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Introduction

- Enable Continuous flow
- Reduce Scrap and Rework

- Data Collection
- Detect abnormalities

High 
Product 
Quality

Data
Driven

Activities

if necessary 
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Industrial Context

Automatic Optical Inspection is the 1st visual tester of the line

Ideal candidate to apply EDER
Many data available that reflect the intermediate quality

PCB Assembly Line

…

…

…

PCBA Test + ECU Assembly Line
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Printing Component Mounting Oven AOI

ATECU: Automatic Transmission Electronic Control Unit = finished product

AOI: Automatic Optical Inspection = PCBA judgement process

PCBA: Printed Circuit Board Assembly = intermediate product

PCBA images

PCB Assembly Line

PCB Assembly Line
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Baseline = ~8s./PCBA inspection time

Problem Definition

False Positive Rate implies manual inspection

Waste of time
Risk of misjudgment

Zero Defect Target
=

Low Type II error rate 
(FNR - missed detections)

Severe Test Limits
=

High Type I error rate 
(FPR - false alarms)

Anomaly Detection State-of-the-art in the machine learning field

Target = Reduce the FPR while maintaining the FNR at 0%
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High Resolution and Small Details: the PCBA Dataset

Deal with Normal variability and Small Defects

A lot of information in the overall image
Dense-in-components areas yield abrupt changes in pixel intensity
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Adversarial learning-based models
Train a generator to capture the normal distribution, and a discriminator 
to distinguish original and generated images

OC SVM - Kernel PCA models

Poor discriminative performance with high-dimensional images

Autoencoders models

Good reconstruction for normal, but also for abnormal (complex dataset)

State-of-the-Art Anomaly Detection Techniques

Unsupervised Methods

Difficult to collect enough abnormal images (imbalanced dataset)
Difficult to ensure that all anomalies could be covered in the dataset
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GanoDIP Training Step

Generator-Discriminator

Encoder

* WGAN is a GAN that minimizes the Wasserstein distance improving the learning stability 
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Intermediate Patches
Anomaly Score

GanoDIP Inference Step
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360 normal images for train set

50 normal + 18 abnormal images for test set

Resizing 4500x4340 => 512x512
Normalization

GPU nVidia Geforce RTX 2080 TI
Python 3.7, CUDA10.1, Tensorflow 2.3

Training Time ~ 27 hours
Inference Time ~ 5 seconds / image

Dataset Pre-Processing and Experimental Protocol
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FPR = 14% 
Industrial partner inspection time decreased from 8 to 2,2 seconds

If constraint is 0% FNR => threshold placed at the best anomaly score for abnormal distribution.

Evaluation: Quantitative Assessment

Anomaly scores for normal (blue) and abnormal (orange) images of the test dataset. The x-axis is the 
anomaly score of the test images and the y-axis corresponds to the score frequency.

Input image: 512 x 512 Input image: 384 x 384

14% 60%
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Evaluation: Qualititive Assessment (1/2)

Global image differences

Global image complexity -> limited discriminative performance



www.unamur.be

Visual Turing Test 
Assess the reconstructed images quality
Performed with 5 domain experts
58,2% images correctly labeled – close to the 50% expected

Overlay highest anomaly score patches

Evaluation: Qualititive Assessment (2/2)

Defects identified + Confidence on future yet unseen defects
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Thank you for your kind attention

TO SUM UP
Distinguish normal and abnormal images 
Find defects of different nature
Support actual visual inspection process

RESULTS
0% FNR
14% FPR
72% Inspection time saved

FUTURE WORK
Increase the input image size
Optimize the latent space encoding
Transpose the method on other use cases

Conclusion

arnaud.bougaham@unamur.be


