
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Reverse Engineering Variability for Configurable Systems using Formal Concept
Analysis
The Odoo case study

EL IDRISSI, Zakaria

Award date:
2022

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/1066fd86-fb32-4bfe-8f6e-e0400278ea68

Reverse Engineering Variability for

Configurable Systems using Formal

Concept Analysis: The Odoo case study

Zakaria EL IDRISSI

UNIVERSITÉ DE NAMUR
Faculté d’informatique

Année académique 2020–2021

Reverse Engineering Variability for

Configurable Systems using Formal

Concept Analysis: The Odoo case study

Zakaria EL IDRISSI

Promoteur : (Signature pour approbation du dépôt - REE art. 40)
Xavier DEVROEY

Co-promoteur : Gilles PERROUIN

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Abstract

Reverse Engineering a Feature Model (FM) of an existing system, allows
its migration to a software product line approach in order to simplify the
management of this system by applying a Software Product Line Engineer-
ing methodology that focuses mainly on the FM in order to determine the
reusable artifacts and the variation points of the system. This thesis is a case
study on the Odoo framework to define a reverse engineering approach that
can drive an automatic synthesis of an FM to represent the variability ar-
chitecture of the system. We executed a manual exploration of the Odoo
framework source code to identify variability patterns, then exploited For-
mal Concept Analysis properties to derive the FM based on the Odoo mod-
ule’s dependencies. The heuristic that we executed for the process of reverse
engineering is effective and results in FM, which describes the product con-
figuration variability.

Acknowledgements

I want to thank all those who have been supporting me in pursuing my studies, in
particular:

To my parents, who always supported me and gave me the strength to fight and win
in life with honesty;

To Jessica Friart for her love, encouragement, and understanding in difficult times;

To my beautiful girl Naysam for all the happiness she brings me;

To all the staff of the University of Namur for caring to provide us with a quality
education;

To the professors who contributed to this work. Dr. Xavier DEVROEY and Dr.
Gilles PERROUIN for their advice, competence, availability, and knowledge trans-
mission.

Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

Code Listings xiii

1 Introduction 1

1.1 Thesis goal . 1

2 Background 3

2.1 Developing a Software Product Line 3
2.1.1 Domain Engineering . 3

Domain Analysis . 4
Domain Implementation 5

2.1.2 Application Engineering 5
Requirements Analysis 5
Product Derivation . 6

2.1.3 Feature Model . 6
2.2 Variability . 7

2.2.1 Taxonomy for classifing Variability 8
2.2.2 Variability Mechanisms 9

Language-Based Variability Mechanisms 9
2.3 Software Product Line Methodologie Implementation 15

2.3.1 Reverse Engineering . 17
Reverse Engineering approaches 17

2.3.2 Formal Context Analysis 18

3 Odoo in a Nutshell 21

3.1 Odoo Framework Architecture Overview 22
3.1.1 The logical architecture of the Odoo Framework 23
3.1.2 Odoo Modules Structure 24

Odoo Modules . 25
Modules Structure . 25
Reusability and Extension capability 27

3.1.3 Conclusion . 32

4 Odoo Variability Mechanisms 33

4.1 Odoo variability mechanisms exploration 33
4.2 Odoo Binding Time . 37
4.3 Discussion . 37

5 Automatic Extraction of Feature Model 39

5.1 Reverse Engineering FM Step-by-Step 39
5.1.1 Modules dependencies identification 39
5.1.2 Common and variable modules classification 40
5.1.3 Extracting required Dependencies 44
5.1.4 Extraction of Exclude and Alternative dependencies . . 44
5.1.5 Extraction of AND dependencies 45
5.1.6 Extracting OR dependencies 46
5.1.7 Extracting the final hierarchical tree 47

5.2 Discussion . 50

6 Conclusion 51

A 53

A.1 Console log output when when installing the E-commerce mod-
ule . 53

A.2 The Complete Generated Feature Model 57

Bibliography 59

List of Figures

2.1 An engineering perspective on software product lines. 4
2.2 A sample feature model of a Cell Phone. 7
2.3 Conditional compilation implementation example. 14
2.4 Build script example . 15
2.5 Branch per variant product [1] 15
2.6 Branch per feature[1] . 16
2.7 Development costs of n single system versus product line en-

gineering development [2] . 16
2.8 The concept lattice belonging to the formal context in table X . 20

3.1 The PyCharm plug-in generates a static view of all the Odoo
framework classes. 22

3.2 A zoom on the static view of the figure 3.1. 23
3.3 Odoo MVC architecture. 24
3.4 Communication logic of the Odoo framework 24
3.5 The differents /addons directory 25
3.6 Odoo modules structure. 26
3.7 The static view of the classes implementing the back-end core

of the Odoo framework . 28
3.8 Model inheritance types . 29

4.1 to-do list module structure . 36

5.1 Extracted from FCA lattice showing the distribution of com-
ponents composing the product’s variants. 43

5.2 The extracted paths from FCA lattice 44
5.3 Identifying exclude pairs [26] 45
5.4 Identifiying OR-groups [26] . 47
5.5 Identifying hierarchical representation [26] 48
5.6 Resulting FM . 49

A.1 Resulting FM . 57

List of Tables

2.1 Classification of Variability Implementation Techniques in SPL
[1] . 9

2.2 The FCA table represents the color example 19

5.1 Formal context of 4 components variants. 41
5.2 depencies extracted . 46
5.3 All Depencies extracted (legend: R=required, TR=Transitive

Required, OR=OR, EX=Exclude, ALT=Alternative) 46

Code Listings

3.1 Sample manifest file . 26
3.2 Example of model inheritance by the Calendar module 28
3.3 A simple Classical Inheritance example 30
3.4 A simple Extention Inheritance example 30
3.5 A simple Delegation Inheritance example 31
4.1 /odoo/models.py Excerpt . 33
4.2 /odoo/modules.loading.py Excerpt 34

List of Abbreviations

SPL Software Product Line
SPLE Software Product Line Engineering
FCA Formal Context Analysis
RE Reverse Engineering
ERP Enterprise Resource Planning
CRM Customer Relationship Management
MVC Model View Controller
OOP Object Oriented programming languages Paradigms
ROI Return On investment

1

Chapter 1

Introduction

A software product line (SPL) is a collection of products created from a set of
reusable parts. Instead of delivering a single, standardized product, manu-
facturers have turned their attention to diversification, meaning the ability to
offer several products tailored to different market segments, including prod-
ucts for niche markets [1].

Software product line engineering (SPLE) is a methodology that allows
the development of multiple software products or systems with significant
savings in cost, time, and quality [2]. Furthermore, reduce code duplication,
reuse, and maintenance effort [3].

However, adopting the SPLE methodology requires a significant invest-
ment before achieving benefits. That is why software companies do not rely
on SPLE as a first methodology to guide their new product development. In-
stead, they opt for ad-hoc solutions such as clone and own to meet the multi-
ple requirements of their first customers, assuming the entire risk attached to
the use of such ad-hoc techniques. However, in the long term, as the systems
grows in size and complexity, adding a new feature requires much modifi-
cation, and the maintenance requirements become overwhelming. This sit-
uation forces system designers to start adopting the SPLE methodology to
manage the scalability and variability of their systems. For this purpose, sev-
eral Reverse Engineering (RE) techniques exist to enable migration to SPLs.

A SPL adoption consists of mining the features and variation points that
the system offers and how they are coupled (e.g., require dependencies or
the exclude/alternative relationship between features). Furthermore, man-
ual migration is time-consuming and error-prone, so research has been done
on the automatic synthesis (reverse engineering) of Feature Model (c.f, Sec-
tion 2.1.3). Several methodologies and tools facilitate and lead the automa-
tion of this feature extraction from existing software variant descriptions.

1.1 Thesis goal

Initially, a manual investigation of the different artifacts of the Odoo frame-
work was performed, which allowed getting familiar with the architecture.
Next, research on the mechanisms of realization of the variability was done,

2 Chapter 1. Introduction

which allowed us to note the use of specific mechanisms to implement the
variability within the framework. Finally, an approach based on Formal Con-
cept Analysis (FCA) (c.f., Section 2.3.2) for reverse-engineering the system
was selected and executed on four variants that the system proposes. This
approach resulted in extracting a subset of the variability of the system as a
Feature model.

The dissertation explores three research questions :

• RQ1 : How does Odoo platform realizes Variability?
Does this question verify whether the variability proposed by Odoo
has been realized through variability implementation techniques such
as the mechanisms cited in Section 2.2.2, or is there a variability not
previously cited in the literature?

• RQ2 : How can Formal Concept Analysis support dependencies extraction
within Odoo frameowrk modules?
The answer to this question will determine an approach of a repeatable
process that will allow the execution of a reverse engineering process
to generate a feature model of the Odoo framework automatically.

• RQ3 : What is the variability model of the Odoo framework?
RQ3 is the main question of this thesis. By Answering the research
question RQ2, we will produce a well-defined heuristic for extracting
the dependencies of product variants. Based on these dependencies,
we will be able to identify relevant information about the features of
modeling a feature model.

3

Chapter 2

Background

2.1 Developing a Software Product Line

A Software product line (SPL) is a set of closely related software systems,
with systematic reuse of assets to build variants, which allows the customiza-
tion of the software on a large scale. The SPL development methodology is
fundamentally different from traditional single-system development. This
difference is driven by the strategy of considering an entire specific domain
rather than just an ad hoc view of an individual project. Moreover, Software
product line engineering is based on a fundamental distinction between de-
velopment for reuse and development with reuse [4].

To this end, software product line engineering (SPLE) has been proposed
as a specific development model consisting of two parts [2]:

1. Domain Engineering (development for reuse), where the domain model
is analyzed, and reusable artifacts are created.

2. Application Engineering (development with reuse), where, based on a
configuration, the domain artifacts are composed and sometimes com-
pleted to derive a concrete variant.

Figure 2.1 provides an overview of domain engineering and application en-
gineering, and we present them in detail in the following subsections.

2.1.1 Domain Engineering

Domain engineering analyzes the domain of a product line and develops
reusable artifacts. The main goal of domain engineering is to prepare the
artifacts for use in the product line rather than developing a specific use case
software. In the domain engineering process of a software product line, en-
gineers conduct a domain analysis. Then, reusable artifacts are developed
based on the domain knowledge that can be configured to derive different
products or applications of a software product line [1].

So, domain engineering aims at development for reuse, and the product
line infrastructure is made of all components that are relevant throughout the
software development life cycle [4]. It has three key objectives:

• The set of software products should be defined using all the knowledge
from the domain analysis.

4 Chapter 2. Background

FIGURE 2.1: An engineering perspective on software product
lines.

• The commonalities and variability of the software product line should
be identified and modeled as a feature model.

• Reusable artifacts should be developed to realize the variability and
develop a specific product for the needs of a particular customer during
the application engineering phase.

In order to achieve the above objectives, domain engineering mainly consists
of two parts: domain analysis and domain implementation.

Domain Analysis

Domain Analysis is a form of requirements engineering for an entire prod-
uct line. First, this analysis, performed by domain experts, helps determine
which product features correspond to a particular product line. Furthermore,
which features are relevant and should be implemented as reusable artifacts.
Second, the domain analysis results lead to a feature model to document and
present information about commonalities and variabilities [1]. As we hold
caught, domain analysis comprises two primary tasks: domain scoping and
domain modeling.

2.1. Developing a Software Product Line 5

Domain Scoping In the software product line, the domain scoping is driven
by business goals, and this tracing is performed by domain experts who
both decide what is included or excluded from this SPL cluster [1], [2].

Also, the domain scoping describes all common and variable features
that are desired for future products. In particular, some features may
also change for future applications given changing market demand and
technology, highlighting the vital role of domain experts in preventing
any potential evolution. Experts should explore what exists (e.g., a con-
current product, interviewing potential customers). In concrete terms,
everything can provide sufficient knowledge of the domain [1].

Domain Modeling Domain modeling is a process comparable to require-
ments engineering; it is conducted for the entire software product line.
During this process, the domain engineers separate the commonalities
(which are common) and the variabilities (which is variable) across the
desired products to present a feature model that captures all the rel-
evant information in terms of relationships and constraints between
these features. So the modeling domain includes two essential steps:
commonality analysis and variability analysis. Commonality analysis
analyzes the common elements that form the basis of the entire soft-
ware product line. If there is more commonality than variability, the
design process will require less effort. Variability analysis aims to ex-
tract and define the variation points by anticipating potential variants.
Then all of this information about commonality and variability is sys-
tematically documented and used to build a feature model generally[1].

Domain Implementation

Domain implementation implements the various artifacts evaluated as reusa-
ble in the domain analysis process. We can then establish the traceability
links between the features of the feature model and the implemented arti-
facts. The implementation of the domain is mainly based on selecting imple-
mentation strategies, such as the mechanisms for realizing variability. The
choice of these mechanisms determines the implementation of the common
parts and the points of variation. In this way, building different products
stands for a simple configuration of reusable artifacts [1].

2.1.2 Application Engineering

Requirements Analysis

Requirements analysis in software product lines can be similar to requirements
analysis in traditional software development. Requirements analysis in SPLs
aims to study and analyze the requirements of a specific customer. However,
the main difference is that we have already gathered the domain knowledge
during the domain analysis, so potential requirements have already been
identified and documented in a feature model during the domain analysis

6 Chapter 2. Background

process. The resulting FM allows the analysts to match the customer’s re-
quirements with existing functionality. In some cases, according to the cus-
tomers’ needs, the requirements analysis also highlights new requirements
requested that miss in the previous domain analysis and its FM. In this sit-
uation, they can feed these new requirements back into the domain analysis
and then adapt the feature model and the corresponding implementation ar-
tifacts [1].

Product Derivation

At this step, we have a selection of functionalities resulting from require-
ments analysis. We also have a set of readily reusable artifacts resulting from
the domain implementation. Finally, to derive the desired product (Product
derivation), we must choose an implementation approach (cf. Chapter ??)
to combine the different artifacts. The product derivation can be done in a
manual or automated (push-button) fashion. However, the manual mode is
usually time-consuming, or developers have to write some glue code to con-
nect the artifacts and cover the missing gaps for which there are no reusable
artifacts. On the other hand, automating the derivation has some exciting
advantages:

• reduction of costs linked to the derivation;

• adapting the final product to several specific use-cases;

• When a given artifact evolves, or a bug fix occurs, the automation puts
all the artifacts back together in their current state.

The resulting product must be validated before delivery in automatic or man-
ual derivation cases. Validation is the last step of application engineering and
is performed with automated unit tests derived from the artifacts provided
during domain engineering [1].

2.1.3 Feature Model

As part of this Software product line engineering (SPLE) process, the feature
model, as shown in the figure 2.2, is typically used to identify commonalities
and differences among related systems, usually expressed through features
and their relationships (i.e., constraints and dependencies) [1]. A feature is
generally the software system’s functionality, and it is visible to the end-user
of a software system [5], [6]. Features play an indispensable role in the fea-
ture model because features can identify commonalities and differences be-
tween products throughout the software lifecycle. Each feature can fulfill a
requirement and provide potential choices for configuration. When using
a feature model in SPLs, variants can be derived by selecting features that
meet specific requirements. Feature selections must satisfy the dependencies
presented in the corresponding feature model.

2.2. Variability 7

FIGURE 2.2: A sample feature model of a Cell Phone.

Feature modeling is, an essential step in SPLE as part of domain analy-
sis, where domain engineers manually analyze requirements to identify com-
monalities and differences (i.e., differences) between products in the domain.

Mandatory: the sub-feature must be included in every possible configura-
tion;

Optional: the sub-feature may be included in the configuration;

OR: one or more sub-features can be included in the configuration;

Alternative (XOR): only one sub-feature should be included in the configu-
ration.

In addition to the above relationships between parent-child features, cross-
tree constraints also express dependencies between features in the feature
model. The most common ones are as follows:

A requires B: The occurrence of feature A implies the occurrence of feature
B;

A excludes B: The occurrence of feature A implies the absence of feature B.

2.2 Variability

Software variability is the ability to change or customize a system [7]. The
variability within an SPL will allow the representation of the differences and

8 Chapter 2. Background

the common elements between different products of this SPL. In contrast, the
variability of a software product refers to its ability to be customized, modi-
fied, extended, or configured. This possibility can be offered by well-known
software engineering mechanisms such as interfaces, class abstractions, con-
ditional compilation, or dynamic class loading [8]. The variability of software
product lines is modeled to facilitate the development of customized appli-
cations by reusing artifacts [2].

2.2.1 Taxonomy for classifing Variability

In Section 2.1.2, we discussed that product derivation is supported by vari-
ability mechanisms to derive different products from a set of features selected
according to the customer’s need. So it is necessary to choose the most ap-
propriate mechanism for the specific situation correctly. With this in focus,
Apel et al. (2013) describe three classification criteria to guide the choice of a
given mechanism including : binding time, technology, and representation.

Binding Time is a variability classification criteria that decide the time
when features should be included in the software of the final product. This
process is determined either before or at compile time, load time is decided
after compilation when the program is started, and runtime, where the latter
variability decisions can be performed and changed during program execu-
tion [1].

Each binding time has its advantages and disadvantages. For example,
early binding time resolves the variability configuration upstream of the pro-
cess and can allow optimal efficiency by reducing runtime overhead and
memory consumption. However, once the software is created and installed,
it is no longer possible to be variable [1], [9]. On the other hand, load or late
binding time offers flexibility and dynamic system adaptation[10]. Because
instead of recompiling a new product after each change, users can change
the settings and restart the same software. In the case of link-time execu-
tion, there is also no need to restart the software, and it can change while the
program is running.

However, both mechanisms have a memory and performance overload
because all the variations are compiled into a single binary code to avoid any
inconsistencies occurring at runtime [1].

The technology criteria have both language-based and tool-based approaches.
Approaches that use mechanisms provided by the programming language,
then implement and manage the variability features are made in the software
source code. On the other hand, the tool-based approach uses one or more
external tools to implement features in the code and control the process of
product derivation [1].

Finally, the third criteria are representation by annotation and composi-
tion. In technology-based approaches, all features are inserted and tagged in
code. During the software derivation process, code that belongs to untagged

2.2. Variability 9

Binding Time Technology Representation

Compilation Loading Language-Based Tool-Based Annotation Composition

Parameters X X X
Design Patterns X X X X
Frameworks X X X X
Components X X X X
Version Control X X X
Build Systems X X X X
Preprocessors X X X
Feature-Oriented programming X X X X
Aspect-Oriented Programming X X X
Separation of Concerns X X X

TABLE 2.1: Classification of Variability Implementation Tech-
niques in SPL [1]

functionality is either deleted at compile time or ignored at run time. Note
that the annotation approach supports negative variability, so removing the
code on demand is possible. Thus, the growth in adopting this approach
is simple because it is easy to use; also, programming environments offer
native support for this technique. Composition-based approaches, such as
frameworks and components, identify the code associated with a feature or
a combination of features, a container or a module, and implement it as com-
posite units, ideally one unit per feature. In the product derivation process,
all units of all selected features and valid combinations are composed to cre-
ate the software. As a result, this approach to composition promotes positive
variability and adds code on-demand [1].

Table 2.1 shows a classification of variability implementation techniques
in SPLs against the classification criteria. Each technique is composed of
more than one criteria.

2.2.2 Variability Mechanisms

Apel et al. [1] proposed a classification of variability implementation tech-
niques under four main groups: Binding-Time, Technology (Language-Based
Versus Tool-Based), and finally, Representation (Annotation Versus Compo-
sition). In addition, an interesting dimension of classification is noted by Tër-
nava and Collet. (2017), which is the Traditional or Emerging techniques[11].
The following Section 2.2.2 presents a definition and explanation of imple-
menting these techniques for realizing variability. We grouped the tech-
niques into two explicit categories, language-based and tool-based. At the
same time, other dimensions are mentioned but not explicitly.

Language-Based Variability Mechanisms

Language-Based Variability mechanisms are techniques that share a common
characteristic that can be implemented in the most common programming
languages. Also, they are well-known and commonly used mechanisms in
practice. Moreover, most SPLs have implementations of variability with this
set of techniques and focus mainly on run-time binding. We will introduce

10 Chapter 2. Background

the following mechanisms: Parametrization, Cloning, Inheritance, Design
patterns, Frameworks, and Components & Services. Besides, we will high-
light the distinctive properties to justify the classification.

Parametrization : is a traditional and straightforward way to implement
variability through conditional structures. These conditional structures (e.g.,
if-else, switch) modify the execution flow. For example, conditional
statements determine a flow based on the parameters passed to methods or
modules during the program’s execution. The result is an immediate effect
or, in some cases, requires a restart of the software [1]. In addition,
developers often use parametrization to implement run-time variable
features, supporting run-time binding [10]. After the compilation, the
technique does not allow adding new variants [12]. Usually, the
configuration parameters are globals variables of boolean type; the
conditional structure will evaluate these parameters to determine the flow.
However, this discourages modular solutions. In contrast, parameterization
facilitates the traceability of features due to renaming conventions of
parameters [1].

Cloning : Tërnava & Collet insisted on not excluding Cloning from their
classification of techniques because they consider it one of the most applied
techniques, and it is a traditional mechanism for the realization of
variability [11]. Also, Zhang et al. points out that Cloning is one of the most
used mechanisms in the industry. Specifically, it consists of copying an
artifact (code or non-code) and evolving this copy without connecting with
the original artifact [10]. Two techniques of Cloning exist:

• Moving the physical copy of the artifact to another location;

• The configuration of the branch management.

Cloning is chosen as a variability mechanism when existing constraint on
the delivery time and maintainability is not a priority [13]. Second, it offers
independence and does not represent a risk to existing variants. Finally,
Cloning is used as a prototype to evaluate an experimental functionality
[10].

Design patterns : Design patterns can be applied in SPLs because several
design patterns provide solutions for managing the variable aspect.
Observer, Template-method, Strategy, and Decorator are suitable for
implementing variability [1], [14]. Design patterns rely on object-oriented
languages and use mechanisms like inheritance and polymorphism to
implement variability [12]. Instead, they capture the project’s intent by
identifying the distribution of objects, interactions, and responsibilities [1].

Frameworks : A framework technology consists of reusable and flexible
base structures that can be extended and adapted to solve related problems
by supporting granularity and providing explicit points for extensions,
often named plug-ins, into which developers can expand it [1], [7].

2.2. Variability 11

Currently, frameworks with plug-ins are the most developed in SPL because
each feature corresponds to a plug-in constructing the final program
according to feature selection [1]. Frameworks as composition mechanisms
have practical benefits like easily identifying variants and do not constrain
efficiency because they are executed at run-time [10]. This technology has
proven a better evolution in SPL than other mechanisms [15], and code
reusability is maximized [14]. However, how the Framework provides
extensibility makes the Framework be of type white box or black box.

The White Box Framework consists of concrete and abstract classes, where
developers implement or override in a subclass extending the Framework.
White box because the development team has to identify the methods and
understand the internal components of the Framework [1]. So, there is a
trade-off between flexibility when adding extensions and the effort of
adapting to understand the system, as the White Box Framework allows for
modification of existing behavior from additional implementations for
future extensions. However, developers need a detailed understanding of
the Framework. Each feature in SPL is considered an extension (a subclass
of a given class). However, white-box frameworks are more suitable for
implementing alternative features, and their main difference is that the
frameworks can be developed and provided by third parties.

Black-box frameworks catch strategy pattern and observer pattern standards
by separating the code between Framework and extensions via interfaces.
Those frameworks are called plug-ins and are also known as black box
because developers need to know only the interface, dropping the need to
understand the internal implementation of the Framework. Developers can
only add plug-ins at the access points provided in the framework structure,
so there is a limitation of flexibility. On the other hand, this limitation allows
for the decoupling of extensions, leading to an easier understanding and
application of the Framework. Theoretically, in SPL development, each
feature is implemented as a plug-in and then combined with the
Framework, allowing automation in the final product generation. The
Framework and plug-ins have an independent evolution as the plug-in
interfaces remain unchanged [1].

Components and Services : The Component is a unit of compositions and
provides functionality through an interface, and we can consider a
component as a feature. Its internal implementation is encapsulated and
forms a modular and reusable unit to be considered a feature. When
variability is realized via components, we rely on a composition approach,
and the Component may be composed of other components in different
combinations [1]. To build a program, developers can implement and
deploy their components independently and, if necessary, compose
third-party components because a component is independent of a specific
application or product line. We can compare components with plug-ins only
if their interfaces are designed to the same standards. In SPL, determining
when to create a reusable component is an important design decision made

12 Chapter 2. Background

in the domain analysis that helps decide how to divide the code into
components. If a reusable component provides much functionality, maybe it
is easy to integrate and use, but eventually, the Component may not fit into
some applications. In contrast, we can create small reusable components
that can be flexibly combined, but many connections need to be made
between the components and the base code; this becomes discouraging.
Consequently, developers need to balance deploying a component that
provides functionality but is small enough to be reused in many contexts.
The similarity between a service and a component is the same in
encapsulating the feature’s functionality behind an interface, but
standardization, interoperability, and distribution are valuable factors of the
technique. Another differentiating factor is that services written in different
languages can interact because communication is standardized through
protocols or conventions [1].

Tool-Based Variability Mechanisms

After presenting a set of variability implementation techniques based on the
concepts of programming languages, we will now study mechanisms based
on external tools to enable the implementation of variability in SPLs. We
will describe the following mechanisms: Aspect-Oriented Programming,
Feature-Oriented Software Development, Preprocessors, Build Systems, and
Version-Control Systems. Tool-based mechanisms generally target
compile-time binding, whereas programming language-based mechanisms
focus mainly on run-time binding.

Aspect-oriented programming is a language and composition-based
approach to implementing variability in SPL [1]. Aspect-oriented
programming is a concurrent technique to develop feature-oriented product
lines. However, it is used principally for code tracking, logging, and
exception handling [16]. The approach is to develop the software to work
generically and then superpose of the product-specific concerns. Different
variability concerns are woven into the source code just before the code is
compiled [17] cited in [12]. Different weaving technologies support different
binding times, including compile-time binding and load-time binding [1]. In
practice, programming languages do not offer this functionality by default,
and external tools such as AspectJ1 allow this technique [10]. The
straightforward approach is to implement one aspect per feature. Based on
the selection of a feature by the user, then the complementary aspects are
included in the weaving process, possibly controlled by a construction
system.

Feature-oriented Software Development is a composition-based approach to
implementing variability in SPLs that relies directly on the notion of
features [1].

1https://www.eclipse.org/aspectj/

2.2. Variability 13

Definition 2.2.1 "A feature module encapsulates changes that are made to a
program in order to add a new capability or functionality. Such modules (often
interpreted as transformations) are composed sequentially. If f and g are feature
modules, their composition f · g represents the combined set of changes made by f
and g." [18]

In Feature-Oriented Software Development, programs are generated by
composing modules that implement features. The client selects precisely the
features, and then a generator composes the modules implementing the
corresponding features to build a concrete program. The feature modules
can be composed statically at compile time or even dynamically at run time
[19].

Conditional compilation is one of the most common mechanisms for
implementing variability in software product lines. Moreover, it is a
mechanism that has proven itself in the software industry [10]. Conditional
compilation is performed with the help of a tool named a preprocessor that
manipulates the source code before compilation [1]. The preprocessor
allows wrapping fragments of code by using the macros, including or
excluding optional or alternative code before the compilation according to
the conditional compilation directives defined by the user, such as #ifdef and
#endif. We say that such a code fragment is annotated, making conditional
compilation an annotative technique. This technique allows implementing
variability in software product lines, especially in embedded systems [20].
Also, large open-source systems (e.g., Linux kernel) have adopted this
mechanism to implement variability [21], [22]. Most programming
languages offer this mechanism, but developers often implement
conditional compilation with C/C++ preprocessor by #ifdef #ifndef as shown
in Figure 2.3(a) [10] or with java using Munge2 preprocessor by similar
syntax using feature directive annotation { IF ... END } representing the
variation as shown in Figure 2.3(b) [1]. Another option is to use a principal
file as a decision template as shown in Figure 2.3(c), which includes
decisions from other files that correspond to the source files. In this way, a
hierarchy of decision files can be constructed [14].

A build system performs all the tasks involved with planning and executing
source code, including running generators, compiling source code, running
tests, and creating the final deliverable. There are many different build
systems with different levels of sophistication. In the simplest case, a build
system is usually a shell script that executes the necessary tools according to
predefined parameters, as shown in Figure 2.4(a) example without
variability and with variability in the Figure 2.4(b). However, more
sophisticated systems, such as Make3, Ant4, and Maven5, that support

2https://software.opensuse.org/package/munge-maven-plugin
3https://gcc.gnu.org/wiki/HomePage
4https://ant.apache.org
5https://maven.apache.org

14 Chapter 2. Background

(a) Conditional compilation with
the C preprocessor [1].

(b) Conditional compilation
with the Java preprocessor [1].

(c) Conditional compilation di-
rectives with Decision Model
[14].

FIGURE 2.3: Conditional compilation implementation example.

multiple build targets manage dependencies, avoid unnecessary
recompilation to optimize performance, automatically download and
update dependencies, and create build reports. The Build System is an
evident candidate for managing variability, particularly and naturally in the
build-time phase [1].

Version control systems are a category of development tools that supports
teams in managing source code changes over time. To facilitate
collaborative development, version control systems track all performed
changes in source code, especially other development artifacts. Popular
examples are Git6 and Mercurial7. An important feature of version control
systems is creating different branches of the same file. These different
branches can be modified independently, where changes applied over time

6https://git-scm.com/about/free-and-open-source
7https://www.mercurial-scm.org

2.3. Software Product Line Methodologie Implementation 15

(a) Build script for the graph ex-
ample without variability [1].

(b) Build script for the graph ex-
ample with variability [1].

FIGURE 2.4: Build script example

in one branch do not affect the files in other branches. In this case, we speak
of variants of the same file. Instead of revisions over time, developers use
versioning differently as a patch to create variants of the same file,
sometimes called variation in space. Variants are not ordered and do not
replace each other; they exist in parallel. Each variant can have an
independent revision history. As illustrated in the graph in Figure 2.5,
developers create new branches from the main branch that hosts the shared
code and develop customer-specific feature variants on the new branches
when realizing variability. Note that the added features are not merged into
the main branch. Instead of developing each product in a different branch,
we can also implement each feature separately and create products by
merging the corresponding feature branches. Figure 2.6 illustrates this
model where developers create one branch per feature to implement [1].

FIGURE 2.5: Branch per variant product [1]

2.3 Software Product Line Methodologie

Implementation

Section 2.1 characterized the two main processes of Software Product Line
Engineering, i.e., Domain Engineering and Application Engineering.

16 Chapter 2. Background

FIGURE 2.6: Branch per feature[1]

Moreover, we have specified that the Application Engineering process takes
place after completing the Domain Engineering. This constraint imposes to
have the first variants after the Domain engineering, which creates a
limitation to forming an SPL and starting deriving software variants.

FIGURE 2.7: Development costs of n single system versus prod-
uct line engineering development [2]

However, the advantages of reuse can be appreciated only after forming an
SPL with some software variants. Indeed, adopting an SPL methodology
requires a solid investment because the benefits take some time to be seen,
maybe years before being exploited [23]. In the literature, it is considered
that developing an SPL methodology becomes advantageous after
completing the development of 3 variants [2]. This theory is illustrated in
Figure 2.7, which distinguishes the classical single system development
from the SPL development according to their costs to the number of variants
developed

The complexity imposed by the SPL development process leaves
professionals with no option than to develop individual variants, especially

2.3. Software Product Line Methodologie Implementation 17

for new projects, to deliver functional products more efficiently to different
stakeholders. Then when the complexity of maintaining these products
increases, engineers turn to adoption strategies of SPL in a second place. In
terms of these strategies, we have the proactive adoption strategy, which
follows the two processes defined in Section 2.1; also, the reactive adoption
strategy is adopted when the requirements of the SPL to be built are not
well defined in advance. In this case, the new requirements will be sent to
the domain engineers to analyze and extract the corresponding features.
Finally, the extractive adoption strategy consists of reverse engineering an
SPL from existing variants.

The extractive adoption strategy seems to be the most popular: it assembles
an SPL based on existing variants. These variants are usually documented
in a variability model defined during the domain engineering, such as FM.
Therefore building such a model for a software product family is the first
step of migration [23].

However, manually building such a model is a time-consuming, fallible and
challenging process, even with a few variants. Several works have been
done on mostly open-source projects to migrate to an SPL, such as Halin et
al. built a product chain that considers variability on top of an open-source
industrial web-app configurator JHipster [24]; Al-Msie’DeenRaFat et al.
presented an approach called REVPLINE (REVPLINE stands for RE
Software Variants into SPL.) to identify and document features from the
object-oriented source code of a family of product [25]; Shatnawi et al.
performed an approach to reverse engineering a set of product variants to
identify architecture-level variability and dependencies [26].

2.3.1 Reverse Engineering

As we discussed, the difficulty of maintaining these products when they
become massive and complex leads to migration to SPL-type approaches
[23]. Furthermore, to facilitate this migration, research has been done on the
automatic synthesis (reverse engineering) of FMs. Several methodologies
and tools facilitate and lead the automation of this feature extraction from
existing software variant descriptions. Most of the approaches to
performing reverse engineering of FMs are based on high-level models such
as product descriptions and requirements; Other approaches deal directly
with low-level artifacts such as source code. Some approaches offer an
acceptable solution but cannot identify essential parts of the feature model,
such as cross-tree constraints (require and exclude), the AND group, the OR

group, and the XOR group.

Reverse Engineering approaches

The diversity of the approaches used to reverse engineering FM from a
family of software product variants shows that we present the existing RE
approaches in the literature presented in chronological order below.

18 Chapter 2. Background

� Weighted graph clustering is a semi-automatic approach based on
requirements clustering to build FMs from the functional requirements
of applications. This synthesizing technique requires using the
Weighted graph clustering theory to describe the relationships
between requirements [27].

� The model-driven approach is a transformation process that matches
use cases to functionality [28].

� Formal concept analysis (FCA) it is mainly used to derive implicit
relationships between objects described by a set of attributes and
shows its importance for many applications in the industry, like
information retrieval and classification. Also, AL-MSIE’DEEN et al.,
[29] proposes an approach (REVPLINE) based on FCA to mine features
and feature models from the object-oriented source code. [30] [26] .

� Text similarity approaches combine two distinct sources of
information: textual feature descriptions and feature dependencies in
propositional formulas [31].

� User input approaches extract FMs from product/feature
configurations that contain variability [32].

� Meta-heuristics exist to obtain models from all the possible
configurations automatically. This method first proposes identifying
the root of the characteristics available in all the variants, and then the
rest of the model is generated recursively from top to bottom [33].

� Intermediate representations of variability is an approach that uses
mutex graphs to extend the approach of Czarnecki and Wasowski in
[34] with methods using the mutex graph of a propositional formula
[35].

� Dedicated algorithms include evolutionary algorithms, hill-climbing,
and random search [36].

� Extraction and Evolution of Architectural Variability is a
tool-assisted approach to extracting and managing the evolution of
software variability from an architectural perspective [37].

� But4Reuse (for bottom-up technologies for reuse)is a set of tools that
bring different tasks for reverse engineering of SPL [38].

2.3.2 Formal Context Analysis

Out of all the RE approaches described in Section 2.3.1, we will dive deep
into the FCA because, afterward, this concept will be adopted to implement
the RE approach on the Odoo ERP.

Formal Concept Analysis is a field of mathematics that emerged in the 1980s
[39], [40]. Its main feature is knowledge representation by providing specific

2.3. Software Product Line Methodologie Implementation 19

Blue Yellow Red white

Orange X X X
Violet X X X
Green X X X
Brown X X X X

TABLE 2.2: The FCA table represents the color example

diagrams called lattice diagrams. The formal analysis of concepts brings
extra value to the visualization because it allows focusing on the most
interesting points during the variability analysis to the decision-making
process [41], [42]. The following example given in Table 2.2 explains the
FCA technique, and shows colors based on their primary colors. The objects
represent the types of colors, such as O = {Orange, Violet, Green, Brown},
and the attributes or properties represent the component colors, such as the
set A = {Blue, Yellow, Red, white}. The symbol X represents the existence of
a relationship between an object and its attribute.

It is a principles-based approach to deriving a hierarchy of concepts from a
collection of objects and their properties. A formal context is a triplet
(O, A, I), where O is a set with elements called objects,A is a set containing
members called attributes, and I ✓ O ⇥ A is a relation called the incidence
relation. If (O, A) 2 I, we say that "object o has attributed a.".
This formal context (O, A, I) will be transformed mathematically into a
concept lattice structure with no information loss during this
transformation. The concept lattice obtained after transformation can be
visually represented to ease the communication about the formal context.
Graph 2.8 represents the concept lattice belonging to the context of colors.

A two dimensions table usually represents a formal context. Objects are
given in the row headers, attributes in the column headers, and a mark in
row o and column a if and only if (o, a) 2 I.

Given a set of objects G ✓ O of a formal context (O, A, I), the derivation
operators defined as follows: G

0 .
= {a 2 A | 8o 2 A(o, a) 2 I} and

T
0 .
= {o 2 G | 8a 2 G(o, a) 2 I}. Allow to extract any attribute that is a

member of A and is common to all objects of G; Similarly, for a set T ✓ A,
we can extract the objects with all attributes of T.

A formal concept is a pair (E, I) 2 O ⇥ A such that E’ = I and I’ = E, where E

is called the extension and I is the intention of the concept. The formal
concept set has a partial order such that for any two formal concepts (E1=I1)
and (E2, I2), we have (E1, I1) (E2, I2) if and only if E1 ✓ E2 (and in this
case I2 ✓ I1). The set of concepts ordered by constitutes a complete set of
concepts [43] called the conceptual set.

The conceptual set obtained from a formal context (O, A, I) is labeled
B (O, A, I) and the theorem on conceptual lattices states that a conceptual
lattice B (O, A, I) is a complete lattice in which for every set C ✓ B (O, A, I)

20 Chapter 2. Background

FIGURE 2.8: The concept lattice belonging to the formal context
in table X

gives the supremum and infimum ^C =
�
\X, ([Y)00

�
and _C =

�
([Y)00 ,\Y

�
,

where X = {E | (E, I) 2 C} and X = {I | (E, I) 2 C} [39].

21

Chapter 3

Odoo in a Nutshell

Odoo previously OpenERP and Tiny ERP, founded in 2005 by Fabien
Pinckaers, is an open-source Enterprise Resource Planning (ERP) and
Customer Relationship Management (CRM). Odoo includes many modules
to meet a wide range of business management needs.

Odoo covers all common business needs, such as sales, purchasing, human
resources, project management, logistics, inventory, manufacturing, and
billing. In addition, its framework allows to adapt it to specific contexts,
whether by customizing new business workflows, new specific domain
information, or dashboards.

Odoo is driving dynamic innovation, with remarkable advances and new
features in each major release, making it a prosperous solution functionally,
which allows it to cover all needs and business applications in a specific
domain.

Odoo Community is the core on which Odoo Enterprise is built, and the
user can change the version at any moment. Odoo was distributed under
the AGPL 3.01 license, but they have announced that they will change their
license for Odoo v9 to * LGPL 3.02. The main difference is that module
developer now no longer have to provide the source code of their modules
to their customers, which allows developers to have more control over their
intellectual property [44].

Every year, Odoo S.A. ensures the release of a new version of its product.
Currently, Odoo is in version 15 [45]. Their next version will be released in
October 2022. The updates and new features will follow Odoo’s existing
strategy and vision.

Odoo is an object-oriented framework that relies on a three-tier architecture.
It is written in Python3 for all the backend logic, Javascript4 and CSS5 for the
interface interaction with the user and website, and PostgreSQL6 database
for database maintenance and management. Odoo follows the Model View
Controller (MVC) design model, splitting the design architecture into three

1https://opensource.org/licenses/AGPL-3.0
2https://opensource.org/licenses/LGPL-3.0
3https://www.python.org/
4https://www.javascript.com/
5https://www.w3.org/Style/CSS/
6https://www.postgresql.org/

22 Chapter 3. Odoo in a Nutshell

complementary and dependent parts. We will go deeper into the
architecture topic in the next section 3.1.

3.1 Odoo Framework Architecture Overview

After a brief introduction of the Odoo product and its commercial vision, we
will dive deeper into the application’s architecture in this section.

Firstly, The Github repository that hosts all the open-source applications of
Odoo Community in its version 15 included 1.6 billion lines of code7 . We
can also observe many dependencies between modules and classes that
make up the framework code source. As we can see in figure 3.1, there are
many interdependent classes. Figure 3.2 shows the module that constitutes
the core of the web layer and all the dependencies on this module. In
addition to that, we have the framework’s architecture designed in
multi-layer Web, Back End, and database. The notion of reuse has guided
the design of all these components described in Section 3.1.1.

FIGURE 3.1: The PyCharm plug-in generates a static view of all
the Odoo framework classes.

7https://github.com/odoo/odoo/

3.1. Odoo Framework Architecture Overview 23

FIGURE 3.2: A zoom on the static view of the figure 3.1.

3.1.1 The logical architecture of the Odoo Framework

Odoo is software based on an MVC architecture, and this architecture is
made out of three main components communicating together. As shown in
figure 3.3, we have the three main components of the application, which are:

• Model: represents the PostgresSQL database and the functional logic
of the application. The model is responsible for data management and
storage; the model objects fetch and save the model’s state in the
PostgresSQL database system.

• View: represents the user interface of the application; through the
view, the user accesses the data. However, all access to the database is
via corresponding models. The view allows the user to retrieve
information and apply changes to the database. There are several
views: form, tree, gant, kanban, and calendar.

• Controller: the controller is coded in Phyton, and it manages both the
views and the models; it receives instructions from the view and then
sends the appropriate instructions to the model.

24 Chapter 3. Odoo in a Nutshell

FIGURE 3.3: Odoo MVC architecture.

This architecture model offers different possibilities to interact with the
controller and the business logic, as illustrated in figure 3.4. In this way,
specific queries can be executed on models. This communication is mainly
provided by XML-RPC8 or JSON-RPC9, which are methods to call remote
procedures using XML or JSON via HTTP10.

FIGURE 3.4: Communication logic of the Odoo framework

3.1.2 Odoo Modules Structure

Odoo is based on the principle of using a modular and independent
structure that allows both to regularly improve the existing modules and
have the flexibility of modifying or deleting the useless modules without
changing any part of the system.

8http://xmlrpc.com/
9https://www.jsonrpc.org/

10https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

3.1. Odoo Framework Architecture Overview 25

Odoo Modules

The framework by default contains several modules ready to be deployed
or tailored in a customization approach. The modules are contained in a
directory named /addons11 (see Figure 3.5(a)), and it is possible to install
your modules in it, with the condition of following the standard layout of a
module. However, it is preferable to use a custom folder (a separate addons
folder), as shown in Figure 3.5(c). The fact that the addons are located in a
single directory hides the dependencies and makes searching in the code
more complex.

(a) The /addons direc-
tory holds the modules
available for deploy-
ment from the Odoo
community.

(b) The /addons direc-
tory is included in the
Back End core of the
framework.

(c) The custom
directory that holds
the tailor-made
module.

FIGURE 3.5: The differents /addons directory

Modules Structure

Odoo modules are organized as a directory containing different
subdirectories and files according to a well-defined pattern. This convention
is a blueprint to be followed by the developers in order to create new
modules or customize an existing one. On the other hand, it increases the
framework’s maintainability, reliability, and extensibility.
So, to develop Odoo modules requires an understanding of the technical
architecture of an Odoo module, as shown in Figure 3.6.

Three mandatory directories in this structure are required:

• The __manifest__.py file is a simple Python dictionary to specify the
different metadata of the module such its name, dependencies,

11The framework contains another directory included in the Back End core, as shown in
Figure 3.5(b).

26 Chapter 3. Odoo in a Nutshell

description, composition, version, author, website, data files, demos,
security, and more. Listing 3.1 shows an overview of what this file can
hold;

• The __init__.py file is the initialization python file of the module
containing all the other python files to import.

• The models file This is a directory that will contain all the python files
that constitute the business logic of the module.

FIGURE 3.6: Odoo modules structure.

1 {

2 'name': 'Sales',

3 'version ': '1.2',

4 'category ': 'Sales/Sales',

5 'summary ': 'Sales internal machinery ',

6 'description ': """

7 This module contains all the common features of Sales Management

and eCommerce.

8 """,

9 'depends ': ['sales_team ', 'payment ', 'portal ', 'utm'],

10 'data': [

11 'security/sale_security.xml',

12 'security/ir.model.access.csv',

13 'report/sale_report.xml',

3.1. Odoo Framework Architecture Overview 27

14 'report/report_all_channels_sales_views.xml',

15 'data/ir_sequence_data.xml',

16 'data/mail_templates.xml',

17 'data/sale_data.xml',

18 'wizard/sale_make_invoice_advance_views.xml',

19 'views/sale_views.xml',

20 'views/crm_team_views.xml',

21 'views/payment_templates.xml',

22 'views/product_views.xml',

23 'views/utm_campaign_views.xml',

24 'wizard/sale_order_cancel_views.xml',

25 'wizard/sale_payment_link_views.xml',

26],

27 'demo': [

28 'data/product_product_demo.xml',

29 'data/sale_demo.xml',

30],

31 'installable ': True ,

32 'auto_install ': False ,

33 'assets ': {

34 'web.assets_backend ': [

35 'sale/static/src/scss/sale_onboarding.scss',

36 'sale/static/src/scss/product_configurator.scss',

37 'sale/static/src/js/product_discount_widget.js',

38],

39 'web.report_assets_common ': [

40 'sale/static/src/scss/sale_report.scss',

41],

42 'web.assets_frontend ': [

43 'sale/static/src/js/sale_portal_sidebar.js',

44 'sale/static/src/js/payment_form.js',

45],

46 },

47 'license ': 'LGPL -3',

48 }

CODE LISTING 3.1: Sample manifest file

Reusability and Extension capability

As described in section 3.1.1, the Odoo framework is based on a multi-tier
architecture. The design of the modules follows the same architectural
vision. In addition, to facilitate the development of these modules, the
framework offers each layer (Front-end, Back-End, and persistence layer) a
core that will offer the necessary functionalities. The main classes of the
Back-end layer core are implemented in the folder /odoo/odoo12, and Figure
3.7 shows a static view of the classes implementing this core. All the models
offered by the framework, or models that will potentially extend an existing
one or a new module created from scratch, will necessarily inherit at least
one of the core classes as described in the Listing 3.2. The technique used
here to ensure usability is inheritance, as proposed by the object-oriented
programming languages paradigms (OOP). In this way, the Odoo

12/odoo/odoo

https://github.com/odoo/odoo/tree/15.0/odoo

28 Chapter 3. Odoo in a Nutshell

framework maximizes reusability with the concept of inheritance as a
powerful tool that allows the improvement and fast development of
applications based on it.

FIGURE 3.7: The static view of the classes implementing the
back-end core of the Odoo framework

1

2 from odoo import api , fields , models

3

4 class CalendarEvent(models.Model):

5 _inherit = 'calendar.event'

6

7 @api.model

8 def default_get(self , fields):

9 if self.env.context.get('default_opportunity_id '):

10 self = self.with_context(

11 default_res_model_id=self.env.ref('crm.

model_crm_lead ').id ,

12 default_res_id=self.env.context['

default_opportunity_id ']

13)

14 defaults = super(CalendarEvent , self).default_get(fields

)

15

16 # sync res_model / res_id to opportunity id (aka

creating meeting from lead chatter)

17 if 'opportunity_id ' not in defaults:

18 if self._is_crm_lead(defaults , self.env.context):

19 defaults['opportunity_id '] = defaults.get('

res_id ', False) or self.env.context.get('default_res_id ',

False)

20

21 return defaults

22

23 opportunity_id = fields.Many2one(

24 'crm.lead', 'Opportunity ', domain="[('type ', '=', '

opportunity ')]",

3.1. Odoo Framework Architecture Overview 29

25 index=True , ondelete='set null')

CODE LISTING 3.2: Example of model inheritance by the
Calendar module

The Odoo framework is designed to be extensible to meet more specific user
needs in parallel to maximizing reusability. For this, its architecture has
been designed to be as extensible as possible. In order to allow this
extensibility, the framework proposes mechanisms called Model
Inheritance, and this designation may lead the reader to believe that it is
object-oriented inheritance. However, these mechanisms are implemented
with other techniques, such as composition and software design patterns
based on the Python language, allowing certain flexibilities compared to
other programming languages like Java. Here are three possibilities of
Model Inheritance to extend the framework models modularly, as
illustrated in Figure 3.8

FIGURE 3.8: Model inheritance types

• Classical Inheritance is achieved by combining the attributes
(_inherit, _name), so the new model gets all fields, methods, and

30 Chapter 3. Odoo in a Nutshell

meta-information (e.g., default values) from its base. It is the most
commonly used type for extending class, views, or other components.
Listing 3.3 illustrates a simple example of applying this technique. The
second model has inherited from the first model’s check method and
its name field but overridden the call method, as when using standard
Python inheritance.

1

2

3 class Extension0(models.Model):

4 _name = 'extension .0'

5 _description = 'Extension zero'

6

7 name = fields.Char(default="A")

8

9 class Extension1(models.Model):

10 _inherit = 'extension .0'

11

12 description = fields.Char(default="Extended")

13

14 """ simple test

15 record = env['extension .0']. create ({})

16 record.read()[0]

17

18 will yield: {'name ': "A", 'description ': "Extended "}

19 """

CODE LISTING 3.3: A simple Classical Inheritance example

• Extention is achieved when _inherit attribute is used alone without
the _name attribute, the new existing template(extending it in place by
copying all the data) replaces the old one. This technique helps add
new fields or methods to existing templates or customize or
reconfigure them (e.g., change default values). Listing 3.4 illustrates a
simple example of applying this technique.

1

2 class Extension0(models.Model):

3 _name = 'extension .0'

4 _description = 'Extension zero'

5

6 name = fields.Char(default="A")

7

8 class Extension1(models.Model):

9 _inherit = 'extension .0'

10

11 description = fields.Char(default="Extended")

12

13 """ simple test

14 record = env['extension .0']. create ({})

15 record.read()[0]

16

17 will yield: {'name ': "A", 'description ': "Extended "}

18 """

CODE LISTING 3.4: A simple Extention Inheritance example

3.1. Odoo Framework Architecture Overview 31

• Delegation offers more flexibility (modification at runtime) and
realized by the _inherits attribute. The instance of the created class
will contain the instance of the original class. Each time an object is
created on the new class, another object will be created without
copying the data. Methods are not inherited, only fields. Many-to-One
relationship will be created instead of duplicating the mother class. In
a nutshell, When using delegation, the model has one instead of is

one, turning the relationship into a composition instead of Inheritance.
Listing 3.5 illustrates a simple example of applying this technique.

1

2 class Screen(models.Model):

3 _name = 'delegation.screen '

4 _description = 'Screen '

5

6 size = fields.Float(string='Screen Size in inches ')

7

8 class Keyboard(models.Model):

9 _name = 'delegation.keyboard '

10 _description = 'Keyboard '

11

12 layout = fields.Char(string='Layout ')

13

14 class Laptop(models.Model):

15 _name = 'delegation.laptop '

16 _description = 'Laptop '

17

18 _inherits = {

19 'delegation.screen ': 'screen_id ',

20 'delegation.keyboard ': 'keyboard_id ',

21 }

22 name = fields.Char(string='Name')

23 maker = fields.Char(string='Maker')

24 # a Laptop has a screen

25 screen_id = fields.Many2one('delegation.screen ',

required=True , ondelete="cascade")

26 # a Laptop has a keyboard

27 keyboard_id = fields.Many2one('delegation.keyboard ',

required=True , ondelete="cascade")

28

29 """ simple test

30 record = env['delegation.laptop '].create ({

31 'screen_id ': env['delegation.screen '].create({'size

': 13.0}).id,

32 'keyboard_id ': env['delegation.keyboard '].create({'

layout ': 'QWERTY '}).id ,})

33 record.size

34 record.layout

35 -------------

36 will result in:

37 13.0

38 'QWERTY '

39 """

CODE LISTING 3.5: A simple Delegation Inheritance example

32 Chapter 3. Odoo in a Nutshell

3.1.3 Conclusion

In the Odoo framework, other components can be extended to maximize the
reusability, like web controllers, security groups, python methods, qweb
templates, and more. In short, it touches the three layers of the MVC model.
In addition to the Python inheritance mechanisms, Odoo has a homemade
mechanism that allows the improvement and rapid development of
applications based on the Odoo framework. Also, this mechanism mimicks
the object-oriented Inheritance and allow access to entities defined in other
add-ons (existing ones or custom). In this way, the add-ons can extend all
the system models. The downside with these techniques is that it is not an
OOP, which means the IDE does not support these techniques, and the
developer needs to have more discipline to work with it.

33

Chapter 4

Odoo Variability Mechanisms

This chapter aims to answer the research question RQ1. We will first, list
some of the variability implementation mechanisms that we have identified
through a manual exploration of the framework in its code source. Then, we
will discuss these results.

4.1 Odoo variability mechanisms exploration

Template-method : As mentioned in section 3.1.2, inheritance is a
mechanism used in all system layers systematically. The mechanism
provides the main connection between the core and the addons to use the
core functionality in a standardized fashion. The investigation has included
multiple artifacts of the framework, but especially the models.py file. Figure
3.7 shows a static view of the core models indicating that the Model class in
the odoo/models.py file inherits from AbstractModel and BaseModel,
abstract classes in the OOP context. The BaseModel class implementation
includes a signed method view_init specified in the parent class. The
implementation of the view_init method is left free to the needs of the child
classes. Listing 4.1 presents the BaseModel class, which is an abstract class,
and the specification of the view-init method. Hence, traditional inheritance
and inheritance combined with design-pattern template methods are two
mechanisms used in the Odoo framework to maximize the reuse of the
different functionalities.

1 class BaseModel(metaclass=MetaModel):

2 """ Base class for Odoo models.

3

4 Odoo models are created by inheriting one of the following:

5

6 * :class:�Model � for regular database -persisted models

7

8 * :class:�TransientModel � for temporary data , stored in

the database but automatically vacuumed every so often

9

10 * :class:�AbstractModel � for abstract super classes meant

to be shared by multiple inheriting models """

11

12 """

13 .

14 .

34 Chapter 4. Odoo Variability Mechanisms

15 .

16 """

17

18

19 @abstractmethod

20 def view_init(self , fields_list):

21 """ Override this method to do specific things when a

form view is

22 opened. This method is invoked by :meth:�~default_get �.

23 """

24 pass

25

26 """ Some ligne below """

27

28 AbstractModel = BaseModel

29

30 class Model(AbstractModel):

31 """ Main super -class for regular database -persisted Odoo

models.

32

33 Odoo models are created by inheriting from this class ::

34

35 class user(Model):

36 ...

37

38 The system will later instantiate the class once per

database (on

39 which the class ' module is installed).

40 """

41 _auto = True # automatically create database

backend

42 _register = False # not visible in ORM registry ,

meant to be python -inherited only

43 _abstract = False # not abstract

44 _transient = False # not transient

CODE LISTING 4.1: /odoo/models.py Excerpt

Parametrization : Conditional structures are widely used in implementing
variability, as seen in Section 2.2.2. Using naming conventions will facilitate
the traceability and mapping of features to their respective implementations
in various artifacts. However, in the Odoo framework, after investigation
and searching by keyword features name in the code, this mechanism is not
widely used to implement variability. We found the only case after
investigating the console log and then studying the code of the classes
loaded when the application was started. The loaded classes include the file
/odoo/modules/loading.py, which manages and load the modules (also
called addons). In the implementation of this class, we have the method
signed _get_files_of_kind illustrated in Listing 4.2, which, based on the
received parameter, will filter what type of data to load for the startup,
either demo data or accurate data that can be imported via XML or CSV file.

1 def load_data(cr , idref , mode , kind , package):

2 """

4.1. Odoo variability mechanisms exploration 35

3

4 kind: data , demo , test , init_xml , update_xml , demo_xml.

5

6 noupdate is False , unless it is demo data or it is csv data

in

7 init mode.

8

9 :returns: Whether a file was loaded

10 :rtype: bool

11 """

12

13 def _get_files_of_kind(kind):

14 if kind == 'demo':

15 kind = ['demo_xml ', 'demo']

16 elif kind == 'data':

17 kind = ['init_xml ', 'update_xml ', 'data']

CODE LISTING 4.2: /odoo/modules.loading.py Excerpt

Cloning : Odoo is open source, which allows cloning the repository easily;
also, Odoo offers the possibility of creating a generic mode of use, which
allows adding or customizing the existing features. We have created a
simple to-do list application based on the Odoo framework cloned from
their official repository of the Community version. Figure 4.1 shows the
structure of the to-do list application, and that follows the typical
architecture of a module as described in Section 3.1.2, where we have the
complete business logic in the file todotask.py. Cloning is a very used
mechanism in the industry; Odoo lets the possibility of using their
framework so that the end-user experiences the need for customization
when the modules offered by the framework do not work with the needs of
the end-users. However, the consequences of using such a technique must
be carried out, and the architect or a developer has to balance the pros and
cons while opting for this kind of approach.

36 Chapter 4. Odoo Variability Mechanisms

FIGURE 4.1: to-do list module structure

Decorator : The dynamical aspect of the Python language offers an escape
from limitations1. It makes the use of design patterns such as the GoF
family not very suitable for this category of programming language.
However, design patterns are still applicable in many areas. Python
programming language comes with a feature2 to decorate any method to
change its behavior with another method simply by adding a tag before the
function, without changing the attributes of the decorated function or the
class it belongs to. In simple terms, the decorator class is created and used to
wrap up another class. Our example study on the Odoo framework noted
the massive use of decorators, practically in all the framework artifacts. The
file odoo/api.py3 hosts the implementation of several decorator functions.
However, the specifications of these decorator functions show that the use
of decorators is not to add features to the run time variability but instead for
the implementation of the framework itself.

Technology Framework : Frameworks are a proven technology for
implementing variability and, at the same time, maximizing the reusability
aspect to ensure the evolution of features. In Section 3.1.2, we have
discussed that the Odoo framework offers the possibility to extend the
functionality by adding new modules at explicit points in the framework.
For this purpose, developers only need to consider the interface offered by
the framework to add plug-ins, without caring about its internal

1Static languages are considered too rigid compared to the flexibility offered by dynam-
ically typed languages. Because it requires upstream design and structure decisions, while
in dynamic languages (e.g., Python), code can be imported dynamically, and classes can be
created at runtime.

2https://wiki.python.org/moin/PythonDecoratorLibrary
3odoo/api.py

https://github.com/odoo/odoo/blob/15.0/odoo/api.py

4.2. Odoo Binding Time 37

implementation, in a similar way as we have done with the to-do list
application. So we can confirm that Odoo relies significantly on the
Black-Box Framework technology (c.f. Section 2.2.2) to implement
variability.

4.2 Odoo Binding Time

We already discussed in Section 4.1 that different variability implementation
mechanisms are utilized, but not all support adding features that aim to
extend the variability scope offered by the Odoo framework. The two
mechanisms that support variability realization are inheritance, framework
technology, and cloning. The inheritance and the framework technology
mechanisms support the compilation and loading time as binding time (c.f.
Section 2.2.1). The clone-and-own approach only support static binding
time. Also, during the installation or uninstallation of an Odoo module, the
console log lists all the loaded or uninstalled modules, the user interface at
this particular time is in frozen mode. Moreover, when installing more than
one module, interaction is only allowed with one module at a time via the
same client. However, the modules can communicate by accessing the same
database. Based on the information provided, we can discard the dynamic
binding time proposition and determine that the Odoo framework achieves
variability with a loading time-binding.

4.3 Discussion

This section aims to discuss our results and attempt to answer the research
question RQ1, i.e., whether Odoo uses variability realization mechanisms in
its development approach ?

Odoo mainly uses two mechanisms to implement variability: inheritance
and the Black-Box framework technology. However, we determined that the
inheritance has the purpose of connecting the plugin modules with the core
to take advantage of its functionalities in an invariant method, and the
framework technology is used to introduce the variability to match the
business needs; in this way, they reduce the coupling while providing the
possibility of extension without the necessity to make any modifications to
the core. As a result, we can assert that the Odoo framework development
uses variability realization mechanisms for the enhancement of user
features, and this answers our research question RQ1.

However, it is not as trivial as to implement variability. Odoo uses
variability implementation mechanisms that are widely used in every SPL.
Odoo’s goal is not necessarily to have an SPL according to the standards of
the official methodology. Their goal is to have a kind of open variability that
does not structure the space with an FM but allows to implementation of
new modules by reusing the existing ones to have more freedom while
realizing a maximum of use cases. For this purpose, their homemade

38 Chapter 4. Odoo Variability Mechanisms

inheritance mechanism (an annotation mechanism! it is weird, but it is true)
facilitates the extension of modules.

However, regarding the SPL development methodology, one of its main
processes is Domain Engineering, ensuring that each SPL artifact is
reusable. For this purpose, a precise execution flow is carried out, which
includes, first, identifying the features, then modeling all these features to
result in an FM (c.f., Section 2.1). To successfully derive a product from all
possible configurations. Here, up to now, in our case study, we have not
experienced that this methodology is applied in developing the Odoo
framework. Also, according to our experience using the framework, we
have observed that the features are used exclusively. If, for example, we
intend to install the Sale module, we have no control over its dependencies.
Everything is pre-configured in advance. So based on the elements we have
learned yet, we cannot assert that the Odoo framework is an SPL. However,
it shares a lot of common points with SPLs.

39

Chapter 5

Automatic Extraction of Feature

Model

This chapter presents our RE approach and answers the research question
RQ2 and RQ3. For this, an overview of the RE process is illustrated and
then executed step by step to obtain a variability mapping of the Odoo
framework. The strategy we have followed for the RE is to retrieve the
information extracted from the console log during the configuration
(installation/uninstallation) of some variants proposed by the community
version of the framework. Then using the FCA, we identified the topology
of the links between all the different components of the variant products.
Finally, we complete SPLA identification by recovering the existing
architectural dependencies between the different variants. For this, our
approach is inspired by the work of Shatnawi et al [26].

5.1 Reverse Engineering FM Step-by-Step

This section details the RE process of FM step by step. According to our
approach, we identify the FM in seven steps as outlined below. First, using
the FCA properties, we derive a concept lattice hierarchy based on objects
and their properties; this hierarchy is presented as a concept lattice that
adds value by visualizing the variability of the dependencies between all
modules. Then, we complete SPLA identification by extracting the
dependencies between modules to classify the Alternative, OR, AND,
Require, and Exclude dependencies.

5.1.1 Modules dependencies identification

In section 4.1, we used the console log information from the installation and
uninstallation of variant products in the Odoo Community Framework as a
starting point for our investigation of the patterns and mechanisms for the
variability implementation. We have opted to continue using the console
log information for the RE process. We would have obtained the same
results if we had exploited the manifest.py file, specifically the ’depends’
field, which points out all the dependencies concerning a given module. The
Appendix A.1, illustrates the output of the console log when we install the
E-commerce module on a clean database. So at the moment when the

40 Chapter 5. Automatic Extraction of Feature Model

installation is triggered, we get information about all the modules that the
system loads one by one during 32.48 seconds (it can vary on another
machine). As a reference, the user interface is in Frozen mode during this
loading time.

5.1.2 Common and variable modules classification

To identify the modules that are common to multiple product variants and
the modules that realize variability, we use FCA concepts (c.f., Section 2.3.2)
to generate the lattice concept. Our study is limited to four variant products
for readability reasons and illustrates the process with results to the reader
in a simple way. So we have combined four product variants:
Manufacturing, Sales, E-commerce, and Events. To drive the FCA, we
organized our product variants and their dependencies so that the product
variants represent the objects and the dependant modules represent the
attributes. As described in section 2.3.2, Table 5.1.2 illustrates this
presentation in Objects/Attributes 1.

1The Table is transposed for presentation reasons. However, the checkmark captures the
dependency of a product variant(object), with component(attributes).

5.1. Reverse Engineering FM Step-by-Step 41

TABLE 5.1: Formal context of 4 components variants.

Attributes / Objects Sales E-commerce Events Manufacturing

account 3 3

account_edi 3 3

account_edi_facturx 3 3

analytic 3 3

auth_signup 3 3 3

auth_totp_mail 3 3 3

auth_totp_portal 3 3 3 3

barcodes 3

base_setup 3 3 3 3

bus 3 3 3 3

digest 3 3 3 3

event 3

event_sms 3

fetchmail 3 3 3 3

google_recaptcha 3 3

google_spreadsheet 3 3

http_routing 3 3 3 3

iap 3 3 3

iap_mail 3 3 3 3

mail 3 3 3 3

mail_bot 3 3 3 3

mrp 3

partner_autocomplete 3 3 3 3

payement 3 3

payement_transfert 3 3 3

phone_validation 3 3 3

portal 3 3 3 3

portal_rating 3

product 3 3 3

resource 3 3 3 3

sale 3 3

sale_management 3

42 Chapter 5. Automatic Extraction of Feature Model

sale_sms 3 3

sale_team 3 3

sms 3 3 3 3

snailmail 3 3 3

snailmail_account 3 3

social_media 3 3

stock 3

stock_sms 3

uom 3 3 3

utm 3 3 3

web_editor 3 3 3 3

web_unsplash 3 3 3 3

website 3 3

website_event 3

website_mail 3 3

website_partner 3

website_payement 3

website_sale 3

website_sms 3

Based on the dependencies presented in Table 2.2, we derived this concept
lattice presented in figure 5.1 with the assistance of the Concept Explorer
tool presented by Yevtushenko [46]. This concept lattice intends to present
top-down sort, from the most general components in common for two or
more variants to the most specific components belonging to a single variant.
So based on the generated concept lattice, we have at the top of the structure
all the components loaded by the four variants simultaneously (e.g.,
mail,mail_bot,iap_mail). Below in the structure, we have more specific
components to one variant (e.g.,barcode,mrp,stock) that only belong to the
Manufacturing variant.

5.1. Reverse Engineering FM Step-by-Step 43

FIGURE 5.1: Extracted from FCA lattice showing the distribu-
tion of components composing the product’s variants.

44 Chapter 5. Automatic Extraction of Feature Model

5.1.3 Extracting required Dependencies

When analyzing the concept lattice in Figure 5.2, we can identify the
parent-to-child relationship by traversing the nodes from the top to the very
bottom, so if node A requires node B only if node B is located higher than
node A in the structure of the concept lattice. In the present example, the
module mailshares a required relationship with all the nodes located under
it in the hierarchy of the structure. So we can assert that the website_mail
module requires the mail module and so forth for the entire structure.

FIGURE 5.2: The extracted paths from FCA lattice

5.1.4 Extraction of Exclude and Alternative dependencies

An essential notion for continuing our dependency extraction heuristic is
the notion of the path defined by Shatnawi et al.,

“The configurations are represented by paths starting from their
concepts to the lattice concept root. The idea is that each object is
generated starting from its node up and going to the top. This is based
on sub-concept to super-concept relationships. This process generates a
path for each object. A path contains an ordered list of nodes based on
their hierarchical distribution; i.e., sub-concept to super-concept
relationships).” [26]

Moreover, to compute all possible paths in the concept lattice, Shatnawi et
al., uses Breadth First Search (BFS) algorithm [47].

This concept of a path will be used to extract the exclusive dependency. So
to extract all the exclusive dependencies, we will have to seek all the

5.1. Reverse Engineering FM Step-by-Step 45

components that can’t be shared by the same variant if we refer to Figure
5.2, which represents the different paths that exist in the context of our
lattice concept based on the Cormen et al., algorithm. We can assert that
node 2 and node 9 represent a pair that share the Exclude relationship.
Algorithm in Figure 5.3 automates the extraction of all nodes that share the
Exclude dependency. The results produced from applying Algorithm are in
Table 5.3.

Alternative dependencies are extracted by generalizing Exclusive
dependencies calculated previously. When any node in the lattice concept
shares an exclusive dependency with all other nodes in the lattice, these
resulting nodes constitute an Alternative situation. In the lattice in Figure
5.2, node 4 is excluded concerning nodes 7, 8, and 9. Similarly, node 7 is
excluded concerning nodes 8 and 9. Moreover, finally, node 8 is excluded
concerning node 9. These mutual exclusions assert that nodes 4, 7, 8, and 9
represent an Alternative dependency.

FIGURE 5.3: Identifying exclude pairs [26]

5.1.5 Extraction of AND dependencies

Components that share an AND dependency are the easiest to extract.
Because AND dependencies are a two-way form of Required dependencies,
meaning that if component A requires component B, then component A
requires component A. So if a configuration must contain component A, it
must also contain component B because both components A and B are
linked with an AND dependency. This translates into all components
located on the same node on the lattice, e.g., the components
payment_transfer, product, snailmail, and uom are connected with an
AND dependency.

46 Chapter 5. Automatic Extraction of Feature Model

TABLE 5.2: depencies extracted

N
o

d
e
1

N
o

d
e
2

N
o

d
e
3

N
o

d
e
4

N
o

d
e
5

N
o

d
e
6

N
o

d
e
7

N
o

d
e
8

N
o

d
e
9

Node1 TR TR TR TR TR TR
Node2 R OR Resolved EX
Node3 R OR EX
Node4 TR R EX EX EX, ALT EX, ALT EX, ALT
Node5 TR R R OR EX
Node6 TR Resolved R OR EX
Node7 TR TR TR ALT R EX, ALT EX, ALT
Node8 TR TR TR ALT R R ALT EX, ALT
Node9 TR TR ALT R ALT ALT

TABLE 5.3: All Depencies extracted (legend: R=required,
TR=Transitive Required, OR=OR, EX=Exclude,

ALT=Alternative)

5.1.6 Extracting OR dependencies

To calculate the OR dependencies, we must first extract all other
dependencies such as Require, Exclude, Alternative, and AND. If any node
must be concerned by an OR dependency, it cannot have any other
dependencies. The algorithm in Figure 5.4 provides a procedure for
extracting the OR dependencies automatically. E.g., the lattice concept in
Figure 5.2 contains a dependency, OR for nodes 2 and 3.

At this point, we can say that we have answered our RQ2 and say that FCA
allows extracting dependencies from product variants of the Odoo
framework.

5.1. Reverse Engineering FM Step-by-Step 47

FIGURE 5.4: Identifiying OR-groups [26]

5.1.7 Extracting the final hierarchical tree

Once the dependency relationships Required, Exclude, Alternative, AND,
and OR have been extracted. We have the necessary elements to represent
the dependency groups in the FM diagram. Algorithm in Figure 5.5 defines
a procedure to identify a hierarchical representation. Then with the help of
the FeatureIDE2 visualization tool, we have realized the resulting FM on
Figure3 5.6 following all the previous steps. This answers the RQ3.

2https://www.featureide.de/
3To present the feature model with its constraints, we collapsed all the features attached

to an abstract feature, but the complete FM is in Listing A.2

48 Chapter 5. Automatic Extraction of Feature Model

FIGURE 5.5: Identifying hierarchical representation [26]

5.1. Reverse Engineering FM Step-by-Step 49

FIGURE 5.6: Resulting FM

50 Chapter 5. Automatic Extraction of Feature Model

5.2 Discussion

At first impression, the resulting feature model has a flat hierarchy.
However, it represents the variability of architecture and the decisions
related to product design. Concerning the constraints of the resulting FM,
the featureIDE tool enables determining constraints that are considered
redundant, and we can ignore these redundant constraints without losing
FM consistency. Also featureIDE calculate that there is 12 twelve valid
products for this feature model. So far, the RE approach guided by FCA
allowed the production of an FM based on the dependencies of the product
variants. However, it remains interesting to try to produce another FM by
exploiting information given by exploitation of the homemade inheritance
mechanism of the Odoo framework and comparing the two resulting FMs
to combine them with the hope of giving the FM a more hierarchy.
Another thing to consider is testing the limitations of the proposed
approach; our example was reduced to four product variants, but we have
tested the approach, and it is effective for up to six product variants. It
should be noted that the lattice generated based on seven product variants
is not clear, so we need to automate the extraction to test the limits of the
approach in a concrete way with multiple configurations.

51

Chapter 6

Conclusion

In this dissertation, first in Chapter 2, we have provided a state of the art
that exposes all the notions we required to conduct the dissertation,
including a general theory on SPL as well as the importance of SPLE
methodology, the existing mechanisms of implementing variabilities in the
industry, the RE process and its various approaches, and the FCA notions.
Then in Chapter 3, we presented the Odoo framework as a commercial
product, its general architecture, and the internal architecture of the add-on
modules, which wrap up the features offered by Odoo. Also, Chapter 4,
based on the result of a manual exploration of the source code, illustrated
some mechanisms that Odoo uses to implement variability. The
particularity of the Odoo framework case study is that its back-end is
written in Python, which is an interpreted programming language. While in
the literature, research and contributions in reverse engineering a feature
model are mostly made on systems based on static programming languages
such as Java or C/C++. This exploration allowed us to understand the
internal Odoo core operation mode and identify that variability is mainly
achieved through inheritance and framework technology. Finally, in chapter
5, we have executed an RE approach on four product variants based on the
FCA properties; this heuristic has resulted in an FM that describes the
variability based on the architectural dependencies that link the Odoo
framework modules.

53

Appendix A

A.1 Console log output when when installing the

E-commerce module

2022−02−21 0 1 : 3 7 : 5 7 , 2 1 3 70430 INFO zak odoo . addons . base . models . ir_module : ALLOW a c c e s s to module . but ton_ immedia te_ ins ta l l on [' eCommerce ']
to user admin #2 via 1 2 7 . 0 . 0 . 1
2022−02−21 0 1 : 3 7 : 5 7 , 2 1 3 70430 INFO zak odoo . addons . base . models . ir_module : User #2 t r i g g e r e d module i n s t a l l a t i o n
2022−02−21 0 1 : 3 7 : 5 7 , 2 1 6 70430 INFO zak odoo . addons . base . models . ir_module : ALLOW a c c e s s to module . b u t t o n _ i n s t a l l on [' eCommerce ']
to user admin #2 via 1 2 7 . 0 . 0 . 1
2022−02−21 0 1 : 3 7 : 5 7 , 4 4 2 70430 INFO zak odoo . modules . loading : loading 1 modules . . .
2022−02−21 0 1 : 3 7 : 5 7 , 4 5 1 70430 INFO zak odoo . modules . loading : 1 modules loaded in 0 . 0 1 s , 0 quer ies (+0 e x t r a)
2022−02−21 0 1 : 3 7 : 5 7 , 4 7 4 70430 INFO zak odoo . modules . loading : updating modules l i s t
2022−02−21 0 1 : 3 7 : 5 7 , 4 7 5 70430 INFO zak odoo . addons . base . models . ir_module : ALLOW a c c e s s to module . u p d a t e _ l i s t on [] to user __system__ #1
via 1 2 7 . 0 . 0 . 1
2022−02−21 0 1 : 3 7 : 5 7 , 6 4 9 70430 WARNING zak odoo . modules . module : Missing � l i c e n s e � key in manifest f o r ' om_todoList ' , d e f a u l t i n g to LGPL−3
2022−02−21 0 1 : 3 7 : 5 8 , 1 3 3 70430 INFO zak odoo . modules . loading : loading 6 modules . . .
2022−02−21 0 1 : 3 7 : 5 8 , 1 3 9 70430 INFO zak odoo . modules . loading : 6 modules loaded in 0 . 0 1 s , 0 quer ies (+0 e x t r a)
2022−02−21 0 1 : 3 7 : 5 8 , 1 5 7 70430 INFO zak odoo . modules . loading : loading 48 modules . . .
2022−02−21 0 1 : 3 7 : 5 8 , 1 5 7 70430 INFO zak odoo . modules . loading : Loading module socia l_media (2/48)
2022−02−21 0 1 : 3 7 : 5 8 , 2 0 9 70430 INFO zak odoo . modules . r e g i s t r y : module socia l_media : c r e a t i n g or updating database t a b l e s

2022−02−21 0 1 : 3 7 : 5 8 , 2 8 3 70430 INFO zak odoo . modules . loading : Loading module uom (3/48)
2022−02−21 0 1 : 3 7 : 5 8 , 3 2 6 70430 INFO zak odoo . modules . r e g i s t r y : module uom: c r e a t i n g or updating database t a b l e s

2022−02−21 0 1 : 3 7 : 5 8 , 5 2 8 70430 INFO zak odoo . modules . loading : Loading module base_setup (7/48)
2022−02−21 0 1 : 3 7 : 5 8 , 5 7 6 70430 INFO zak odoo . modules . r e g i s t r y : module base_setup : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 7 : 5 8 , 6 9 5 70430 INFO zak odoo . modules . loading : Module base_setup loaded in 0 . 1 7 s , 169 quer ies

2022−02−21 0 1 : 3 7 : 5 8 , 6 9 5 70430 INFO zak odoo . modules . loading : Loading module bus (8/48)
2022−02−21 0 1 : 3 7 : 5 8 , 7 4 5 70430 INFO zak odoo . modules . r e g i s t r y : module bus : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 7 : 5 8 , 8 7 4 70430 INFO zak odoo . modules . loading : Module bus loaded in 0 . 1 8 s , 102 quer ies

2022−02−21 0 1 : 3 7 : 5 8 , 8 7 4 70430 INFO zak odoo . modules . loading : Loading module ht tp_rout ing (9/48)
2022−02−21 0 1 : 3 7 : 5 8 , 9 4 2 70430 INFO zak odoo . modules . r e g i s t r y : module ht tp_rout ing : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 7 : 5 9 , 0 2 8 70430 INFO zak odoo . modules . loading : Module ht tp_rout ing loaded in 0 . 1 5 s , 104 quer ies

2022−02−21 0 1 : 3 7 : 5 9 , 0 2 8 70430 INFO zak odoo . modules . loading : Loading module resource (10/48)
2022−02−21 0 1 : 3 7 : 5 9 , 0 8 3 70430 INFO zak odoo . modules . r e g i s t r y : module resource : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 7 : 5 9 , 4 9 0 70430 INFO zak odoo . modules . loading : Module resource loaded in 0 . 4 6 s , 514 quer ies

2022−02−21 0 1 : 3 7 : 5 9 , 4 9 1 70430 INFO zak odoo . modules . loading : Loading module utm (11/48)
2022−02−21 0 1 : 3 7 : 5 9 , 5 4 6 70430 INFO zak odoo . modules . r e g i s t r y : module utm : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 7 : 5 9 , 9 7 7 70430 INFO zak odoo . modules . loading : Module utm loaded in 0 . 4 9 s , 384 quer ies

2022−02−21 0 1 : 3 7 : 5 9 , 9 7 7 70430 INFO zak odoo . modules . loading : Loading module google_recaptcha (14/48)
2022−02−21 0 1 : 3 8 : 0 0 , 0 7 1 70430 INFO zak odoo . modules . r e g i s t r y : module google_recaptcha : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 0 , 1 9 1 70430 INFO zak odoo . modules . loading : Module google_recaptcha loaded in 0 . 2 1 s , 71 quer ies

2022−02−21 0 1 : 3 8 : 0 0 , 1 9 1 70430 INFO zak odoo . modules . loading : Loading module iap (15/48)
2022−02−21 0 1 : 3 8 : 0 0 , 2 7 9 70430 INFO zak odoo . modules . r e g i s t r y : module iap : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 0 , 4 6 3 70430 INFO zak odoo . modules . loading : Module iap loaded in 0 . 2 7 s , 157 quer ies

2022−02−21 0 1 : 3 8 : 0 0 , 4 6 3 70430 INFO zak odoo . modules . loading : Loading module mail (16/48)
2022−02−21 0 1 : 3 8 : 0 0 , 6 1 7 70430 INFO zak odoo . modules . r e g i s t r y : module mail : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 2 , 9 1 3 70430 INFO zak odoo . modules . loading : Module mail loaded in 2 . 4 5 s , 3272 quer ies

2022−02−21 0 1 : 3 8 : 0 2 , 9 1 3 70430 INFO zak odoo . modules . loading : Loading module a n a l y t i c (17/48)
2022−02−21 0 1 : 3 8 : 0 2 , 9 9 5 70430 INFO zak odoo . modules . r e g i s t r y : module a n a l y t i c : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 3 , 3 2 3 70430 INFO zak odoo . modules . loading : Module a n a l y t i c loaded in 0 . 4 1 s , 409 quer ies

2022−02−21 0 1 : 3 8 : 0 3 , 3 2 3 70430 INFO zak odoo . modules . loading : Loading module auth_signup (18/48)
2022−02−21 0 1 : 3 8 : 0 3 , 4 5 7 70430 INFO zak odoo . modules . r e g i s t r y : module auth_signup : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 3 , 6 3 2 70430 INFO zak odoo . modules . loading : Module auth_signup loaded in 0 . 3 1 s , 191 quer ies

2022−02−21 0 1 : 3 8 : 0 3 , 6 3 2 70430 INFO zak odoo . modules . loading : Loading module auth_totp_mail (19/48)
2022−02−21 0 1 : 3 8 : 0 3 , 7 2 0 70430 INFO zak odoo . modules . r e g i s t r y : module auth_totp_mail : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 3 , 8 1 2 70430 INFO zak odoo . modules . loading : Module auth_totp_mail loaded in 0 . 1 8 s , 92 quer ies

2022−02−21 0 1 : 3 8 : 0 3 , 8 1 2 70430 INFO zak odoo . modules . loading : Loading module f e t c h m a i l (20/48)
2022−02−21 0 1 : 3 8 : 0 3 , 9 0 5 70430 INFO zak odoo . modules . r e g i s t r y : module f e t c h m a i l : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 4 , 0 7 4 70430 INFO zak odoo . modules . loading : Module f e t c h m a i l loaded in 0 . 2 6 s , 189 quer ies

2022−02−21 0 1 : 3 8 : 0 4 , 0 7 4 70430 INFO zak odoo . modules . loading : Loading module iap_mail (21/48)
2022−02−21 0 1 : 3 8 : 0 4 , 1 9 0 70430 INFO zak odoo . modules . loading : Module iap_mail loaded in 0 . 1 2 s , 28 quer ies

2022−02−21 0 1 : 3 8 : 0 4 , 1 9 0 70430 INFO zak odoo . modules . loading : Loading module mail_bot (22/48)
2022−02−21 0 1 : 3 8 : 0 4 , 2 7 4 70430 INFO zak odoo . modules . r e g i s t r y : module mail_bot : c r e a t i n g or updating database t a b l e s

54 Appendix A.

2022−02−21 0 1 : 3 8 : 0 4 , 3 8 5 70430 INFO zak odoo . modules . loading : Module mail_bot loaded in 0 . 2 0 s , 139 quer ies

2022−02−21 0 1 : 3 8 : 0 4 , 3 8 5 70430 INFO zak odoo . modules . loading : Loading module phone_val idat ion (23/48)
2022−02−21 0 1 : 3 8 : 0 4 , 4 8 2 70430 INFO zak odoo . modules . r e g i s t r y : module phone_val idat ion : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 4 , 7 1 1 70430 INFO zak odoo . modules . loading : Module phone_val idat ion loaded in 0 . 3 3 s , 179 quer ies

2022−02−21 0 1 : 3 8 : 0 4 , 7 1 1 70430 INFO zak odoo . modules . loading : Loading module product (24/48)
2022−02−21 0 1 : 3 8 : 0 4 , 8 7 9 70430 INFO zak odoo . modules . r e g i s t r y : module product : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 5 , 9 5 9 70430 INFO zak odoo . modules . loading : Module product loaded in 1 . 2 5 s , 1392 quer ies

2022−02−21 0 1 : 3 8 : 0 5 , 9 5 9 70430 INFO zak odoo . modules . loading : Loading module r a t i n g (25/48)
2022−02−21 0 1 : 3 8 : 0 6 , 0 7 4 70430 INFO zak odoo . modules . r e g i s t r y : module r a t i n g : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 6 , 3 1 9 70430 INFO zak odoo . modules . loading : Module r a t i n g loaded in 0 . 3 6 s , 310 quer ies

2022−02−21 0 1 : 3 8 : 0 6 , 3 1 9 70430 INFO zak odoo . modules . loading : Loading module sales_team (26/48)
2022−02−21 0 1 : 3 8 : 0 6 , 4 4 3 70430 INFO zak odoo . modules . r e g i s t r y : module sales_team : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 6 , 8 4 9 70430 INFO zak odoo . modules . loading : Module sales_team loaded in 0 . 5 3 s , 525 quer ies

2022−02−21 0 1 : 3 8 : 0 6 , 8 4 9 70430 INFO zak odoo . modules . loading : Loading module web_editor (27/48)
2022−02−21 0 1 : 3 8 : 0 6 , 9 7 5 70430 INFO zak odoo . modules . r e g i s t r y : module web_editor : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 7 , 2 0 8 70430 INFO zak odoo . modules . loading : Module web_editor loaded in 0 . 3 6 s , 241 quer ies

2022−02−21 0 1 : 3 8 : 0 7 , 2 0 8 70430 INFO zak odoo . modules . loading : Loading module partner_autocomplete (28/48)
2022−02−21 0 1 : 3 8 : 0 7 , 3 1 4 70430 INFO zak odoo . modules . r e g i s t r y : module partner_autocomplete : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 7 , 4 8 6 70430 INFO zak odoo . modules . loading : Module partner_autocomplete loaded in 0 . 2 8 s , 189 quer ies

2022−02−21 0 1 : 3 8 : 0 7 , 4 8 6 70430 INFO zak odoo . modules . loading : Loading module p o r t a l (29/48)
2022−02−21 0 1 : 3 8 : 0 7 , 6 0 6 70430 INFO zak odoo . modules . r e g i s t r y : module p o r t a l : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 7 , 9 5 3 70430 INFO zak odoo . modules . loading : Module p o r t a l loaded in 0 . 4 7 s , 437 quer ies

2022−02−21 0 1 : 3 8 : 0 7 , 9 5 3 70430 INFO zak odoo . modules . loading : Loading module sms (30/48)
2022−02−21 0 1 : 3 8 : 0 8 , 1 9 5 70430 INFO zak odoo . modules . r e g i s t r y : module sms : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 8 , 6 9 8 70430 INFO zak odoo . modules . loading : Module sms loaded in 0 . 7 5 s , 621 quer ies

2022−02−21 0 1 : 3 8 : 0 8 , 6 9 8 70430 INFO zak odoo . modules . loading : Loading module s n a i l m a i l (31/48)
2022−02−21 0 1 : 3 8 : 0 8 , 8 2 2 70430 INFO zak odoo . modules . r e g i s t r y : module s n a i l m a i l : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 9 , 1 7 9 70430 INFO zak odoo . modules . loading : Module s n a i l m a i l loaded in 0 . 4 8 s , 376 quer ies

2022−02−21 0 1 : 3 8 : 0 9 , 1 7 9 70430 INFO zak odoo . modules . loading : Loading module web_unsplash (32/48)
2022−02−21 0 1 : 3 8 : 0 9 , 3 0 0 70430 INFO zak odoo . modules . r e g i s t r y : module web_unsplash : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 9 , 3 9 9 70430 INFO zak odoo . modules . loading : Module web_unsplash loaded in 0 . 2 2 s , 91 quer ies

2022−02−21 0 1 : 3 8 : 0 9 , 4 0 0 70430 INFO zak odoo . modules . loading : Loading module a uth _ to tp _ p o r ta l (33/48)
2022−02−21 0 1 : 3 8 : 0 9 , 5 2 5 70430 INFO zak odoo . modules . r e g i s t r y : module au th _ to tp _ p o r ta l : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 0 9 , 6 0 8 70430 INFO zak odoo . modules . loading : Module au th _ to tp _ p o r ta l loaded in 0 . 2 1 s , 75 quer ies

2022−02−21 0 1 : 3 8 : 0 9 , 6 0 9 70430 INFO zak odoo . modules . loading : Loading module d i g e s t (34/48)
2022−02−21 0 1 : 3 8 : 0 9 , 7 3 7 70430 INFO zak odoo . modules . r e g i s t r y : module d i g e s t : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 1 0 , 2 2 6 70430 INFO zak odoo . modules . loading : Module d i g e s t loaded in 0 . 6 2 s , 308 quer ies

2022−02−21 0 1 : 3 8 : 1 0 , 2 2 6 70430 INFO zak odoo . modules . loading : Loading module p o r t a l _ r a t i n g (35/48)
2022−02−21 0 1 : 3 8 : 1 0 , 4 2 6 70430 INFO zak odoo . modules . r e g i s t r y : module p o r t a l _ r a t i n g : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 1 0 , 6 3 0 70430 INFO zak odoo . modules . loading : Module p o r t a l _ r a t i n g loaded in 0 . 4 0 s , 110 quer ies

2022−02−21 0 1 : 3 8 : 1 0 , 6 3 0 70430 INFO zak odoo . modules . loading : Loading module account (36/48)
2022−02−21 0 1 : 3 8 : 1 0 , 9 4 1 70430 INFO zak odoo . modules . r e g i s t r y : module account : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 1 5 , 8 3 2 70430 INFO zak odoo . modules . loading : Module account loaded in 5 . 2 0 s , 6510 quer ies

2022−02−21 0 1 : 3 8 : 1 5 , 8 3 2 70430 INFO zak odoo . modules . loading : Loading module website (37/48)
2022−02−21 0 1 : 3 8 : 1 6 , 3 0 3 70430 INFO zak odoo . modules . r e g i s t r y : module website : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 0 , 6 9 7 70430 INFO zak odoo . modules . loading : Module website loaded in 4 . 8 6 s , 6033 quer ies

2022−02−21 0 1 : 3 8 : 2 0 , 6 9 7 70430 INFO zak odoo . modules . loading : Loading module account_edi (38/48)
2022−02−21 0 1 : 3 8 : 2 0 , 9 1 9 70430 INFO zak odoo . modules . r e g i s t r y : module account_edi : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 1 , 2 6 9 70430 INFO zak odoo . modules . loading : Module account_edi loaded in 0 . 5 7 s , 318 quer ies

2022−02−21 0 1 : 3 8 : 2 1 , 2 6 9 70430 INFO zak odoo . modules . loading : Loading module payment (39/48)
2022−02−21 0 1 : 3 8 : 2 1 , 4 9 9 70430 INFO zak odoo . modules . r e g i s t r y : module payment : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 2 , 8 9 0 70430 INFO zak odoo . modules . loading : Module payment loaded in 1 . 6 2 s , 1109 quer ies

2022−02−21 0 1 : 3 8 : 2 2 , 8 9 0 70430 INFO zak odoo . modules . loading : Loading module sna i lmai l_account (40/48)
2022−02−21 0 1 : 3 8 : 2 3 , 2 6 4 70430 INFO zak odoo . modules . r e g i s t r y : module sna i lmai l_account : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 3 , 5 3 2 70430 INFO zak odoo . modules . loading : Module sna i lmai l_account loaded in 0 . 6 4 s , 133 quer ies

2022−02−21 0 1 : 3 8 : 2 3 , 5 3 2 70430 INFO zak odoo . modules . loading : Loading module website_mail (41/48)
2022−02−21 0 1 : 3 8 : 2 3 , 7 7 3 70430 INFO zak odoo . modules . r e g i s t r y : module website_mail : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 3 , 9 3 7 70430 INFO zak odoo . modules . loading : Module website_mail loaded in 0 . 4 1 s , 38 quer ies

2022−02−21 0 1 : 3 8 : 2 3 , 9 3 7 70430 INFO zak odoo . modules . loading : Loading module website_sms (42/48)
2022−02−21 0 1 : 3 8 : 2 4 , 1 7 5 70430 INFO zak odoo . modules . r e g i s t r y : module website_sms : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 4 , 3 1 5 70430 INFO zak odoo . modules . loading : Module website_sms loaded in 0 . 3 8 s , 81 quer ies

2022−02−21 0 1 : 3 8 : 2 4 , 3 1 5 70430 INFO zak odoo . modules . loading : Loading module account_edi_ fac turx (43/48)
2022−02−21 0 1 : 3 8 : 2 4 , 7 1 7 70430 INFO zak odoo . modules . r e g i s t r y : module account_edi_ fac turx : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 4 , 9 2 6 70430 INFO zak odoo . modules . loading : Module account_edi_ fac turx loaded in 0 . 6 1 s , 64 quer ies

2022−02−21 0 1 : 3 8 : 2 4 , 9 2 6 70430 INFO zak odoo . modules . loading : Loading module payment_transfer (44/48)
2022−02−21 0 1 : 3 8 : 2 5 , 2 7 2 70430 INFO zak odoo . modules . r e g i s t r y : module payment_transfer : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 5 , 4 3 4 70430 INFO zak odoo . modules . loading : Module payment_transfer loaded in 0 . 5 1 s , 116 quer ies

2022−02−21 0 1 : 3 8 : 2 5 , 4 3 5 70430 INFO zak odoo . modules . loading : Loading module s a l e (45/48)
2022−02−21 0 1 : 3 8 : 2 5 , 7 3 9 70430 INFO zak odoo . modules . r e g i s t r y : module s a l e : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 7 , 4 9 6 70430 INFO zak odoo . modules . loading : Module s a l e loaded in 2 . 0 6 s , 2449 quer ies

2022−02−21 0 1 : 3 8 : 2 7 , 4 9 6 70430 INFO zak odoo . modules . loading : Loading module website_payment (46/48)
2022−02−21 0 1 : 3 8 : 2 7 , 8 6 8 70430 INFO zak odoo . modules . r e g i s t r y : module website_payment : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 2 8 , 1 1 3 70430 INFO zak odoo . modules . loading : Module website_payment loaded in 0 . 6 2 s , 190 quer ies

A.1. Console log output when when installing the E-commerce module 55

2022−02−21 0 1 : 3 8 : 2 8 , 1 1 3 70430 INFO zak odoo . modules . loading : Loading module sale_sms (47/48)
2022−02−21 0 1 : 3 8 : 2 8 , 6 4 9 70430 INFO zak odoo . modules . loading : Module sale_sms loaded in 0 . 5 4 s , 48 quer ies

2022−02−21 0 1 : 3 8 : 2 8 , 6 4 9 70430 INFO zak odoo . modules . loading : Loading module webs i te_sa le (48/48)
2022−02−21 0 1 : 3 8 : 2 9 , 0 9 4 70430 INFO zak odoo . modules . r e g i s t r y : module webs i te_sa le : c r e a t i n g or updating database t a b l e s
2022−02−21 0 1 : 3 8 : 3 0 , 9 9 5 70430 INFO zak odoo . modules . loading : Module webs i te_sa le loaded in 2 . 3 5 s , 2699 quer ies

2022−02−21 0 1 : 3 8 : 3 0 , 9 9 5 70430 INFO zak odoo . modules . loading : 48 modules loaded in 32 .84 s , 30813 quer ies (+0 e x t r a)
2022−02−21 0 1 : 3 8 : 3 1 , 7 1 9 70430 INFO zak odoo . modules . loading : Modules loaded .
2022−02−21 0 1 : 3 8 : 3 1 , 7 2 5 70430 INFO zak odoo . modules . r e g i s t r y : Reg is t ry loaded in 34 .315 s

56 Appendix A.

A.2. The Complete Generated Feature Model 57

A.2 The Complete Generated Feature Model

FIGURE A.1: Resulting FM

59

Bibliography

[1] Sven Apel, Don Batory, Christian Kästner, et al. Feature-Oriented
Software Product Lines Concepts and Implementation / by Sven Apel, Don
Batory, Christian Kästner, Gunter Saake. eng. 1st ed. 2013. Berlin,
Heidelberg, 2013. ISBN: 3-642-37520-0.

[2] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software
Product Line Engineering Foundations, Principles and Techniques / by
Klaus Pohl, Günter Böckle, Frank J. van der Linden. eng. 1st ed. 2005.
Berlin, Heidelberg: Springer Berlin Heidelberg : Imprint: Springer,
2005. ISBN: 3-642-06364-0.

[3] Dirk MUTHIG and Thomas PATZKE. “Generic implementation of
product line components”. eng. In: Lecture notes in computer science.
Berlin: Springer, 2003, pp. 313–329. ISBN: 3540007377.

[4] Frank Linden, Eelco Rommes, and Klaus Schmid. Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering.
eng. 1. Aufl. Berlin, Heidelberg: Springer-Verlag, 2007. ISBN:
9783540714361.

[5] Sven Apel and Christian Kästner. “An Overview of Feature-Oriented
Software Development”. eng. In: Journal of object technology 8.5 (2009),
p. 49. ISSN: 1660-1769.

[6] Kyo Kang, Sholom Cohen, James Hess, et al. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. rep. CMU/SEI-90-TR-021.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1990. URL:
http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=11231.

[7] J van Gurp, J Bosch, and M Svahnberg. “On the notion of variability in
software product lines”. eng. In: Proceedings Working IEEE/IFIP
Conference on Software Architecture. IEEE, 2001, pp. 45–54. ISBN:
0769513603.

[8] Andreas Metzger and Klaus Pohl. “Software Product Line
Engineering and Variability Management: Achievements and
Challenges”. In: Future of Software Engineering Proceedings. FOSE 2014.
Hyderabad, India: Association for Computing Machinery, 2014,
pp. 70–84. ISBN: 9781450328654. DOI: 10.1145/2593882.2593888.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.1145/2593882.2593888

60 Bibliography

[9] Betty H. C Cheng, Rogério de Lemos, Paola Inverardi, et al. Software
Engineering for Self-Adaptive Systems edited by Betty H. C. Cheng, Rogério
de Lemos, Paola Inverardi, Jeff Magee. eng. 1st ed. 2009. Programming
and Software Engineering ; 5525. Berlin, Heidelberg: Springer Berlin
Heidelberg : Imprint: Springer, 2009. ISBN: 3-642-02160-3.

[10] Bo Zhang, Slawomir Duszynski, and Martin Becker. “Variability
Mechanisms and Lessons Learned in Practice”. eng. In: 2016
IEEE/ACM 1st International Workshop on Variability and Complexity in
Software Design (VACE). ACM, 2016, pp. 14–20. ISBN: 9781450341769.

[11] Xhevahire Tërnava and Philippe Collet. “On the Diversity of
Capturing Variability at the Implementation Level”. eng. In:
Proceedings of the 21st International Systems and Software Product Line
Conference - Volume B. SPLC ’17. ACM, 2017, pp. 81–88. ISBN:
1450351190.

[12] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. “A taxonomy of
variability realization techniques”. eng. In: Software, practice experience
35.8 (2005), pp. 705–754. ISSN: 0038-0644.

[13] Thorsten Berger, Rolf-Helge Pfeiffer, Reinhard Tartler, et al.
“Variability mechanisms in software ecosystems”. eng. In: Information
and software technology 56.11 (2014), pp. 1520–1535. ISSN: 0950-5849.

[14] Critina Gacek and Michalis Anastasopoules. “Implementing product
line variabilities”. eng. In: Proceedings of the 2001 symposium on software
reusability. SSR ’01. ACM, 2001, pp. 109–117. ISBN: 1581133588.

[15] T Patzke. Sustainable evolution of product line infrastructure code. eng.
2011.

[16] A Rashid, T Cottenier, P Greenwood, et al. “Aspect-Oriented Software
Development in Practice: Tales from AOSD-Europe”. eng. In:
Computer (Long Beach, Calif.) 43.2 (2010), pp. 19–26. ISSN: 0018-9162.

[17] J Bosch. “Superimposition: a component adaptation technique”. eng.
In: Information and software technology 41.5 (1999), pp. 257–273. ISSN:
0950-5849.

[18] Don Batory, Peter Höfner, and Jongwook Kim. “Feature interactions,
products, and composition”. eng. In: SIGPLAN notices 47.3 (2012),
pp. 13–22. ISSN: 0362-1340.

[19] Marko Rosenmüller, Norbert Siegmund, Sven Apel, et al. “Flexible
feature binding in software product lines”. eng. In: Automated software
engineering 18.2 (2011), pp. 163–197. ISSN: 0928-8910.

[20] Thomas Patzke, Martin Becker, Michaela Steffens, et al. “Identifying
improvement potential in evolving product line infrastructures: 3 case
studies”. eng. In: Proceedings of the 16th International Software Product
Line Conference. Vol. 1. SPLC ’12. ACM, 2012, pp. 239–248. ISBN:
9781450310949.

Bibliography 61

[21] M.D Ernst, G.J Badros, and D Notkin. “An empirical analysis of c
preprocessor use”. eng. In: IEEE transactions on software engineering
28.12 (2002), pp. 1146–1170. ISSN: 0098-5589.

[22] Jörg Liebig, Sven Apel, Christian Lengauer, et al. “An analysis of the
variability in forty preprocessor-based software product lines”. eng.
In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering. Vol. 1. ICSE ’10. ACM, 2010, pp. 105–114. ISBN:
9781605587196.

[23] CharlesW Krueger. “Easing the Transition to Software Mass
Customization”. eng. In: Lecture notes in computer science. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 282–293. ISBN: 9783540436591.

[24] Axel Halin, Alexandre Nuttinck, Mathieu Acher, et al. “Yo Variability!
JHipster: A Playground for Web-Apps Analyses”. eng. In: 2017,
pp. 44–51.

[25] Ra’Fat Ahmad Al-Msie’Deen, Marianne Huchard,
Abdelhak-Djamel Seriai, et al. “Reverse Engineering Feature Models
from Software Configurations using Formal Concept Analysis”. eng.
In: 11th International Conference on Concept Lattices and Their
Applications, CEUR-Workshop. Vol. 1252. 2014.

[26] Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari Sahraoui.
“Recovering software product line architecture of a family of
object-oriented product variants”. eng. In: The Journal of systems and
software 131 (2017), pp. 325–346. ISSN: 0164-1212.

[27] Kun Chen, Wei Zhang, Haiyan Zhao, et al. “An approach to
constructing feature models based on requirements clustering”. eng.
In: 13th IEEE International Conference on Requirements Engineering
(RE’05). IEEE, 2005, pp. 31–40. ISBN: 0769524257.

[28] A Braganca and R.J Machado. “Automating Mappings between Use
Case Diagrams and Feature Models for Software Product Lines”. eng.
In: 11th International Software Product Line Conference (SPLC 2007).
IEEE, 2007, pp. 3–12. ISBN: 0769528880.

[29] Ra’Fat Ahmad Al-Msie’Deen, Abdelhak-Djamel Seriai, and
Marianne Huchard. Reengineering Software Product Variants into
Software Product Line: REVPLINE Approach. eng. Lambert Academic
Publishing (LAP), 2014. ISBN: 3659511250.

[30] Yiming Yang, Xin Peng, and Wenyun Zhao. “Domain Feature Model
Recovery from Multiple Applications Using Data Access Semantics
and Formal Concept Analysis”. eng. In: 2009 16th Working Conference
on Reverse Engineering. IEEE, 2009, pp. 215–224. ISBN: 9780769538679.

[31] Steven She, Rafael Lotufo, Thorsten Berger, et al. “Reverse
engineering feature models”. eng. In: 2011 33rd International Conference
on Software Engineering (ICSE). ICSE ’11. ACM, 2011, pp. 461–470.
ISBN: 9781450304450.

62 Bibliography

[32] Mathieu Acher, Anthony Cleve, Gilles Perrouin, et al. “On extracting
feature models from product descriptions”. eng. In: Proceedings of the
Sixth International Workshop on variability modeling of software-intensive
systems. VaMoS ’12. ACM, 2012, pp. 45–54. ISBN: 9781450310581.

[33] Evelyn Nicole Haslinger, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. “On Extracting Feature Models from Sets of Valid
Feature Combinations”. eng. In: Fundamental Approaches to Software
Engineering. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 53–67. ISBN: 364237056X.

[34] K Czarnecki and A Wasowski. “Feature Diagrams and Logics: There
and Back Again”. eng. In: 11th International Software Product Line
Conference (SPLC 2007). IEEE, 2007, pp. 23–34. ISBN: 0769528880.

[35] Steven She, Uwe Ryssel, Nele Andersen, et al. “Efficient synthesis of
feature models”. eng. In: Information and software technology 56.9 (2014),
pp. 1122–1143. ISSN: 0950-5849.

[36] Roberto E Lopez-Herrejon, Lukas Linsbauer, José A Galindo, et al.
“An assessment of search-based techniques for reverse engineering
feature models”. eng. In: The Journal of systems and software 103 (2015),
pp. 353–369. ISSN: 0164-1212.

[37] Mathieu Acher, Anthony Cleve, Philippe Collet, et al. “Extraction and
evolution of architectural variability models in plugin-based
systems”. eng. In: Software Systems Modeling 13.4 (2013),
pp. 1367–1394. ISSN: 1619-1366.

[38] Jabier Martinez, Tewfik Ziadi, Tegawende F Bissyande, et al.
“Bottom-Up Technologies for Reuse: Automated Extractive Adoption
of Software Product Lines”. eng. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE, 2017,
pp. 67–70. ISBN: 9781538615898.

[39] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis
Mathematical Foundations / by Bernhard Ganter, Rudolf Wille. eng. 1st ed.
1999. Berlin, Heidelberg: Springer Berlin Heidelberg : Imprint:
Springer, 1999. ISBN: 3-540-62771-5.

[40] “Concept data analysis; theory and applications”. eng. In: Scitech Book
News 29.2 (2005), p. 24. ISSN: 0196-6006.

[41] Jonas Poelmans, Paul Elzinga, Stijn Viaene, et al. “Formal Concept
Analysis in Knowledge Discovery: A Survey”. eng. In: Conceptual
Structures: From Information to Intelligence. Lecture Notes in Computer
Science (), pp. 139–153. ISSN: 0302-9743.

[42] Tom Huysegoms, Monique Snoeck, Guido Dedene, et al. “Visualizing
Variability Management in Requirements Engineering through
Formal Concept Analysis”. In: Procedia Technology 9 (2013). CENTERIS
2013 - Conference on ENTERprise Information Systems / ProjMAN
2013 - International Conference on Project MANagement/ HCIST
2013 - International Conference on Health and Social Care

Bibliography 63

Information Systems and Technologies, pp. 189–199. ISSN: 2212-0173.
DOI: https://doi.org/10.1016/j.protcy.2013.12.021.

[43] B. A Davey and H. A. (Hilary A.) Priestley. Introduction to lattices and
order / B.A. Davey, H.A. Priestley. eng. 2nd ed. Cambridge, U.K. ; New
York, N.Y.: Cambridge University Press, 2002. ISBN: 0521784514.

[44] Adapting our open source license. fr-FR. publisher: Odoo S.A. Feb. 2015.
URL: https://www.odoo.com/blog/notre-blog-5/adapting-our-
open-source-license-245 (visited on 05/12/2022).

[45] Release Notes | Odoo. fr-FR. publisher: Odoo S.A. URL:
https://www.odoo.com/page/release-notes (visited on
05/12/2022).

[46] Serhiy A Yevtushenko. “System of data analysis" Concept Explorer"”.
In: Proc. 7th National Conference on Artificial Intelligence (KII’00). 2000,
pp. 127–134.

[47] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, et al.
Introduction to Algorithms, Third Edition. eng. 3rd ed. Cambridge: MIT
Press, 2009. ISBN: 9780262533058.

https://doi.org/https://doi.org/10.1016/j.protcy.2013.12.021
https://www.odoo.com/blog/notre-blog-5/adapting-our-open-source-license-245
https://www.odoo.com/blog/notre-blog-5/adapting-our-open-source-license-245
https://www.odoo.com/page/release-notes

