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for Life Science (NARILIS), University of Namur, Namur, Belgium, ° Namur Research College (NARC), University of Namur,
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Purple non-sulfur bacteria (PNSB) are recognized as a highly versatile group of bacteria
that assimilate a broad range of carbon sources. Growing heterotrophically, PNSB
such as Rhodospirillum rubrum (Rs. rubrum) generate reduced equivalents that are
used for biomass production. However, under photoheterotrophic conditions, more
reduced electron carriers than required to produce biomass are generated. The excess
of reduced equivalents still needs to be oxidized for the metabolism to optimally
operate. These metabolic reactions are known as electron sinks. Most PNSB rely on
the CO»-fixing Calvin cycle and Ho production to oxidize these reduced equivalents.
In addition to these well-described electron sinks, the involvement of some pathways,
such as polyhydroxyalkanoate (PHA) biosynthesis, in redox poise is still controversial
and requires further studies. Among them, isoleucine biosynthesis has been recently
highlighted as one of these potential pathways. Here, we explore the role of isoleucine
biosynthesis in Rs. rubrum. Our results demonstrate that the isoleucine content is
higher under illuminated conditions and that submitting R. rubrum to light stress further
increases this phenomenon. Moreover, we explore the production of (p)ppGpp in Rs.
rubrum and its potential link with light stress. We further demonstrate that a fully
functional isoleucine biosynthesis pathway could be an important feature for the onset
of Rs. rubrum growth under photoheterotrophic conditions even in the presence of an
exogenous isoleucine source. Altogether, our data suggest that isoleucine biosynthesis
could play a key role in redox homeostasis.

Keywords: purple bacteria, acetic acid, photoheterotroph, redox balance, electron sink, isoleucine biosynthesis,
light intensity, volatile fatly acids (VFA), photosynthetic metabolism of carbon
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INTRODUCTION

Purple non-sulfur bacteria (PNSB) constitute a metabolically
highly versatile group of bacteria capable of assimilating a
broad range of carbon sources. Among them, Rhodospirillum
rubrum (Rs. rubrum) has been extensively studied for the
assimilation of volatile fatty acids (VFAs). Among VFAs, acetate
has received significant interest as this compound represents
the most abundant VFA issued from fermentation processes
(Ivanovsky et al., 1997; Erb et al., 2008, 2009; Berg and Ivanovsky,
2009; Leroy et al., 2015; Alloul et al., 2019; Bayon-Vicente et al,,
2020a; De Meur et al., 2020). Although acetate assimilation
has long been debated, it is now well established that acetate
is mainly assimilated through the ethylmalonyl-CoA (EMC)
pathway in isocitrate lyase-lacking organisms (icI~) (Erb et al,,
2008; Leroy et al., 2015; De Meur et al., 2018). However, another
metabolic cycle, the citramalate cycle, has, for a long time,
been hypothesized as an alternative acetate assimilation pathway
(Osumi and Katsuki, 1977; Ivanovsky et al., 1997; Berg and
Ivanovsky, 2009). This cycle is characterized by the condensation
of acetyl-CoA and pyruvate into citramalate [also called (R)-
2-methylmalate] that is further converted into glyoxylate and
propionyl-CoA (Berg and Ivanovsky, 2009). However, some
enzymes required in the citramalate cycle operation have not
been identified, suggesting that the observed early production of
citramalate may have another function. Indeed, recent research
carried out by our group showed that proteins involved in
the isoleucine biosynthesis pathway are upregulated during the
photoheterotrophic assimilation of acetate (Leroy et al., 2015;
De Meur et al., 2018; Bayon-Vicente et al., 2020a), butyrate (De
Meur et al.,, 2020), or valerate (Bayon-Vicente et al., 2020b)
when compared to succinate. Moreover, our group has already
shown that the abundance of free isoleucine was significantly
higher in the presence of butyrate than in the presence of
succinate (Ile/Argy,, = 10 vs. Ile/Argg,.. = 2). This observation
may explain the hypothesis of Ivanovsky’s group as citramalate
or (R)-2-methylmalate constitutes the first intermediary of this
pathway. As already suggested by other studies (Shimizu et al.,
2010; Bayon-Vicente et al., 2020a; De Meur et al., 2020; McCully
et al., 2020), isoleucine biosynthesis could act as an electron
sink. In this context, isoleucine biosynthesis could be of major
importance in redox homeostasis in order to deal with the
redox imbalance triggered by non-favorable redox environmental
conditions, such as the use of reduced carbon sources (Bayon-
Vicente et al., 2020a,b; De Meur et al., 2020) or high light
intensity (Bayon-Vicente et al, 2020a). Indeed, considering
acetate as the sole source of carbon, the synthesis of isoleucine
permits the net consumption of three reducing equivalents.
Another argument corroborating this hypothesis is that the
sudden increase in light intensity, another culture condition
hypothesized to trigger redox imbalance, led to a comparable
upregulation of enzymes of branched-chain amino acid (BCAA)
biosynthesis in the presence of acetate, further suggesting the
importance of BCAA synthesis in redox homeostasis (Bayon-
Vicente et al., 2020a). Altogether, these data suggest that
the isoleucine biosynthesis pathway could play a key role in
redox homeostasis.

Alternatively, it was recently shown that a higher abundance
of branched-chain amino acids could be the result of cellular
stress triggering a stringent response. This stringent response is
characterized by an increased production of intracellular signal
molecules such as guanosine 5'-diphosphate, 3’-diphosphate
(ppGpp), and guanosine 5'-triphosphate, 3'-diphosphate
(pppGpp), collectively called (p)ppGpp or alarmones. This
stringent response represents a strategy developed by bacteria to
handle changing environmental conditions (Magnusson et al.,
2003; Ronneau et al., 2016; Fang and Bauer, 2018). The spectrum
of activity of (p)ppGpp has first been studied in chemotrophic
organisms such as Escherichia coli (Magnusson et al, 2005;
Eydallin et al., 2007), Pseudomonas aeruginosa (Erickson et al.,
2004; Ruiz et al, 2004), or Salmonella (Pizarro-Cerdd and
Tedin, 2004) and revealed that an accumulation of (p)ppGpp
is involved in the biosynthesis of amino acids, in cell cycle
control (Xiao et al., 1991; Beaufay et al., 2021), virulence gene
expression (Erickson et al, 2004; Pizarro-Cerda and Tedin,
2004), or biofilm formation (He et al, 2012). Interestingly,
it was shown that Rhodobacter capsulatus adjusts the level of
(p)ppGpp by controlling the Rel hydrolase activity in response
to the intracellular branched-chain amino acid concentration
(Fang and Bauer, 2018).

Here, we attempted to elucidate the role of the isoleucine
biosynthesis pathway in Rs. rubrum. Firstly, we monitored
the content of free isoleucine in Rs. rubrum under different
culture conditions. Then, we decided to explore the regulation
of isoleucine biosynthesis by stringent response by inspecting the
production of (p)ppGpp in Rs. rubrum under different metabolic
profiles. Finally, as isoleucine itself is described as an inhibitor
of the biosynthesis pathway, we tested the addition of this
amino acid to the culture medium to observe the effect of the
inactivation of this potential electron sink on the ability of Rs.
rubrum to grow with acetate as the sole carbon source.

MATERIALS AND METHODS

Bacterial Strain, Medium Composition,

and Cultivation Conditions

The wild-type and acetate competent strains of Rs. rubrum
S1H (ATCC 25903) were cultivated in a defined medium as
described previously (Leroy et al., 2015) under dark aerobic, light
aerobic, and light anaerobic conditions. The acetate competent
strain constitutes an acetate-acclimated strain characterized by
a significant reduction of the lag phase (De Meur et al., 2017).
Moreover, this strain has already shown outstanding tolerance
to high light intensity (Bayon-Vicente et al., 2020a). Cultures
were performed in 50-ml serum bottles filled with 40 ml
medium. Concerning the dark and light aerobic conditions,
the cultures were inoculated with a starting ODggonm = 0.1
and incubated at a temperature of 30°C under orbital shaking
at 150 rpm. Photoheterotrophic light anaerobic cultures were
inoculated at a starting ODggonm = 0.5 and incubated at
30°C at 180 rpm. The carbon concentration was set to
125 mM in terms of carbon (i.e., 62.50 mM for acetic
acid and 31.25 mM for succinic acid). The medium was
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supplemented with 35 mM of ammonium chloride as the
nitrogen source and 0.06 mM of biotin (final concentration).
Moreover, depending on the experiment considered, the medium
was supplemented with filtered 3 mM or 50 mM sodium
bicarbonate (final concentration). The upper gaseous phase
was flushed using pure N, and the 50-ml flasks hermetically
sealed. Cultures were subjected to 50 pmol photons/m? s
(10 W, 100 Im, 2,650 K; Sencys). To perform light stress
experiments (see below), this intensity was elevated from 50
to 150 wmol photons/m? s. Pre-cultures used for the different
experiments were grown in the presence of succinate and acetate
for the wild-type and acetate competent strains, respectively.
Growth was monitored by measuring the optical density at
680 nm using a 1-cm path length cuvette and a Thermo Scientific
Helios Zeta spectrophotometer (Waltham, MA, United States).
When the optical density (OD) was higher than 1.0, the samples
were diluted and the measured OD values were corrected
for the dilution.

Monitoring of the Acetate Consumption
Monitoring of the carbon source concentration was performed
as described (Leroy et al, 2015). Culture supernatants were
obtained through centrifugation at 12,000 rpm and stored
at —20°C before analysis. One hundred microliters of the
culture supernatants was analyzed by high-performance liquid
chromatography (HPLC) refractometry (Waters 2695 Separation
Module, Waters 2414 Refractive Index Detector). The separation
was realized in isocratic mode using a Shodex SUGAR SH1011
column (300 mm x 8 mm) with 5 mM H,SO, as the mobile
phase (flow rate = 1 ml/min). Detection was performed
through refractometry. The carbon source concentration
was assayed by integrating the carbon source-specific peak
(RTacetate = 11.27 min) and based on a standard curve.

Measurement of Amino Acid Abundance

in the Biomass

Branched-chain amino acids were extracted from pellets issued
from the centrifugation of 500 pl of culture. The pellet was
resuspended in 1.5 ml methanol/chloroform solution (1:2, v/v).
The resuspended pellet then underwent five freeze/thawing
cycles, and 400 pl of Milli-Q water (Merck, Darmstadt, Germany)
was then added and the mixture centrifuged (5,000 rpm, 10 min,
4°C). The upper aqueous phase was recovered and submitted
to SpeedVac before being stored at —20°C until analysis. The
obtained pellet was then resuspended in 0.2% (v/v) formic
acid in ultrapure MS-grade water. The BCAA content was
analyzed using an Eksigent LC425 system coupled to a Q-TRAP
instrument (AB Sciex Q-Trap-6500 + ; ABSciex, Framingham,
MA, United States) used in multiple reaction monitoring (MRM)
mode. The amino acids were separated on a C18 YMC-Triat
0.3-mm x 150-mm column operated at a flow rate of 5 pl/min
in isocratic mode [3% acetonitrile (v/v) and 1% formic acid
(v/v)] for 5 min, followed by an acetonitrile gradient from 3 to
55% in 3 min. The following transitions were used to quantify
the following amino acids: arginine 175/116 and isoleucine
132/69. To avoid extraction bias, isoleucine abundance was

expressed as the ratio of the area under the curve for its specific
transition to the area under the curve of the specific transition
of the arginine.

Detection of Intracellular (p)ppGpp Level
The (p)ppGpp levels were visualized as described previously
(Ronneau et al., 2016), with some modifications. Briefly, bacteria
were grown under dark aerobic, light aerobic, and light anaerobic
conditions in P-free culture medium. Once cultures entered the
exponential phase, 25 pl of KH,*?PO, was added at a final
concentration of 100 wCi ml~! and the cultures incubated for
1 h. Then 8 ml of the culture was centrifuged and used for
(p)ppGpp extraction using 500 pl of 2 M formic acid, incubated
on ice for 30 min, and then stored overnight at —20°C. The
cell extracts were pelleted (14,000 rpm, 5 min) and 6 x 2 pl
of the supernatant was spotted onto a polyethyleneimine (PEI)
plate (Macherey-Nagel, Duren, Germany). The PEI plate was
then developed in 1.5 M KH,;POy4 (pH 3.4) at room temperature.
Finally, the PEI plates were imaged on a MS Storage Phosphor
Screen (GE Healthcare, Chicago, IL, United States) and analyzed
with a Cyclone Phosphor Imager (PerkinElmer, Waltham, MA,
United States). The ratio between ppGpp and GTP was analyzed
using Image] software.

3-Methyl-2-oxopentanoate Extraction

and Quantification

The methanolysis of 3-methyl-2-oxopentanoate was conducted
as previously described (Bayon-Vicente et al., 2020a). Briefly,
500 pl of culture was centrifuged (8,000 rpm, 15 min) and
stored at —20°C until analyzed. 3-Methyl-2-oxopentanoate
was extracted and methanolyzed by resuspending the freeze-
dried supernatant, respectively, in 500 pl of chloroform
and 2 ml of methanolysis solution consisting of UHPLC
methanol/concentrated HCI (90:10). The methanolysis solution
also includes 0.1 mg/ml of 3-methylbenzoic acid as the internal
standard. The mixture was then incubated at 100°C for 2 h and
then cooled down on ice. One milliliter of distilled water was
then added, and the bottom chloroform part was recovered and
analyzed by GC-MS. The obtained spectrum was compared to the
NISTO05 ion spectrum bank. 3-Methyl-2-oxopentanoate content
was expressed as arbitrary units (AU) corresponding to the area
under the curve for the extracted ion chromatogram for m/z = 57
standardized to the dry cell weight.

Acetolactate Synthase Activity Test

Cells were harvested at different growth phases (ie., lag
phase, early exponential phase, or late exponential phase)
before being centrifuged and washed using phosphate buffer
(50 mM, pH 7.0). Cells were lysed in 100 pl phosphate buffer
using 25 mg of glass bead (bead size, < 106 pum; Sigma-
Aldrich, St. Louis, MO, United States) and lysozyme (final
concentration, 1 mg/ml). Cell-free extracts were obtained by
centrifugation (13,000 rpm, 10 min, 4°C) and the protein
concentration was determined using the Bradford method
(Bradford, 1976), with bovine gamma globulin as a standard.
Acetolactate synthase activity was examined as described
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previously (Mubhitch, 1988). The acetolactate produced after
1 h was assayed at a single end point by conversion to
acetoin, which was detected by the reaction of Westerfeldt
(Westerfeldt, 1945) and quantified through the use of a
standard curve after subtraction of the acetoin produced
without substrate. Acetoin content was then normalized by the
protein content.

RESULTS AND DISCUSSION

Impact of Volatile Fatly Acids and
Metabolic Regime on Relative Isoleucine
Abundance

Isoleucine biosynthesis-related enzymes have already been
highlighted as upregulated in the presence of VFAs (Leroy
et al., 2015; De Meur et al., 2018, 2020; Bayon-Vicente et al,,
2020b). Moreover, the relative abundance of isoleucine has
already been demonstrated to be higher in the presence of
butyrate than in the presence of succinate (De Meur et al., 2020).
Thus, we decided to monitor all along the growth curve the
relative abundance of isoleucine in the presence of succinate
or acetate as the sole carbon source, under photoheterotrophic
and chemoheterotrophic conditions. As the fixation of CO,
has already been demonstrated to act on redox homeostasis
(Gordon and McKinlay, 2014), we decided to also investigate
the impact of the addition of 50 mM HCO3™~ on isoleucine
content. This relative abundance was calculated as the ratio of
the abundance obtained for isoleucine to the one obtained for
arginine, as previously described (De Meur et al., 2020). Arginine
was chosen as its abundance remains stable over the growth
curve (Supplementary Table 1). Moreover, we have already
conducted several proteomic studies highlighting the impact
of the different VFAs on the isoleucine biosynthesis pathway,
but none showed that the arginine biosynthesis pathway was
impacted by our conditions (i.e., the use of VFAs and/or light
stress) (Leroy et al., 2015; Bayon-Vicente et al., 2020a,b; De Meur
et al.,, 2020). No significant difference was observed regarding
the profile of isoleucine abundance along the growth curve
whatever the metabolic regime, the carbon source, or the strain
tested. We decided to compare the highest abundance reached
during the growth curve for all the conditions. Interestingly, we
observed that the relative isoleucine abundance always reached
a significantly higher level under the photoheterotrophic regime
than under the chemoheterotrophic regime (2.5-fold higher at
the end of the culture; t-test: p < 0.05) (Figure 1). On the
other hand, no difference was observed between the relative
isoleucine abundances for bacteria cultivated in the presence
of acetate or succinate under both metabolic regimes. It is
interesting to note that the supplementation of the medium
with 50 mM NaHCOj3 did not result in a modification of the
isoleucine content. Moreover, differences were never observed
between the acetate competent strain and the wild-type strain
cultivated in the presence of acetate. This observation suggests
that the higher redox stress tolerance observed for the acetate
competent strain is not linked to a higher flux through isoleucine

biosynthesis. As a sudden increase in the light intensity (light
stress) has already been linked to the upregulation of enzymes
of the isoleucine biosynthesis pathway (Bayon-Vicente et al.,
2020a), we also studied the relative abundance of isoleucine after
such a sudden increase in light intensity. Very interestingly,
the application of light stress to bacteria cultivated in the
presence of acetate led to a significant sixfold increase (¢-test:
p < 0.05) in the cellular isoleucine content (Figure 1). This
observation corroborates the results obtained in our previous
research that showed an upregulation of the enzymes involved
in isoleucine biosynthesis following an increase in light intensity
(Bayon-Vicente et al., 2020a). It is interesting to note that
this result has not been observed for the acetate competent
strain submitted to light stress, further highlighting that the
outstanding tolerance of this strain to light stress does not rely
on isoleucine synthesis.

The present results suggest that the isoleucine biosynthesis
pathway could be used in order to regenerate the reduced
cofactors synthetized through the reverse activity of NADH
dehydrogenase (Klamt et al., 2008; Golomysova et al., 2010)
after light stress in the presence of acetate. In Rs. rubrum,
isoleucine biosynthesis is sustained through two pathways:
whereas the first one relies on the threonine biosynthesis pathway
(McCully et al., 2020), the second one is linked to citramalate
synthesis (Leroy et al., 2015). The former has already been
linked to redox homeostasis by McCully and collaborators
(McCully et al., 2020). However, although some clues seem to
indicate that the latter could be linked to redox homeostasis,
no clear evidence has been brought forward. Nevertheless,
although McCully and collaborators have suggested that the
biosynthesis of isoleucine through the citramalate pathway
constitutes a NAD™T reducing pathway in the Calvin-Benson-
Bassham cycle mutant, this statement was related to experiments
done with fumarate as the carbon source (McCully et al,
2020). However, considering acetate as the carbon source,
the biosynthesis of isoleucine through citramalate allows the
net consumption of three reduced equivalents (Figure 2).
It is interesting to note that, depending on the substrate,
different pathways leading to isoleucine biosynthesis are used.
Indeed, in the case of the study of McCully et al, in the
presence of fumarate, isoleucine is suggested to be synthetized
through a threonine-dependent pathway (Figure 2) (McCully
et al, 2020), whereas our group, in the presence of acetate
as the carbon source, highlighted a citramalate-dependent
pathway (Figure 2) (Leroy et al, 2015; Bayon-Vicente et al.,
2020a). Moreover, although the use of the threonine-dependent
isoleucine pathway in the presence of acetate would represent a
reduced equivalent consuming pathway, this pathway would also
constitute a HCO3 ™~ consuming pathway. Indeed, the production
of oxobutanoate in the presence of acetate is accompanied by
the net consumption of two molecules of HCO3;~ (Figure 2).
Considering the low concentrations of the bicarbonate ions
in our culture medium (i.e., 3 mM), this pathway would
constitute an unfavorable one when compared to the citramalate-
dependent pathway (i.e., no net consumption of HCO3 ™). It is
thus interesting to note that both mentioned pathways could
constitute redox balancing pathways and that, depending on
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the nutritional context, Rs. rubrum would be able to switch
from one to another.

Impact of Volatile Fatly Acids and
Metabolic Regime on ppGpp

Accumulation

Although a high intracellular branched-chain amino acid
concentration was already linked to a reduced (p)ppGpp content
(Fang and Bauer, 2018), another study conducted on E. coli
has already stated that (p)ppGpp accumulation could lead to an
upregulation of the amino acid biosynthesis genes (Paul et al.,
2005). Moreover, it was already demonstrated in R. capsulatus
that the product of a single gene, rel, regulates the accumulation
of (p)ppGpp (Mittenhuber, 2001). In 2004, Masuda and Bauer
demonstrated a link between Rel activity and HvrA, a trans-acting
regulatory protein, and demonstrated that rel can only be deleted
if hvrA was knocked out first. HvrA has also been recognized
as implicated in the activation of puf operon, which encodes
for the a- and B-polypeptides of the B875nm complex (Masuda
and Bauer, 2004), which could explain the observed higher
content under photoheterotrophic conditions. Thus, it could be
hypothesized that an overexcitation of the photopigment, as is
the case under light stress, would result in the activation of
HrvA, further leading to the accumulation of (p)ppGpp, which in
turn results in amino acid overproduction. Altogether, the above-
mentioned studies depict a precise regulation loop. Thus, the
increase in isoleucine content could be linked to either a stringent

response just after light stress or due to the implication of the
isoleucine biosynthesis pathway in redox homeostasis.

In order to first explore whether the higher isoleucine
content observed previously could be linked to the onset
of a stringent response, we investigated the impact of the
different metabolic regimes and of the sudden light increase
on (p)ppGpp detection. As stringent response constitutes a
quick answer to an environmental stimulus, its investigation
must be performed in a reduced time frame after the stimulus.
Hence, samples for (p)ppGpp quantification were taken at the
beginning of the exponential phase for the chemoheterotrophic
and photoheterotrophic conditions or 1 h after the light stress.
To distinguish the potential effect of the anaerobic condition for
illumination, we also performed (p)ppGpp quantification in the
light aerobic condition. To evaluate (p)ppGpp accumulation in
the different conditions, we spotted a positive and a negative
control corresponding to extracts of a wild-type strain and a Arel
strain of Caulobacter crescentus, respectively.

Interestingly, each tested condition led to ppGpp
accumulation, suggesting that the metabolic regimes seemed
to have no effect on this accumulation (Figure 3). To further
investigate the ppGpp accumulation in Rs. rubrum, we computed
the ratio between ppGpp and GTP. However, no significant
difference has been observed between the tested conditions
(Table 1), further confirming that the differential relative
isoleucine abundance after light stress cannot be, at least entirely,
explained by an accumulation of ppGpp and, thus, to a stringent
response of Rs. rubrum. Moreover, no difference in the ppGpp
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Photoheterotrophy

GTP

ppGpp

FIGURE 3 | Autoradiography of polyethyleneimine (PEI) thin-layer chromatography of formic acid cell extract from Caulobacter crescentus (PC and NC) and
Rhodospirillum rubrum (succinate and acetate) cultivated under photoheterotrophic (left panel) or dark or light aerobic (right panel) conditions.

Dark aerobic Light aerobic

TABLE 1 | Signal left by ppGpp and GTP molecules following autoradiography of
polyethyleneimine (PEI) thin-layer chromatography of formic acid cell extract from
Rhodospirillum rubrum computed by Imaged software.

Conditions ppGpp signal GTP signal ppGpp/GTP
Chemoheterotrophy

Succinate dark aerobic 7,454.639 9,141.287 0.815
Acetate dark aerobic 4,191.585 5,186.420 0.808
Succinate light aerobic 13,819.397 17,162.500 0.805
Acetate light aerobic 9,744.183 12,174.929 0.800
Photoheterotrophy

Succinate light anaerobic 7,979.603 9,932.914 0.803
Acetate light anaerobic 7,654.437 9,422.640 0.812
Acetate light stress 7,476.207 9,245.424 0.809

The third column represents the normalized data described as the ratio between
the ppGpp and GTP signals.

accumulation was observed between bacteria cultivated under
the chemoheterotrophic and the photoheterotrophic condition.

Impact of the Addition of Isoleucine on
Photoheterotrophic Assimilation of
Acetate

The higher content of isoleucine seems to be an important feature
of the phototrophic metabolism that is further exacerbated after
light stress in the presence of acetate. The biosynthesis of BCAAs
was already hypothesized to act as an electron sink (Shimizu
etal., 2010; McCully et al., 2020). Thus, in order to investigate the
potential impact of isoleucine biosynthesis on redox homeostasis,
we attempted to inhibit this biosynthetic pathway by adding
10 mM of isoleucine (Tanaka, 2003; Elisdkova et al., 2005) in the
medium of bacteria cultivated in the presence of acetate. As the
acetate competent strain of Rs. rubrum has already been identified
as particularly tolerant to redox stress (De Meur etal., 2017;

Bayon-Vicente et al., 2020a), we also studied the phenotypic
response of this strain to the addition of isoleucine. Interestingly,
the growth of the wild-type strain in the presence of 10 mM
isoleucine was characterized by a remarkable lag phase lasting for
more than 250 h, which was not observed when the wild-type
strain was cultivated in the absence of isoleucine (Figure 4). It
is interesting to note that the phenotype of the acetate competent
strain was not impacted by the addition of isoleucine and that
no lag phase was observed for this strain (Figure 4). The lag
phase observed during the photoheterotrophic assimilation of
acetate has already been associated with redox stress linked to a
high light/cell ratio (Leroy et al., 2015). This redox stress could
be reduced by the addition of HCO3™ in the medium or an
increase in the inoculum size. This suggests that the isoleucine
biosynthesis pathway may act as an electron sink helping cells
balance the redox stress and accelerating the onset of growth
under the photoheterotrophic regime in the presence of acetate.
However, in both strains, a comparable ODggonm of about 7 in
the presence of isoleucine is reached, involving similar biomass
being produced from the available carbon source, which is not
the case in the absence of isoleucine, where an ODggonm of
about 5 is reached. Curiously, whereas the exhaustion of acetate
is associated with the end of the exponential phase in the
presence of acetate as the sole source of carbon, the growth of
Rs. rubrum in the presence of isoleucine continued after the total
consumption of acetate. This observation suggests that bacterial
growth is sustained by isoleucine or one of the degradation
products utilized after acetate consumption, but as isoleucine
quantitation has not been performed in the supernatant, this
hypothesis cannot be confirmed (Figure 4).

Interestingly, the GC-MS analysis of the cell-free medium
revealed the emergence of the molecule 3-methyl-2-
oxopentanoate in cultures grown in the presence of isoleucine.
This compound is known to result from the deamination
of isoleucine and constitutes the first intermediary of the
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FIGURE 4 | Rhodospirillum rubrum wild-type (A, C) and acetate competent (B, D) strains cultivated in the presence of acetate with (C, D) or without (A, B) 10 mM
of isoleucine. Upper panels represent the growth (full lines) and acetate consumption (dotted lines) and lower panels represent the content of
3-methyl-2-oxopentanoate in the medium. N = 5. Results are represented as the mean + SEM.

isoleucine degradation pathway (Figure 2). This compound degradation into 3-methyl-2-oxopentanoate is a prerequisite of
is absent from cultures grown in the absence of isoleucine photoheterotrophic growth in the presence of acetate.

(Figure 4) and in the inoculum-free flask (data not shown). Considering the potential inhibitory effect of isoleucine on
It demonstrates that this compound is linked to the presence the BCAA synthesis pathway, our observations indicate that the
of isoleucine in the medium and probably reflects isoleucine isoleucine biosynthetic pathway could be essential to balancing
degradation by Rs. rubrum. Interestingly, for the wild-type the redox stress associated with the lag phase. The degradation
strain, the peak of 3-methyl-2-oxopentanoate is observed just of isoleucine would then release this inhibition, allowing the
before the onset of growth, which may suggest that isoleucine onset of growth. Interestingly, no lag phase was observed for the
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acetate competent strain. Moreover, 3-methyl-2-oxopentanoate
appeared to be more abundant in the wild-type strain than in the
acetate competent strain.

To attest the reduced flux through the isoleucine biosynthetic
pathway when this amino acid is present in the medium,
we measured the activity of acetolactate synthase in bacteria
grown with acetate in the presence or absence of isoleucine.
Acetolactate synthase is involved in the first step of BCAA
synthesis (Rru_A0467 and Rru_A0468) (Figure 2) and was
already highlighted by proteomic analyses in several studies
(Leroy et al., 2015; Bayon-Vicente et al., 2020a). This enzyme is
shared between the leucine, valine, and isoleucine biosynthesis
pathway and is known to catalyze the conversion of two
molecules of pyruvate into one molecule of (S)-acetolactate,
which is one of the precursors of valine and leucine. However,
in the presence of 2-oxobutanoate and pyruvate, a molecule
of (S)-2-aceto-2-hydroxybutanoate is formed. This molecule
is the precursor of isoleucine (Leroy et al., 2015). To follow
the activity along the growth, we performed an enzymatic
assay during the different growth phases and compared it
to cultures that were not submitted to isoleucine inhibition
in the same steps of the growth phase (end lag phase:
ODggonm = 0.5; early exponential phase: ODggonm = 1.5; and
late exponential phase: ODggonm = 4.25). Interestingly, an
activity of acetolactate synthase has been detected in bacteria
cultivated in the presence of isoleucine during the lag phase,
although a 1.73-fold reduction in the activity was observed
in comparison to cultures performed without isoleucine (t-
test: p < 0.05) (Figure 5). Moreover, this activity increased
during the early exponential phase, reaching activity comparable
to the one observed without isoleucine. Therefore, we have
shown that isoleucine displays an inhibitory effect on the
acetolactate synthase activity that has been released before the
exponential phase. These observations corroborate the 3-methyl-
2oxopentanoate quantitation and further suggest that a fully
functional isoleucine biosynthesis pathway is necessary for the
onset of growth during the photoheterotrophic assimilation of
Rs. rubrum in the presence of acetate. Interestingly, measurement
of the activity of acetolactate synthase without added isoleucine
revealed that the activity of this enzyme is significantly higher
during the lag and early exponential phases than that during
the late exponential phase (t-test: p < 0.05). The early phases of
growth are characterized by a high light/cell ratio that has already
been shown to trigger redox stress through the reverse activity
of NADH dehydrogenase (Klamt et al., 2008; Golomysova et al.,
2010; Bayon-Vicente et al., 2020a). During the late exponential
phase, the light/cell ratio decreases and redox stress is reduced.
Therefore, it appears that the isoleucine biosynthesis pathway
plays a role in redox homeostasis by consuming the excess of
reduced power, as already hypothesized (Shimizu et al., 2010;
Bayon-Vicente et al., 2020a; De Meur et al., 2020; McCully
et al., 2020). In that context, the synthesis of isoleucine may
act as an electron sink. Altogether, these results strongly suggest
an implication of the isoleucine biosynthesis pathway in redox
balance homeostasis.

Based on these observations, we hypothesize that the synthesis
of isoleucine, which is inhibited by the presence of isoleucine
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FIGURE 5 | Enzymatic activity assay of acetolactate synthase issued from the
cell extract of Rhodospirillum rubrum cultivated in the presence of acetate and
3 mM HCO3 ™ with (dotted bars) or without (filled bars) 10 mM isoleucine.

N = 5. Results are represented as the mean + SEM. Lowercase letters
represent statistical groups (t-test: p < 0.05).
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FIGURE 6 | Rhodospirillum rubrum growth in the presence of acetate with
3 mM HCOz ™~ supplemented with 10 mM isoleucine (open triangle) or with
50 mM of HCO3 ™~ supplemented (open circle) or not (open square) with
10 mM isoleucine. N = 5. Results are represented as the mean + SEM.

in the medium, helps cells balance the redox stress responsible
for the lag phase and the late onset of growth when Rs.
rubrum is inoculated in acetate-containing medium. To verify
this hypothesis, we cultivated Rs. rubrum in the presence of
acetate and isoleucine, but in medium supplemented with 50 mM
HCOs37, as it has been previously shown to shorten the duration
of the initial lag phase (Bayon-Vicente et al.,, 2020a) and that
the fixation of bicarbonate ions is well documented to act as an
electron sink (McKinlay and Harwood, 2010; Wang et al., 2010;
Rizk et al., 2011; Gordon and McKinlay, 2014). The addition
of 50 mM HCO;3~ led to a clear shortening of the lag phase
in the presence of isoleucine (lag phase isoleucine + 3 mM
HCO3 ™, ~300 h; lag phase isoleucine + 50 mM HCO3 ™, ~50 h)
(Figure 6). Considering the electron sink role of CO, fixation
(McKinlay and Harwood, 2010, 2011; Rizk et al., 2011; Gordon
and McKinlay, 2014), this result suggests that the isoleucine
biosynthesis pathway could be considered as an electron sink in
Rs. rubrum. Moreover, it is interesting to note that, although the
lag phase is shorter in the presence of 50 mM HCO3™ than in
the presence of 3 mM HCO3;~, an unusual lag phase was still
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observed. It suggests that, although the addition of bicarbonate
ions helped mitigate the excess of the reducing equivalent,
inhibition of the isoleucine biosynthesis pathway by isoleucine
still had a substantial impact on the growth of Rs. rubrum.

CONCLUSION

The data reported here are supported by previous studies
conducted by several groups (Shimizu et al., 2010; Leroy et al.,
2015; Bayon-Vicente et al, 2020a,b; De Meur et al., 2020;
McCully et al., 2020) and indicate that Rs. rubrum could use
the isoleucine biosynthesis pathway to help maintain redox
homeostasis during photoheterotrophic metabolism. Indeed, we
showed that a sudden increase of light intensity from 50
to 150 pwmol photons/m? s was responsible for the increase
in isoleucine abundance in the wild-type strain, but not in
the acetate competent strain, which is known to be highly
tolerant to light stress. Moreover, we also showed a slight but
significant difference in the isoleucine content between bacteria
grown under photoheterotrophic and chemotrophic conditions
(t-test: p < 0.05). These observations suggest that the isoleucine
biosynthesis pathway could be of major importance for growth
under photoheterotrophic conditions. However, our results also
demonstrate that this increase in isoleucine content was not
linked to a general stress triggering a stringent response. Finally,
based on the quantitation of 3-methyl-2-oxopentanoate and
enzymatic assays in the presence or absence of isoleucine,
we showed that a functional isoleucine biosynthesis pathway
constitutes a key element for the onset of growth during
the photoheterotrophic assimilation of acetate. Altogether, our
results suggest that isoleucine biosynthesis could play a major
role in redox homeostasis and could thus be considered as
an alternative electron sink for purple bacteria when growing
photoheterotrophically.
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