and make the appropriate changes
to the dashboard (e.g., display data coming from that sensor). The SHE core
is composed by Manager, Listener, Loader, Installer, and Presentation Layer.
These layers are responsible for controlling the adaptation, communication, and
data presentation at runtime. Also, we included four optional features as follows:
i) Luminosity : used to read data from the luminosity sensor; ii) Presence:
used to read data from the presence sensor; iii) lampController : responsible for
controlling Lamp feature’s behavior using the information read from Luminosity
and Presence features; iv) Lamp: an actuator used to switch on and off lights
based on the lampController feature’s data. This configuration of SHE is depicted
Figure 3. Also, we analyzed a second version of the SHE that uses the same
features described above and includes the water, climateController, temperature,
and airConditioner features.

Adasim is a simulator for the Automated Traffic Routing Problem (ATRP)6,
implemented as an agent-based system [24, 15]. The system is composed of six
abstract components: i) a map; ii) vehicles; iii) agents - make routing decisions;
iv) sensors; v) uncertainty filters - utilized to control the noise and other sources
of uncertainty in the sensor; and vi) data privacy policies - used by vehicles and
streets to restrict part or all information about themselves from sensors [24].
The system employs adaptive mechanisms to deal with the scalability problems
and the unpredictable changes in the environment, for instance, an accident.

6 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
model-problem-atrp/

10 Dos Santos, Edilton Lima et al.

Fig. 3: Behavioral Map (BM) for one SHE configuration.

mRUBiS is a marketplace based on RUBiS [14], comprising 18 components
and can arbitrarily host many shops. These shops manage items, users, auc-
tions/purchases, inventory, and authenticate users. mRUBiS7 allows different
adaptive mechanisms [23], as showed in table 1.

3.2 Identifying Architectural Bad Smells

Table 2: Selected Architectural Bad Smells for Self-Adaptive Systems.
Smell Name Detection

Cyclic Dependency (CD) [2] Full
Extraneous Connector (EC) [8] Full
Hub-Like Dependency (HL) [2, 15] Full
Oppressed Monitors (OM)[21] Partial

While ABS catalogs exist in the literature [2, 8], their role in self-adaptive
architectures is less known [15, 21]. Table 2 presents a list of smells we believe
to be relevant for assessing self-adaptive architecture as well as their level of
support through the BM. For each of them, we briefly describe how they can be
identified via the BM, and we provide a short discussion on their impact. We
also provide a replication package on GitHub8 with a tutorial to configure the
Neo4J platform, CR files, and the scripts used to create the map and analyze
ABS.
7 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/mrubis/
8 https://github.com/edilton-santos/BehavioralMapExtendedStudy

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 11

Cyclic Dependency [2]: This smell occurs when two or more components
depend on each other directly or indirectly [2]. Components involved in a depen-
dency cycle can hardly be released, maintained, or reused in isolation [7].

Identification Guidelines. We determine cycles in the sub-graph of the BM
formed by the features and the relationships of type Requires using a Depth-First
traversal strategy.

Discussion. Based on relationship categories, other forms of cyclic depen-
dencies may be uncovered, such as control ones which may cause concurrent
accesses to resources and/or deadlocks.

Extraneous Connector (EC) [8]: This smell happens when two connectors
of different types are used to link a pair of components [8]. This paper focuses
on only the impact of combining procedure call and event connectors (e.g., com-
munication via publish-subscribe).

Identification Guidelines. The automatic identification of extraneous con-
nectors proceeds by analyzing paths between pairs of vertices in the BM. In a
complementary way, a designer can visually identify EC smells on the BM. The
lampController (Figure 3) uses two types of connectors to connect with the fea-
tures Presence, Luminosity, and Lamp. The lampController uses the Listener
(Publish-Subscribe client to implement the Reads edge) and procedure call com-
munication (represented by the Requires edge) with Presence, Luminosity, and
Lamp.

Discussion. This smell increases the coupling between features of the DSPL,
negatively impacting its variability, and thus its adaptability [9]. However, a
direct connection may be justified for concurrent operation [8] and may increase
the system’s resiliency in case of failure of the publish-subscribe architecture.

Hub-Like Dependency (HL): This smell appears when a component has
(incoming or outgoing) dependencies with a large number of other abstractions
(e.g., other components) or concrete classes [2, 15].

Identification Guidelines. Thanks to its graph structure, the BM allows
to automatically compute the in/out-degree (number of incoming or outgoing
edges) for each vertex (feature). Features having high in/out-degrees are sub-
jected to the HL smell. In Figure 3, we see that the Listener feature is subjected
to the HL smell since it is involved in most of the Requires relationships of the
BM. Besides, if a feature has only many outgoing Requires edges, it is a Hub
type called Overreliant Class [2].

Discussion. The presence of the HL smell in the Listener feature is mo-
tivated by the publish-subscribe architecture adopted by the SHE framework.
The Listener centralizes all the communication processes in this software archi-
tecture and works as a communication broker. It is therefore acceptable in this
case [2, 7]. However, hubs form points of attention in case of failure.

Oppressed Monitors [21] (OM): According to [21], this smell is characterized
by a set of monitors (retrieving information from sensors) independent from each

12 Dos Santos, Edilton Lima et al.

other that are managed with the same data polling rate and predefined execution
order, yielding sub-optimal data acquisition and failure of subsequent monitors
if one monitor in the sequence fails.

Identification Guidelines. Fully identifying this smell involves delving into
the source code and getting information about polling rate since sequencing of
sensor calls is not present on the map. Yet, if several sensors are controlled by
the same controller, the map can help locating the features to look for this smell.

Discussion. In some cases, this smell is acceptable, especially when there
are simple monitors with similar polling rates [21]. However, this smell limits
the adaptability and resiliency of the system, which are important criteria for
self-adaptive systems.

These examples illustrate the two complementary usages of the BM. First,
the BM is a formal model amenable to automated detection of smells using
graph algorithms. Second, visual representations help designers and engineers to
visualize runtime configurations.

Identification Process: The BM framework thus comes with dedicated algo-
rithms to identify ABS [19], as described in section 3.2. These algorithms are
implemented via the Cypher9 language, allowing to query the graph. We used
provided queries to identify CD, EC, HL, and OM on the map created for the
SASs under study. For example, listing 1.2 shows how to compute cyclic depen-
dencies on the map. All queries used in this study are available on GitHub10.

1 MATCH (f : Feature)− [: Requires]−>(f 2 : Feature)− [: Requires]−>(f)
2 OPTIONAL MATCH (f 2)− [: Requires]−>(f 3 : Feature)− [: Requires]−>(

f)
3 RETURNf , f 2 , f 3

Listing 1.2: Cypher query used to look for CD in the BM.

4 Results

The following sections describe the results and discuss the reasons behind each
architectural smell identified in the self-adaptive systems under study.

4.1 SHE Framework Results

The SHE Framework performed two self-adaptations and activated 22 features
at runtime, nine in the first adaptation and 13 in the last adaptation. Table
3 presents in detail the features involved in ABS during the SHE Framework
adaptations. The listener is involved in HL smell in both adaptations, but the
number of outgoing increases in the second adaptation. This situation occurred
9 Cypher - https://neo4j.com/docs/cypher-manual/current/introduction/

10 https://github.com/edilton-santos/BehavioralMapExtendedStudy

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 13

Table 3: ABSs identified adaptation 1 and 2 of the SHE.
Adaptation 1 Adaptation 2

Feature Name Feature
Type EC HL OM EC HL OM

listener Core Yes
(6)

Yes
(10)

lampController Optional Yes
(3) Yes Yes

(3) Yes

climateController Optional Yes
(2)

because the water, climateController, temperature, and airConditioner features
were activated at runtime, increasing the number of the Requires relationships
on the listener feature, as shown in Figure 4.

Fig. 4: Behavioral Map for SHE in adaptation 2.

Also, the BM identified lampController as involved in EC and OM smells
in both adaptations. The EC smell occurred because the lampController uses
the listener (the communication broker) and procedure call to exchange mes-
sages with presence, luminosity, and lamp. The procedure call is represented
as the relationship Requires or Controls on the BM, as illustrated in Figure
4. The Requires relationships among lampController and presence, luminosity,
lamp represent an architectural bad smell.

14 Dos Santos, Edilton Lima et al.

The BM identified the lampController and presentation layer as a possi-
ble OM smell. However, after analyzing the source code together with the SHE
Framework developers, we identified that only the lampController uses the same
data polling rate and predefined execution order to retrieve data from the sen-
sors. Thus, only lampController feature was classified as OM smell. Finally, the
climateController feature activated in adaptation two was classified as EC smell.
While the BM supports the identification of potential OM smells, manual source
code analysis is necessary to eliminate false positives.

4.2 Adasim Results

The Adasim system was executed using two different parameter files because we
identified two adaptation modes: QLearningRoutingAlgorithm and AdaptiveR-
outingAlgorithm.

Table 4: ABSs identified in adaptation 1 and 2 of the Adasim - QLearningRoutin-
gAlgorithm.

Adaptation 1 Adaptation 2

Feature Name Feature
Type CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes
(13) Yes Yes

(12)

Vehicle Core Yes Yes
(14) Yes Yes

(13)
VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
QLearningRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core Yes
(9)

Yes
(9)

Adasim QLearningRoutingAlgorithm. Adasim performed 13 self-adapt-
ations and activated 18 features at runtime. However, we identified that the
variability of the features at runtime only triggered different numbers of ABS
detected between adaptations one and two. Such behavior was observed because
Adasim did not enable/disable other features (after adaptation two), which may
add new ABS at runtime. It means that the system continued executing the
adaptations process using the features and data produced by each loop until it
completed its adaptation cycles.

Table 4 presents in detail the features involved in ABS during the two first
adaptations. The QLearningRoutingAlgorithm is an optional feature involved in
CD only in adaptation one with the feature RoadSegment, and Vehicle, as shown
in Figure 5. Such figures show all features involved in CD, the features in green

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 15

Fig. 5: CD identified in Adasim QLearningRoutingAlgorithm in adaptation 1.

are core features and the optional feature in pink. The relationship defined as
Requires amongst features in CD indicates that all features involved can hardly
be released, maintained, or reused in isolation. Thus, if the developers decide to
reuse the feature Vehicle, they should reuse all features presented in Figure 5.

Nevertheless, the absence of the QLearningRoutingAlgorithm (in adaptation
two) reduces the numbers of dependency in the features RoadsSegment and Ve-
hicle involved in HL, see Table 4. This situation occurred because RoadSeg-
ment and Vehicle are not sharing QLearningRoutingAlgorithm in adaptation
two. Also, performing evolutionary or corrective maintenance on the RoadSeg-
ment and Vehicle features is an arduous task, as poorly planned maintenance
can trigger unexpected behavior in the system, like bugs. Moreover, a hub (as
RoadSegment and Vehicle) with a mixture of ingoing/outgoing dependencies
could be a problem because of its lack of architectural logic [7]. These aspects
negatively impact system maintenance and reusability. In addition, the Simu-
lationXMLBuilder feature has been identified as HL. Thus, we have identified
three features involved in HL, as shown in Figure 6.

Adasim AdaptiveRoutingAlgorithm. The Adasim executed 27 self-adapt-
ations and activated 20 features at runtime. We observed that the variability of
the features at runtime impacted the numbers of ABS detected between adapta-
tion 1 and 2, as identified in the Adasim QLearningRoutingAlgorithm. Table 5
presents the ABS identified during adaptations 1 and 2. Additionally, it is possi-
ble to observe that the number of CD identified increase or decrease depending
on the number of optional features required in each adaptation process. This
situation also impacts the number of HL identified in each adaptation, mainly
because the features identified as CD and HL concentrated on the core features.
Also, there is a strong relation of dependency among them at runtime. Thus,
we detected that the Vehicle feature identified as HL in Adaptation 1 was not
identified in Adaptation 2. Such a situation occurred because the optional fea-

16 Dos Santos, Edilton Lima et al.

Fig. 6: Features involved in HL identified in Adasim.

tures AdaptiveRoutingAlgorithm, QLearningRoutingAlgorithm, and Lookahead-
ShortestPathRoutingAlgorithm are not used in adaptation 2. Consequently, the
BM identified in adaptation 2 the RoadSegment feature as a new HL.

However, we did not identify the Extraneous Connector and Oppressed Mon-
itors smells in Adasim because the system does not use publish-subscribe archi-
tecture or loops to collect data in the sensors.

4.3 mRUBiS Results

The mRUBiS system is divided into self-healing and self-optimization versions.
However, during the feature identification process, we identified four versions
of mRUBiS: i) self-healing with adaptation mechanism Event-Condition-Action
(ECA) feedback loop is composed of 22 features; ii) self-healing with adaptation
mechanism State-Based Feedback Loop (SBFL) is composed by 18 features; iii)
self-healing with adaptation mechanism MAPE-K is composed of 22 features,
and iv) self-optimization with adaptation mechanism MAPE-K is composed by
27 features.

mRUBiS self-optimization: Figure 7 depicts the first configuration of
mRUBiS self-optimization with one optional feature (in pink). We started look-
ing for ABS in the system based on this configuration. The BM identified the
SelfOptimizationConfig, MRubisModelQuery, and EventBasedMapeFeedbackLoop
as HL in four adaptation loops. Thus, these features are core used in all configura-
tions of mRUBiS self-optimization. We observed in the SelfOptimizationConfig a
decrease in the numbers of dependencies used in the second adaptation. This sit-
uation occurred because the feature is responsible for adding the validators and
other parameters for self-optimization to the simulator. However, the number
of validators used at runtime decreases, impacting the dependencies identified.

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 17

Table 5: ABSs identified in adaptation 1 and 2 of the Adasim AdaptiveRoutin-
gAlgorithm.

Adaptation 1 Adaptation 2

Feature Name Feature
Type CD HL CD HL

TrafficSimulator Core Yes Yes

RoadSegment Core Yes Yes Yes
(13)

Vehicle Core Yes Yes
(17) Yes

VehicleManager Core Yes Yes
RoadVehicleQueue Core Yes Yes
AdasimMap Core Yes Yes
AdaptiveRouting
Algorithm Optional Yes

QLearningRouting
Algorithm Optional Yes

LookaheadShortest
PathRoutingAlgorithm Optional Yes

SimulationXMLBuilder Core Yes
(11)

Yes
(11)

The MRubisModelQuery and EventBasedMapeFeedbackLoop maintain the same
numbers of dependencies in all adaptations. Also, the BM framework did not
identify other types of ABS during the adaption loop.

mRUBiS self-healing: The BM does not identify ABS in the self-healing
version with adaptation mechanism ECA and SBFL after four reconfiguration
processes at runtime. The BM identified one instance of HL in the core feature
StateBasedMapeFeedbackLoop in four adaptations loops to mRUBiS self-healing
version with adaptation mechanism MAPE-K. The feature is the main entry
point to other features such as Monitor, Action, Plan, Execute, SelfHealingConfig,
SelfHealingScenario, and MRubisSelfHealingUtilityFunction. Also, the knowledge
is captured in the model described in CompArch [23] language, provided by the
framework CompArch implemented outside the mRUBiS implementation. This
model is utilized as a parameter on the feature StateBasedMapeFeedbackLoop to
validate the self-healing issues at runtime. Thus, the HL identified is a feature of
the architecture instead of an issue. This situation happened because the State-
BasedMapeFeedbackLoop has been chosen as a controlled entry point to separate
the adaptive mechanism (MAPE-K) logically from the self-healing configuration
(implemented via SelfHealingConfig). We can observe this situation in Figure
8 through the relationship between StateBasedMapeFeedbackLoop (highlighted
in red) and SelfHealingConfig (highlighted in blue). Also, Figure 8 presents all
features available in adaptation 1 of the mRUBiS Self-Healing MAPE-K loop.
The features CF1_Injector (in pink) and LightWeightRedeployComponent (in
yellow) are optional features activated at runtime.

18 Dos Santos, Edilton Lima et al.

Fig. 7: Behavioral map of the first configuration of mRUBiS Self-Optimization.

5 Threats to Validity

As for any empirical study, we consider threats to the internal validity of results
themselves or their generalization.

5.1 Internal Validity

The absence of a feature model and feature annotations in the source code may
reduce the precision of the feature identification process in the source code.
To mitigate this threat, we used the Eclipse IDE11 tool to verify the feature
implementation and to debug the systems’ source code to check the execution of
each feature identified using the process defined in Section 2.2. Also, the systems
under study provide a log system that we used to check whether the main class
used to implement the features identified using our methodology were present
in the system log. Thus, we checked whether each core or optional feature was
correctly identified in the source code.

5.2 External Validity

Our results may not generalize to all SAS since we selected only three systems in
our study. Additionally, it is impossible to run all possible system adaptations or
estimate their number. We selected systems with different architectural models,
adaptation mechanisms, and application domains, as presented in Table 1. This
11 Eclipse IDE - https://www.eclipse.org/downloads/packages/

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 19

Fig. 8: Behavioral map of the first configuration of mRUBiS Self-Healing MAPE-
K loop.

diversity contributes to the mitigation of this threat. In this study, our goal
was to reveal and explain the existence of the runtime architectural bad smells
using the Behavioral Map. We left for future work with a more quantitative
assessment.

6 Related Work

We found two works dedicated to the identification of ABS in self-adaptive sys-
tems. The first study [15] relies on the Arcan [7] tool to identify ABS in 11 self-
adaptive systems. Arcan creates a graph database with the structure of classes,
packages, and dependencies of the analyzed project, allowing the execution of
algorithms on the graph to detect the ABS at design time. Our approach also
uses a graph for ABS detection, but there are two differences: i) we create a map
for each SAS configuration identified at runtime; and ii) we identify the ABS at
the level of features defined in the system’s feature model. Thus, to analyze the
architecture, we associate the features defined in the model with the structure of
classes, packages, and dependencies implemented in the source code. This pro-
cess allows us to relate a feature to its implementation. Our work in progress
involves the comparison of Acran and the BM for runtime smell detection [20].

The second study [21] presents two new ABSs specific to self-adaptive sys-
tems: the Obscure Monitor and the Oppressed Monitors. Also, it defines the al-
gorithms to identify each smell at design time. To validate the proposed smells,
the authors identified the proposed smells in 8 SASs in the manual and discussed
how to refactor the system affected for those smells. We believe that our work
on smells identification at runtime may uncover new ABS specific to SAS.

20 Dos Santos, Edilton Lima et al.

7 Concluding Remarks

In this paper, we made a case for assessing architectural bad smells (ABS) for
self-adaptive systems (SAS) at runtime using the Behavioral Map (BM). We
selected three SAS (SHE Framework, Adasim, and mRUBiS) and performed
runtime smell detection on several systems reconfigurations. Our results showed
that some ABS appear only in a specific system configuration or architecture.
For instance, the EC and OM smell appear in publish-subscribe architecture, as
used in SHE Framework. Also, we observed that the type and amount of ABS
found in the SAS depend on the configuration analyzed at runtime. For instance,
in Adasim AdaptiveRoutingAlgorithm, the Behavioral Map found nine CD and
three HL smells in the first adaptation, but the BM found six CD smells in
the second. We could explain this variation by binding and unbinding certain
runtime features. Thus, the Behavioral Map framework offers interesting support
for assessing the architectural qualities of a given runtime adaptation. However,
instrumenting the systems for runtime ABS identification requires expertise and
time because the core and variable features are not documented.

We envision three future works: i) we would like to conduct an empirical study
to investigate differences between smells one detects at design time and smells
occurring at runtime in self-adaptive systems; ii) we would like to reduce the cost
of engineering involved in analyzing SAS at runtime. In particular, we will design
a dedicated ABS tool operating at the bytecode level, easing runtime analyses;
iii) we will generalize our findings by assessing more self-adaptive systems.

Acknowledgements Edilton Lima dos Santos is funded by a CERUNA grant
from the University of Namur. Sophie Fortz is supported by the FNRS via a
FRIA grant. Gilles Perrouin is an FNRS Research Associate.

References

1. de Andrade, H.S., Almeida, E., Crnkovic, I.: Architectural bad smells in software
product lines: An exploratory study. In: Proceedings of the WICSA 2014 Compan-
ion Volume. pp. 1–6 (2014)

2. Azadi, U., Fontana, F.A., Taibi, D.: Architectural smells detected by tools: a cat-
alogue proposal. In: 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt). pp. 88–97. IEEE (2019)

3. Baresi, L., Quinton, C.: Dynamically evolving the structural variability of dynamic
software product lines. In: Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. pp. 57–63. IEEE
Press (2015)

4. Bencomo, N., Sawyer, P., Blair, G.S., Grace, P.: Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability
of adaptive systems. In: SPLC (2). pp. 23–32 (2008)

5. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview
of dynamic software product line architectures and techniques: Observations from
research and industry. Journal of Systems and Software 91, 3–23 (2014)

Behavioral Maps: Identifying Architectural Smells in SAS at Runtime 21

6. Fontana, F.A., Avgeriou, P., Pigazzini, I., Roveda, R.: A study on architectural
smells prediction. In: 2019 45th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). pp. 333–337. IEEE (2019)

7. Fontana, F.A., Pigazzini, I., Roveda, R., Zanoni, M.: Automatic detection of insta-
bility architectural smells. In: IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). pp. 433–437. IEEE (2016)

8. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Identifying architectural bad
smells. In: 13th European Conference on Software Maintenance and Reengineering.
pp. 255–258. IEEE (2009)

9. Garcia, J., Popescu, D., Edwards, G., Medvidovic, N.: Toward a catalogue of ar-
chitectural bad smells. In: International conference on the quality of software ar-
chitectures. pp. 146–162. Springer (2009)

10. IBM: An architectural blueprint for autonomic computing. IBM White Paper 31,
1–6 (2006)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., CMU-SEI (1990)

12. Lippert, M., Roock, S.: Refactoring in large software projects: performing complex
restructurings successfully. John Wiley & Sons (2006)

13. Mumtaz, H., Singh, P., Blincoe, K.: A systematic mapping study on architectural
smells detection. Journal of Systems and Software (2020)

14. Patikirikorala, T., Colman, A., Han, J., Wang, L.: A systematic survey on the
design of self-adaptive software systems using control engineering approaches. In:
2012 7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). pp. 33–42. IEEE (2012)

15. Raibulet, C., Fontana, F.A., Carettoni, S.: A preliminary analysis of self-adaptive
systems according to different issues. Software Quality Journal pp. 1–31 (2020)

16. Raibulet, C., Fontana, F.A., Carettoni, S.: Sas vs. nsas: Analysis and comparison of
self-adaptive systems and non-self-adaptive systems based on smells and patterns.
In: ENASE. pp. 490–497 (2020)

17. Santos, E., Machado, I.: Towards an architecture model for dynamic software prod-
uct lines engineering. In: IEEE International Conference on Information Reuse and
Integration (IRI). pp. 31–38. IEEE (2018)

18. dos Santos, E.L.: Stars: Software technology for adaptable and reusable systems.
In: Proceedings of the 25th International Systems and Software Product Line Con-
ference (SPLC). ACM (2021)

19. dos Santos, E.L., Fortz, S., Perrouin, G., Schobbens, P.Y.: A vision to identify
architectural smells in self-adaptive systems using behavioral maps. In: 15th Eu-
ropean Conference on Software Architecture (ECSA 2021). p. 1. CEUR Workshop
Proceedings (2021)

20. dos Santos, E.L., Schobbens, P.Y., Perrouin, G.: Featured scents: Towards assessing
architectural smells for self-adaptive systems at runtime. In: 19th International
Conference on Software Architecture. pp. 71–74. IEEE (2022)

21. Serikawa, M.A., Landi, A.d.S., Siqueira, B.R., Costa, R.S., Ferrari, F.C., Menotti,
R., De Camargo, V.V.: Towards the characterization of monitor smells in adaptive
systems. In: X Brazilian Symposium on Software Components, Architectures and
Reuse (SBCARS). pp. 51–60. IEEE (2016)

22. Soares, L.R., Meinicke, J., Nadi, S., Kästner, C., de Almeida, E.S.: Varxplorer:
Lightweight process for dynamic analysis of feature interactions. In: Proceedings
of the 12th International Workshop on Variability Modelling of Software-Intensive
Systems. pp. 59–66 (2018)

22 Dos Santos, Edilton Lima et al.

23. Vogel, T.: mrubis: An exemplar for model-based architectural self-healing and self-
optimization. In: Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems. pp. 101–107 (2018)

24. Wuttke, J., Brun, Y., Gorla, A., Ramaswamy, J.: Traffic routing for evaluating
self-adaptation. In: 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). pp. 27–32. IEEE (2012)

