
THESIS / THéSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit dÕauteur :

Biblioth•que Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Automatic Vulnerability Injection using Genetic Improvement and Static Code
Analysers

BENIMEDOURENE, Charles

Award date:
2023

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Sep. 2024

https://researchportal.unamur.be/en/studentTheses/331d7c51-9d3a-4b70-b652-ee89149f0a5e

UNIVERSITY OF NAMUR
Department of Computer Sciences

Academic Year 2022-2023

Automatic Vulnerability Injection using

Genetic Improvement and Static Code

Analysers

BENIMEDOURENE Charles

........................ (Signature pour approbation du dépôt - REE art. 40)

Promotor : PERROUIN Gilles

Co-promotor : DEVROEY Xavier

Thesis presented for the obtention of a Master’s diploma in Computer Sciences

With a specialisation in Software Engineering

Department of Computer Sciences – University of Namur

RUE GRANDGAGNAGE, 21 ● B-5000 NAMUR(BELGIUM)

Acknowledgement

First and foremost, I would like to thank Dr. Gilles Perrouin and Dr. Xavier Devroey for having
given me the opportunity to work at the SnT in the context of my thesis. Furthermore, their
guidance throughout the redaction of this thesis helped me to structure its content and make it
more palatable to uninitiated readers, not familiar with the techniques and concepts I used.

I would also like to thank my supervisors at the SnT, namely Dr. Michail Papadakis and Dr.
Renzo Degiovanni for their continued assistance and frequent feedback as well as for having directed
me towards interesting frameworks and research papers to further my own thesis. These thanks
extend to Dr. Matthieu Jimenez who introduced me to CodeQL and to the idea of using it in
conjunction with genetic improvement. He offered interesting ideas as to what my thesis could be
about, which I fully took advantage of.

Furthermore, I would like to mention how welcoming and agreeable to work with were the
employees at the SnT and SerVal as well as the other interns, with whom I shared a common office.
I’d like to particularly acknowledge the anecdotal yet precious advice of Guillaume Haben, be it
when working or playing chess, and Aayush Garg for his expertise and guidance in using Vul4J.

An acknowledgement of the administrative and HR staff at the SnT, Unamur and Erasmus
is also warranted as they made this trip possible and facilitated my temporary relocation. The
internship was agreeable and allowed me to learn more about the practical applications of genetic
improvement. I’m thankful for having had the opportunity to meet, talk and work with great and
friendly people who didn’t mind taking some of their time to provide needed guidance in getting
started with my thesis.

Lastly, I would like to thank the unnamed employees who frequently fixed and refilled the coffee
machines that were integral to the well-being of my productivity each morning.

Contents

1 Introduction 10
1.1 Context . 10
1.2 Motivation of the research . 11

2 State of the Art 13
2.1 Genetic Programming . 13
2.2 Main components of a GP run . 14

2.2.1 Terminal Set . 14
2.2.2 Function Set . 14
2.2.3 Fitness Measure and Function . 15
2.2.4 Run-controlling Parameters . 15
2.2.5 Termination Criterion . 15

2.3 Selection . 15
2.4 Mutations . 16

2.4.1 Subtree Mutation . 17
2.4.2 Node Replacement Mutation . 17
2.4.3 Shrink Mutation . 18
2.4.4 Hoist Mutation . 19
2.4.5 Line Mutations . 19

2.5 Crossover . 19
2.6 Genetic Improvement . 21
2.7 Datasets . 21
2.8 Static Code Analysis . 22

2.8.1 CodeQL . 22

3 Research Questions 24

4 Methodology 25
4.1 Vulnerability Injection using Genetic Programming 25
4.2 Dataset . 26

4.2.1 Vul4J . 27
4.3 Genetic Improvement Framework . 27

4.3.1 PyGGi . 27
4.3.2 VulGr . 28

4.4 Static Code Analyser . 28
4.4.1 CodeQL . 28

4.5 Concrete Steps . 29

5 Experimentation 31
5.1 Finding a suitable Vul4J program . 31
5.2 Creating the subqueries . 33
5.3 Creating the fixed version of Vul4J-34 . 34
5.4 Preparing the source code . 34
5.5 Running VulGr . 36
5.6 Incorporating the Proof of Vulnerability . 36

6 Interpretation 37
6.1 Evaluation of the results . 37
6.2 Negative factors . 37

6.2.1 Accuracy of the results . 37
6.2.2 Runtime . 38

7 Conclusion 39
7.1 Summary . 39
7.2 Answers to the research questions . 39
7.3 Parallel and future works . 40

7.3.1 Using Genetic Improvement to improve the accuracy of CodeQL’s queries . . 40
7.3.2 Using better hardware and waiting for improvements to CodeQL 41
7.3.3 Optimizing the genetic improvement process 41

7.4 Contributions of the thesis . 41
7.4.1 State of CodeQL’s security capabilities . 41
7.4.2 A framework for future successful injection of vulnerabilities through genetic

improvement . 41

A Annex 44
A.1 VulGr operating 45 mutations . 44
A.2 Mapping of each Vul4J to its potential CWE vulnerability 46
A.3 Code of the 8 subqueries of CWE-079 . 47

List of Figures

2.1 Syntax tree of an if-then-else condition Figure inspired by figure 4 in [17] 14
2.2 Example of a subtree mutation . 17
2.3 Example of a node replacement mutation . 17
2.4 Example of a shrink mutation . 18
2.5 Example of a hoist mutation . 19
2.6 Example of a one-point Crossover . 21
2.7 Template for a CodeQL query, copied from the official documentation 23
2.8 Source code of the security query made for CWE-20 23

4.1 Iterative Process of the Methodology . 26
4.2 Use of Subqueries for the Fitness Function . 29
4.3 Concrete Iterative Process . 30

5.1 Source code of the security query for Cross Site Scripting (XSS - CWE-079) 33
5.2 How subqueries are used to emulate CWE-079 . 34
5.3 Script to remove comments from Java files . 35

A.1 First subquery, nicknamed “Any” . 48
A.2 Second subquery, nicknamed “Flowsource is Flowsink” 49
A.3 Second subquery, nicknamed “Is Flowsink” . 50
A.4 Second subquery, nicknamed “Is Source” . 51
A.5 Second subquery, nicknamed “Not Getsourcegroup” 52
A.6 Second subquery, nicknamed “Path Node Sink Group” 53
A.7 Second subquery, nicknamed “Path Node Source Group” 54
A.8 Second subquery, nicknamed “Path Succ” . 55

List of Tables

5.1 Results of testing 25 Vul4-J vulnerabilities with CodeQL security queries 31
5.2 Results of running CodeQL queries on Vul4J programs 32
5.3 Results of the initial runs of VulGr . 36

A.1 Results 1-15 of running VulGr with the fitness function augmented with Vul4J’s PoV 44
A.2 Results 16-30 of running VulGr with the fitness function augmented wit Vul4J’s PoV 45
A.3 Results 31-45 of running VulGr with the fitness function augmented wit Vul4J’s PoV 45
A.4 Vul4J-CWE mapping of vulnerabilities 1 to 40 . 46
A.5 Vul4J-CWE mapping of vulnerabilities 41 to 79 . 47

Abstract/Résumé

Français

Cette thèse explore la possibilité d’appliquer du ”genetic improvement” dans le but d’injecter des
vulnérabilités dans des programmes. Générer des programmes vulnérables de la sorte permettrait
d’automatiquement créer des sets de données, cruciaux dans l’entrâınement de modèles de machine-
learning dédiés à la détection des vulnérabilités. Cela permettrait d’améliorer grandement la sécurité
logicielle des programmes en offrant aux programmeurs des outils mieux entrâınés à détecter et à
signaler les vulnérabilités.

Cette idée a été mise en pratique grâce à l’implémentation de VulGr, une modification d’un
framework dédiée au genetic improvement nommé PyGGi. VulGr lui-même fait usage de CodeQL,
un analyseur de code statique possédant une approche innovante dans la détection statique de
vulnérabilités dans le but d’injecter des vulnérabilités dans des programmes du set de données
Vul4J.

L’expérience s’est révélée infructueuse, CodeQL n’étant pas suffisamment précis et étant trop
chronophage que pour produire des résultats concrets dans un laps de temps acceptable (moins de
72 heures). Cependant, l’approche présente un intérêt pour de futures applications, CodeQL étant
un effort communautaire continu promettant de futures mises-à-jour ayant le potentiel de résoudre
les problèmes mentionnés.

Mots-clés : genetic programming, CodeQL, Vul4J, vulnérabilités, détection de vulnérabilités, in-
jection de vulnérabilités

English

This thesis explores the idea of applying genetic improvement in the aim of injecting vulnerabili-
ties into programs. Generating vulnerabilities automatically in this manner would allow creating
datasets of vulnerable programs. This would, in turn, help training machine-learning models to
detect vulnerabilities more efficiently.

This idea was put to the test by implementing VulGr, a modified version of the framework
dedicated to genetic improvement named PyGGi. VulGr itself uses CodeQL, a static code analyser,
offering a new approach to statical detection of vulnerabilities. VulGr’s end goal was to use CodeQL
to inject vulnerabilities into programs of the Vul4J dataset.

This experiment proved unsuccessful, CodeQL lacking accuracy and being too time-consuming
to produce concrete results in an acceptable time span (less than 72 hours). However, the general
approach and VulGr still retain their relevancy for future uses as CodeQL is an ongoing community
effort promising new updates fixing the issues mentioned.

Keywords : genetic programming, CodeQL, Vul4J, vulnerability, vulnerability detection, vulnera-
bility injection

Acronyms

1. CWE Common Weakness Enumeration

2. GI Genetic Improvement

3. GP Genetic Programming

4. ML Machine Learning

5. PoV Proof of Vulnerability

9

Chapter 1

Introduction

1.1 Context

This section provides a brief overview of the current context which stirred this thesis in the direc-
tion of using genetic improvement for the purpose of injecting vulnerabilities into non-vulnerable
programs.

Cybersecurity threats

In the field of software and web development, cyber-attacks have become widespread, causing severe
financial, reputational and legal damages to the victims of such attacks and their customers. One
of these attacks is named Reflected1 Cross Site Scripting2 [14]. In this attack, the perpetrator finds
a vulnerability that allows them to inject a script, for example through unsanitized web requests.
This script can be maliciously used and triggered each time a user visits the infected website, usually
to steal sensitive data, cookies and credentials.

Training machine learning models to detect vulnerabilities and the issue of data scarcity

Because of the damaging nature of such attacks, many techniques have been developed and ex-
perimented with in order to detect and prevent security vulnerabilities from being exploited by
attackers. One of the main techniques currently being worked on, showing great promise, is based
on machine-learning. Models are trained on large datasets of vulnerable programs and their fixed
versions. Unfortunately, this technique is hampered by the lack of high-quality data, a phenomenon
called data scarcity[14], as vulnerability detection models require large volumes of correctly labelled
data for training. Furthermore, data scarcity is exacerbated by several factors, such as the com-
plexity and diversity of modern software systems, the constantly evolving threat landscape, and
the difficulties associated with collecting and labelling relevant data. As a result, researchers and
practitioners face a significant challenge in developing effective machine learning-based approaches
for vulnerability detection.

1https://portswigger.net/web-security/cross-site-scripting/reflected
2https://owasp.org/www-community/attacks/xss/

10

Using static code analysers to detect vulnerabilities

A competing technique in vulnerability detection is static code analysis. It is explained in detail
in section 2.8 and is a less preferred alternative to machine learning vulnerability detection due
to the rigidity of its rule-based implementation, causing static code analysers to exhibit unreliable
behaviours when attempting to detect vulnerabilities in programs other than those they were specif-
ically implemented for. This approach also historically required experts to implement the patterns
static code analysers have to detect, making it a laborious and expensive operation to produce re-
liable and precise static code analysers.

However, CodeQL, a new static code analyser, has brighter prospects due to its novel approach to
static code analysis and its community-based approach to writing rules for vulnerability detection.
As it benefits from an open-source implementation and the backing of a wider community and
GitHub, it is hoped that this static code analyser could overcome the challenges older static code
analysers faced by allowing any user to write their own patterns for vulnerability detection and
share them, thus making the process or implementing precise and reliable static code analysers less
expensive and laborious.

The promising field of genetic programming and genetic improvement
Genetic Programming is a quickly evolving field of computer science focused on replicating the
process of natural selection and emulating it to evolve programs in a chosen direction. It has
produced interesting results in fields such as program repair [19] and program optimization [10]. It
has become more popular in recent years, showing great promises for other purposes.

One of these emerging application of GP is in the field of cybersecurity. Although machine-
learning is dominant in cybersecurity, especially when coming to vulnerability detection [12], it
suffers from the previously explained scarcity of data.

Genetic Programming would not be used to compete against machine-learning vulnerability
detection but to generate labelled vulnerable programs by “disimproving” non-vulnerable programs,
making GP a potential solution to fixing data scarcity and a support for training ML models
specialized in vulnerability detection.

1.2 Motivation of the research

There are many factors influencing the goals of this thesis. These motivating factors are summarized
below and take inspirations from the issues and technologies mentioned in the context.

• Solving the issue of Data Scarcity

Since data scarcity is a bottleneck slowing down the field of vulnerability detection through
machine learning based approaches, finding a way to get more labelled and high quality vulner-
able and non-vulnerable programs for the training of machine learning models could potentially
help avoid future damaging security breaches.

• Using Genetic Programming for the purpose of Vulnerability Injection

While genetic programming has been used to repair programs [11, 19], create SQL Injection
attacks [3] and even to detect Cross Site Scripting attacks [1], no concrete and documented
attempts have been made to apply GP for the purpose of injecting vulnerabilities in programs
or in simpler terms: to create vulnerable programs.

11

• Assessing whether CodeQL can deliver more reliable results

As previously mentioned, CodeQL possesses many interesting and novel attributes, making it a
potentially attractive alternative to machine-learning vulnerability detection and a potentially
superior implementation of the principles of static code analysis compared to other static code
analysers. The potential appearance of better static code analysis tools could have a drastic
and positive impact on the field of cybersecurity, simplifying and democratizing the capabilities
of detecting vulnerable code.

For these reasons, the stated objective of this thesis is to investigate a new way of generating
labelled high-quality data to address the issue of data scarcity. By using CodeQL and the concepts
of genetic improvement, we hope to be able to build a framework capable of producing labelled
vulnerable programs.

12

Chapter 2

State of the Art

In this chapter, we provide an overview of the latest researches on genetic improvement techniques
and frameworks, as well as on fault injection.

2.1 Genetic Programming

Genetic Programming [16] is an evolutive approach aiming to create computer programs automati-
cally. In order to achieve this, it mimics the process of natural selection, where organisms that are
better at surviving (being “fitter”) are likelier to survive and reproduce, in turn passing the genes
that ensured their survival to the next generations of organisms, improving the specie’s broader
ability to survive generations after generations. On the contrary, harmful genes, negatively impact-
ing the chances of survival, are less likely to be passed on, making them naturally disappear from
the gene pool. New genes often appear through mutations, variations of genes producing new traits
that can impact the fitness of organisms.

A well known example of natural selection is the giraffe. Giraffes that benefitted from the
mutation of having longer necks got access to more resources to feed themselves as well as a better
ability to spot threats from a distance, improving their chance of survival. On the other hand, giraffes
with shorter necks could not find as many resources and could not spot predators as efficiently,
causing that attribute to slowly disappear from the gene pool. This difference led to modern
giraffes having longer necks. Other examples of this evolutive process are well documented, such
as the differences in size and taste of modern tomatoes compared to their ancestors, that can be
attributed to the fact humans tended to favour planting tomato trees yielding bigger and more
nutritive tomatoes.

Genetic Programming emulates natural selection by automatically generating variants of the
chosen program or source code by mutating it. These variants are called individuals and each
individual is assessed according to a fitness function, assigning a fitness value to each individual.
Whilst natural selection’s goal is survival, genetic programming can have different goals, such as
program optimization and repair. For each generation, a set of mutated individuals will be generated
and evaluated by the fitness function, the evolutionary algorithm will then select some of these
individuals to be the basis for the next generations of mutated individuals, thus enabling each
consecutive generation to retain the pertinent and interesting mutations in the aim of attaining
the desired result. The code can be compared to the genes and the fitness function to the survival
chance.

13

2.2 Main components of a GP run

Applying Genetic Programming to a problem requires several decisions to be made, these decisions
can be viewed as preparatory steps[16], these decisions, explained in greater detail below, are the
following ones:

• Defining a terminal set.

• Defining a function set.

• Defining a fitness measure and function.

• Defining the parameters that will control the run.

• Defining a stopping/termination criterion.

2.2.1 Terminal Set

The terminal set consists of variables, constant values and even 0-arity functions (functions taking
no parameters). When picturing an algorithm or program as a syntax tree, the leaves of such a
tree would be the components of the terminal set. For example, the green nodes in the syntax tree
(figure 2.1) are part of the terminal set of the if-then-else condition.

2.2.2 Function Set

The function set consists of arithmetic operations and all sorts of functions applied to elements
of the terminal sets or other elements of the function set. The blue nodes in the syntax tree are
members of the function set (figure 2.1).

Figure 2.1: Syntax tree of an if-then-else condition
Figure inspired by figure 4 in [17]

14

2.2.3 Fitness Measure and Function

The fitness measure is a metric used to assess the quality, performance or the pertinence of an
individual within a population, it enables one to quantify how well the specific individual achieves
the goals that were set.

For example, how fast it runs, how close it is to achieve the goals that were set or even how well
written the code is. During the evaluation phase of the genetic programming, each individual will
be assigned a fitness value by the fitness function, a function dedicated to assessing the individual
based on the set fitness measure. The fittest individuals will then be selected or at least have
more chances of being selected as a basis for further mutations in the next generations (also named
epochs), allowing the run to retain beneficial mutations.

Because of the sizeable overhead caused by the fitness function when it evaluates an individual,
it is more common to use an interpreter to evaluate the evolved and mutated programs instead of
compiling and building them.

2.2.4 Run-controlling Parameters

Multiple parameters control how the run behaves, the most common ones are the Population Size and
the number of Generations, some Genetic Programming frameworks and runs also have parameters
for the probability of performing genetic mutations, the weighting when selecting individuals to
populate the next generation, the types of genetic mutations and for syntax tree-based mutations, a
size and/or depth limit for the programs as the trees often grow to excessive sizes if left unchecked.

There is no established consensus on determining optimal and universal values assigned to these
parameters, since determining the best values heavily relies on the implementation of the application
and on the goals of the run, thus requiring experimentation and fine-tuning [16]. There is, however,
an empirical method to defining and finding the optimal parameters values using Factorial Designs
[13].

2.2.5 Termination Criterion

The termination criterion defines a stopping condition for the run. Typically, this criterion is reached
once a solution to the problem, being a fit enough individual, is produced. If no viable solutions
were produced, the termination criterion uses the maximum number of generations allowed as set
in2.2.4 to define a stopping point for the run.

As an example, one could stop the run as soon as a solution is found (an individual achieving
all the goals implemented in the fitness function), although some could also want to let it run for
longer, until it reaches the defined maximum number of generations to get multiple solutions. If no
solution is found before reaching the maximum number of generations, most genetic programming
frameworks will return the best individual according to the fitness measure, some can return more
individuals as well when supplementary data would be sought.

2.3 Selection

Selection is an integral part of Genetic Programming and makes use of the fitness function. This
in an integral part of Genetic Programming, making use of the fitness function and sometimes
randomness to select the individuals that will be chosen for reproduction and/or mutation.

15

The most common selection method is called tournament selection and consists of randomly
selecting a number of individuals and comparing them, selecting the best one. This ensures that even
marginally better individuals are selected yet keeps a certain level of diversity thanks to its random
selection of the individuals that will be compared. It also automatically rescales the fitness, lowering
the fitness pressure 1, since the individuals randomly chosen for the tournament are compared to each
other only, not to fitter individuals from previous generations or from other tournaments. Automatic
fitness rescaling thus helps to maintain diversity, allowing interesting and beneficial mutations, that
would have been otherwise overshadowed by the fittest individuals not part of the tournament, to
be kept in the genetic pool.

2.4 Mutations

Mutations are genetic operators employed in evolutionary algorithms, such as Genetic Programming,
that introduces genetic variability and enables exploration within the population of individuals by
randomly mutating parts of the program. It is a crucial component of the evolutionary process,
mimicking the biological concept of genetic mutation.

In the context of Genetic Programming, mutation operates on the tree-based representation of
individuals, where each node in the tree corresponds to a member of the function set or terminal
set. The process of mutation involves making small modifications to the genetic material (i.e., the
program code) of an individual, thereby creating a slightly altered version of the original solution.

1Selection Pressure is a term designating how biased towards the fittest individuals the selection is. A strong
selection pressure favours the fittest individuals whilst a weak selection pressure favours more diversity.

16

2.4.1 Subtree Mutation

The subtree mutation randomly replaces a subtree, ranging from a single node to a larger substruc-
ture of multiple nodes, with a new randomly generated subtree. Such a mutation is represented can
be seen in figure 2.2.

Figure 2.2: Example of a subtree mutation

2.4.2 Node Replacement Mutation

Akin to the subtree mutation, the node replacement mutation replaces a node of the tree with a
randomly generated new one, retaining some characteristics such as the type or number of arguments
to ensure the replacement still leads to a valid program.

Figure 2.3: Example of a node replacement mutation

17

2.4.3 Shrink Mutation

Shrink mutation removes a randomly chosen subtree and replaces it with a randomly created ter-
minal. This mutation operator is often used to reduce the size of the program.

Figure 2.4: Example of a shrink mutation

18

2.4.4 Hoist Mutation

Similarly to the shrink mutation, hoist mutations aims to reduce the size of the program. It accom-
plishes this goal by reducing the individual to a copy of a subtree of its parent.

Figure 2.5: Example of a hoist mutation

2.4.5 Line Mutations

Line mutations do not fully make use of the syntax tree, sometimes too complex and cumbersome
depending on the nature of the code being modified and the expected outcome, and instead randomly
deletes, replaces or adds lines in the existing program. These mutations can be more advantageous in
certain situations as they enable more granularity, reduce the search space and causes the individuals
resulting of such mutations to retain their code structure. As such, these mutation operators are
often used in program repairs and on larger projects.

2.5 Crossover

Crossover is a genetic operator that combines individuals from previous generations to produce
new original individuals. This process emulates biological reproduction, where the DNA of the two
parents are mixed. In the case of Genetic Programming, branches of the syntax tree representing the
program are switched and combined to produce the new original program retaining characteristics
from its parent programs. Figure 2.6 represents such a crossover.

There are two families of crossover operators, the homologous and non-homologous, traditional,
crossover. Traditional, non-homologous crossover differs from biological reproduction due to the
possibility of a subtree being moved to a totally different location in the new offspring tree. Homol-
ogous crossover operators, on the contrary, retain the location of previous genetic material.

19

Crossover can be split into three main steps:

• Selecting parent individuals

Selection of individuals from previous generations is mandatory and the most important step
of the process. This selection process is explained in further detail in section 2.3.

• Identifying crossover points within the selected parents.

Once parent individuals are selected, points within each of the parents have to be identified.
Although these are typically chosen randomly, some specific crossover techniques can add
constraints to this randomness, confining the selection of the crossover points to look for a
common point present in a common region that has the same arity or function sets. These
points are the locations where the exchange of genetic material, effectively subtrees, will take
place.

• Exchanging the genetic material and generating the offspring.

At the crossover points, subtrees or substructures from the parent individuals are swapped
to create new offspring individuals. This exchange involves copying the selected subtree from
one parent to the corresponding location in the other parent, and vice versa, generating two
new altered copies.

20

Figure 2.6: Example of a one-point Crossover

2.6 Genetic Improvement

Genetic improvement of programs is the application of the principles of genetic programming on a
software or system, typically to improve its non-functional properties such as reducing its resource
cost or optimizing its performance while retaining its functional results, effectively improving it [10].
Genetic improvement thus naturally incorporates aspects of genetic programming such as the need
for a fitness function, a termination criterion and makes use of the same genetic operators, applying
mutations and crossover reproduction.

2.7 Datasets

Datasets Selecting a dataset on which to operate the genetic improvement in order to inject vul-
nerabilities is a crucial part of the process and has an important effect on the end results. Multiple
types of datasets exist

21

2.8 Static Code Analysis

Static code analysis is a technique used to analyse the source code of a project, without actually
executing it. It is most commonly used for identifying syntax errors, code smells, issues and even
security vulnerabilities. Contrary to dynamic analysis, which involves executing the code to observe
its behaviour, static analysis examines the code’s syntax, structure and semantics.

In the field of cyber-security, static code analysis is rarely used alone by itself, since it has been
known to have limitations in this regard [9], such as being unable to catch all vulnerabilities or
being prone to find false positives (code incorrectly flagged as being vulnerable) or false negatives
(vulnerable code not identified as such by the static code analysis tool).

There are many static code analysis tools, ranging from linters, aiming to improve the quality
of a program by analysing its source code, effectively enforcing consistency and good practices, to
CodeQL, allowing identification of security vulnerabilities and code smells by running queries against
a database of the source code. These differ not only in their goals but also in their implementation
and functioning,

2.8.1 CodeQL

CodeQL is an open source and free for research static analysis tool focusing on semantics, currently
owned by GitHub (Microsoft). The tool enables users to write queries, similar to SQL queries in
their syntax and results, that will then be run against a database of the source code. This database
is constituted by analysing the source code and by additionally observing the compilation process
for compiled languages such as Java. Using CodeQL can be decomposed into four steps:

• Generating a CodeQL database of the code

• Writing/Finding CodeQL queries

• Running the queries

• Interpreting the results

Queries

CodeQL’s queries allow for users to use a SQL-like approach to finding specific patterns in the
source code of a program. A basic CodeQL query is structured in an almost identical fashion to its
SQL counterpart, starting with the “from” keyword, then the conditional section with the “where”
keyword and ending with the “select” keyword. Modules and libraries can also be imported at the
beginning of a query by using the “import” keyword. One template for a typical CodeQL query is
depicted in figure 2.7.

CodeQL is natively packaged with a multitude of these queries, made by GitHub researchers and
by the community. CodeQL’s native queries cover a wide range of uses for each supported language
and even for some frameworks. They are often used for code quality assessment, performance and
complexity, code architecture, compatibility and security.

Security queries all follow the same structure when it comes to their documentation and im-
plementation. The .ql file contains a short description of the CWE vulnerability and a precision
rating, going from low to high, as shown in figure 2.8. High precision queries are less prone to false
positives and true negatives, contrary to low precision queries.

Each security query also has a .qlhelp file providing more detail for the specific CWE vulnerability
it aims to detect, recommendations to avoid implementing such vulnerabilities and examples of
vulnerable code.

22

/**
*
* Query metadata
*
*/

import /* ... CodeQL libraries or modules ... */

/* ... Optional, define CodeQL classes and predicates ... */

from /* ... variable declarations ... */
where /* ... logical formula ... */
select /* ... expressions ... */

Figure 2.7: Template for a CodeQL query, copied from the official documentation

/**
* @name Overly permissive regular expression range
* @description Overly permissive regular expression ranges match a wider range of

characters than intended.
* This may allow an attacker to bypass a filter or sanitizer.
* @kind problem
* @problem.severity warning
* @security-severity 5.0
* @precision high
* @id java/overly-large-range
* @tags correctness
* security
* external/cwe/cwe-020
*/

private import semmle.code.java.regex.RegexTreeView::RegexTreeView as TreeView
import codeql.regex.OverlyLargeRangeQuery::Make<TreeView>

TreeView::RegExpCharacterClass potentialMisparsedCharClass() {
// nested char classes are currently misparsed
result.getAChild().(TreeView::RegExpNormalChar).getValue() = "["

}

from TreeView::RegExpCharacterRange range, string reason
where

problem(range, reason) and
not range.getParent() = potentialMisparsedCharClass()

select range, "Suspicious character range that " + reason + "."

Figure 2.8: Source code of the security query made for CWE-20

23

Chapter 3

Research Questions

Now that we have had the opportunity to list current state-of-the-art techniques and technologies
as well as have provided an introduction as to the motives and goals of this thesis, we can formulate
the main research questions that we will try to find answers to.

• Question 1: How reliable is CodeQL compared to previously tested static code
analysers when dealing with security vulnerabilities?

This question steams from the proven inaccuracy and unreliability of older Static Code Anal-
ysers [9]. Since we also intend to use CodeQL and its community-made security queries to
assess the fitness of potentially vulnerable mutants of Vul4J programs (as explained below
in section 4), finding an answer to the question will require us to run the GI process using
CodeQL and running CodeQL’s security queries against Vul4J’s vulnerable programs.

• Question 2: How can CodeQL’s take on source code analysis through databases
of code be realistically used for the purpose of GI?

As genetically improving a program through random mutations of its source code is a lengthy
process involving thousands of mutated variants of the source code and other variants, the
performance cost of rebuilding databases of each of these mutated versions of the source code
is a real concern and potential bottleneck in applying GI using CodeQL. Running a suite of
queries for each of these mutated individuals could also to be time-consuming as well.

• Question 3: How can genetic improvement be used in the field of automatic
vulnerability injection?

Due to the high diversity and complexity of the implementations of potentially vulnerable
programs, automatically injecting vulnerabilities through genetic improvement poses the risk
to be proved to be overly ambitious for modern hardware, current mutation operators and
for GI selection algorithms. It is thus important to assess the current feasibility of such an
application of GI or its future uses.

24

Chapter 4

Methodology

4.1 Vulnerability Injection using Genetic Programming

Whilst genetic programming is oft-used for program repairs and optimization, it has never been
used to generate faults in a functioning program. Instead of starting from a deficient program that
has to be repaired, the idea is to begin with an already fixed or non-vulnerable program and to
derivate vulnerable mutations, allowing us to improve the dataset of existing vulnerabilities.

The approach to this use of genetic improvement to inject vulnerabilities into a program follows
an iterative process, as represented in figure 4.1. The idea can be summarized as such:

• Step 1: Finding a “parent” non-vulnerable program (dataset)

The non-vulnerable program should have the potential to become vulnerable. Fixed/repaired
programs are thus a good starting point, since they were initially vulnerable. This program
will serve as a parent on which the genetic improvement will be applied.

• Step 2: Generating mutants offspring

Once a suitable program is found, the genetic improvement run can start. The first step
of such a run is to generate mutated individuals to compose a generation. The number of
mutated individuals to create is determined by the size of the generation, as defined in 2.2.4.

• Step 3: Analysing/assessing the fitness of the mutants

The mutants are assessed according to the fitness function (explained in 2.2.3) and are each
assigned a fitness value. The fitness function makes use of a static code analysis tool in order
to detect traces of a potential future vulnerability. The code doesn’t need to be vulnerable
per se, but closer to become vulnerable in order to get a higher fitness value.

• Step 4: Checking if the stopping criterion has been met

The run can stop if the stopping criterion has been met, such a stopping criterion would ideally
be a mutated individual having the maximal fitness value, effectively meaning the static code
analysis tool considers it vulnerable.

If no such individuals have been created during the process, the stopping criterion is met once
the maximum number of generations/iterations has been reached.

25

• Step 5: Selecting individuals for reproduction

If the stopping criterion hasn’t been reached yet, we select the individuals to be chosen for
reproduction for the next generation, coming back to step 2 of the process but hopefully
starting from a parent that is closer to being vulnerable.

Figure 4.1: Iterative Process of the Methodology

4.2 Dataset

Selecting a good dataset (non-vulnerable program) is a crucial part of the process, influencing all
the next steps in our goal to apply genetic improvement successfully and inject a vulnerability into
the selected dataset.

The first factor constraining the possibilities of which program can be used as our initial dataset
was the selection of a programming language. This choice was made after we selected PyGGi as our
genetic improvement framework, as explained below in section 4.3.1. Whilst PyGGi can handle any
language thanks to srcML, its main implementation is particularly suited to Java, C and Python.
For reasons similar to those mentioned page 13 in [15], we decided to focus on Java.

There are many suitable Java programs that could have been chosen, such as the Juliet Test Suite
for Java, some of the SARD’s test programs [4], SAMATE [8], OWASP and Vul4J. Vul4J seemed
to be the more natural choice since it is lightweight, geared toward repairs and thus contains fixed
versions of all the vulnerabilities and focuses on CWE vulnerabilities which corresponded to our
static code analyser’s queries as explained in section 4.4.1 and for these reasons we decided to
proceed with it.

26

4.2.1 Vul4J

Vul4J is a dataset containing real-world vulnerabilities [5]. Each vulnerability in the dataset has a
CWE ID attached to it, rendering it simpler to find the vulnerabilities we would like to work with
and the corresponding CodeQL query to apply on it. The tables mapping the Vul4J vulnerabilities
to CWE vulnerabilities are available in the annex, tables A.4 and A.5.

Moreover, Vul4J possesses many other interesting characteristics, such as providing a human-
made patch to the vulnerability, a test suite able to detect whether the vulnerability is still present in
a program of the dataset (thus acting as a proof-of-vulnerability (PoV)) and simple to use commands
to easily compile and test said programs.

The human-made patches that repair the vulnerabilities can be used as our initial individuals
on which to apply genetic improvement until they become vulnerable, providing us with many non-
vulnerable programs that exhibit great potential to become vulnerable, as well as allowing us to
exactly know which vulnerability we should work towards. The PoV can additionally provide a
second layer of certitude when assessing the presence of a vulnerability after mutation, as static
code analysers are known for having false positives and true negatives [9].

4.3 Genetic Improvement Framework

Genetic improvement frameworks are libraries, software systems or platforms laying the groundwork
and providing the infrastructure and tools for the purpose of applying the genetic improvement
process on a program. They have pre-implemented methods and classes that can be easily extended
and overridden to tailor their behaviour to the goals of the user and to the specifics of the programs
to improve.

These pre-made frameworks dedicated to genetic improvement can substantially simplify our
implementation of the genetic improvement process as well as enforce standards and common prac-
tices, making sure no steps are missed and that the most efficient and common GP/GI techniques
are used. For this purpose, multiple frameworks were investigated, and we chose to settle on the
Python General Framework for Genetic Improvement (PyGGi) [2], a lightweight framework written
in Python.

4.3.1 PyGGi

The Python General Framework for Genetic Improvement offers many interesting functionalities.
Not only is it lightweight, it can also technically support any language thanks to the srcML engine.
In our case it is useful for its proven application on Java source code as some sample examples
provided with it operate automated, genetic program repair on Java scripts.

PyGGi’s use of an XML-based intermediate representation of the source code also allows genetic
operators to be used on it instead of the source code, in turn making it possible to create universal
genetic operators that will work on any language once converted to the XML-based representation
using srcML.

When looking at the steps explicated in section 4.1, PyGGi natively handles step 2 to 5, mutant
generation as well as individual selection being already implemented, automatic analysis only requir-
ing us to write our own fitness function and at the same time defining our own stopping criterion.

27

4.3.2 VulGr

VulGr (Vulnerability Generation) is our modified extension of PyGGi, tailored for the purpose of
Genetic Improvement in the aim of generating vulnerabilities in non-vulnerable programs. It is
publicly available on GitHub[7]. The code in the repository itself doesn’t need to be run locally, as
it was made with Google’s Colaboratory in mind and is used by our Colaboratory[6].

VulGr’s main implementation is located in vulgr/vulgr testing.py and an unfinished and more
integrated one can be found in example/vul4j unfix.py. The vulgr testing script runs a single time,
executing the fitness function on the program. The execution can be summarized as creating a
CodeQL database of the program, running our CodeQL subqueries (explained in 4.4.1) against the
previously generated database, then reading the output logs of each query to assess how many of
them were triggered.

4.4 Static Code Analyser

Static Code Analysis is explained in greater detail in section 2.8. As one of the overall goals of this
experimentation was to try CodeQL, GitHub’s more recent static code analyser, we didn’t judge
it necessary for us to explore other static code analysers as they have been proven to have limited
reliability and shortcomings when it comes to vulnerability detection [9].

4.4.1 CodeQL

As we already delved into CodeQL’s inner workings in section 2.8.1, this section focuses on which
security queries were tested, what results they yielded and how we used them to write new sub-
queries.

Security Queries

Security queries are the most promising queries offered by CodeQL in our aim to inject vulnerabil-
ities. They all are related to vulnerabilities listed in the Common Weakness Enumeration (CWE)
which is helpful in finding the corresponding Vul4J repaired program and enables us to already
know which specific queries to run on a specific Vul4J vulnerability.

The expected workflow consists of exploring the mapping of each Vul4J vulnerability to its CWE
weakness as provided in tables A.4 and A.5 and matching it against our list of security queries in
hopes of finding programs whose vulnerable versions will trigger the CodeQL query dedicated to
the same CWE weakness. That Vul4J vulnerability would then become the parent program that
will be mutated, as explained in step 1 of 4.1. The execution of this process is detailed in section
5.1.

Subqueries

Once a parent Vul4J program with a corresponding CodeQL query able to detect its vulnerability is
found and that mutants based on the source code of its fixed version are generated by using PyGGi
(effectively applying step 2 of 4.1), we can start implementing step 3, namely creating a fitness
function using the static code analyser CodeQL.

As we know that the initial CWE related CodeQL query can detect the vulnerability and in
turn allows us to infer that the initial program is vulnerable, our emerging idea became to split that
specific query into more granular subqueries, allowing them to detect finer causes for the appearance
of such a vulnerability or in other terms, if the program is closer to becoming vulnerable or not.

28

For example, let’s define a program VP as being the vulnerable Vul4J program (fitness value
of 1), RP the repaired version of VP and Q the CodeQL query able to detect the vulnerability in
VP. Now let Q be split into Q1, Q2, Q3 and Q4. In our example, RP only triggers Q1 out of the
4 subqueries, allowing us to value its fitness as being 0.25. If we now mutate RP and name its
resulting children as MP, MP might trigger Q1 and Q2 allowing us to value its fitness as being 0.5,
much fitter than its parent and closer to becoming vulnerable. This example is illustrated in figure
4.2.

Figure 4.2: Use of Subqueries for the Fitness Function

4.5 Concrete Steps

The theoretical steps explored in section 4.1 can now be concretized and described as follows:

• Step 1: Finding a “parent” non-vulnerable program in the Vul4J dataset

Finding a suitable Vul4J program can be summarized as finding a Vul4J vulnerable program
whose vulnerability can be detected by the corresponding CodeQL query and having a fixed,
repaired version in which to inject vulnerabilities.

• Step 2: Generating mutants offspring

Mutant generation will be handled by PyGGi, offering us the ability to natively choose between
line and statement mutations, as well as allowing us to easily add our own mutation operators
if needed.

29

• Step 3: Analysing/assessing the fitness of the mutants

This step will also be handled by PyGGi, making use of CodeQL. A custom fitness function
will be implemented in PyGGi to execute CodeQL’s database creation process (for the source
code of the mutated individual) and to execute CodeQL’s queries on a database of said source
code. The logs of these executions will then be automatically analysed to assess how many
subqueries were triggered by reading and looking for specific keywords and values in them.

Subqueries will be manually implemented by looking at the code of the initial query that was
able to detect the vulnerability in the program selected in step 1 and splitting it according to
elements such as the ”OR” and ”AND” logical operators.

• Step 4: Checking if the stopping criterion has been met

This step is included in step 3’s rewriting of the fitness function, ensuring the runs stop once
a vulnerable program is found by the subqueries. Additionally, PyGGi already covers the
case where no completely fit mutant is generated before the user defined maximum number of
generations has been reached.

• Step 5: Selecting individuals for reproduction

Once again, this step is natively handled by PyGGi which looks at the fittest individuals from
previous generations to select individuals for reproduction.

Figure 4.3: Concrete Iterative Process

30

Chapter 5

Experimentation

This chapter delves into the application of the ideas and processes explained in chapter 4.

5.1 Finding a suitable Vul4J program

Part of step 1 in 4 was to find a dataset, we chose Vul4J as explained in 4.2. We now needed
a repaired version of a specific program of this dataset to run the GI process on. Following our
previously described methodology, we started trying the firsts Vul4J programs being attached to a
CWE weakness, which involved having CodeQL build a database of the program by monitoring its
compilation then running the CodeQL query corresponding to the CWE weakness against it. The
results of running the queries against the programs can be found in table 5.2.

As can be seen in the table, Vul4J-34 yielded interesting results contrary to all the previous
attempts, prompting us to proceed to the next steps with it as our initial parent program/dataset
on which to apply GI. We also did not run the queries contained in files AndroidWebViewAdd-
JavascriptInterface.ql and AndroidWebViewSettingsEnabledJavaScript.ql as in the mapping avail-
able in the annex (A.4), it is detailed this specific Vul4J vulnerability is linked to CWE-079, Cross-
site Scripting and not other CWE-079 queries.

Table 5.1 lists the results of running 36 CodeQL security queries on the first 25 Vul4J programs
having vulnerabilities listed in CWE. Out of 36 queries run, only one was able to reliably find
a vulnerability. It can be noted that the query compilation time is a step that is automatically
skipped if said query was already used before and cached by CodeQL. This effectively translates
in a shorter total run time when using them for GI as the queries will only be compiled once for
the first individual. The 36 tests were run and timed on Google Colaboratory, running them on
more powerful hardware would reduce the time required to execute them. Hardware availability
and performance is also subject to change when using Colaboratory without a paid subscription.

Number of Vulnerable
Programs Tested

False Negatives True Positives
Average Vul4J

Initialization Time
25 24 1 <1s

Average CodeQL
Database Creation Time

Average Query
Compilation Time

Average Query
Execution Time

Average Total
Run Time

86.3s 182.1s 41.8s 310.2s

Table 5.1: Results of testing 25 Vul4-J vulnerabilities with CodeQL security queries

31

Vul4J Name/ID Query Folder/CWE ID Query File Result
Vul4J-1 CWE-020 ExternalAPIsUsedWithUntrustedData.ql None
Vul4J-1 CWE-020 OverlyLargeRange.ql None
Vul4J-1 CWE-020 UntrustedDataToExternalAPI.ql None
Vul4J-2 CWE-611 XXE.ql None
Vul4J-2 CWE-611 XXELocal.ql None
Vul4J-3 None None None
Vul4J-4 None None None
Vul4J-5 None None None
Vul4J-6 CWE-835 LockOrderInconsistency.ql None
Vul4J-7 CWE-835 LockOrderInconsistency.ql None
Vul4J-8 CWE-835 LockOrderInconsistency.ql None
Vul4J-9 None None None
Vul4J-10 CWE-020 ExternalAPIsUsedWithUntrustedData.ql None
Vul4J-10 CWE-020 OverlyLargeRange.ql None
Vul4J-10 CWE-020 UntrustedDataToExternalAPI.ql None
Vul4J-11 CWE-264 None None
Vul4J-12 CWE-835 LockOrderInconsistency.ql None
Vul4J-13 CWE-835 LockOrderInconsistency.ql None
Vul4J-14 CWE-020 ExternalAPIsUsedWithUntrustedData.ql None
Vul4J-14 CWE-020 OverlyLargeRange.ql None
Vul4J-14 CWE-020 UntrustedDataToExternalAPI.ql None
Vul4J-15 CWE-611 XXE.ql None
Vul4J-15 CWE-611 XXELocal.ql None
Vul4J-16 CWE-264 None None
Vul4J-17 None None None
Vul4J-18 CWE-22 TaintedPath.ql None
Vul4J-18 CWE-22 TaintedPathLocal.ql None
Vul4J-18 CWE-22 ZipSlip.ql None
Vul4J-19 None None None
Vul4J-20 None None None
Vul4J-21 CWE-254 None None
Vul4J-22 CWE-284 None None
Vul4J-23 CWE-079 AndroidWebViewAddJavascriptInterface.ql None
Vul4J-23 CWE-079 AndroidWebViewSettingsEnabledJavaScript.ql None
Vul4J-23 CWE-079 XSS.ql None
Vul4J-23 CWE-079 XSSLocal.ql None
Vul4J-24 CWE-611 XXE.ql None
Vul4J-24 CWE-611 XXELocal.ql None
Vul4J-25 CWE-079 XSS.ql None
Vul4J-25 CWE-079 XSSLocal.ql None
Vul4J-26 CWE-020 ExternalAPIsUsedWithUntrustedData.ql None
Vul4J-26 CWE-020 OverlyLargeRange.ql None
Vul4J-26 CWE-020 UntrustedDataToExternalAPI.ql None
Vul4J-27 CWE-264 None None
Vul4J-28 CWE-264 None None
Vul4J-29 CWE-264 None None
Vul4J-30 CWE-020 ExternalAPIsUsedWithUntrustedData.ql None
Vul4J-30 CWE-020 OverlyLargeRange.ql None
Vul4J-30 CWE-020 UntrustedDataToExternalAPI.ql None
Vul4J-31 None None None
Vul4J-32 None None None
Vul4J-33 CWE-077 None None
Vul4J-34 CWE-079 XSS.ql Detected

Table 5.2: Results of running CodeQL queries on Vul4J programs
32

5.2 Creating the subqueries

Now that we have isolated Vul4J-34 as a vulnerable program, able to be detected by the query related
to CWE-079, we were able to start working on splitting the query into subqueries as theorized in
4.4.1. The source code of the query is shown in figure 5.1.

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where conf.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure 5.1: Source code of the security query for Cross Site Scripting (XSS - CWE-079)

Since the query makes use of other methods and classes implemented in different files and because
these other methods and classes themselves extend other parent classes, displaying the entire source
code for this query wouldn’t help much in comprehending it.

For the purpose of clarity, the code source of the resulting subqueries we made after splitting
the XSS.ql can be found in the annex A.3 and figure 5.2 displays their respective relationships to
the original query.

33

Figure 5.2: How subqueries are used to emulate CWE-079

5.3 Creating the fixed version of Vul4J-34

Since Vul4J provides human-made patches to its vulnerable programs, fixing Vul4-34 only required
us to look through the mapping of each vulnerability to its repair patch, download said patch and
apply it to the vulnerable code. In this case, the fix to Vul4J-34 is an update to core/src/main/-
java/com/opensymphony/xwork2/interceptor/I18nInterceptor.java provided at https://github.
com/apache/struts/commit/fc2179cf1ac9fbfb61e3430fa88b641d87253327.

To validate the program was now fixed, we ran Vul4J’s integrated test suite that served as proof
of vulnerability (PoV) and none of the tests was triggered. Since we didn’t have any PoV, we
assumed the program was rendered non-vulnerable.

5.4 Preparing the source code

Since PyGGi’s line mutations don’t discriminate between comment lines and code lines, we wrote a
small script tasked with the removal of every line of comments from a file, eliminating the chances
of having lines of comments mutated and ensuring line mutations will have an effect on the program
by modifying lines of code.

This script only works for comments similar to Java’s and works by rewriting target files with
modified versions of the code where lines of comments are suppressed. No backups of the modified

34

https://github.com/apache/struts/commit/fc2179cf1ac9fbfb61e3430fa88b641d87253327
https://github.com/apache/struts/commit/fc2179cf1ac9fbfb61e3430fa88b641d87253327

files are made. The script itself can be found in the rmvComments.py file. Its source code is also
available, figure 5.3.

import pyparsing
from pathlib import Path

for file in Path("./VUL4J-34").rglob(’*’):
if(file.name.endswith(".java")):

with open(file, ’r’) as fileR:
fileContent = fileR.read()

with open(file, ’w’) as fileW:
commentFilter = pyparsing.javaStyleComment.suppress()
fileContent = commentFilter.transformString(fileContent)
fileW.write(fileContent)

print("Done")

Figure 5.3: Script to remove comments from Java files

35

5.5 Running VulGr

The results of running VulGr are listed in table 5.3. According to these 10 tests, VulGr was able to
inject a vulnerability into the repaired program in only one generation and as soon as a compilable
mutated source code was generated. The results are discussed in 6.2.1 as they were negatively
impacted by false positives.

VulGr Run Result
Subqueries

Execution Time
Database

Creation Time
Last Generation

Number
Fittest Individual

Number for the Generation
1 Vulnerable 624.6s 492.1s 1 2
2 Vulnerable 235.7s 426.3s 1 3
3 Vulnerable 255.5s 548.5s 1 1
4 Vulnerable 209.2s 481.3s 1 2
5 Vulnerable 252.6s 475.4s 1 1
6 Vulnerable 209.2s 429.8s 1 1
7 Vulnerable 229.9s 494.4s 1 2
8 Vulnerable 228.8s 538.3s 1 2
9 Vulnerable 227s 518.9s 1 1
10 Vulnerable 213.9s 444.7s 1 1

Table 5.3: Results of the initial runs of VulGr

As mentioned previously, once a query has been compiled, it is cached by CodeQL. The beneficial
effects of caching can be seen in the table, as the execution time of the subqueries for the first run
took much longer than for the following ones.

5.6 Incorporating the Proof of Vulnerability

Since the previous results in table 5.3 were unreliable and caused the fitness function to falsely label
non-vulnerable programs as vulnerable, prematurely stopping the run, we tried incorporating the
proof of vulnerability provided with the Vul4J vulnerability. This was done in order to add a new
layer of certitude when it came to assess if the subqueries detected a true or false positive.

The new fitness function was weighted equally between the original fitness function, making use
of the subqueries, and Vul4J’s proof of vulnerability, each accounting for 50 percent of the final
fitness score.

The results of one run of VulGr are presented in tables A.1, A.2 and A.3 of the annex. One
run is not sufficient to empirically give results as to the efficiency of this modified fitness function.
Future works could explore this approach in more details, but since the values of the result can only
go from 0.5 to 1 (CodeQL always returning a false positive, ensuring the minimal fitness function
for a compilable variant is 0.5 and Vul4J-34’s proof of vulnerability only able to return 0 or 0.5),
this approach is unreliable and doesn’t allow for gradual improvements over the generations in its
current state.

36

Chapter 6

Interpretation

This chapter delves into our evaluation of the results and provides further explanations as to why
the experiments yielded unsuccessful results.

6.1 Evaluation of the results

This process could not inject vulnerabilities into a repaired Vul4J program, the main reasons behind
this unfortunate end to the experiment are that CodeQL’s queries are not precise enough to correctly
assess with certainty whether a program is vulnerable (section 6.2.1) and CodeQL’s database creation
and query execution are lengthy processes causing the Genetic Improvement framework using it to
require an unrealistic amount of time to yield interesting results. This issue is explained in detail
in section 6.2.2.

6.2 Negative factors

6.2.1 Accuracy of the results

As mentioned in 5.5, this run of PyGGi and VulGr did not manage to produce a vulnerable program.
The reason behind this lack of result is the lack of accuracy of the queries, causing the results of
CodeQL’s subqueries to be inaccurate. We made this conclusion by observing that when our fitness
function returned a fitness of 1 (completely fit individual which should be vulnerable according to
the queries), the PoV test in Vul4J’s test suite couldn’t detect any vulnerability. The 4 percent
success rate (1 out of 25) when using CodeQL’s queries to detect vulnerabilities, as seen in table
5.2 and table 5.1, foreshadowed this issue.

This unfortunately means that CodeQL and the current security queries made by the community
are not precise enough and suffer from the same issues as noted by Katerina Goseva-Popstojanova
and Andrei Perhinsch in 2015 [9]. The biggest issues we discovered when running the subqueries
through VulGr is that they are prone to find false positives, causing the fitness function to inaccu-
rately believe that the program is vulnerable or closer to being vulnerable when it’s not the case
as the Vul4J test suite contradicts. Mutants have inflated fitness values, negatively impacting the
overall process, which in turn did not contribute to reliably and automatically inject vulnerabilities
into programs.

When augmenting the fitness function with Vul4J-34’s proof of vulnerability, it quickly became
apparent that the fitness score tended to be 0.5 when a compilable mutant was produced (50 percent
vulnerable, due to CodeQL considering the mutated program as vulnerable and due to Vul4J’s proof

37

of vulnerability not detecting any vulnerability). When the code didn’t compile, the fitness score
naturally was 0. Since only the proof of vulnerability, consisting of only one test, could change the
fitness score, it would theoretically be possible to generate a vulnerable individual with a fitness
score of 1 though this would happen completely randomly and wouldn’t benefit from the genetic
improvement framework nor CodeQL. Mutations would occur randomly until the fitness score jumps
from 0.5 to 1 when using CodeQL in the fitness function, or from 0 to 1 if we removed CodeQL
from the fitness function.

6.2.2 Runtime

Getting results was time-consuming due to the lengthy process of rebuilding a database of each
occurrence of mutated source code. In practical terms, it meant that for one generation of 10000
individuals, CodeQL had to build 10000 databases matching the 10000 mutated programs, each time
from scratch since CodeQL doesn’t currently support incremental updates of the database [18].

This is the reason individuals in A.1, A.2 and A.3 each took a few minutes to be evaluated
by the fitness function, severely slowing down the process of applying GI to the repaired Vul4J-
34 program. This time-consuming process effectively made it impossible to get any interesting
results in a reasonable time frame given the hardware available for this experiment, namely Google’s
Colaboratory.

If we use the following formula for a single generation:

(N � cR) � (average(dT) + average(sT)

cR = 21=45

with N being the number of variants in a single generation, cR being the rate of programs
that can actually be compiled (out of 45 variants, 21 could be compiled), average being a function
returning the average value of the set of numbers given and dT and sT respectively being the
Database creation Times and Subqueries execution Times of the results in A.1.

We get the following result:

(10000 � 0:466) � (481:1 + 162:2) = 2997778s

2997778 is equivalent to 832.7 hours or 34.69 days, more than a month.

38

Chapter 7

Conclusion

This chapter summarizes the processes that were applied, the results that were produced, our
interpretation of the results. The answers to the research questions asked earlier in chapter 3 are
also provided and ideas that emerged during the experiments as well as ideas for future works and
improvements are suggested.

7.1 Summary

The aim of this experiment was to automatically inject security vulnerabilities into programs for the
purpose of obtaining high-quality labelled vulnerable programs. These labelled programs could have
then helped to solve the issue of data scarcity. They would have been provided as a new dataset
for researchers training machine-learning models specialized in the detection of vulnerabilities and
enabled them to follow the steps and logic applied in this experiment in order to generate their own
vulnerable programs accommodating their specific needs.

The experiment was made using VulGr, a modified version of the PyGGi genetic improvement
framework that was implemented in the context of this thesis. VulGr automatically applied line
mutations to a non-vulnerable program, individuals generated through these mutations were then
assessed by a fitness function making use of CodeQL, a static code analyser.

The experiment was unsuccessful, as the programs produced did not contain vulnerabilities,
and the results of VulGr were invalidated by Vul4J’s test suite. The most important threat to
the validity of the results provided by VulGr was the inaccuracy of CodeQL’s security queries,
frequently unable to detect vulnerabilities in the first place or falsely considering non-vulnerable
program as vulnerable (false positives). Furthermore, CodeQL’s lengthy processes when analysing
and looking for vulnerabilities in programs complicated the experiments and made it impossible for
a GI framework to finish its run in an acceptable time frame in the context of this thesis.

7.2 Answers to the research questions

• Question 1: How reliable is CodeQL compared to previously tested static code
analysers when dealing with security vulnerabilities?

In its current state, CodeQL didn’t perform adequately and is inaccurate most of the time
when using its security queries on a database of a Vul4J program. It is however still in
development and the security queries are an ongoing community effort and the accuracy of
these should improve with time.

39

CodeQL only achieved a 4 percent success rate of finding true positives when applied to Vul4J’s
first 25t vulnerable programs having a CWE vulnerability. It can be noted that in [9], three
static code analysers are used in conjunction against a different dataset, the Juliet test suite.
We thus can’t empirically say CodeQL was less accurate than the static code analysers in [9],
since the three tools were used in conjunction against a dataset they had been trained on and
none of them were able to detect more than 27 percent of the vulnerabilities.

• Question 2: How can CodeQL’s take on source code analysis through databases
of code be realistically used for the purpose of GI?

At the moment, CodeQL’s database and querying systems are too time-consuming to be
realistically used in a GI process, where thousands of databases have to be built, and even
more queries have to be run. When using Colaboratory, building a database of a mutated
program and running queries against it took several minutes, repeating the same processes for
thousands of individuals would take more than a month for a single generation at the current
pace (as calculated in section 6.2.2).

However, an update to allow databases to be incrementally built, greatly reducing the build
time by updating the previous databases with the new modifications, is currently in the works
and could significantly speed up the creation of the database [18]. Similarly, queries are
continually improved and multiple subqueries can be run in parallel, granted a hardware able
to offer powerful multi-threading capabilities. It can thus be expected that in the future, this
constraint will disappear and allow for CodeQL’s take on source code analysis to be realistically
used for the purpose of GI, producing results within an acceptable time frame.

• Question 3: How can genetic improvement be used in the field of automatic
vulnerability injection?

Based on the answers of the two previous questions, it is currently not possible to use genetic
improvement for the purpose of automatic vulnerability injection. The approach through GI
requiring thousands of iterations, which each require a non-negligible time to be assessed, and
using inaccurate tools could not automatically inject vulnerabilities into Vul4J-34.

Similarly to the answers to the previous questions, updates and community efforts have the
potential to allow for a practical application of GI to produce vulnerable programs following
the process and steps detailed in 4.

7.3 Parallel and future works

7.3.1 Using Genetic Improvement to improve the accuracy of CodeQL’s
queries

Since CodeQL’s security queries suffer from a lack of accuracy, genetic improvement could be applied
to them in the aim of making them more accurate. A typical workflow for such an application of
GI would have been to isolate a program with a vulnerability not detected by the corresponding
security query and mutating said query through statement and grammar-based mutations. The
mutated query would then be run against the vulnerable program to assess its accuracy and ability
to detect a true positive vulnerability and avoid false positives and false negatives.

We didn’t explore this idea thoroughly due to the theme of the thesis being focused around the
generation of vulnerable programs and the lack of a reliable way to guide the mutations toward
a higher accuracy. Indeed, the fitness function would only be able to assess whether the mutated
query was able to find the vulnerability or not. It would be unable to detect if a mutated query is
closer to getting a true positive than the original query.

40

7.3.2 Using better hardware and waiting for improvements to CodeQL

This experimentation could be revisited in the future. The time constraints that resulted in a lack
of concrete results could be met through the use of specialized hardware, benefitting from better
computing capabilities and more threads. Incremental building of CodeQL databases would also
significantly speed up the time it takes to assess mutated programs [18], alleviating the issue. Using
a smaller and less complex program in which to inject a vulnerability would also translate in a less
complex CodeQL database, in turn speeding up the execution of queries against it.

7.3.3 Optimizing the genetic improvement process

Since the experiments did not yield valid results, it was hard to tailor VulGr to generate a vulnerable
program more reliably or faster. However, if valid results were produced, the next steps would have
been to try multiple mutation techniques, trying other approaches to selection and look for optimal
values regarding the number of generations and individuals for each generation in the aim of tailoring
VulGr to generate vulnerabilities more efficiently.

7.4 Contributions of the thesis

7.4.1 State of CodeQL’s security capabilities

The experimentations conducted in this thesis were able to demonstrate CodeQL’s security queries
were unable to detect vulnerabilities in the vast majorities of the tests that were run. Out of 25
Vul4J programs, only one’s vulnerability was detected by CodeQL’s security queries, achieving a 4
percent success rate.

Using CodeQL for security purposes is currently not sufficient to detect vulnerabilities and
shouldn’t be used alone when developing CWE compliant software programs.

7.4.2 A framework for future successful injection of vulnerabilities through
genetic improvement

This thesis describes an approach to using genetic improvement to inject vulnerabilities into non-
vulnerable programs. Its overall workflow can help understand genetic improvement and be trans-
posed to other uses. The approach can also be modified, for example future works may want to use
a different oracle than CodeQL for the implementation of the fitness function.

The thesis also includes the code of VulGr and the Colaboratory used to conduct the experi-
ments. VulGr being modular, updating CodeQL queries, modifying the fitness function, changing
the mutation techniques and so on is easy and aims to facilitate future modifications.

41

Bibliography

[1] Hasanen Alyasiri. “Evolving Rules for Detecting Cross-Site Scripting Attacks Using Genetic
Programming”. In: Advances in Cyber Security: Second International Conference, ACeS 2020,
Penang, Malaysia, December 8-9, 2020, Revised Selected Papers 2. Springer. 2021, pp. 642–
656.

[2] Gabin An et al. “PyGGI 2.0: Language Independent Genetic Improvement Framework”.
In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE 2019.
Tallinn, Estonia: ACM, 2019, pp. 1100–1104. isbn: 978-1-4503-5572-8. doi: 10.1145/3338906.
3341184. url: http://doi.acm.org/10.1145/3338906.3341184.

[3] Benjamin Aziz, Mohamed Bader, and Cerana Hippolyte. “Search-based sql injection attacks
testing using genetic programming”. In: Genetic Programming: 19th European Conference, Eu-
roGP 2016, Porto, Portugal, March 30-April 1, 2016, Proceedings 19. Springer. 2016, pp. 183–
198.

[4] Paul E Black et al. “SARD: Thousands of reference programs for software assurance”. In: J.
Cyber Secur. Inf. Syst. Tools Test. Tech. Assur. Softw. Dod Softw. Assur. Community Pract
2.5 (2017).

[5] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Dıaz Ferreyra. “Vul4J: A Dataset of
Reproducible Java Vulnerabilities Geared Towards the Study of Program Repair Techniques”.
In: 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR).
2022, pp. 464–468. doi: 10.1145/3524842.3528482.

[6] Bénimédourène Charles. PyGGi(VulGr) + CodeQL Colaboraty. https://colab.research.
google.com/drive/1q7Y7lfUOG4pZvyL3I2x8pvuoOunmCkMU#scrollTo=fcYEo7ApuPvH. 2023.

[7] Bénimédourène Charles. VulGr. https://github.com/C-hrl/VulGr-PyGI. 2023.
[8] Gabriel Dı́az and Juan Ramón Bermejo. “Static analysis of source code security: Assessment of

tools against SAMATE tests”. In: Information and Software Technology 55.8 (2013), pp. 1462–
1476. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2013.02.005. url:
https://www.sciencedirect.com/science/article/pii/S0950584913000384.

[9] Katerina Goseva-Popstojanova and Andrei Perhinschi. “On the capability of static code anal-
ysis to detect security vulnerabilities”. In: Information and Software Technology 68 (2015),
pp. 18–33. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2015.08.002. url:
https://www.sciencedirect.com/science/article/pii/S0950584915001366.

[10] William B Langdon and Mark Harman. “Optimizing existing software with genetic program-
ming”. In: IEEE Transactions on Evolutionary Computation 19.1 (2014), pp. 118–135.

[11] Claire Le Goues. “Automatic program repair using genetic programming”. In: Univ. Virginia,
Charlottesville, VA, USA (2013).

[12] Zhen Li et al. “A comparative study of deep learning-based vulnerability detection system”.
In: IEEE Access 7 (2019), pp. 103184–103197.

42

https://doi.org/10.1145/3338906.3341184
https://doi.org/10.1145/3338906.3341184
http://doi.acm.org/10.1145/3338906.3341184
https://doi.org/10.1145/3524842.3528482
https://colab.research.google.com/drive/1q7Y7lfUOG4pZvyL3I2x8pvuoOunmCkMU##scrollTo=fcYEo7ApuPvH
https://colab.research.google.com/drive/1q7Y7lfUOG4pZvyL3I2x8pvuoOunmCkMU##scrollTo=fcYEo7ApuPvH
https://github.com/C-hrl/VulGr-PyGI
https://doi.org/https://doi.org/10.1016/j.infsof.2013.02.005
https://www.sciencedirect.com/science/article/pii/S0950584913000384
https://doi.org/https://doi.org/10.1016/j.infsof.2015.08.002
https://www.sciencedirect.com/science/article/pii/S0950584915001366

[13] Elisa Boari de Lima et al. “Tuning Genetic Programming parameters with factorial designs”.
In: IEEE Congress on Evolutionary Computation. July 2010. doi: 10 . 1109 / CEC . 2010 .
5586084.

[14] Aditya Nandy, Chenru Duan, and Heather J Kulik. “Audacity of huge: overcoming challenges
of data scarcity and data quality for machine learning in computational materials discovery”.
In: Current Opinion in Chemical Engineering 36 (2022), p. 100778. issn: 2211-3398. doi:
https://doi.org/10.1016/j.coche.2021.100778. url: https://www.sciencedirect.
com/science/article/pii/S2211339821001106.

[15] Benjamin Petit. “Automatic vulnerability injection using natural language processing”. 2022.

[16] Riccardo Poli, William Langdon, and Nicholas Mcphee. A Field Guide to Genetic Program-
ming. Jan. 2008. isbn: 978-1-4092-0073-4.

[17] Mohamed Shahin. “State-of-the-art review of some artificial intelligence applications in pile
foundations”. In: Geoscience Frontiers 130 (Nov. 2014). doi: 10.1016/j.gsf.2014.10.002.

[18] Tamás Szabó and Max Schaefer. Incremental CodeQL. https://githubnext.com/projects/
incremental-codeql/. 2023.

[19] Westley Weimer et al. “Automatically finding patches using genetic programming”. In: 2009
IEEE 31st International Conference on Software Engineering. IEEE. 2009, pp. 364–374.

43

https://doi.org/10.1109/CEC.2010.5586084
https://doi.org/10.1109/CEC.2010.5586084
https://doi.org/https://doi.org/10.1016/j.coche.2021.100778
https://www.sciencedirect.com/science/article/pii/S2211339821001106
https://www.sciencedirect.com/science/article/pii/S2211339821001106
https://doi.org/10.1016/j.gsf.2014.10.002
https://githubnext.com/projects/incremental-codeql/
https://githubnext.com/projects/incremental-codeql/

Appendix A

Annex

A.1 VulGr operating 45 mutations

Individual
Database

Creation Time
Subqueries

Execution Time
Fitness Score

1 Compilation Failed Skipped 0
2 Compilation Failed Skipped 0
3 468s 232.9s 0.5
4 Compilation Failed Skipped 0
5 466s 212.7s 0.5
6 497.7s 227.6s 0.5
7 Compilation Failed Skipped 0
8 Compilation Failed Skipped 0
9 Compilation Failed Skipped 0
10 Compilation Failed Skipped 0
11 480.1s 228.9s 0.5
12 511.5s 212.1s 0.5
13 Compilation Failed Skipped 0
14 481.5s 217.7s 0.5
15 Compilation Failed Skipped 0

Table A.1: Results 1-15 of running VulGr with the fitness function augmented with Vul4J’s PoV

44

Individual
Database

Creation Time
Subqueries

Execution Time
Fitness Score

16 465s 222.6s 0.5
17 Compilation Failed Skipped 0
18 Compilation Failed Skipped 0
19 Compilation Failed Skipped 0
20 474.4s 212.7s 0.5
21 Compilation Failed Skipped 0
22 Compilation Failed Skipped 0
23 458.8s 221.0s 0.5
24 475.6s 241.5s 0.5
25 Compilation Failed Skipped 0
26 486.4s 208.6s 0.5
27 496.4s 244.5s 0.5
28 494.8s 223.6s 0.5
29 Compilation Failed Skipped 0
30 474.5s 239.1s 0.5

Table A.2: Results 16-30 of running VulGr with the fitness function augmented wit Vul4J’s PoV

Individual
Database

Creation Time
Subqueries

Execution Time
Fitness Score

31 484.3 211.3 0.5
32 490.4 237.5 0.5
33 Compilation Failed Skipped 0
34 457.6 221.6 0.5
35 498.6 235.3 0.5
36 Compilation Failed Skipped 0
37 Compilation Failed Skipped 0
38 487.1 207.1 0.5
39 485.4 224.3 0.5
40 Compilation Failed Skipped 0
41 468.9 237.2 0.5
42 Compilation Failed Skipped 0
43 Compilation Failed Skipped 0
44 Compilation Failed Skipped 0
45 Compilation Failed Skipped 0

Table A.3: Results 31-45 of running VulGr with the fitness function augmented wit Vul4J’s PoV

45

A.2 Mapping of each Vul4J to its potential CWE vulnera-
bility

VUL4J ID CWE ID CWE NAME
VUL4J-1 CWE-20 Improper Input Validation
VUL4J-2 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-3 Not Mapping Not Mapping
VUL4J-4 Not Mapping Not Mapping
VUL4J-5 Not Mapping Not Mapping
VUL4J-6 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-7 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-8 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-9 Not Mapping Not Mapping
VUL4J-10 CWE-20 Improper Input Validation
VUL4J-11 CWE-264 Permissions, Privileges, and Access Controls
VUL4J-12 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-13 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-14 CWE-20 Improper Input Validation
VUL4J-15 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-16 CWE-264 Permissions, Privileges, and Access Controls
VUL4J-17 Not Mapping Not Mapping
VUL4J-18 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-19 Not Mapping Not Mapping
VUL4J-20 Not Mapping Not Mapping
VUL4J-21 CWE-254 7PK - Security Features
VUL4J-22 CWE-284 Improper Access Control
VUL4J-23 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-24 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-25 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-26 CWE-20 Improper Input Validation
VUL4J-27 CWE-264 Permissions, Privileges, and Access Controls
VUL4J-28 CWE-264 Permissions, Privileges, and Access Controls
VUL4J-29 CWE-264 Permissions, Privileges, and Access Controls
VUL4J-30 CWE-20 Improper Input Validation
VUL4J-31 Not Mapping Not Mapping
VUL4J-32 Not Mapping Not Mapping
VUL4J-33 CWE-77 Improper Neutralization of Special Elements used in a Command (’Command Injection’)
VUL4J-34 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-35 CWE-352 Cross-Site Request Forgery (CSRF)
VUL4J-36 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-37 CWE-502 Deserialization of Untrusted Data
VUL4J-38 CWE-74 Improper Neutralization of Special Elements in Output Used by a Downstream Component (’Injection’)
VUL4J-39 CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
VUL4J-40 CWE-287 Improper Authentication

Table A.4: Vul4J-CWE mapping of vulnerabilities 1 to 40

46

VUL4J ID CWE ID CWE NAME
VUL4J-41 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-42 CWE-78 Improper Neutralization of Special Elements used in an OS Command (’OS Command Injection’)
VUL4J-43 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-44 CWE-310 Cryptographic Issues
VUL4J-45 CWE-74 Improper Neutralization of Special Elements in Output Used by a Downstream Component (’Injection’)
VUL4J-46 Not Mapping Not Mapping
VUL4J-47 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-48 CWE-20 Improper Input Validation
VUL4J-49 CWE-20 Improper Input Validation
VUL4J-50 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-51 CWE-918 Server-Side Request Forgery (SSRF)
VUL4J-52 CWE-269 Improper Privilege Management
VUL4J-53 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-54 CWE-502 Deserialization of Untrusted Data
VUL4J-55 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’)
VUL4J-56 CWE-918 Server-Side Request Forgery (SSRF)
VUL4J-57 CWE-532 Insertion of Sensitive Information into Log File
VUL4J-58 CWE-863 Incorrect Authorization
VUL4J-59 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-60 CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’)
VUL4J-61 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-62 CWE-287 Improper Authentication
VUL4J-63 Not Mapping Not Mapping
VUL4J-64 CWE-611 Improper Restriction of XML External Entity Reference
VUL4J-65 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-66 CWE-20 Improper Input Validation
VUL4J-67 CWE-770 Allocation of Resources Without Limits or Throttling
VUL4J-68 CWE-20 Improper Input Validation
VUL4J-69 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-70 Not Mapping Not Mapping
VUL4J-71 Not Mapping Not Mapping
VUL4J-72 CWE-345 Insufficient Verification of Data Authenticity
VUL4J-73 CWE-522 Insufficiently Protected Credentials
VUL4J-74 CWE-332 Insufficient Entropy in PRNG
VUL4J-75 CWE-19 Data Processing Errors
VUL4J-76 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)
VUL4J-77 CWE-502 Deserialization of Untrusted Data
VUL4J-78 CWE-502 Deserialization of Untrusted Data
VUL4J-79 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (’Path Traversal’)

Table A.5: Vul4J-CWE mapping of vulnerabilities 41 to 79

A.3 Code of the 8 subqueries of CWE-079

47

/**
* @name any
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph
import semmle.code.java.dataflow.internal.DataFlowImpl

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where sink = any(PathNodeSink cSink | not exists(cSink.getSinkGroup())) and

sink.getConfiguration() = conf
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.", source.getNode(), "user-provided value"

Figure A.1: First subquery, nicknamed “Any”

48

/**
* @name flowsource-is-flowsink
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where source.getConfiguration() = conf and sink.getConfiguration() = conf and

source = sink
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.2: Second subquery, nicknamed “Flowsource is Flowsink”

49

/**
* @name is-flowsink
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where conf.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.3: Second subquery, nicknamed “Is Flowsink”

50

/**
* @name is-source
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where source.getConfiguration() = conf and source.isSource()
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.4: Second subquery, nicknamed “Is Source”

51

/**
* @name not-getsourcegroup
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph
import semmle.code.java.dataflow.internal.DataFlowImpl

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where source.getConfiguration() = conf and not

exists(((PathNodeImpl)source).getSourceGroup())
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.5: Second subquery, nicknamed “Not Getsourcegroup”

52

/**
* @name path-node-sink-group
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph
import semmle.code.java.dataflow.internal.DataFlowImpl

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where sink.getConfiguration() = conf and sink instanceof PathNodeSinkGroup
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.6: Second subquery, nicknamed “Path Node Sink Group”

53

/**
* @name path-node-source-group
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph
import semmle.code.java.dataflow.internal.DataFlowImpl

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where source.getConfiguration() = conf and source instanceof PathNodeSourceGroup
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.7: Second subquery, nicknamed “Path Node Source Group”

54

/**
* @name path-succ
* @description Writing user input directly to a web page
* allows for a cross-site scripting vulnerability.
* @kind path-problem
* @problem.severity error
* @security-severity 6.1
* @precision high
* @id java/xss
* @tags security
* external/cwe/cwe-079
*/

import java
import semmle.code.java.dataflow.FlowSources
import semmle.code.java.security.XSS
import DataFlow::PathGraph

import semmle.code.java.dataflow.internal.DataFlowImpl

class XssConfig extends TaintTracking::Configuration {
XssConfig() { this = "XSSConfig" }

override predicate isSource(DataFlow::Node source) { source instanceof
RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof XssSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof
XssSanitizer }

override predicate isSanitizerOut(DataFlow::Node node) { node instanceof
XssSinkBarrier }

override predicate isAdditionalTaintStep(DataFlow::Node node1, DataFlow::Node
node2) {

any(XssAdditionalTaintStep s).step(node1, node2)
}

}

from DataFlow::PathNode source, DataFlow::PathNode sink, XssConfig conf
where pathSuccPlus(source, sink) and source.getConfiguration() = conf and

sink.getConfiguration() = conf
select sink.getNode(), source, sink, "Cross-site scripting vulnerability due to a

$@.",
source.getNode(), "user-provided value"

Figure A.8: Second subquery, nicknamed “Path Succ”

55

	Introduction
	Context
	Motivation of the research

	State of the Art
	Genetic Programming
	Main components of a GP run
	Terminal Set
	Function Set

	Selection
	Mutations
	Crossover
	Genetic Improvement
	Datasets
	Static Code Analysis
	CodeQL

	Research Questions
	Methodology
	Vulnerability Injection using Genetic Programming
	Dataset

	Experimentation
	Finding a suitable Vul4J program
	Creating the subqueries

	Interpretation
	Evaluation of the results
	Negative factors
	Accuracy of the results
	Runtime

	Conclusion
	Summary
	Answers to the research questions
	Parallel and future works
	Using Genetic Improvement to improve the accuracy of CodeQL's queries
	Using better hardware and waiting for improvements to CodeQL
	Optimizing the genetic improvement process

	Contributions of the thesis
	State of CodeQL's security capabilities
	A framework for future successful injection of vulnerabilities through genetic improvement

	 Annex
	VulGr operating 45 mutations
	Mapping of each Vul4J to its potential CWE vulnerability
	Code of the 8 subqueries of CWE-079

