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Abstract

The second quantum revolution has arrived, and quantum physics is revealing an increasing num-
ber of practical applications every day. At the heart of quantum physics lies a foundational ques-
tion: the measurement problem. What exactly happens when we measure quantum systems? De-
spite the fact that quantum theory provides a framework for measurements, many scientists and
philosophers continue to debate the consequences of measuring to this day.
The focus of this thesis is on weak measurements—a type of quantum measurement where the in-
teraction strength between the measuring device and the system being studied is very small. After
the weak interaction, post-selection takes place, requiring a projective measurement and filtering
on the desired final state. Ultimately, the shift in the ancilla’s wavefunction is proportional to the
weak value—a complex and unbounded number. In recent years, weak measurements have gar-
nered significant attention due to their amplification power and fundamental properties.
In this study, we specifically focus on the polar description of weak values. Initially, we delve into
the geometrical properties of weak values. The argument of the weak value corresponds to a geo-
metric phase associated with the symplectic area of a triangle formed by the geodesics between the
pre-selected state, a state involving the observable, and the post-selected state. To enhance visual
comprehension, we also apply the Majorana description to the three states involved in the weak
value. Our analysis shows then that the argument of the weak value is related to the sum of two
solid angles on the Bloch sphere.
Next, we examine the modulus of weak values. We demonstrate that weak values can be expressed
as the expectation value of a non-normal operator. We prove that weak values can differ from
the observable’s eigenvalues only if the operator is non-normal. Moreover, we establish strong
correlations between the Henrici departure from normality—a parameter that indicates how far a
matrix deviates from normality—and the modulus of the weak value in the strong amplification
regime. These findings shed further light on the nature of weak values and their relationship with
non-normal operators.
Looking at the weak value from a different angle, we can express it as the expectation value of
the observable using a pseudo-Hermitian projector. We further demonstrate that, by modifying the
Hilbert space standard metric, weak values can be described as expectation values in an indefinite
metric space, where the metric has signature (−1,1, . . . ,1). We establish a link between this space
and non-classical logics and find that the emerging logic is paraconsistent and paracomplete. These
new insights provide a fresh perspective that may inspire further research in the field of quantum
foundations.
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In quantum mechanics, a state can never be truly isolated and constantly interacts with its envi-
ronment. In this study, we explore the effects of weak measurements with dissipation between
the weak interaction and post-selection. Our investigation reveals that as the dissipation duration
increases towards infinity, weak values tend to the expectation value of the observable in the pre-
selected state. However, we observe anomalous weak values, even at infinite dissipation time, in
cases where the ground state is degenerate. By examining the system at short dissipation times
with weak measurements in the amplification regime, we can extract valuable information about
the dissipative dynamics, including the dissipation rate and whether the system is Markovian or
non-Markovian.
Quantum computing is among the most sought-after applications of quantum physics. In this study,
we explore a protocol for implementing quantum algorithms using modular values. Specifically,
we apply this protocol to the Deutsh-Jozsa algorithm, the Grover algorithm, and the phase estima-
tion protocol. To assess the feasibility of our approach, we report experimental results obtained
from the IBM quantum computer.
In summary, weak measurements hold great promise for both their amplification properties and
their potential to deepen our understanding of fundamental quantum properties. We believe that
our work will serve as a foundation for future studies exploring the polar description of weak
values and their application to quantum foundations, as well as investigations into the effects of
dissipation on weak measurements. Additionally, our exploration of modular values in quantum
computing holds significant potential for advancing the field and driving progress towards practical
quantum technologies.
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Chapter 1
Introduction

Quantum mechanics is a field with enormous potential. Although it initially began as a funda-
mental investigation, it has since yielded a plethora of possible applications [1, 2, 3], including
the development of quantum clocks [4] and the highly sought-after quantum computer [5]. Addi-
tionally, quantum physics has been successful in making very precise predictions, particularly in
the realm of quantum electrodynamics [6]. At the heart of quantum mechanics lies the issue of
quantum measurement [7], and with it, the foundational question of how to interpret it [8, 9, 10].
The simplest type of measurement in quantum mechanics is the projective measurement, which
is an ideal irreversible measurement that destroys all coherences and reduces the initial state of
the system to an eigenvector of the measured observable [11]. In a projective measurement, the
measuring device is typically treated classically.
Nonetheless, projective measurements are not the sole type of measurements in quantum physics.
The von Neumann protocol, which involves describing both the measuring device (or ancilla) and
the system using quantum states, offers an alternative approach to modeling measurements. This
method can describe any type of measurement, ranging from weak (with a very small interaction
strength) to projective (with an interaction strength that is very large) [12]. To further elaborate
on this protocol, we can examine the Stern-Gerlach experiment [13]. Historically, this experiment
was designed to determine the continuous or discrete character of spin. The experiment involves a
beam of silver atoms, prepared in an oven, which passes through a magnet that generates a variable
magnetic field, Fig. 1.1. This field couples the position of the beam with the spin. By detecting
the position of the beam on the screen, information about the spin (up or down) can be obtained,
Fig. 1.1. The magnetic field interaction can be modeled using a unitary operator. Depending on
the interaction strength, which is determined by the intensity of the magnetic gradient, the degree
of separation between the beam of spin up and spin down can vary. In the case of very weak inter-
action strength, the separation may not be easily observable, and the beam after interaction would
remain almost unperturbed.
When the interaction strength in the Stern-Gerlach experiment is very weak, the quantum state
after the experiment remains almost unperturbed. The shift between the spin states up and down
is tiny, making it difficult to extract much information about the spin of the system. However,
it is possible to obtain more information by applying a post-selection protocol known as a weak
measurement, Fig. 1.2. This protocol consists of four steps: pre-selection of the system, weak
interaction via a unitary operator, post-selection of the system, and finally, reading out the ancilla’s
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Figure 1.1: The Stern-Gerlach experiment involves a beam of silver atoms (2) that is first prepared
in an oven (1) and then passed through a variable magnetic field (3). The beam ultimately reaches a
screen, where the classical description predicts it will arrive in a vertical line (4). However, because
spin is a quantum variable, the beam only reaches two points on the screen (5): they correspond
to spin up and down. Reproduced from Tatoute, https://commons.wikimedia.org/wiki/File:Stern-
Gerlach_experiment_svg.svg, accessed on the 20th of May 2023.

Figure 1.2: The weak measurement of the Stern-Gerlach experiment involves using two magnets.
The first magnet couples the position and spin in the z direction weakly, while the second magnet
post-selects the spin in the x direction as down. Reprinted from [17] with permission from The
American Physical Society (APS).

wave-function, Fig. 1.2. In the Stern-Gerlach experiment, the weak interaction is achieved using a
variable magnet field in the z direction, while the post-selection is performed using a variable mag-
netic field in the x direction. The ancilla’s wave-function position is then measured on a screen,
as shown in Fig. 1.2. The shift in the wave-function is proportional to a complex and unbounded
number called weak value. The concept of weak measurements was first introduced in the late
1980s by Yakir Aharonov, David Albert, and Lev Vaidman to address fundamental questions and
paradoxes in quantum mechanics [14]. In particular, weak measurements have shed light on the
nature of quantum measurements and the role of the observer in the measurement process [15, 16].
Weak values are complex and unbounded numbers that are typically studied in terms of their real
and imaginary parts, as it is most useful in experiments. However, like any other complex num-
ber, weak values can also be investigated in the polar representation, in terms of their modulus
and argument. In this thesis, we focus on studying the argument of weak values for any N-level
discrete observable, building upon previous results on the argument of weak values of projectors
in two-level systems [18]. It was found that the argument of the weak value of a two-level pro-
jector describes a geometric phase that is associated with the solid angle on the Bloch sphere of
the triangle formed by the pre-selected state, the weakly measured projector state, and the post-
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selected state. We expand this work to N-level projectors and general observables, establishing a
link between the argument of the weak value of an N-level projector and the third-order Bargmann
invariant. Specifically, the argument of the weak value of an N-level projector is equivalent to
the argument of the third-order Bargmann invariant involving the pre-selected state, the measured
projector state, and the post-selected state. The third-order Bargmann invariant also describes a
geometric phase, which is associated with the symplectic area of the geodesic triangle between the
three quantum states in the complex projective space CPN−1. As a result, we find that the argu-
ment of the weak value of any projector describes a geometric phase that is associated with the
symplectic area of the geodesic triangle formed by the pre-selected state, the projector state, and
the post-selected state in the complex projective space [19].
To tackle the general observable case, we showed that the weak value of any observable is propor-
tional to the weak value of a projector that arises from the normalized application of the observable
over the pre-selected state. The constant of proportionality between the weak value of the general
observable and the one of the projector is real. Consequently, the argument of the weak value
of any observable describes a geometric phase that is associated with the symplectic area of the
triangle formed by the geodesics connecting the pre-selected state, the state obtained by apply-
ing the observable to the initial state, and the post-selected state in the complex projective space
CPN−1 [19].
Thanks to our study, we now have a complete understanding of the geometrical properties of the
argument of weak values of general discrete observables. However, visualizing this geometry can
be challenging in the general case. To address this, we can use the Majorana representation, which
maps an N-level system state to N− 1 qubit states, for the three projectors involved in the argu-
ment of the weak value. With this approach, the argument of the weak value of any observable
can be expressed as the sum of N−1 arguments of weak values of qubit projectors. Each of these
arguments of weak value of a two-level projector is associated with a solid angle on the Bloch
sphere. Therefore, we can represent the argument of any weak value using N− 1 solid angles on
the Bloch sphere. Additionally, as weak values are invariant under unitary transformations, we can
always transform any weak value to a three-level system weak value. Using this approach, we can
represent the argument of any weak value as the sum of two solid angles on the Bloch sphere [20].
The choice between representing the weak value in the initial space (CPN−1) or on the Bloch
sphere by utilizing the Majorana representation depends on the specific problem at hand. In cases
where the focus is on the N-level system, working in the initial space is necessary, even though
visualization can be challenging. However, when visualization is crucial for understanding the
system under study, the Majorana representation is the most suitable choice.
While the geometrical properties of the argument of weak values are interesting, most applications
focus on the amplification power of weak values. To study amplification, it is best to examine
the modulus of the weak value. In a typical weak measurement without post-selection, the result-
ing shift is proportional to the expectation value. However, when post-selection takes place after
the weak interaction, the shift becomes proportional to the weak value. Consequently, the weak
value replaces the expectation value. We can express the weak value as an expectation value of
a non-Hermitian operator, which is not only non-Hermitian but also non-normal. This condition
is stronger than simply being non-Hermitian because not all non-Hermitian operators are non-
normal, but all non-normal operators are non-Hermitian. In this thesis, we demonstrate that the
new operator must be non-normal to obtain a weak value that differs from one of the observable’s
eigenvalues. Additionally, we discovered that, for specific cases, the largest weak value is achieved
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when the parameters exhibit the highest non-normality, as measured by the Henrici departure from
normality [21].
Following a similar approach, by rewriting weak values as expectation values with a pseudo-
Hermitian projector, instead of an expectation value of a non-Hermitian operator, allows us to
investigate the weak value in a new space defined by the metric η under which the projector is
Hermitian (actually, η-Hermitian). Interestingly, we found that any weak value can be described
in an indefinite metric space, also known as a Krein space. This space can be linked to a paracon-
sistent and paracomplete logic, where a property and its negation can both be true, and a property
with its negation might not necessarily encompass the whole space. This implies that a property
or its negation (the logical union) might not necessarily hold true. Thanks to this description, we
were able to provide a fresh perspective on the quantum three-box paradox.
Furthermore, quantum systems are inherently never completely isolated, and weak measurements
are no exception as they interact with the surrounding environment. Therefore, it is crucial to study
the effects of dissipation on weak measurements as it can destroy the anomalous properties of weak
values. In this study, we investigate the behavior of weak values under dissipation and demonstrate
that, regardless of the system, weak values tend to converge to the expectation value of the ini-
tial state under infinite dissipation duration, except in cases where the ground state is degenerate.
Weak values can still exhibit anomalous properties even at infinite dissipation time under when
degenerate fundamental states are present. Furthermore, we can use weak values in the amplifica-
tion regime at short dissipation times to extract valuable information about the system’s dynamics,
such as the dissipation rate and whether the dynamics are Markovian or non-Markovian [22].
Moreover, quantum computing holds immense potential for advancing various fields, and weak
values or modular values, related concept that arise when the operator is unitary, could potentially
contribute to this progress. In this study, we propose a versatile configuration using modular values
that can be applied to any algorithm that involves an oracle, which is a gate used to describe un-
known operators in computing. In this case, the protocol consists of measuring the modular value
of the oracle. To test the effectiveness of this protocol, we apply it to the Deutsch-Jozsa, Grover’s
algorithms, and the quantum phase estimation protocol. As a proof of concept, we implement the
Deutsch-Jozsa algorithm on the IBM quantum computer, but our preliminary results do not indi-
cate any significant advantage over traditional quantum algorithms. Nevertheless, we believe that
exploring the potential of weak values in quantum computing can lead to exciting discoveries and
applications in the future.
The thesis is structured as follows: Chapter 2 provides an introduction to weak measurements and
their applications. In Chapter 3, we describe the properties of the N-dimensional quantum spaces
and introduce the necessary mathematical tools to follow the thesis. Chapter 4 focuses on the
geometrical interpretation of the argument of weak values in the complex projective space, while
Chapter 5 provides a similar description but on the Bloch sphere. In Chapter 6, we investigate
the non-normal properties of weak values, and in Chapter 7, we explore the connection between
weak values and paraconsistent logic. Chapter 8 is devoted to the study of weak values under dis-
sipation, while in Chapter 9, we apply modular values to quantum algorithms, including a general
configuration that can be applied to any algorithm involving an oracle, such as the Deutsch-Jozsa
and Grover’s algorithms. Finally, in Chapter 10, we provide the conclusions and perspectives.



Chapter 2
Introduction to quantum measurements

Measurements play an indispensable role in many aspects of our daily lives. From determining
the speed of a car to detecting cancer or monitoring oven temperature, accurate measurements are
crucial. In scientific experiments, these same questions of what to measure and how to measure
it arise. What type of microscope should be used? What information will it provide? Should the
focus be on measuring particle size or density of particles? Obtaining precise and relevant infor-
mation from the system under study is key to advancing scientific knowledge and discovery.
In classical systems, measuring a system is usually viewed as a technical challenge to be tackled.
The main focus is often on improving the precision, speed, or signal-to-noise ratio of measuring
devices, i.e., the quality, without much intrinsic philosophical consideration. For instance, when
measuring the size of a particle, the instrument provides a measurement result with an uncertainty
that is associated with the precision of the instrument. Importantly, the size of the particle does not
typically change as a consequence of being measured.
In the quantum realm, the measurement process has been a fascinating and contentious issue, un-
like its classical counterpart. Fundamentally, measuring a quantum system inevitably alters it.
When starting with a state that is a linear combination of states in a given basis, after the mea-
surement, the final state collapses into one of the eigenstates of the measured operator, destroying
the superposition. This is a destructive measurement. The interpretation of this collapse and the
measurement process has been a crucial question in the field of quantum foundations, and it has
sparked a lot of debate [9, 10, 23].
Projective measurements, as described above, are considered ideal. Their typical description does
not include the measuring device within the quantum formalism: only its effects on quantum states
(the projection) are considered. However, they are not the only scheme available for measuring in
quantum physics.
In this chapter, we aim to present an overview of the various types of measurements in quantum
physics that are most relevant to our discussion. Although we do not aim to provide an exhaustive
list, as there are numerous other measurement protocols in quantum physics [11, 24], we present
some fundamental techniques. Firstly, we introduce the projective measurement and the POVM
scheme. Subsequently, we explore measurement protocols that consider both the measuring device
and the system, such as the von Neumann protocol. In the third section, we explain the basics of
weak measurements, and in the fourth section, we derive the complete procedure of weak mea-
surements. Finally, in sections 2.4 and 2.5, we introduce a few properties and applications of weak

7
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Before measurement After measurement
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Figure 2.1: Representation on the Bloch sphere of the quantum state 1√
2
(|0⟩+ |1⟩) before the

measurement and the states |0⟩ and |1⟩ after the projective measurement.

values.

2.1 Projective measurements
The projective measurement is the simplest type of measurement in quantum physics. This mea-
surement is considered ideal and results in the collapse of the system into one of the eigenvectors
of the observable being measured. For instance, suppose we have an atom initially in a linear
combination of excited and ground states, represented as |ψ⟩ = 1√

2
(|e⟩+ |g⟩). Upon measuring

the energy of the atom, the resulting state would be one of the two energy levels and not a super-
position of both. The state is said to be completely collapsed. Fig. 2.1, depicts an example before
and after the measurement on the Bloch sphere. The measurement in the basis (|0⟩ , |1⟩) collapses
the state to one of the poles of the Bloch sphere. The Bloch sphere is introduced in section 3.1.
Let us delve deeper into the formal definition of projective measurements. In quantum mechanics,
pure states of an N-level system can be represented as an N-component normalized complex vector
in a given basis. However, not all quantum states are pure. Mixed states can be described using
a density operator, ρ̂ = ∑i pi |φi⟩⟨φi|, where ∑i pi = 1. An introduction to density operators can
be found in appendix A. Observables in quantum physics are typically represented by Hermitian
operators since their spectra should be real and the eigenstates orthogonal. Let us consider the
operator Â to be measured,

Â = ∑
i

αi |ai⟩⟨ai| , (2.1)

where αi are the eigenvalues of the operator Â and |ai⟩ the orthonormal eigenvectors. We assume
that the operator is non-degenerate.
When measuring the observable Â in the state ρ̂ , the possible outcomes correspond to the eigen-
values of the operator Â, αi, with probabilities,

P(αi) = Tr
(
Π̂iρ̂

)
, (2.2)
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where Π̂i is the projection operator linked to the eigenstate |ai⟩, Π̂i = |ai⟩⟨ai|.
The state of the system after the measurement is

ρ̂i =
Π̂iρ̂Π̂i

Tr
(
Π̂iρ̂

) . (2.3)

The expectation value of the observable Â is

⟨Â⟩= Tr
(
Âρ̂
)
, (2.4)

for a more comprehensive elaboration on this formula, please refer to appendix A.
The projective measurement does not considered the measuring device. The measurement is strong
and ideal - there is no error - the state is always completely collapsed. After the measurement, it
is not possible to extract any more information from it. The maximum amount of information has
already been extracted from the system and it cannot provide any further information.
The positive operator-valued measurement (POVM) is a generalization of the projective measure-
ment. POVMs are defined by a set of operators, F̂i, where the operators are Hermitian and non-
negative, and the set is complete,

∑
i

F̂i = Î, (2.5)

where Î is the identity operator. The probability to measure outcome i is

prob(i) = Tr
(
ρF̂i
)
. (2.6)

The POVM framework doesn’t directly yield the resultant state; rather, the specific measurement
outcome, denoted as i, dictates the final state. Given an initial quantum state ρ̂ and an outcome i,
the ensuing quantum state is determined by the equation:

ρ̂ fi =
M̂iρ̂M̂†

i

Tr
[
M̂iρ̂M̂†

i

] , (2.7)

where M̂†
i M̂i = F̂i.

Consequently, the final state remains dependent on the initial state, evading a complete collapse.
This dynamic preserves more information post-POVM since the measurement process gathers less
information. The POVM’s advantageous features render it a prevailing choice in the realm of
quantum information theory.

2.2 Von Neumannn protocol
Von Neumann developed a protocol for measuring properties of a quantum system that involves
an ancilla-based approach [25]. The system and the ancilla (or measuring device) are both treated
as quantum systems, and the protocol consists of three main steps, as shown in Fig. 2.2. Initially,
the system is prepared in its initial state, and the ancilla’s wave function is centered on zero in the
position basis. Then, a unitary operator is applied to both the system and the ancilla, entangling
the two components of the full system. Finally, the ancilla’s wave function is readout, and the
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Pre-selection Measurement Ancilla readout

U
| ۧ𝑎𝑖

Ancilla

System

Φ(𝑞)

Q
Φ(𝑞 − 𝑔𝑎𝑖)

Figure 2.2: This figure illustrates the von Neumann protocol scheme, when the system’s initial
state is an eigenstate of the observable |ai⟩. The measurement process involves the use of a unitary
operator entangling the ancilla and the system, and in the final step, the ancilla is read out to extract
the corresponding eigenvalue.

(a) The wave functions of shifted ancilla have
been affected by a strong interaction, where
the interaction strength (g = 10) far exceeds
the width (∆ = 1). The resulting eigenvalues
are distinguishable, and include −1, 0, and 1.

(b) The wave functions of shifted ancilla have
been subjected to a relatively weak interaction
strength (g = 0.5), which is small compared
to the width (∆ = 1). As a result, the wave
functions cannot be distinguished after a

single measurement.

Figure 2.3

wave function is shifted by an amount proportional to the eigenvalues of the observable to be
measured. Depending on the interaction strength, denoted as g, the shifted wave functions may
be fully distinguishable or not, as illustrated in Fig. 2.3. When the interaction strength times the
eigenvalue is larger than the width of the measuring device, none of the shifted wave functions
overlap (Fig. 2.3(a)), whereas if the interaction strength times the eigenvalue is smaller than the
width of the the measuring device wave function, the shifts are not distinguishable (Fig. 2.3(b)).
This protocol offers a measurement approach that covers a range of measurement strengths, from
very weak (where the system is almost not perturbed) to ideal strong measurements.
Let us move to a detailed derivation of the protocol’s procedure [12]. The ancilla state is described
in the continuous space in terms of a wave function as,

∣∣∣m(0)
〉
=

�
dq |q⟩

〈
q
∣∣∣m(0)

〉
=

�
dq |q⟩φ0 (q) , (2.8)
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where the the wave function should be centered on 0. For example, the following function [26],

φ0 (q) =

√
1√

2π∆2
e−

q2

2∆2 . (2.9)

The square of Eq. 2.9, the probability density |φ0 (q) |2, is a Gaussian function with width ∆. Con-
sidering that the observable to be measured is Â, the interaction Hamiltonian applied in the second
step is

Hint = γÂ⊗ P̂, (2.10)

where γ is the coupling constant and P̂ is the meter momentum, conjugate to the meter position Q̂.
As the measuring time slot δ t is very short, the free evolution Hamiltonian of both the system and
the ancilla can be neglected and the unitary operator governing the dynamics of the system is

Û = e−i
�

δ t
0 dtĤint = e−igÂ⊗P̂, (2.11)

where g = γδ t and h̄ = 1. Considering the initial state of the system to be an eigenstate of the
observable to be measured, |ai⟩, the total state after the application of the unitary operator is,
|ai⟩⊗

∣∣∣m(0)
〉
→ |ai⟩⊗

∣∣∣m(i)
〉

|ai⟩⊗
∣∣∣m(i)

〉
= Û

(
|ai⟩⊗

∣∣∣m(0)
〉)

= e−igÂ⊗P̂ |ai⟩⊗
∣∣∣m(0)

〉
= |ai⟩⊗

(
e−igaiP̂

�
dq |q⟩φ0 (q)

)
.

(2.12)
The operator e−iλ P̂ acts as a translation operator on a wave function in the position basis φ (q),
e−iλ P̂φ (q) = φ (q−λ ). Hence, the complete state after the application of the unitary operator is

|ai⟩⊗
∣∣∣m(i)

〉
= |ai⟩⊗

�
dq |q⟩φ0 (q−gai) . (2.13)

The protocol induces a shift in the ancilla’s wave function, which is proportional to the corre-
sponding eigenvalue ai. In the last step of the protocol, the ancilla’s wave function is measured,
and the resulting shifts provide a measurement of the observable. However, as shown in Fig. 2.3,
the eigenvalues can only be distinguished when the strength of the interaction is sufficiently large.
When the interaction strength is weak, the measurement becomes less precise, and the extracted
information is reduced. Nonetheless, this approach, known as the von Neumann protocol, accounts
for both the system and the measuring device, allowing for any type of measurement, from ideal
to weak, to be performed.
If the initial state is a pure state, which can be expressed in terms of the observable’s basis as:

|ψ⟩= ∑
i

βi |ai⟩ , (2.14)

where |ai⟩ are normalized vectors and ∑i βi = 1.
Then the full state after applying the von Neumann protocol is given by:

|ψ⟩⊗
∣∣∣m( f )

〉
= ∑

i
βi |ai⟩⊗

�
dq |q⟩φ0(q−gai), (2.15)
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Figure 2.4: This is a schematic of the weak measurement process, which consists of four steps.
First, the system is pre-selected in a chosen initial state. Second, a unitary operator is applied with
a small interaction strength during a short period of time δ t. Third, the system undergoes post-
selection, which involves a projective measurement and a filtering procedure to extract only the
information related to the desired final state. Finally, the ancilla’s wave function is readout, and in
the case of weak measurement, the shift is proportional to the weak value, Aw.

The final wave function of the measuring device is obtained by summing all the shifted wave func-
tions weighted by the coefficients βi. When a state is very close to an eigenvector, but has a small
component of another eigenvector, the corresponding peak in the measurement outcome would
be too small to be detectable. If the interaction strength between the system and the measuring
device is very small compared to the width of the measuring device’s wave function, the shift is
proportional to the expectation value of the observable.

2.3 Weak measurements
Introduced in the 1980s and inspired by the von Neumann protocol [17], weak measurements have
become an essential tool in quantum mechanics. As shown schematically in Fig. 2.4, unlike the von
Neumann protocol, the weak measurement process involves four steps, including post-selection,
which is not present in the von Neumann protocol and plays a crucial role. In the first step, the
initial pure state of the system is chosen, |ψi⟩, (pre-selection) and the initial ancilla’s wave function,
|φ0⟩ centered on 0. The total state is,

|ψ⟩= |ψi⟩⊗ |φ0⟩ , (2.16)

The second step consists of the application of a unitary operator, Û = e−igÂ⊗P̂, where h̄ = 1,
g =

�
δ t

0 γdt, with γ being the coupling constant. Â is the observable of interest, it belongs to the
space of the system. P̂ is the pointer, in this case, momentum, and it belongs to the ancilla’s space.
The joint system-meter state evolves thus according to

|ψ⟩ → Û (|ψi⟩⊗ |φ0⟩) = e−igÂ⊗P̂ (|ψi⟩⊗ |φ0⟩) . (2.17)

As the measurement is weak, both the coupling constant and the time δ t should be small. Hence,
g is very small and the unitary operator is expanded in Taylor series until the first order in g,

Û (|ψi⟩⊗ |φ0⟩) =
(
Î⊗ Î− igÂ⊗ P̂

)
(|ψi⟩⊗ |φ0⟩)+o

(
g2) . (2.18)
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During the time of the unitary operator application, both the ancilla and the system are not consid-
ered to evolve independently due to the short time of interaction.
However, after the unitary operation, only a weak interaction is performed. As a result, the system
undergoes only a small perturbation, and the measurement protocol would provide limited infor-
mation. Despite this, post-selection can still be applied to amplify the effect. The final state of the
system is imposed to be

∣∣ψ f
〉
, after a projective measurement with filtering, so that the final meter

state is∣∣µ f
〉
≈

〈
ψ f
∣∣(Î⊗ Î− igÂ⊗ P̂

)
(|ψi⟩⊗ |φ0⟩) =

〈
ψ f
∣∣ψi
〉
|φ0⟩− ig

〈
ψ f
∣∣ Â |ψi⟩ P̂ |φ0⟩ (2.19)

=
〈
ψ f
∣∣ψi
〉(

Î− ig

〈
ψ f
∣∣ Â |ψi⟩〈

ψ f
∣∣ψi
〉 P̂

)
|φ0⟩ ,

where Aw is the weak value,

Aw =

〈
ψ f
∣∣ Â |ψi⟩〈

ψ f
∣∣ψi
〉 . (2.20)

The operator P̂ is a translation operator for the operator position, as seen in the previous section.
Consequently, the wave function in the position representation presents a shift that is proportional
to the weak value, Aw,

φ f (q) =
〈
q
∣∣µ f
〉
= φ0 (q−gAw) , (2.21)

where the weak value, Aw, is assumed to be real for this example. Nevertheless, it should be noted
that in general, this quantity is a complex number. When both the real and imaginary parts of Aw are
considered, two shifts appear in the ancilla’s wave function. The shift in the position representation
is proportional to the real part of Aw, while the shift in the momentum representation is proportional
to the imaginary part of Aw. In the next section, we will consider this possibility along with more
general operators as pointers.
In Eq. 2.20, the weak value can be much larger than the eigenvalues of the operator Â due to the
denominator. This property makes weak measurements a valuable tool for enhancing signals that
would otherwise be difficult to measure. However, in order to achieve this enhancement, the pre-
and post-selected states should be almost perpendicular, leading to a very small probability of post-
selection, which is proportional to |

〈
ψ f
∣∣ψi
〉
|2 at zeroth order in g. Although the shift can be very

large, to extract information about the weak value, the experiment needs to be repeated several
times.
In this thesis, the term "weak measurements" will refer specifically to measurements with post-
selection involving weak values. However, if we refer to a measurement with a weak coupling
strength but without post-selection, we will make it explicit.

2.4 General description of weak measurements
In the previous section, we introduced the concept of weak values in the simplest possible way.
Here, we develop the full theory considering complex weak values and any observable as pointer
(not needing to be described in the continuous space) [26]. Both the state of the system and
the meter are considered as density operators. Density operators are the generalization of pure
quantum states. They are formed as a linear combination of projectors representing pure states.
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Density operators are a classical statistical mixture of quantum projectors. For a more detailed
explanation, read appendix A.
Let us consider the full system, formed by the system of interest described as a density operator,
σ̂i and an ancilla density operator, µ̂0, ρ̂0 = σ̂i⊗ µ̂0. The measurement is performed by applying a
unitary operator. Taking inspiration from the von Neumann protocol, the chosen unitary operator
is

Û = e−i
�

δ t
0 dtHint = e−i

�
δ t

0 dtγÂ⊗N̂ = e−igÂ⊗N̂ , (2.22)

where g=
�

δ t
0 γdt with γ being the coupling constant, and h̄= 1, Â is the observable to be measured

belonging to the system space, and N̂ is the pointer belonging to the ancilla’s space. In the von
Neumann protocol, the duration of interaction δ t is chosen to be small enough such that the system
and the meter do not evolve independently. Similarly, in the weak measurement protocol, δ t is
also chosen to be small to ensure that there is no free evolution. However, in addition to this,
the interaction strength g should also be small, i.e., g≪ 1, so that the unitary operator Û can be
expanded in a Taylor series up to the first order, given by:

Û = e−igÂ⊗N̂ ≈ Î− igÂ⊗ N̂−g2 (Â⊗ N̂
)2

+O
(
g3) . (2.23)

The full density operator is, after the application of the unitary operator, ρ̂1, in terms of X̂ = Â⊗ N̂,

ρ̂1 = e−i
�

dtγÂ⊗N̂
ρ̂0ei

�
dtγÂ⊗N̂ (2.24)

≈
(

Î− igX̂− g2

2
X̂2
)

ρ̂0

(
Î + igX̂− g2

2
X̂2
)

= ρ̂0 + ig
[
ρ̂0, X̂

]
− g2

2
(
X̂2

ρ̂0 + ρ̂0X̂2−2X̂ ρ̂0X̂
)

= ρ̂0 + ig
[
ρ̂0, X̂

]
− g2

2
[[

ρ̂0, X̂
]
, X̂
]
,

where
[
Ŷ , Ẑ

]
is the commutator of the operators Ŷ and Ẑ. The density operator is

ρ̂1 ≈ ρ̂0 + i
[
ρ̂0,gÂ⊗ N̂

]
− 1

2
[[

ρ̂0,gÂ⊗ N̂
]
,gÂ⊗ N̂

]
. (2.25)

After the application of the unitary operator, a weak interaction has been implemented. The system
has only been slightly modified. However, only a little bit of information could be extracted from
the system. This could be interesting in specific cases in which the experimentalist possesses a lot
of copies of the system and does not want to destroy them.
However, this type of measurement find many more application when post-selection is applied
to the system, after the weak interaction. In this case, a projective measurement is executed on
the system, projecting the state to the chosen density operator, σ̂ f , while the ancilla’s state is left
unchanged. The measuring device density operator after the post-selection on the system is

µ̂ f =
TrS
[(

σ̂ f ⊗ Î
)

ρ̂1
]

Tr
[
TrS
[(

σ̂ f ⊗ Î
)

ρ̂1
]] , (2.26)
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where TrS is the partial trace over the system, and the term TrS
[(

σ̂ f ⊗ Î
)

ρ̂1
]

is,

TrS
[(

σ̂ f ⊗ Î
)

ρ̂1
]
≈ TrS

[(
σ̂ f ⊗ Î

)(
σ̂i⊗ µ̂0 + ig

[
σ̂i⊗ µ̂0, X̂

]
− g2

2
[[

σ̂i⊗ µ̂0, X̂
]
, X̂
])]

(2.27)

= TrS

[(
σ̂ f ⊗ Î

)(
σ̂i⊗ µ̂0 + igσ̂i⊗ µ̂0X̂− igX̂ σ̂i⊗ µ̂0−

g2

2
([

σ̂i⊗ µ̂0X̂− X̂ σ̂i⊗ µ̂0, X̂
]))]

= TrS

[(
σ̂ f ⊗ Î

)(
σ̂i⊗ µ̂0 + igσ̂i⊗ µ̂0X̂− igX̂ σ̂i⊗ µ̂0−

g2

2
(
σ̂i⊗ µ̂0X̂2−2X̂ σ̂i⊗ µ̂0X̂ + X̂2

σ̂i⊗ µ̂0
))]

= Tr
(
σ̂ f σ̂i

)
µ̂0 + ig

(
Tr
[
σ̂ f σ̂iÂ

]
µ̂0N̂−Tr

[
σ̂ f Âσ̂i

]
N̂µ̂0

)
− 1

2
g2 (Tr

[
σ̂ f σ̂iÂ2]

µ̂0N̂2 +Tr
[
σ̂ f Â2

σ̂i
]

N̂2
µ̂0−2Tr

[
σ̂ f Âσ̂iÂ

]
N̂µ̂0N̂

)
,

where the trace property [A+B,C] = [A,C]+ [B,C] has been invoked.
We will also consider two assumptions in our analysis. Firstly, we assume that the initial average
value of the particle number is zero, denoted as ⟨N⟩0 = 0. This assumption ensures that our shift
is taken from the origin, and is equivalent to centering the wave function in position representation
at 0. Secondly, we assume that the initial average value of the particle number squared is non-
zero, denoted as ⟨N2⟩0 ̸= 0. This assumption is essential for obtaining a shift proportional to the
imaginary part of the weak value. The denominator of Eq. 2.26 is

Tr
[
TrS
[(

σ̂ f ⊗ Î
)

ρ̂1
]]

= Tr
[
σ̂ f σi

]1−g2⟨N2⟩0

Re

Tr
[
σ̂ f Â2σ̂i

]
Tr
[
σ̂ f σ̂i

] − ∣∣∣∣∣Tr
[
σ̂ f Âσ̂i

]
Tr
[
σ̂ f σ̂i

] ∣∣∣∣∣
2
 .

(2.28)
In equations Eq. 2.27 and Eq. 2.28, one can notice that the final ancilla’s state is proportional to
the initial ancilla’s state plus a shift. In Eq. 2.27, one can see that this shift can be written in terms
of weak values of Â, as it can be written in terms of density operators as1,

Aw =
Tr
[
σ̂ f Âσ̂i

]
Tr
[
σ̂ f σ̂i

] . (2.29)

While Eq. 2.28 contains other terms that are proportional to g2, we assume that g is small enough
to neglect all terms of order g2.
The shift arising from Eq. 2.27 is, in general, a linear combination of the real and imaginary parts
of the weak value. Nonetheless, for experimental purposes, it is often desirable to separate these
two parts. This can be achieved by considering two special cases of meter observables. The first
case occurs when the meter observable is proportional to the pointer observable, that is, L̂ = N̂.
In this case, the shift is proportional to the imaginary part of the weak value. The second case
occurs when the meter observable is the canonical conjugate of the pointer, that is,

[
M̂, N̂

]
= iÎ.

In this case, the shift is proportional to the real part of the weak value. In the context of the von

1Weak values find their origins within the realm of quantum pure states, their definition expressed as ⟨ψ f |Â|ψi⟩
⟨ψ f |ψi⟩ .

This concept can be trivially rephrased using projectors, Π̂a = |ψa⟩⟨ψa|, resulting in
Tr[Π̂ f ÂΠ̂i]
Tr[Π̂ f Π̂i]

=
⟨ψ f |Â|ψi⟩⟨ψi|ψ f ⟩
|⟨ψ f |ψi⟩|2

=

⟨ψ f |Â|ψi⟩
⟨ψ f |ψi⟩ . This paves the way for the natural extension of weak values to density operators, yielding

Tr[σ̂ f Âσ̂i]
Tr[σ̂ f σ̂i]

.
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Neumann protocol, the first case corresponds to using the position Q̂ as the meter observable, while
the second case corresponds to using the momentum P̂ as the meter observable. The expectation
value of N̂ is proportional to the imaginary part of the weak value,

⟨N̂⟩ f ≈ 2g⟨N̂2⟩Im

(
Tr
[
σ̂ f Âσ̂0

]
Tr
[
σ̂ f σ̂0

] )D−1, (2.30)

with,

D =

1−g2⟨N2⟩0

Re

Tr
[
σ̂ f Â2σ̂i

]
Tr
[
σ̂ f σ̂i

] − ∣∣∣∣∣Tr
[
σ̂ f Âσ̂i

]
Tr
[
σ̂ f σ̂i

] ∣∣∣∣∣
2
 . (2.31)

The expectation value of M̂ is proportional to the imaginary part of weak value,

⟨M̂⟩ f ≈

[
gRe

(
Tr
[
σ̂ f Âσ̂0

]
Tr
[
σ̂ f σ̂0

] )+g⟨{N̂,M̂}⟩0Im

(
Tr
[
σ̂ f Âσ̂0

]
Tr
[
σ̂ f σ̂0

] )]D−1, (2.32)

where ⟨M̂⟩0 = 0 has been assumed.
The weak value appears in the shift of the ancilla’s state independently of the observable being
measured and the pointer used. It is not necessary to have the configuration in which they were
introduced [17]. Moreover, the weak value has been found to play a crucial role in other types
of measurements, such as homodyne measurements [27]. Homodyne measurements are a type of
interferometric measurement commonly used in optics [11]. In this case, the measurement is weak,
and post-selection is performed by photon counting. Even in the von Neumann scheme with strong
measurements, weak values still play an important role [28]. Thus, the concept of weak values has
far-reaching implications beyond the weak von Neumann measurement scheme, and is a key tool
for understanding quantum measurements in a variety of contexts.

2.5 Weak values

Weak values, denoted as Aw =
⟨ψ f |Â|ψi⟩
⟨ψ f |ψi⟩ , are complex and unbounded quantities. In the von Neu-

mann measurement scheme with post-selection, weak values replace the eigenvalues of the observ-
able in the meter shift. However, weak values can lie outside the observable’s spectrum.
Despite this, weak values can be interpreted as a quasiprobability distribution. In fact, we showed
that any weak value is proportional to the weak values of a specific projector, defined as the nor-
malized application of the observable on the pre-selected state [19]. More precisely, we have
Aw ∝ Πi′w, where |ψi′⟩= 1√

N
Â |ψi⟩ [19].

Πi′,w =
Tr
[
Π̂ f Π̂i′Π̂i

]
Tr
[
Π̂ f Π̂i

] , (2.33)

where the numerator, Tr
[
Π̂ f Π̂nΠ̂i

]
is the Kirkwood-Dirac quasiprobability distribution [29]. This

distribution provides information about the state non-classicality. If the quasiprobability is negative
or complex, the state is non-classical. In this cases, quantum states can provide quantum advantage



17 2.5. Weak values

in quantum metrology and information [30].
A weak value can be expressed as,

Aw =
⟨ψi| Â2 |ψi⟩
⟨ψi| Â |ψi⟩

Tr
[
Π̂ f Π̂i′Π̂i

]
Tr
[
Π̂ f Π̂i

] , (2.34)

where Π̂i′ =
Â|ψi⟩⟨ψi|Â
⟨ψi|Â|ψi⟩

. It is worth noting that the expectation value of Â2 is always real and posi-

tive, while the expectation value of Â is real but may be negative.
A weak value is considered anomalous if it is complex or if its absolute value is either greater than
the largest eigenvalue of the observable being measured or smaller than the smallest eigenvalue.
Upon examination of Eq. 2.34, it becomes evident that due to the real nature of both expectation
values, ⟨ψi| Â |ψi⟩ and ⟨ψi| Â2 |ψi⟩, along with the probability of post-selection Tr

[
Π̂ f Π̂i

]
, a com-

plex weak value establishes a direct connection to a complex Kirkwood-Dirac quasi-probability.
This quasi-probability, in turn, serves as a hallmark of a non-classical state.
Furthermore, in cases where the weak value is real, a weak value Aw that holds the opposite sign
of the initial state’s observable expectation value, ⟨ψi| Â |ψi⟩, correlates with a negative Kirwood-
Dirac quasi-probability Tr

[
Π̂ f Π̂i′Π̂i

]
, link to a non-classical state, Eq. 2.34. It is worth emphasiz-

ing that ⟨ψi| Â2 |ψi⟩ consistently remains positive.
Therefore, a deeper investigation of this relationship between weak values and Kirkwood-Dirac
quasiprobability is needed in future research.
Anomalous weak values have been shown to provide evidence of contextuality, which is another
important feature of quantum processes [31, 32]. Quantum contextuality defines an aspect within
the structure of quantum mechanics, where the act of measuring quantum observables transcends
a simple unveiling of predetermined values. The outcome of measuring a quantum observable be-
comes contingent on the presence of other commuting observables within the same measurement
set. This interdependence becomes pronounced in scenarios involving quantum weak measure-
ments, where the result becomes intricately linked to the specific post-selected state chosen.
The numerator in Eq. 2.33 is a third-order Bargmann invariant, which takes the form of Tr

(
Π̂1Π̂2Π̂3

)
.

It is important to note that all three states used in this invariant must not be orthogonal to each other.
This invariant is noteworthy because it remains unchanged under both gauge transformation and
re-parametrization, as Bargmann originally noted in [33]. While it is possible to define Bargmann
invariants of any order, only third-order invariants like this one are fundamental, since any higher-
order invariant can be expressed in terms of third-order ones [34]. The significance of this invariant
extends beyond its mathematical properties, as it plays a crucial role in quantum computing, specif-
ically in determining the indistinguishability of states [35]. We’ll delve into this topic further in
chapter 3.
There exists a wide range of opinions among researchers on the meaning of weak values in quan-
tum mechanics. The debate concerning the meaning of weak values is rooted in the fact that weak
values cannot be directly observed in experiments and must instead be inferred using post-selection
techniques. This method of inference makes the interpretation of weak values susceptible to vari-
ous assumptions and mathematical manipulations that can influence their meaning.
Some prominent researchers, including Yakir Aharonov, Lev Vaidman, and Jeff Tollaksen, suggest
that weak values represent a fundamental property of quantum systems and could lead to the devel-
opment of new technologies. They propose a time-symmetric framework in which the initial and
final states can be chosen, and they argue that weak values arise from this description [36, 37, 38].
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On the other hand, some researchers disagree that weak values are a fundamental aspect of quan-
tum physics. They argue that weak values cannot be used to reinterpret quantum paradoxes and
consider them a mere mathematical construction [39, 40].
Moreover, the interpretation of the imaginary part of weak values remains a fundamental question.
Some studies suggest that the imaginary part does not provide information about the observable
but only about the pointer [41].
The issue of the meaning of weak values in quantum mechanics is a complex and multifaceted
topic. Nonetheless, we believe that weak values are a fundamental aspect of quantum mechanics
and play a crucial role in understanding non-classicality. Furthermore, they have a wide range of
practical applications in various quantum technologies, as we will discuss in the next section.

2.6 Weak value applications

The weak value, Aw is a complex and unbounded quantity. These properties have been exten-
sively used. Having pre- and post-selected states that are almost orthogonal provides a large weak
value, Eq. 2.20. This property can be used to enhance tiny signals that otherwise could not be
measured [17, 42]. To benefit from this amplification, the experiment should be repeated several
times, as the probability of post-selection is very small, Eq. 2.28. Metrology [43, 44, 45], sens-
ing [46, 47, 48, 49] and control of tiny experimental parameters [50, 51] benefit largely from weak
value amplification [52, 53].
Weak measurements evidenced new physical phenomena, such as minute optical effects in beam
propagation [54, 55, 56]. For instance, the spin Hall effect of light, a phenomenon in which a beam
of light undergoes a shift dependent on the polarization upon passing through a crystal, has been
measured for the first time using amplifying weak measurements. This effect arises due to the
spin-orbit coupling between the light’s spin angular momentum and the medium momentum. Be-
cause the resulting shift is extremely small, the measurement can be classified as weak. However,
by selecting a pre-determined beam with horizontal polarization and a post-selection of nearly ver-
tical polarization, the shift can be significantly magnified, allowing the experimenters to measure
it using commonly available technological platforms [57].
Weak values offer invaluable insights into various quantum foundation issues, including the non-
perturbative sensing of quantum particles along trajectories [58, 59, 60]. Weak values also offer
a reinterpretation of paradoxes that have intrigued scientists for decades [61, 62, 63, 64]. For in-
stance, the three-box paradox deals with a photon that can be present in one of three boxes labeled
A, B, and C. By conducting a weak measurement, interesting results can be obtained, such as a
pseudo-probability of one for the photon being present in boxes A and B, and a pseudo-probability
of -1 for it being in box C. However, to interpret these weak values correctly, weak values should
be regarded as pseudo-probabilities rather than actual probabilities [65].
Weak values, being complex numbers, offer a unique way to access the complex components of
quantum states in quantum tomography [66, 67]. In fact, the wave function of photons was first
measured using weak measurements, by post-selecting photons with null momentum, resulting in
a weak value that was directly proportional to the wave function in position representation. By
measuring the real and imaginary components of the weak value, the experimentalists could deter-
mine the real and imaginary parts of the wave function, which is a departure from the conventional
method of measuring the amplitude of the wave function [68]. In addition, weak values have also
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been utilized to measure the expectation values of non-Hermitian operators, by leveraging their
complex properties [69].
As complex numbers, they can be studied in terms of real and imaginary parts, but also in terms of
modulus and argument. The argument of a weak value represents a Berry phase, as we will discuss
in the chapters 4 and 5. Consequently, the arguments of weak values can be employed to measure
Berry phases [70].





Chapter 3
Quantum space

Selecting the appropriate coordinate system is a pivotal factor in addressing Physics challenges.
Cartesian coordinates are the most intuitive to us, as our planet’s curvature is almost negligible at
our scale, despite being almost spherical in shape. In fact, certain physical scenarios demand ven-
turing beyond familiarity and embracing alternative coordinate systems, spherical coordinates be-
ing a prominent example. For instance, when calculating the distance between two points on Earth,
taking into account the planet’s curvature by using the great circle method, namely, a geodesic be-
tween two points on a sphere, instead of a straight line is paramount. This means that relying on
Euclidean geometry alone is not sufficient anymore. Therefore, switching to a spherical coordinate
system becomes absolutely indispensable in order to ensure accurate calculations of distances and
directions.
Governments, companies, and scientific institutions consider, nowadays, quantum physics as a key
field for the advancement of technology [71, 72, 73]. A growing number of applications has re-
cently appeared, such as quantum sensing, quantum random numbers generators, atomic clocks,
or the long-sought-after quantum computer [74, 75, 76, 77]. Most of these applications are based
on qubits, namely, two-level quantum systems. The quantum state of such a system can be in a
superposition of two different states, for example, excited and ground states of an atom. Two-level
quantum systems are chosen for these applications, among others, due to the simplicity of the their
quantum space.
A pure two-level state is represented as a two-component normalized complex vector, generating
a three-dimensional space. However, a global phase can be ignored as it does not change the phys-
ical properties of the quantum state. Using this property, the qubit space is the complex projective
space CP1, a two-dimensional space. CP1 is bijectively mapped to the surface of a unit 2-sphere.
This sphere is called after Felix Bloch, the Bloch sphere [78]. Quantum physicists are most famil-
iar with the Bloch representation. It simplifies the visualization and study of many processes and
calculations.
Nevertheless, there are instances where venturing beyond the familiar confines becomes essential.
For instance, consider the realm of quantum error correction, a technique crucial for safeguard-
ing quantum information against errors stemming from decoherence or various forms of quantum
noise. In such scenarios, the utilization of larger discrete quantum systems, specifically N-level
systems, can prove beneficial [79]. In these cases, moving to an unfamiliar space, as in the Earth
surface, might be the key element to be successful.

21
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Pure quantum states of N-level systems are defined in Hilbert space as an N-component normalized
complex vector, denoted by |ψ⟩. An N-level pure state, represented by an N-component complex
vector, generates a 2N − 1 space. Omitting a global phase, the pure states generate a complex
projective space, CPN−1. This space is a 2N−2 dimensional space. Unlike the two-level quantum
space, mapping this space to the surface of a higher dimensional sphere is not possible. Although
all pure states are on the surface of the sphere, not all points on the sphere are quantum pure
states [80]. In fact, quantum pure states are mapped to only a subset of the sphere surface, mak-
ing the representation and visualization of states much more challenging. The two-level quantum
space is a special case. In general, the dimension of CPN−1 is 2N−2, while the dimension of the
higher dimensional sphere, SN2−2 is N2−2, as one can appreciate, in the two-level case (N = 2),
both spaces are of dimension 2. This means that the representation and visualization of states
become increasingly complex as the number of levels is larger than two. The two-level quantum
space is a very special case.
Within this chapter, we delve into diverse facets of both two-level and N-level quantum spaces.
Serving as an introductory compass, our exploration unveils key concepts and properties poised
to underpin forthcoming chapters’ intricate analyses. First, we introduce the geometry of the two-
level quantum space, using the Bloch sphere. Subsequently, we describe the case of N-level sys-
tems, working on the complex projective space CPN−1, providing more details to understand larger
quantum spaces. To do so, we study the star and wedge products, symmetric and anti-symmetric
vectorial products, that are essential to N-level systems. We also introduce a simple representation
of three-level systems on a spherical octant. Afterwards, we introduce the formalism of geometric
phases. Finally, Bargmann invariants will be treated, as they will turn out to be a necessary tool to
study the argument of weak values.

3.1 Exploring the Bloch Sphere: visualizing quantum two-level
states

Two-level systems are usually represented using a unit 2-sphere, the Bloch sphere. Quantum two-
level pure states are on the surface of the unit sphere. Any point of the surface of the Bloch sphere
represent a pure quantum state and all pure quantum states are on the surface of the sphere. There
is a bijective map between CP1 and the Bloch sphere. Each point on the Bloch sphere corresponds
to a family of vectors in Hilbert space rather than a single one. This sphere is independent of global
phase, meaning that if we multiply a quantum state, |ψ⟩, by a phase factor eiφ , the state remains
represented by the same point on the sphere surface. The physical meaning of a quantum state does
not vary when multiplying the quantum state by a phase, that is the motivation to use the complex
projective space instead of the Hilbert space. Therefore, we use the Bloch sphere to represent
projectors or, equivalently, the complex projective space CP1. A projector of a pure state is defined
as Π̂ = |ψ⟩⟨ψ|. Importantly, projectors are invariant to the global phase of the quantum state, so if
we multiply |ψ⟩ by eiφ , the projector remains exactly the same. In order to incorporate the global
phase into the Bloch sphere representation, an additional circle must be linked to each point on
the sphere’s surface. The point on the circle associated with a quantum state within the Hilbert
space represents the global phase of that state. A pure state projector, denoted by Π̂, satisfies two
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important conditions: first, Π̂2 = Π̂, indicating that the corresponding quantum state in Hilbert
space is normalized. Second, Π̂ is Hermitian, meaning that Π̂ = Π̂†.
Mixed states, which are represented by density operators, are a linear combination of pure state
projectors. Density operators are also Hermitian, but unlike pure state projectors, their square is
not equal to themselves. In the Bloch ball representation, the vector representing a mixed quantum
state is located inside the sphere. The closer this vector is to the surface of the sphere, the purer the
state is. This means that if the vector is located near the center of the sphere, the state is closer to
a complete classical mixture of all pure states [81]. Importantly, any point on the surface or inside
of the unit sphere represents a quantum state.
Let us now study in detail the Bloch sphere. Two-level states are, in the most general case, defined
as a two-component complex vector,

|ψ⟩= 1√
M

(
a+ ib
c+ id

)
, (3.1)

where a, b, c, and d are real numbers, and
√

M serves as the normalization constant for the quantum
state, thereby imposing a constraint on one of the four parameters.
By omitting the global phase, thus limiting to the complex projective space CP1, a normalized
quantum state can be expressed only using two variables. In terms of two angles, we obtain

|ψ⟩=
(

cos θ

2
eiφ sin θ

2

)
, (3.2)

where the polar angle is defined in the range 0 ≤ θ ≤ π , and the azimuthal one in the interval

0≤ φ ≤ 2π . The chosen basis vectors are: |0⟩=
(

1
0

)
, |1⟩=

(
0
1

)
.

Both conditions, the normalization and the omission of the global phase, constrain the quantum
state to the complex projective space, CP1. Any state in the complex projective space is associated
with a family of vectors in Hilbert space, by adding a global phase. This group represents two-
level quantum states independently on the global phase, if we multiply a quantum state |ψ⟩ by a
unitary complex number, eiφ the quantum state remains identical in the complex projective space.
This convention is commonly used in quantum mechanics, as it reflects the fact that the physical
properties of a quantum state remain unchanged when a global phase is added.
The projector corresponding to any pure state |ψ⟩ (Eq. 3.2) is Π̂ = |ψ⟩⟨ψ|. Consequently, any
projector on a pure two-level system state can be written in terms of the identity and the traceless
Pauli matrices, the chosen generators of the special unitary group SU(2)1, as

Π̂a =
1
2

(
Î + a⃗ · ⃗̂σ

)
, (3.3)

where a⃗ is a real normalized three component vector, and the Pauli matrices are

σ̂1 =

(
0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
. (3.4)

The normalization of the vector a⃗ is a necessary and sufficient condition to ensure that the projector
1SU(N) is the N-dimensional special unitary group formed by all the N×N complex unitary matrices. The group

can be generated by the complex exponential of all possible linear combinations of the generators of the group, which
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Figure 3.1: Quantum pure states are represented as vectors on the surface of a unit sphere, namely,
the Bloch sphere. Each states depends on two parameters, polar and azimuthal angles. Reproduced
from Smite-Meister, https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg, accessed on the
22nd of May.

corresponds to a pure state. Using this condition, the projector to the square is equal to itself,
Π̂2 = Π̂. We can express the vector, a⃗, as a function of the polar and azimuthal angles as,

a⃗ = (cosφ sinθ ,sinφ sinθ ,cosθ) . (3.5)

The expression of the vector multiplying the Pauli matrices in Eq. 3.5 represents, when varying
the angles in their ranges, the set of points of the surface of a unit sphere, the Bloch sphere. The
vector, a⃗ represents a pure quantum state, |ψ⟩, associated with the projector Π̂a, on the surface of
the Bloch sphere.
In Fig. 3.1, the state |0⟩ is placed at (0,0,1) of the Bloch sphere, while the state |1⟩ is positioned
at (0,0,−1). These states are placed at the poles of the sphere. Linear combinations with the same
weight of |0⟩, and |1⟩, 1√

2
(|0⟩± |1⟩), are placed at both intersections of the equator of the sphere

with the y axis, (0,±1,0). Two orthogonal states present an angle of π on the Bloch sphere.
A mixed state is a statistical mixture of two or more pure states. It can be written as a weighted sum
of the pure states, where the weights are probabilities that represent the likelihood of finding the
system in each of the pure states. One common way to create a mixed state is through decoherence.
It appears when a quantum system interacts with its environment, for example, a quantum system
exposed to thermal fluctuations or other sources of noise in its environment. A mixed state is

are 2N − 1 traceless Hermitian matrices. The exponential of a Hermitian matrix is always a unitary matrix. For
instance, in SU(2), the Pauli matrices may serve as generators. Similarly, in SU(3), the Gell-Mann matrices are a
possible choice for the generators.
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represented as a density operator, ρ̂ , which is a linear combination of pure quantum state projectors,

ρ̂ = ∑
s

ps |ψs⟩⟨ψs| , (3.6)

where ps is the weight of each pure state and they should be positive |ψs⟩, and the density operator
should be normalized, ∑s ps = 1, which implies that Tr(ρ̂) = 1.
The density operator can also be expressed in terms of the identity and the Pauli matrices (genera-
tors of SU(2)) as

ρ =
1
2

(
Î + β⃗ · ⃗̂σ

)
. (3.7)

Unlike projectors of pure quantum states, when considering mixed states, β⃗ is not a normalized
vector, having a norm smaller or equal to 1, ∥β⃗∥≤ 1. Comparing the vector β⃗ multiplying the Pauli
matrices to a general vector in a sphere Γ⃗ = (r cosφ sinθ ,r sinφ sinθ ,r cosθ), one can extract the
radius as well as the angles in the Bloch ball. The smaller the radius, the more mixed the state is.
At the limits, if the radius is r = 1, the state is pure, while a radius equal to r = 0 corresponds to
a completely mixed state, which is a statistical combination of all possible pure states with equal
probabilities. Therefore, a point at the center of the sphere has zero coherence. All points inside
the Bloch sphere represent quantum mixed states and all quantum mixed states can be represented
in the Bloch sphere.
Mixed states find applications not only in quantum mechanics but also in other fields such as op-
tics. In this field, the polarization of light can be described in terms of basis vectors corresponding
to vertical and horizontal polarizations, denoted by (|V ⟩ , |H⟩). The polarized state of light can
be represented on the surface of a unit sphere, known as the Poincaré sphere, which is the opti-
cal analog of the Bloch sphere used in quantum mechanics. However, not all light is polarized.
Natural sources of light, such as sunlight or firelight, can be described as unpolarized light. The
properties of unpolarized light can also be described using the Poincaré sphere, where the degree
of polarization is reflected in the radius. The completely unpolarized state, which is the optical
analog of a completely incoherent state, corresponds to the center of the sphere.
In this section, we have introduced a powerful tool for representing any two-level state, whether
pure or mixed; namely the Bloch sphere and ball. This elegant representation allows the visualiza-
tion of quantum states as points in a unit sphere, providing valuable insights into their properties
and behaviors. It is worth noting that this mapping is only applicable to two-level systems, and
as we delve deeper into the topic, we will encounter more complex challenges when dealing with
N-level systems. In the following sections, we explore these challenges and introduce new tools
and techniques to tackle them.

3.2 N-level quantum states: mapping quantum states onto the
generalized Bloch sphere

The geometry of two-level pure states is intuitive and visualizable due to the elegant mapping be-
tween CP1 and the surface S2, the Bloch sphere. However, for specific applications such as error
correction, it may be necessary to extend our understanding of quantum states to larger systems
known as qudits, d-level systems [82, 83]. In higher-dimensional systems, the mathematical and
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Figure 3.2: A three-level quantum state can be represented in the complex projective space CP2

through a spherical octant projection.

geometrical representations become more complex, but they also provide us with more degrees of
freedom and potentially more powerful computational capabilities.
Let us consider pure states of three-level quantum systems. Any three-level pure state, after nor-
malization and ignoring a global phase, can be expressed in terms of four angles,

|ψa⟩=
(
cosθa,eiχ1,a cosεa sinθa,eiχ2,a sinεa sinθa

)T
, (3.8)

where 0≤ θa ≤ π

2 , 0≤ εa ≤ π

2 , 0≤ χ1,a ≤ 2π , and 0≤ χ2,a ≤ 2π .
In a similar way to the previous section, a three-level pure projector can always be expressed in
terms of the identity and the traceless Gell-Mann matrices, for more details see appendix B, the
chosen generators of SU(3) as

Π̂a =
1
3

(
Î +
√

3⃗a · ˆ⃗λ
)
, (3.9)

where Î is the identity matrix, and ˆ⃗
λ is a vector, the components of which are the eight Gell-Mann

matrices, and a⃗ is an eight-component, normalized2, real vector [84, 85]. The Gell-Mann matrices
play a crucial role in the description of three-level systems, serving as the analog of the Pauli
matrices for two-level systems. A three-level system projector is typically represented as a 3× 3
Hermitian matrix. The most natural choice for a basis to describe any 3× 3 Hermitian matrix is
one that is spanned by the identity and the generators of SU(3), as they can generate the entire
space of Hermitian 3×3 matrices. However, to describe a pure state, the projector must satisfy the
condition Π̂2 = Π̂. For systems with more than two levels, this condition reduces the size of the
space to 2N−2, while there are N2−1 generators of the group.
The vector a⃗ represents the projector on the surface of the unit 7-sphere. Its expression can be
found in appendix E. Nevertheless, this vector only depends on four free parameters, whereas a

2In this work, we chose the convention of normalized vectors on a single unit sphere. See appendix C for more
details.
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full surface of the sphere S7 depends on 7 free parameters. Consequently, only a subset of the
7-sphere represents quantum states. All pure states are on the surface of the unit 7-sphere, but not
all points of the surface of the sphere are quantum states [80, 86].
As mentioned in the previous section, a projector of a pure quantum state should fulfill that the
square of the projector is equal to itself, Π̂2 = Π̂. Consequently, in the three-level case, contrary to
the two-level case, this normalization imposes two conditions,

a⃗ · a⃗ = 1 and a⃗⋆ a⃗ = a⃗. (3.10)

The first condition in Eq. 3.10 simply identifies the vector representing the projector as one vector
belonging to the unitary 7-sphere, which represents the surface of a unitary 8-dimensional sphere.
The second condition restricts the space of the 7-sphere that represents pure states. It creates a
mapping of CP2 to a four dimension subset of S7. The star (⋆) product is a symmetric vectorial
product [84, 85, 87, 88, 89, 90, 91]. This product and the wedge (∧) product, anti-symmetric
vectorial product, are defined from the structure constants of the group SU(3) as(⃗

a⋆ b⃗
)

k
=
√

3di jkaib j and
(⃗

a∧ b⃗
)

k
= fi jkaib j, (3.11)

where the Einstein summation has been used, and the structure constants are defined as

dabc =
1
4

Tr
(

λ̂a{λ̂b, λ̂c}
)

and fabc =−
i
4

Tr
(

λ̂a

[
λ̂b, λ̂c

])
, (3.12)

with the Gell-Mann matrices defined in appendix B.
In addition, two vectors r⃗ψ and r⃗φ representing two orthogonal three-level quantum states present
an angle of 120◦. Therefore, the three vectors of a basis are in a plane with 120◦ between them.
Furthermore, there is no equivalent of the ⋆ product in SU(2). For this reason, we discuss a few
essential properties of the state representation as generalized Bloch spheres in appendix D and
appendix E to provide more context. Note that the ⋆ and ∧ products generate vectors that are both
outside of CP2 and not normalized in general (so they do not represent states). The vector α⃗ ∧ β⃗

produced by the wedge product is orthogonal to the two initial vectors α⃗ and β⃗ . Also, the two
products are orthogonal: for any pre- and post-selected states (⃗i∧ f⃗ ) · (⃗i⋆ f⃗ ) = 0.
Three-level states cannot be represented directly on the surface of the 7-sphere, as CP2 cannot
be mapped to S7. However, it is possible to represent the complex projective space CP2 in a
spherical octant projection [84, 92]. In Fig. 3.2, we have depicted the representation of the state
|ψa⟩=

(
cosα,sinα cosη ,eiχ2 sinα sinη

)T in the spherical octant projection. When treating with
the Bloch sphere, each point is associated with a circle related to global phase. In the three-level
systems case, each point of the spherical octant is associated with a torus formed by the two
phases present in the Hilbert space, χ1, and χ2, |ψ⟩ =

(
|ψ0|,eiχ1|ψ1|,eiχ2|ψ2|

)T . The state |ψ⟩ is
projected to the point, q = (|ψ1|, |ψ2|, |ψ0|). Using the spherical octant projection, one can achieve
a representation of three-level states in terms of two angles, η , and α . To consider all parameters,
apart from the location on the spherical octant, the point in the torus should be precised.
In N-level systems, the representation of states is very similar to the one of three-level states.
A general normalized quantum pure state depends on 2N− 2 parameters, after having omitted a
global phase. Quantum states can be represented on a 2N− 2 subset of the surface of the SN2−2
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sphere, as there are N2−1 traceless generators of SU(N). The expression of an N-level projector,
can be expressed in terms of the identity and the generators of SU(N),

Π̂r =
1
N

Î +

√
N−1

2N
r⃗ · ˆ⃗L, (3.13)

where Î is the N×N identity matrix and ˆ⃗L are the N2−1 generators of the group SU(N).
The projector in Eq. 3.13 represents a pure state when r⃗ · r⃗ = 1 that brings the vector to the surface
of the sphere SN2−2, and r⃗ ⋆ r⃗ = r⃗ that restricts the surface of the sphere SN2−2 to the (2N− 2)-
dimensional subset. Both required conditions are fulfilled. Using these restrictions, the complex
projective space CPN−1 that is built by all quantum states (disregarding a global phase) is mapped
to a subset of the surface of the unit sphere SN2−2. The ⋆ and ∧ products are defined in SU(N) as

(⃗q⋆ r⃗)c =

√
N (N−1)

2N
1

N−2
dabcqarb and (⃗q∧ r⃗)c = fabcqarb, (3.14)

where the structure constants of the group SU(N) are,

dabc =
1
4

Tr
(
L̂a{L̂b, L̂c}

)
fabc =−

i
4

Tr
(
L̂a
[
L̂b, L̂c

])
. (3.15)

The anti-symmetric wedge product is defined similarly to the qutrit case, three-level system, us-
ing the structure constants of SU(N). It produces a vector with components (⃗α ∧ β⃗ )c = fabcαaβb,
which is orthogonal to both α⃗ and β⃗ . Two vectors representing orthogonal N-level quantum states
present an angle of π−arccos 1

N−1 . When treating with two-level systems, the corresponding angle
is π . Furthermore, when N tends to infinity, the angle between vectors representing two orthogonal
quantum states tends to π

2
Plotting these states, even restricting to the angles that are not phases, is not possible in general. In
Chapter 5, we study the Majorana symmetric representation of states [93], allowing the represen-
tation of N-level states as N−1 stars (or vectors) on the Bloch sphere.

3.3 Introduction to the formalism of geometric phases
When a quantum state follows a cyclic adiabatic evolution, starting and ending at the same point
in the quantum state space, it acquires two global phases: the dynamical phase and the geometric
phase (Fig. 3.3). The dynamical phase arises due to the time evolution of the quantum state and
depends on the Hamiltonian governing the evolution. Consequently, the dynamical phase can vary
depending on the specific nature of the evolution undergone by the quantum state. In contrast, the
geometric (Berry-Pancharatnam) phase is only dependent on the geometry of the space and the
followed path in quantum state space [94, 95]. Independently on how fast or slow the evolution
path occurs, the added geometric global phase is the same.
Assuming the cyclic adiabatic trajectory depicted in Fig. 3.3, the state starts at the north pole of the
Bloch sphere |0⟩. Afterward, it presents an evolution passing by the equator and it ends up back
at the initial state |0⟩. As we can see, due to the curvature of the space, the Bloch sphere (CP1),
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Figure 3.3: A geometric phase of a two-level quantum state corresponds to the global phase ac-
quired by the state along an adiabatic cyclic trajectory. Reprinted from [96], with the permission
of AIP Publishing.

without taking into account the possible phase that the state has acquired due to the Hamiltonian,
a difference of phase is present between the initial and final state, even though the initial and the
final states correspond to the same point on the Bloch sphere |0⟩. The global phase that is acquired
can be represented, as explained in the previous section, with the direction in a circle associated
with each point on the Bloch sphere. In Fig. 3.3, this is depicted using an arrow.
Let us consider a quantum system that is governed by a Hamiltonian, Ĥ, that depends on a
vector of parameter, R⃗ = (X ,Y, ...), Ĥ

(
R⃗(t)

)
. The considered movement is cyclical. Hence,

Ĥ
(

R⃗(T )
)
= Ĥ

(
R⃗(0)

)
, where T is the period. The state, |ψ (t)⟩ evolves following the time de-

pendent Schrödinger equation,

Ĥ
(

R⃗(t)
)
|ψ (t)⟩= i

∂ |ψ (t)⟩
∂ t

, (3.16)

where h̄ = 1. The discrete spectrum of the Hamiltonian can be expressed as

Ĥ
(

R⃗
)∣∣∣n(R⃗

)〉
= En (R)

∣∣∣n(R⃗
)〉

. (3.17)

The system is prepared initially in a state that corresponds to an eigenvector of the Hamiltonian,
|ψ (0)⟩=

∣∣∣n(R⃗(0)
)〉

. Consequently, the evolution of the quantum state is,

|ψ (t)⟩= e−i
� t

0 dt ′En(R⃗(t ′))eiγn(t)
∣∣∣n(R⃗(t)

)〉
(3.18)

The first exponential in the evolution of the quantum state (Eq. 3.18) is the dynamic phase [94].
The second exponential is the geometric phase. Imposing that the state obeys the Schrödinger
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equation, one can determine that the evolution of the geometric phase is,

∂γn (t)
∂ t

= i
〈

n
(

R⃗(t)
)∣∣∣∇R⃗n

(
R⃗(t)

)〉
· ∂ R⃗(t)

∂ t
. (3.19)

The geometric phase is in parameter space,

γn (C) = i
�

C

〈
n
(

R⃗
)∣∣∣∇R⃗n

(
R⃗
)〉
· ∂ R⃗(t)

∂ t
. (3.20)

The geometric phase, denoted by γn (C), is defined as a line integral over the parameter space. This
integral is independent of the specific path taken, as long as the evolution is adiabatic. An evolution
is deemed adiabatic when neither heat nor mass experiences transfer between the system and the
environment during the process. The Berry phase is an intrinsic characteristic of quantum systems.
Samuel and Bhandari demonstrated that the Berry-Pancharatnam phase is not limited to cyclic
or adiabatic evolutions [97]. In fact, any quantum system that evolves from an initial state to a
final state acquires a geometric phase [98]. This phase is an intrinsic property of the geometry of
quantum states and arises in various contexts. In the next section, we explore its significance in the
context of Bargmann invariants.

3.4 Significance of the geometric phase in the context of Bargmann
invariants

Geometric phases arise in several contexts. Among others, the argument of a Bargmann invariant
describes a geometric phase. This property will be utilized in the next chapter in connection with
the argument of weak values.
Bargmann invariants were defined in the context of the Wigner’s theorem on symmetry opera-
tions [33]. This quantity is invariant under gauge transformation and re-parametrization. The
invariant can present different order, depending on the number of involved quantum states. The
Bargmann invariant of order N is defined as,

∆m (ψ1,ψ2 . . .ψN−1,ψN) = Tr
(
Π̂1Π̂2 . . .Π̂N−1Π̂N

)
, (3.21)

where each projectors Π̂a represents a pure quantum state.
The argument of an N-order Bargmann invariant is associated with the geometric phase that a state
would get by performing a closed loop between |ψ1⟩ and |ψN⟩,

γg [C12∪C23U . . .∪CN1] =−arg∆m (ψ1,ψ2 . . .ψN−1,ψN) , (3.22)

where C12∪C23∪ . . .∪CN1 is a closed loop and each Ci j is a section of the circuit.
The argument of any N-order Bargmann invariant can be expressed as a sum of the arguments
of third-order Bargmann invariants, Tr

(
Π̂1Π̂2Π̂3

)
[34], giving to third-order Bargmann invariants

a special importance. Consequently, these invariants are directly linked to the Kirkwood-Dirac
quasi-probability distribution, defined in the previous chapter 2.5.
The representation of a Bargmann invariant depends on the dimension of the involved quantum
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Figure 3.4: a) Representation of the solid angle associated with the two-level third-order Bargmann
invariant. b) Representation of the projection of the geodesics used to compute the symplectic area
associated with the three-level third-order Bargmann invariant. Modified from [19].

states. When treating with two-level systems the geometric phase is associated with the solid angle
on the Bloch sphere of the triangle spanned by the vectors representing the three involved quantum
states, |ψ1⟩, |ψ2⟩, and |ψ3⟩ [99]. Pure state projectors can always be expressed in terms of the
identity and the Pauli matrices as expressed in Eq. 3.3. The vector a⃗, defined in Eq. 3.5, represents
the state on the Bloch sphere. Hence, the argument of the third-order Bargmann invariant is,

Tr
[
Π̂aΠ̂bΠ̂c

]
= arctan

a⃗ ·
(⃗

b× c⃗
)

1+ c⃗ · b⃗+ b⃗ · a⃗+ c⃗ · a⃗
=−Ωabc

2
. (3.23)

The argument of the third-order Bargmann invariant of two-level systems is associated with half the
solid angle on the Bloch sphere spanned by the three vectors representing the quantum states. Two-
level projective space, CP1, is bijectively mappable to the surface of a unit sphere. The mapping
makes the geometry of the invariant specially simple. In Fig. 3.4, we plotted a representation of
the solid angle associated with a geometric phase and thus with a Bargmann invariant involving
the three two-level states |ψ1⟩, |ψ2⟩, and |ψ3⟩.
In three-level or higher-level systems, the projective space CPN−1 cannot be mapped to the surface
of the sphere SN2−2. Consequently, the third-order Bargmann invariant is not associated anymore
with the solid angle, but with the symplectic area3 of the triangle spanned by the three states, |ψ1⟩,
|ψ2⟩, and |ψ3⟩ in CPN−1 [84]. The symplectic area is defined in an even manifold that is formed
by pairs of directions: for example, symplectic areas in classical mechanics are specified in terms
of position and momentum [100]. Here, we note that 2N− 2 free parameters describe the states
in an N-dimensional complex Hilbert space (considering the global phase and the normalization),

3The symplectic area is defined in an even manifold constructed from direction pairs; in the phase space of clas-
sical mechanics, it is often related to position and momentum. This area is computed by integrating along boundary
geodesics of a curve. Remarkably, this area is independent on the specific surface chosen for its calculation.
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which accounts for the even number of dimensions.
In the two-level quantum space, the Riemannian and the symplectic areas coincide. Consequently,
we can represent a symplectic area using the common Riemennian area on the Bloch sphere, the
solid angle. However, in CPN−1, the two areas do not coincide.
In Fig. 3.4b), we represented the projection of geodesics on CP2 linked to the Bargmann invariant
of the three three-level quantum states, |ψ1⟩, |ψ2⟩, and |ψ3⟩. To do so, we have employed the
octant of the sphere, already introduced in the previous section.
It is important to note that the geodesics of the quantum state manifold do not correspond to
geodesics of S7: they are not arcs of great circles of S7. In particular, the geometric phase is
not equivalent to the Riemannian area of the S7 spherical triangle defined by the three vertices
(which could include points that are not states), nor to the Riemannian area of a surface built from
geodesics linking one vertex to the opposite side of the geodesic triangle (which is not unique as
the surface generally depends on the chosen vertex in the triangle).



Chapter 4
Geometrical interpretation of the argument of
weak values

Weak values are commonly investigated by analyzing their real and imaginary components, a con-
venient approach for experimental research [26, 42, 101]. Nevertheless, a recent surge in inter-
est within the quantum community has centered on the geometrical interpretation of weak val-
ues [18, 102, 103, 104, 105, 106, 107]. This attraction to the geometrical aspect is driven by the
profound link between geometric phases and weak values, a connection that underscores one of
quantum mechanics’ most unique attributes. Geometric phases emerge due to the intricate ge-
ometry of the Hilbert space, offering a striking contrast between quantum and classical physics.
Unlike conventional dynamic phases stemming from temporal evolution, geometric phases arise
from a quantum system’s state space geometry. In Newtonian mechanics, state spaces are typi-
cally smooth manifolds devoid of non-trivial geometry. This contrast underscores the fundamental
disparity between quantum mechanics and classical physics, underscoring the importance of geo-
metric phases in quantum information and computation. Bridging these concepts entails the study
of weak values in polar representation, in terms of complex number modulus and argument—to
establish a cohesive connection.
In this chapter, we will link the argument of the weak value to geometric phases. We will also
provide a geometrical interpretation of this argument in the complex projective space, CPN−1.
We hope that these studies will help us to understand the meaning of weak values and their general
role in quantum mechanics.
The chapter starts by introducing the geometrical interpretation of weak values of projectors in
two- and three-level systems. Then, we move to weak values of projectors in N-level systems. The
weak value of the generators of the SU(N) group will also be studied. Eventually, we move to
weak values of general observables. At the end on the chapter, we will explain a few applications
of the calculations.

4.1 Weak values of projectors in C2

We introduce here the basics of the geometric representation on the Bloch sphere of the argu-
ment of weak values of qubit (two-level systems) pure projectors. Then, we relate the argument

33
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of the weak value of projectors to Bargmann invariants and geometric phases (in all dimensions).
Throughout this chapter, we will always consider pure pre- and post-selected states.
Most generally, pure quantum states are represented by projectors Π̂r = |ψr⟩⟨ψr| in complex pro-
jective space (they verify Π̂2

r = Π̂r). The state space of two-level quantum systems corresponds
to the complex projective line CP1. It is topologically equivalent to the two-dimensional sphere
with unit radius in three dimensions, noted S2 Fig. 3.1. Therefore, pure states in two-level quantum
systems can be represented by a unit, three-dimensional, real vector r⃗ on the surface of the Bloch
sphere. A two-level projector is then written in terms of the identity Î and the traceless generators
of SU(2) Eq. 3.3. Using the properties of the Pauli matrices, the calculation of the weak value
Πr,w = Tr

(
Π̂ f Π̂rΠ̂i

)
/Tr
(
Π̂ f Π̂i

)
is straightforward [18]:

Πr,w =
1+ f⃗ · r⃗+ r⃗ ·⃗ i+ f⃗ ·⃗ i+ i f⃗ ·

(⃗
r× i⃗

)
1
2

(
1+ f⃗ ·⃗ i

) , (4.1)

and the formula resulting for the argument [18] is

argΠr,w = arctan
f⃗ ·
(⃗

r× i⃗
)

1+ f⃗ · r⃗+ r⃗ ·⃗ i+ f⃗ ·⃗ i
=−

Ωir f

2
, (4.2)

where i⃗ represents the pre-selected state and f⃗ the post-selected state, while r⃗ corresponds to the
observable projector that is weakly probed. This purely geometric expression of the argument
corresponds to minus one half of the solid angle Ωir f intercepted on the Bloch sphere by the tetra-
hedron spanned from the three state vectors (where the path is followed in the order i→ r→ f → i),
as depicted in Fig. 4.1 (a). Incidentally, we note that the numerator in Eq. 4.2 corresponds to twice
the signed volume of this tetrahedron. When calculating the solid angle in Eq. 4.2, the signs of the
numerator and denominator should be taken into account to determine the appropriate quadrant.
The geodesics between quantum states correspond to arcs of great circles on the Bloch sphere.
Thus, for two-level systems, the argument of the weak value of a projector corresponds to a solid
angle [18, 102, 103], the latter is also equal to the surface of the Bloch sphere inside the geodesic
triangle, i. e. to the area of a spherical triangle. Let us note that, using Stokes’ theorem, the solid
angle can be computed from any closed surface bounded by the geodesic triangle. It can thus be
seen as a contour integration along the geodesic path.
We now reformulate these insights by analyzing the argument of the Bargmann invariant Tr(Π̂ f Π̂rΠ̂i) [33],
introduced in section 3.4, that appears in the numerator of the weak value expression Πr,w. Be-
cause the denominator Tr(Π̂ f Π̂i) = |

〈
ψ f
∣∣ψi⟩|2 is always positive, the argument of the weak value

is equal to the argument of the Bargmann invariant associated with the initial state, the projec-
tor state weakly measured and the final state [18, 102, 103, 108]. In any dimension, as men-
tioned in section 3.4, this invariant is linked to the geometric phase ϕg = argTr

(
Π̂ f Π̂rΠ̂i

)
=

arg(
〈
ψi
∣∣ψ f
〉〈

ψ f
∣∣ψr
〉
⟨ψr|ψi⟩) that would arise from a parametric evolution of the quantum sys-

tem along the closed geodesic triangle (in the sequence |ψi⟩ → |ψr⟩ →
∣∣ψ f
〉
→ |ψi⟩) [109]:

ϕg =−
�

C∆

Im⟨ψ(s)|dψ(s)
ds
⟩ds =−2

�
Σ(C∆)

Im⟨dψ(s, t)
dt

|dψ(s, t)
ds

⟩dsdt, (4.3)

where we chose to describe states in Hilbert space for the convenience of readers familiar with the
Hilbert space description of geometric phases. The first integral is the integral of the Berry connec-
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tion along the closed geodesic triangle C∆ parametrized by |ψ(s)⟩. The last member of Eq. 4.3 is a
surface integral over any closed surface Σ(C∆) bounded by the geodesic triangle C∆, where |ψ(s, t)⟩
is an arbitrary parametrization of the surface Σ(C∆). This is the integral of the Berry curvature. In
any dimension, the argument of the weak value is thus identical to the Pancharatnam-Berry phase
that a quantum state would pick up from a parametric state evolution along the closed geodesic
triangle. We note however that weak values arise in many contexts in physics and we should not
assume here that the geometric phase associated with the argument of the weak value is actually
acquired by a quantum state evolving during the physical process described by the weak value.
The quantum state manifolds of N−level systems correspond to the complex projective spaces
CPN−1. They are Kähler manifolds [92], which means that they are equipped with a Hermitian
form that provides both a Riemannian metric (Fubini-Study) and a symplectic form. The geo-
metric phase Eq. 4.3 is linked to the symplectic area computed on the geodesic triangle using the
symplectic form. In the qubit case, the Riemannian and symplectic areas of geodesic triangles are
equivalent (they are equal up to a constant factor that depends on the normalization convention
for the total areas). However, this is no longer the case in CPN−1 with N ≥ 3. For this reason,
in three-level systems and beyond, the weak value argument cannot be as straightforwardly inter-
preted, nor as a solid angle, nor as a Riemannian area of a geodesic surface, as it is possible in the
qubit case. Nevertheless, the symplectic area is independent of the particular surface on which it
is computed. The argument of the weak value of the projector is thus appropriately seen as arising
from a contour integral along the boundary geodesics of the triangle, which accumulates the in-
cremental geometric phase changes along the closed path. The argument of the weak value of any
projector on pure state is a three-point invariant of the geodesic triangle.

4.2 Weak values of projectors in C3

We now generalize our geometric description to three-level systems. This is not trivial as the
state manifold cannot be mapped bijectively to a (larger) sphere, contrary to the two-level case.
In three-level systems, pure states are then associated with rays that are points of the projective
plane CP2, more details can be found in section 3.2. In CP1, we used the identity and three
(N2− 1 with N = 2) 2× 2 traceless generators of SU(2) (the three Pauli matrices) as a basis to
expand the projectors. In CP2, we expand projectors in terms of the eight (N2− 1 with N = 3)
3×3 traceless Gell-Mann matrices λ̂i, a representation of the Lie algebra SU(3) [110] (we define
the generators in appendix B). However, the quantum state manifold CP2 is not equivalent to the
surface of the 7-sphere S7 in eight dimensions: all three-level states are on the sphere surface but
most points on the surface of the 7-sphere are not proper quantum states. A projector on a pure
state is defined in Eq. 3.9. We use the properties of the generators of the Lie algebra of SU(3)
to calculate the expression of the weak value of a three-level system projector from Eq. 2.20:
Πr,w = Tr(Π̂ f Π̂rΠ̂i)/Tr(Π̂ f Π̂i). Applying the definition of projectors in terms of Gell-Mann
matrices Eq. 3.9, we find

Πr,w =
1+2 f⃗ · r⃗+2 r⃗ ·⃗ i+2 f⃗ ·⃗ i+2 f⃗ ·

(⃗
r ⋆ i⃗
)
+ i2
√

3 f⃗ ·
(⃗

r∧ i⃗
)

3+6 f⃗ ·⃗ i
, (4.4)
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where the 8-dimensional real vectors i⃗, f⃗ and r⃗ represent the pre- and post-selected states and the
weakly measured projector state, respectively. The qutrit (three-level) weak value Eq. 4.4 bears
similarities with the qubit case Eq. 4.1: for SU(2), the structure constants fabc are given by the
Levi-Cevita symbol while dabc = 0, so that the wedge product reduces to the usual cross-product in
three dimensions while the star product contribution disappears. We discuss additional properties
of the ⋆ and ∧ products in appendix D and we provide detailed calculations leading to Eq. 4.4 in
appendix F.
Weak values are regularly considered in terms of their real and imaginary parts because this is how
they affect typical weak measurements. Nonetheless, interpreting weak values in terms of their
modulus and argument provides us more insight about their geometrical properties. Considering
the real and imaginary parts of Eq. 4.4, the weak value argument is,

argΠr,w = arctan
2
√

3 f⃗ ·
(⃗

r∧ i⃗
)

1+2
(

f⃗ · r⃗+ r⃗ ·⃗ i+ f⃗ ·⃗ i
)
+2 f⃗ ·

(⃗
r ⋆ i⃗
) +φ (Πr,w) , (4.5)

where the term φ essentially determines the appropriate quadrant (which depends on the signs of
the real and imaginary parts of the weak value):

φ ( f ) =
{

0 if Re( f )> 0
π if Re( f )< 0 (4.6)

As discussed previously, this argument represents a geometric phase because it is equal to the ar-
gument of the Bargmann invariant [33] associated with the initial state, the projector state weakly
measured and the final state [18, 102, 103, 108] as expressed in Eq. 4.3. It corresponds to a sym-
plectic area evaluated on the geodesic triangle using the symplectic form of the projective space
CP2 = SU(3)/U(2) [84], whose expression depends only on the vertices i⃗, r⃗ and f⃗ (which con-
firms the purely geometric origin of the argument). It is important to note that the geodesics of the
quantum state manifold do not correspond to geodesics of S7: they are not arcs of great circles of
S7. In particular, the geometric phase is not equivalent to the Riemannian area of the S7 spherical
triangle defined by the three vertices (which could include points that are not states), nor to the
Riemannian area of a surface built from geodesics linking one vertex to the opposite side of the
geodesic triangle (which is not unique as the surface generally depends on the chosen vertex in the
triangle).
In Fig. 4.1, we represent the geodesic triangle spanned by three quantum states associated with
a projector weak value, in CP1 for qubit systems and in CP2 for qutrit systems. For two-level
systems, the three quantum states lay on the surface of the Bloch sphere and the argument is con-
nected to the area of the spherical triangle, equivalent to the solid angle. For three-level systems,
the geometry is more complicated. We can represent CP2 graphically using a three-dimensional
sphere octant, for more details see Fig. 3.2. Beware that the geodesics connecting the triangle
vertices on the octant do not typically appear as spherical arcs. Each pair of vertices generates a
unique complex projective line (i.e. a two dimensional subspace isomorphic to a Bloch sphere) in
the complex projective plane CP2. Topologically, the three geodesics connecting the vertices are
thus arcs of great circles in each of these three distinct (in general) CP1 subspaces. However, when
projected on the sphere octant, the geodesic triangle is inevitably distorted. On the S7 sphere,
these geodesics would appear as circle arcs connecting the vertices. However these circle arcs
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Figure 4.1: Representation of the geodesic triangle generated by the initial state (⃗i), the observable
state (⃗r) and the final state ( f⃗ ) in the complex projective spaces CP1 (a) and CP2 (b and c). The
argument of the weak value of a projector is associated with the symplectic area of the triangle.
(a) For two-level systems, the argument is also linked to the area and solid angle of the spherical
triangle spanned by the three R3 vectors representing states on the Bloch sphere. (b) and (c)
Depiction of two different geodesic triangles of three-level systems, using the spherical octant
projection. Reproduced from [19].

would not be arcs of great circles because the geodesics of CP2 are not those of S7 (which is a
reminder that the points of CP2 are constrained to a four-dimensional subset of S7 equipped with
the Fubini-Study metric and not with the metric of the round sphere). Considering the invariance
under unitary transformations, the most general geodesic triangle can be represented by the states
| f ⟩ = (0,0,1)T , |r⟩ = (0,sinβ ,cosβ )T and |i⟩ =

(
sinα cosη ,eiχ2 sinα sinη ,cosα

)T , as depicted
in Fig. 4.1. The general expression of a state on S7 and of the geodesic arc linking r⃗ and f⃗ are
given in appendix E for reference.

4.3 Weak values of projectors in CN

Our results on three-level systems can be easily generalized to N−level systems. Projectors on pure
states in CN are associated with straight complex lines passing through the origin or, equivalently,
with rays that are points of the projective space CPN−1. We describe them in terms of the N2−1
generators of the Lie algebra of SU(N) that generalize the Pauli and Gell-Mann matrices (see
appendix G for details). In that case, a projector on a pure state is expressed as in Eq. 3.13(see
appendix C).
The argument of the weak value of a projector Π̂r on a pure state of an N−level system is expressed
using the properties of the generators of SU(N) as,

argΠr,w = arctan
2
(N−1

2N

) 3
2 f⃗ ·

(⃗
r∧ i⃗

)
1

N2 +
N−1
N2

(
f⃗ · r⃗+ r⃗ ·⃗ i+ f⃗ ·⃗ i

)
+ (N−1)(N−2)

N2 f⃗ ·
(⃗

r ⋆ i⃗
)

+ φ (Πr,w) , (4.7)

where φ (Πr,w) selects the appropriate quadrant and is specified in Eq. 4.6. Detailed calculations
leading to Eq. 4.7 are provided in appendix F. The expression Eq. 4.7 of the argument of the weak
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value generalizes the one obtained for three-level systems Eq. 4.5 to the case of N−level system
projectors on pure states. Taking N = 3 and N = 2, we recover the results for three-level system
projectors and qubit systems, respectively. As explained previously, the argument of the weak
value of a projector is equal to the argument of the Bargmann invariant of the three states involved.
Therefore, the argument Eq. 4.7 represents a geometric phase connected to the symplectic area of
the geodesic triangle in CPN−1.
To conclude this section, we first would like to emphasize that, using an appropriate unitary trans-
formation, any set of three states of CPN−1 and the geodesics linking them can always be mapped
to a CP2 subspace. Therefore, all observations valid for the weak value of qutrit projectors on
pure states extend to arbitrary larger dimensions. In particular, Fig. 4.1 provides a valid rep-
resentation of geodesic triangles in CPN−1. Furthermore, from a geometric point of view, all
weak values of projectors in any finite dimension can be described using 8-dimensional, normal-
ized real vectors using the formulas Eq. 4.4 and Eq. 4.5 valid for CP2. We also note that there
are two three-point invariants that contribute to the geometric phase: f⃗ · (⃗r∧ i⃗) = fabc farbic and

f⃗ · (⃗r ⋆ i⃗) =
√

N(N−1)
2

1
N−2dabc farbic. Both are invariant under cyclic permutations of the three

vectors and under unitary transformations. However, the former is anti-symmetric under the per-
mutation of two vectors, while the latter is symmetric.

4.4 Weak values of general observables
Weak measurement are not confined to projectors on pure states. In practice, experiments also
deal with the weak values of arbitrary observables, such as the spin of a particle, projectors on
degenerate subspaces or compound observables in multipartite systems to name a few. In this
section, we study the weak value of a general Hermitian observable Â of an N−level system. We
will show that the weak value of any observable can be expressed in terms of the weak value of a
very specific projector that will provide us with a geometrical description in the spirit of what we
did before. We decompose the observable in terms of the N×N identity operator and a traceless
operator from the generators of SU(N):

Â = aI ÎN +aL α⃗ · ˆ⃗L, (4.8)

where ˆ⃗L is a vector whose N2− 1 components are the generators of the SU(N) Lie group (see
appendix G), aI and aL are real constants and α⃗ is a normalized vector with N2−1 real components.
Using the properties of the generators ˆ⃗L to compute the traces appearing in the definition Eq. 2.29,
we obtain the weak value of a general observable (as shown in appendix F):

Aα,w =
1

1
N + N−1

N f⃗ ·⃗ i

[
i
aL (N−1)

N
f⃗ ·
(

α⃗ ∧ i⃗
)

+
aI

N
+

aI (N−1)
N

f⃗ ·⃗ i+
aL
√

2(N−1)
N
√

N

(
f⃗ · α⃗ + α⃗ ·⃗ i

)
+

aL
√

2(N−1)(N−2)
N
√

N
f⃗ ·
(

α⃗ ⋆ i⃗
)]

. (4.9)
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This expression generalizes our previous results on projectors, which we recover by setting the
appropriate coefficients aI and aL from Eq. 3.13 and by constraining the operator using α⃗ = α⃗ ⋆ α⃗ .
It is thus crucial to note that, in Eq. 4.9, the vectors i⃗ and f⃗ must obey the constraints i⃗ = i⃗⋆ i⃗ and
f⃗ = f⃗ ⋆ f⃗ because they represent states, while α⃗ is allowed to range freely on the whole surface of
the SN2−2 sphere (for this reason, we denote the latter vector with a greek letter, while the former
are identified by roman letters). Our normalization conventions for the projector definition Eq. 3.13
allowed us to express the weak values in terms of the geometrical properties of three vectors that
all belong to the same unit sphere (see appendix C).
By considering the ratio of the imaginary and real parts of Eq. 4.9, we find the argument of the
weak value of an arbitrary Hermitian observable:

arg(Aα,w) = φ (Aα,w)+ (4.10)

arctan

aL(N−1)
N f⃗ ·

(
α⃗ ∧ i⃗

)
aI
N + aI(N−1)

N f⃗ ·⃗ i+ aL
√

2(N−1)
N
√

N

(
f⃗ · α⃗ + α⃗ ·⃗ i

)
+

aL
√

2(N−1)(N−2)
N
√

N
f⃗ ·
(

α⃗ ⋆ i⃗
) ,

where φ (Aα,w) specifies the quadrant according to Eq. 4.6. This expression bears similarities to
the argument of the weak value of a projector on a pure state Eq. 4.7. Notwithstanding the ap-
pearance of the constant factors aI and aL, the essential differences are the new term aI/N in the
denominator and the fact that α⃗ does not represent a state in general. We notice that the numerator
is fully antisymmetric under permutations of vectors, while the denominator is symmetric under
permutations of the initial and final states. The term involving the star product is even fully sym-
metric under permutations of the three vectors.
In order to interpret this argument in terms of a geometric phase, we relate it to the weak value of a
particular projector on a pure state (we call it Π̂i′). This approach allows us to link the argument to
the Bargmann invariant of the pre-selected state, the projector Π̂i′ and the post-selected state, and,
therefore, to a symplectic area in CPN−1. We define this projector by

Π̂i′ =
Â |ψi⟩⟨ψi| Â
⟨ψi| Â2 |ψi⟩

(4.11)

when Â |ψi⟩ ̸= 0 (else the weak value is 0 and the argument is undefined anyway). The state |ψi′⟩
results from the application of the observable to the initial state. Since the argument of the weak
value of a projector is equal to the argument of the Bargmann invariant, we have

argΠi′,w = arg[Tr(Π̂ f Π̂i′Π̂i)] = arg

〈
ψ f
∣∣ Â |ψi⟩⟨ψi| Â |ψi⟩⟨ψi

∣∣ψ f
〉

⟨ψi| Â2 |ψi⟩
. (4.12)

The expectation value of Â2 in the pre-selected state is strictly positive and does not contribute to
the total argument: arg⟨ψi| Â2 |ψi⟩= 0. The average value ⟨A⟩ψi = ⟨ψi| Â |ψi⟩ is a real number: its
argument is 0 if it is positive and π if it is negative. Hence, the argument of the weak value of the
observable Â is equivalent to the argument of the weak value of the projector Π̂i′ modulo π:

argAw = argΠi′,w− arg⟨A⟩ψi. (4.13)

We find two contributions. First, the geometric phase arising from the geodesic triangle in CPN−1

whose vertices correspond to the vectors i⃗, i⃗′ and f⃗ on the SN2−2 sphere. It is connected to the
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symplectic area of the geodesic triangle and can alternatively be computed from Eq. 4.3. Second,
another geometric phase that is given by the sign of average value of the observable in the initial
state. It can easily be expressed in the present formalism, on SN2−2, in terms of the vectors i⃗ and α⃗

by setting i⃗ = f⃗ in Eq. 4.9, as done later in section 4.8 with Eq. 4.28.
Describing geometrically the relationship existing between an arbitrary initial state |ψi⟩ and the
quantum state associated with the projector Π̂i′ produced by an observable Â according to Eq. 4.11
is far from a trivial task in general. In the case of the Pauli observables α⃗ · ˆ⃗σ , the vector i⃗′ corre-
sponds to the mirror image of the initial state i⃗ with respect to the axis α⃗ of the Pauli operator (i.
e. the direction of the spin measurement). However, these particular observables are also unitary
operators, which helps in determining their action on a general initial state. More complicated
operators or families of operators should be studied on case by case basis. Subsequently in this
chapter, we will consider in depth the situation of general observables of two-level systems and
leave most higher dimensional cases for follow-up studies.
When the average value ⟨A⟩ψi equals zero, its argument can be 0 or π in Eq. 4.13. In this case, the
projectors Π̂i and Π̂i′ are also orthogonal. Therefore, they are linked by infinitely many geodesics
and, at first, it is not clear how to define the geodesic triangle. However, the argument of the weak
value on the left-hand side of Eq. 4.13 is well-defined since we assumed Aw ̸= 0. This indicates
that it is possible to select an appropriate geodesic to construct the geodesic triangle. This can be
done by computing the limit of a family of geodesic triangles built from slightly perturbing the
initial state Π̂i = limε→0 Π̂i(ε) so that Tr ÂΠ̂i(ε) = ⟨A⟩ψi(ε) ̸= 0. There will be two choices for the
geodesic (arising from the cases ⟨A⟩ψi(ε) > 0 and ⟨A⟩ψi(ε) < 0) that will give the correct value for
the argument of the weak value using Eq. 4.13. Note that evaluating this limit would often occur
automatically when studying the geodesic triangle as a function of the initial state (a natural use of
the formalism). Alternatively, it is also possible to work with the projector Π̂ f ′ defined from the
application of the operator on the post-selected state Â

∣∣ψ f
〉

(assuming ⟨A⟩ψ f ̸= 0).

4.5 Weak values of the generators of the Lie group of SU(N)

As a relevant, direct application of the results obtained in the previous section, we express the
weak values of the generators of the Lie algebra of SU(2) (Pauli matrices), SU(3) (Gell-Mann
matrices) and SU(N) in general. Operators linked to these generators describe the spin of parti-
cles, light polarization, the orbital angular momentum of light and the polarization correlations in
entangled photons, to cite the most typical laboratory use. They are also related to observables
in particle physics and cosmology, where conceptual applications of weak measurements start to
emerge [111]. We obtain the weak value and its argument, of all the generators, by setting aI = 0
and aL = 1 in the expressions Eq. 4.9 and Eq. 4.10, respectively.
First, we recover the weak value and its argument for two-level systems (N = 2) [112], which are
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useful points of comparison:

σr,w =
f⃗ · r⃗+ r⃗ ·⃗ i+ i

[
f⃗ ·
(⃗

r× i⃗
)]

1+ f⃗ ·⃗ i
, (4.14)

argσr,w = arctan
f⃗ ·
(⃗

r× i⃗
)

f⃗ · r⃗+ r⃗ ·⃗ i
+φ (σr,w) , (4.15)

where φ (σr,w) is defined in Eq. 4.6 and the generator is given by r⃗ · ˆ⃗σ . In the particular case of
SU(2), the star product is null and wedge product is equivalent to the cross product because the
structure constants fabc become the Levi-Civita symbol. Additionally, the vector r⃗ also represents a
state and it is then possible to show that Eq. 4.15 is given by the sum of two solid angles connected
to two Bargmann invariants [112]. These two solid angles correspond to the two contributions
found in Eq. 4.13 when using the projector Π̂i′ to determine the geometric phase.

Second, we consider the generators α⃗ · ˆ⃗λ of the Lie group SU(3), i. e. the Gell-Mann matri-
ces [110]:

λα,w =
2√
3

f⃗ · α⃗ + α⃗ ·⃗ i+ f⃗ ·
(

α⃗ ⋆ i⃗
)
+
√

3 i f⃗ ·
(

α⃗ ∧ i⃗
)

1+2 f⃗ ·⃗ i
, (4.16)

argλα,w = arctan

√
3 f⃗ ·

(
α⃗ ∧ i⃗

)
f⃗ · α⃗ + α⃗ ·⃗ i+ f⃗ ·

(
α⃗ ⋆ i⃗

) +φ (λα,w) , (4.17)

with φ (λα,w) defined in Eq. 4.6 and where α⃗ does not represent a state in general. We note the
elegant similarities between the weak values of qubit and qutrit systems. However, the complexity
introduced in particular by the additional term involving the star product makes it no longer pos-
sible to interpret straightforwardly the geometric phase Eq. 4.17. Indeed, in addition to the three
initial vectors i⃗, α⃗ and f⃗ , we also have to consider the directions of f⃗ ∧ α⃗ and f⃗ ⋆ α⃗ , which prevent
us from reducing the problem to the three dimensions spanned by i⃗, α⃗ and f⃗ .
Third, for the generators α⃗ · ˆ⃗L of SU(N) generalizing the Pauli and Gell-Mann matrices, the weak
value and its argument are

Lα,w =

√
2

N−1
N

f⃗ · α⃗ + α⃗ ·⃗ i+(N−2) f⃗ ·
(

α⃗ ⋆ i⃗
)
+ i
√

N2−N
2 f⃗ ·

(
α⃗ ∧ i⃗

)
1+(N−1) f⃗ ·⃗ i

, (4.18)

argLα,w = arctan

√
1
2N(N−1) f⃗ ·

(
α⃗ ∧ i⃗

)
f⃗ · α⃗ + α⃗ ·⃗ i+(N−2) f⃗ ·

(
α⃗ ⋆ i⃗

) +φ (Lα,w) , (4.19)

with φ (Lα,w) defined in Eq. 4.6.

4.6 Weak value of a two-level system observable
We turn our attention to the weak values of arbitrary observables in two-level systems. In particular,
we are interested in analyzing their connection to the projector Π̂i′ Eq. 4.11 that characterizes the
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geometric phase associated with their argument Eq. 4.13. Advantageously, all operators and states
of two-level systems are linked to a unit vector on the Bloch sphere. We note the initial and final
states i⃗ and f⃗ . Without loss of generality, we consider an observable of the form Eq. 4.8, written as

Ôr = a
(

Î + γ r⃗ · ˆ⃗σ
)
, (4.20)

where r⃗ is a unit vector and a and γ are real constants. Later on, γ will appear as the relevant
parameter for studying geometric phases. When γ = 0, the weakly measured observable is propor-
tional to the identity. When γ = 1, it is proportional to a projector. Then, when γ → ∞, it tends
to a linear combination of the Pauli matrices, proportional to r⃗ · ˆ⃗σ . From Eq. 4.9 and Eq. 4.10, we
readily obtain the weak value and its argument:

Or,w = a
1+ f⃗ ·⃗ i+ γ

(
f⃗ · r⃗+ r⃗ ·⃗ i

)
+ iγ f⃗ ·

(⃗
r× i⃗

)
1+ f⃗ ·⃗ i

, (4.21)

argOr,w = arctan
γ f⃗ ·

(⃗
r× i⃗

)
1+ f⃗ ·⃗ i+ γ

(
f⃗ · r⃗+ r⃗ ·⃗ i

) +φ (Or,w) , (4.22)

with φ (Or,w) giving the appropriate quadrant for the argument, on the basis of the signs of the real
and imaginary parts of the weak value Eq. 4.6. It should be highlighted that the argument of the
weak value depends chiefly on γ . The parameter a only contributes a 0 or π term through φ (Or,w),
depending on its sign. Interestingly, the parameter γ plays a role similar to a measurement strength,
from which the geometric phase Eq. 4.22 emerges [107].
The projector Π̂i′ = ÔrΠ̂iÔr/TrΠ̂iÔ2

r Eq. 4.11 connects the geometric phase Eq. 4.22 to the argu-
ment of a Bargmann invariant. Its Bloch sphere vector is

i⃗′ =
1

1+2γ r⃗ ·⃗ i+ γ2

[(
1− γ

2)⃗ i+2γ

(
1+ γ r⃗ ·⃗ i

)
r⃗
]
. (4.23)

Fig. 4.2 depicts the evolution of the i⃗′ vector as a function of the observable parameter γ . When
γ = 0, i⃗′ is the pre-selected state i⃗ because the observable is proportional to the identity. With γ = 1,
i⃗′ corresponds to r⃗ since for that value of γ , the operator itself is equivalent to a projector. When
γ → ∞, the observable is proportional to the Pauli operator r⃗ · ˆ⃗σ . Then, i⃗′ is the mirror image i⃗m of
the initial vector i⃗ with respect to the direction r⃗ [112]:

i⃗m = −⃗i+2
(⃗

i · r⃗
)

r⃗. (4.24)

All the possible locations of i⃗′ form the great circle that connects the initial state i⃗ to the direction
r⃗ associated with the operator. Positive values of γ correspond to the arc linking i⃗→ r⃗ → i⃗m,
while the negative values of gamma give the complementary arc i⃗→ −⃗r → i⃗m. Knowing i⃗′, it
becomes possible to represent geometrically the argument of the weak value on the Bloch sphere,
as a function of γ for fixed pre- and post-selected states, in a manner similar to Fig. 4.1 (a). This is
the main appeal of this projector.
At a more quantitative level, Fig. 4.3 represents the smallest angles existing between the various
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Figure 4.2: Representation of the vector i⃗′ on the Bloch sphere for positive values of the param-
eter γ . The blue vector is the initial state, the yellow vector is the vector r⃗ associated with the
observable. The red vector i⃗m is the mirror image of the initial state with respect to the vector r⃗.
Reproduced from [19].

relevant vectors. Two angles are constant: φir between the initial state i⃗ and the operator vector
r⃗, as well as φiim between the initial state and its mirror image i⃗m through r⃗. The evolution of the
angle φii′ between the initial state i⃗ and the projector i⃗′ goes from 0 for γ = 0 (when the operator is
proportional to the identity), to φir for γ = 1 (when the operator Ôr acts as the projector on r⃗), to
the maximum value of π for γ = −1/cosφir. The latter corresponds to Ôr |ψi⟩ = 0. In this case,
both the weak value Or,w and the average value ⟨Or⟩ψi are null, and the argument of the weak value
is undefined. This value of γ delimits the parameter ranges for which the average value contributes
with a factor 0 or π to the geometric phase Eq. 4.13, according to its sign. Beyond this critical
value of γ , the value of the φii′ angle decreases and tends to φiim . We also see that the angle φri′

between r⃗ and i⃗′ is equal to φir when γ = 0 or γ → ∞, as these limiting cases correspond to mirror
images with respect to r⃗. When the operator is proportional to a projector (γ = 1), φri′ = 0. Finally,
we observe that φii′ parametrizes the longitude along the great circle arc described by i⃗′. φii′ can be
expressed solely in terms of φir and γ by projecting Eq. 4.23 on the initial state.

4.7 Projectors on degenerate subspaces and Hermitian quan-
tum gates

Sections 4.2 and 4.3 dealt with the weak values of projectors on pure states. However, projectors
on degenerate subspaces also arise in practice. For example, the square of a spin-1 operator is
associated with a doubly degenerate subspace, which plays an essential role in proofs of quantum
contextuality [113]. As shown in appendix C, an arbitrary projector P̂ on a k-degenerate subspace
of Cn takes the form

P̂ =
k
N

ÎN +

√
k(N− k)

2N
ρ⃗ · L⃗, (4.25)
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Figure 4.3: Evolution of the smallest angles subtended by the four vectors i⃗ (arbitrary initial state),
r⃗ (vector associated with the arbitrary qubit operator Ôr), i⃗m (mirror image of i⃗ through the direction
r⃗) and i⃗′ (Bloch sphere direction giving the geometric phase associated with the weak value as half
a solid angle). In yellow: the angle φii′ between i⃗ and i⃗′. In dark orange: the angle φri′ between
r⃗ and i⃗′. In blue and purple: the constant angles φir and φrim = 2(π − φir), between i⃗ and r⃗ and
between r⃗ and i⃗m, respectively. Reproduced from [19].

where the normalized, real vector ρ⃗ on the SN2−2 sphere is constrained by the star product accord-
ing to

ρ⃗ ⋆ ρ⃗ =
N−2k
N−2

√
N−1

k(N− k)
ρ⃗. (4.26)

Setting k = 1 in Eq. 4.25 and Eq. 4.26, we recover the projectors on pure states. Then, ρ⃗ is
associated with a quantum state in CPN−1, but not otherwise (see example in appendix C).
The specific expressions of the weak value and its argument can be deduced as a straightforward
application of Eq. 4.9 and Eq. 4.10. The point we actually wish to stress here is that, for such
observables, the projector Π̂i′ Eq. 4.13 of CPN−1, whose argument of the Bargmann invariant with
the pre- and post-selected states is linked to the weak value geometric phase, has a straightforward
interpretation: it is simply the projection of the initial state on the degenerate subspace covered
by P̂. Its state vector is given by P̂ |ψi⟩ = |ψi′⟩. Therefore, the argument of the weak value Pw is
solely linked to the symplectic area of the geodesic triangle with vertices

∣∣ψ f
〉
, |ψi⟩ and |ψi′⟩ and

corresponds to the Pancharatnam-Berry phase Eq. 4.3. Indeed, the average value of a projector is
always positive ⟨ψi| P̂ |ψi⟩ ≥ 0 and, thus, does not contribute to the geometric phase Eq. 4.13.
Another class of related observables gives rise to a nicely geometric interpretation of the projector
Π̂i′ present in the effective Bargmann invariant. It comprises all the observables that are both
unitary and Hermitian. Amongst them, we recover many multi-qubit quantum gates, such as the
the CNOT, CZ, SWAP, Toffoli and CSWAP gates, as well as, obviously, the Hadamard gate and
all the Pauli gates acting on single qubits. Interestingly all the Hermitian unitary operators are
connected to the projectors defined herebefore Eq. 4.25. Indeed, from any projector, we can build
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an observable Ŝ = 2P̂− ÎN that is both Hermitian and unitary. Therefore,

Ŝ =
2k−N

N
ÎN +

√
2k(N− k)

N
ρ⃗ · L⃗, (4.27)

where the unit vector ρ⃗ must obey the star product condition Eq. 4.26 since it is linked to a k-
degenerate projector P̂. The state produced by (2P̂− ÎN) |ψi⟩ = |ψi′⟩ results from a generalized
reflection of the complex state vector |ψi⟩ in CN with respect to the subspace corresponding to
P̂. This provides us with a quite elegant interpretation of the state contributing to the effective
Bargmann invariant, reminiscent of the role played by the mirror image of the initial vector on the
Bloch sphere in the case of Pauli operators (see Fig. 4.2). For example, in qutrit systems, such
an observable Ŝ would fundamentally flip the sign of one component of the state vector when it
is expressed in the diagonal representation of the related projector P̂. Therefore, the vector i⃗′ in
S7 would result from a peculiar reflection symmetry flipping the sign of the initial state vector
components in four of the eight dimensions (in appendix E, see the expression Eq. E.1 of an
arbitrary state on S7 given as a function of its Hilbert space representation, where one should
change the sign of a component ni). Additionally, since the observable is unitary, the geodesic arc
connecting the states |ψi⟩ and |ψi′⟩ in CPn−1 could correspond to an actual progressive evolution
of the system.

4.8 Beyond weak measurements: average values and quantum
uncertainties

Finally, we point out that we recover useful quantum mechanical expressions pertaining to average
values of observables by setting identical initial and final states in the weak value Eq. 4.9. It is also
helpful to look at expressions involving the variance in order to see how their definitions involve
the star ⋆ and wedge ∧ products of SU(N).
We suppose that the quantum system is in the pure state |ψ⟩, characterized by the vector i⃗ = i⃗⋆ i⃗.
We consider two general observables Â = aI ÎN + aL α⃗ · ˆ⃗L and B̂ = bI ÎN + bL β⃗ · ˆ⃗L, where we use
greek letters for the operator vectors as they do not necessarily correspond to a state on the SN2−2

sphere. Then the average value is related to the 8-dimensional Euclidean scalar product between
the two vectors on the sphere:

⟨A⟩= ⟨ψ| Â |ψ⟩= aI +aL

√
2

N−1
N

i⃗ · α⃗, (4.28)

where we set f⃗ = i⃗ in Eq. 4.9. In appendix F, we compute the particular expressions of the squared
operator Â2, the commutator [Â, B̂] and the anticommutator {Â, B̂}. These operators appear in the
Heisenberg uncertainty relations as

Var(A)Var(B)−Cov2(A,B)≥ 1
4
|⟨[Â, B̂]⟩|2, (4.29)



Chapter 4. Geometrical interpretation of the argument of weak values 46

where the variance is defined as usually by Var(A) = ⟨A2⟩−⟨A⟩2 and the (symmetric) covariance
by Cov(A,B) = 1

2⟨{Â, B̂}⟩−⟨A⟩⟨B⟩. Using these definitions, we find

Var(A) =
2
N

a2
L[1− (N−1)(⃗α ·⃗ i)2 +(N−2) α⃗ ⋆ α⃗ ·⃗ i ] (4.30)

Cov(A,B) =
2
N

aLbL [⃗α · β⃗ − (N−1)(⃗α ·⃗ i)(β⃗ ·⃗ i)+(N−2) α⃗ ⋆ β⃗ ·⃗ i ] (4.31)

⟨[Â, B̂]⟩= 2iaLbL

√
2

N−1
N

α⃗ ∧ β⃗ ·⃗ i (4.32)

Thus the two invariants that involve the wedge and star products that are present in the argument
of weak values emerge as well in the Heisenberg uncertainty relationship. In particular, we ob-
serve that the numerator of the argument of the weak value, which involves the wedge product,
is therefore proportional to an average, in the initial state, of a commutator. The operators in this
commutator are the weakly measured observable and the final state. (Note that the roles of the ini-
tial and final state could be switched using a cyclic permutation of the three vectors.) Ultimately,
these two invariants are built to provide contribution involving the three vectors in a fully symmet-
ric or anti-symmetric way. It is suggested in the literature that the average value of the square of
the commutator is a predictor of quantum chaos [114]. This can also be evaluated to be

⟨|[Â, B̂]|2⟩= 8
N

aLbL[∥α⃗ ∧ β⃗∥2 +(N−2)(⃗α ∧ β⃗ )⋆ (⃗α ∧ β⃗ ) ·⃗ i ]. (4.33)

4.9 Usefulness of the argument of the weak value
We wish now to reflect on the significance of the argument of the weak value as a geometric
phase. For the weak value of a projector Π̂r, we saw that this geometric phase is equivalent to
the Pancharatnam-Berry phase that a state would acquire during a parametric evolution along the
closed geodesic triangle formed by the initial state, the projector state and the final state. Actu-
ally, this corresponds also to the geometric phase for the open curve built from the two successive
geodesics connecting |ψi⟩⟨ψi| to |ψr⟩⟨ψr|, and then |ψr⟩⟨ψr| to

∣∣ψ f
〉〈

ψ f
∣∣ [109]. Thus, we could

be naively tempted to attribute this geometric phase to the final state after a post-selected weak-
measurement of the projector Π̂r. However, our preliminary investigation of geometric phases
during actual weak measurements shows that the geometric phase imparted on the joint system
and Gaussian meter state, after post-selection but before meter measurement, does not depend on
the weak coupling parameter g to first order (note that this geometric phase arises from a non-cyclic
evolution, along an open curve). Thus, the geometric phase acquired during a weak measurement
with a Gaussian meter does not depend univocally on the associated weak value (to second order
in the coupling parameter, it depends on the meter variance and on the imaginary part of weak
value of the square of the observable: ϕg ≈ g2∆2 p Im⟨A2⟩w). Nevertheless, it is well-known [101]
that, after a weak measurement with a Gaussian meter, the average meter position ⟨x⟩ is given
by g ReAw, while the average meter momentum ⟨p⟩ is given by 2g∆2 p ImAw. As a result, the
argument of the weak value sets the angle pointing to the location of the centroid of the Gaussian
Wigner function in the meter phase space after a weak measurement: argAw = arctan ⟨p⟩∆x

⟨x⟩∆p (this
angle can be made equal to the geometric phase by an appropriate scaling of the phase space co-
ordinates). Furthermore, Lundeen and Resch [115] showed that the weak value is proportional to
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the average α (in the final state |φm( f i)⟩ of the meter) of the annihilation operator â associated
with the meter phase space. To first order in the coupling, after post-selection, the meter is thus
left in a coherent state |α⟩ ≈ |0⟩+α |1⟩ given by the eigenvalue α = g∆pAw. Hence, the argument
of the weak value appears as the phase of the coherent state, which is also the phase of its com-
ponent in the first excited state |1⟩. This approach provides as well a natural interpretation to the
modulus of the weak value, as its square gives the average occupancy level in this coherent state:
⟨N⟩α ≈ g2∆2 p |Aw|2.
In many weak measurements applications, we are actually interested in the meter shifted aver-
ages and not only in the operator weakly measured. For example, when measuring tiny optical
deviations of light beams upon reflection on an interface (effects known as the Goos-Hänchen
and Imbert-Fedorov shifts), the argument of the weak value would give an indication of the ratio
of the observed angular to spatial shifts of the light beam. In such an experiment, the trans-
verse position of the beam plays the role of the meter (subjected to shifts), while the weakly
measured operator is an effective observable related to the transfer function of the reflection pro-
cess (that depends on the polarization) [55]. The principle of performing a (typically amplified)
weak measurement of an effective observable derived from the transfer function of a physical
process is quite general [116]. Here, we provide some thoughts for the analysis of such ra-
tios arising from experimental observations. The interpretation of the real and imaginary parts
of the weak value have been much discussed in the literature. A useful point of view is that
the real part of the weak value gives the optimal conditional estimate of the observable given
the knowledge imparted by the initial and final states of the pre- and post-selected measure-
ment [41, 117, 118, 119]. Correspondingly, the imaginary part is related to the inaccuracy of
the optimal estimate ε2(F̂) = ∑ f Im2 Aw( f ), where f runs over all possible final states of the mea-
surement observable F̂ used for post-selection [41, 117, 118, 119]. In some very broad sense,
the ratio of the imaginary to the real part appears linked to the inverse of a signal-to-noise ratio.
This observation can be made more precise by noting that the real part of the weak value has been
linked in weak measurements to the role of the operator Â as an observable, while the imaginary
part has been associated with the operator Â as the generator of infinitesimal unitary transforma-
tions e−iεÂ, where it plays a dynamical role [41, 120]. The argument of the weak value conveys
thus a direct indication of the relative importance of these two aspects of the operator Â in the
physical process giving rise to the weak value. We further evidence this by expressing the weak
value as a logarithmic derivative Aw = i d

dε
ln
〈
ψ f
∣∣e−iεÂ |ψi⟩ |ε=0 = i d

dε
ln
〈
ψ f
∣∣ψ(ε)

〉
|ε=0. By writ-

ing
〈
ψ f
∣∣ψ(ε)

〉
= R(ε)eiS(ε) (with R,S ∈R), we find Aw =− d

dε
S(ε)+ i d

dε
lnR(ε). The argument of

the weak value reflects then how the amplitude of the complex overlap between the final and initial
states varies with respect to its phase in the limit of a vanishing evolution: argAw =−d lnR(ε)

dS(ε) |ε=0.
We see that the derivative of the phase of the overlap encodes information about the observable
(as the real part of the weak value corresponds to the best estimate), while the imaginary part of
the weak value relates to the modification of the post-selection probability due to the unitary evo-
lution through the logarithmic derivative of the overlap amplitude. The first aspect impacts the
observed average meter position, while the second impacts its observed average momentum. As
the argument is a geometric phase, we understand that the ratio of these very different aspects of
the operator action in the weak value is fully determined by the geometry and can be represented
and studied using geodesic triangles. This approach could be fruitful to study weak values arising
from effective observables generated by unitary transfer functions [116], and even could be gener-
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alized to non-Hermitian effective observables [55].
Although we were mainly concerned with discrete observables in this thesis, it is nevertheless
enlightening to review the former expressions in the context of the weak value of the momen-
tum post-selected on position: pw = i d

dε
ln⟨x|e−iε p̂ |ψi⟩ |ε=0 = i d

dε
lnψ(x− ε)|ε=0 =−i d

dx lnψ(x),
where now R(x) and S(x) are understood as the (real) amplitude and phase of the wavefunction
ψ(x) in the limit of an infinitesimal unitary transformation e−iε p̂. The argument provides thus
the ratio of the so-called osmotic momentum po = − d

dx lnR(x) = Im pw and Bohmian momen-
tum pb =

d
dxS(x) = Re pw at position x [41, 58, 118]. The osmotic momentum po appears in the

stochastic interpretation of quantum mechanics (with pb), where it compensates the stochastic dif-
fusion, while pb is central in the de Broglie-Bohm interpretation as it defines deterministic particle
velocities. The ratio of these two momenta (or of the associated velocities) should thus be seen
through the lens of geometric phases! The geometrical investigation of the argument of weak val-
ues advocates a holistic interpretation of the weak value as it describes the full observations in
phase space, beyond the common dichotomy between the real and imaginary parts.
The geometric description applies to all weak values of discrete observables. Thus, it offers an
extensive range of target applications. In particular, we believe our approach could prove useful to
study the geometry of the connection between anomalous weak values and contextuality, which is
a property describing that a quantum measurement goes beyond merely revealing pre-established
values. In the realm of weak measurements, contextuality emerges as a consequence of the out-
come being intricately linked to the specific post-selected state that is selected. Indeed, anomalous
weak values, which are values outside the range of possible eigenvalues of the observable, are
always a witness of contextuality [31, 32]. Additionally, anomalous weak values of arbitrary ob-
servables are necessarily linked to anomalous weak values of projectors [31, 32]. As the eigenvalue
range of a projector is the [0,1] interval, when the argument of a projector weak value is not equal
to 0, the weak value is necessarily anomalous. Thus a non-zero argument of a projector weak value
is an indicator of contextuality related to the emergence of a geometric phase. Furthermore, if the
modulus of the weak value is larger than 1, this is also an indicator of contextuality. We could thus
investigate from a geometrical viewpoint the nature of the contextuality that arise either from a
non-zero argument or from an amplification effect. Beyond the projector case, any observable can
be rescaled (Â−λminÎ)/(λmax−λmin), so that its eigenvalue range belongs to the [0,1] interval.
Then, the argument and modulus of its weak values can be used similarly to the case of projectors
to indicate contextuality.
Weak values also appear in dynamical processes [118], independently of weak measurements. For
example, they determine the perturbed energy eigenvalues

En(g) = En(0)+
⟨En(0)| ∆̂(g) |En(g)⟩
⟨En(0)|En(g)⟩

(4.34)

due to a perturbation ∆̂(g), in terms of the initial unperturbed energies En(0) [118]. Thus, the posi-
tive or negative contributions of the different weak values for all the eigenstates could be analyzed
from their argument (which control if the energies increase or decrease), by considering jointly the
various geodesic triangles involved. Our formalism provides a description of the relevant weak
values quantities in a geometric way in RN2−1 that helps to visualize physical processes influenced
by phases, in a conceptually simpler approach than in the complex Hilbert vector space. In this
context, let us restate that a single weak value is determined by three states only. As a result, in any
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finite dimension, the geodesic triangle can be studied in a three dimensional subspace equivalent
to CP2. The geometric representation of a single weak value can thus be reduced to a qutrit case,
which may simplify the geometric description (although not as much as in the qubit case). Focus-
ing on qutrit systems is of prime importance to understand the geometry of weak values generally.
In the example above, even if there are many energy eigenstates, for each of them, the problem
reduces to a three dimensional subspace.
Finally, the appearance of geometric phases in weak values suggests that a geometric description
of their argument should prove useful in fields in which the phase is essential, such as interfer-
ometry or quantum computing tasks. For example, beyond two-level systems, it would especially
benefit to studies of the coupling of the three-dimensional polarization of light to its environment
during propagation, of the orbital angular momentum of light beams used for quantum information
processing tasks in large dimensions, of interferometers involving particles with spin larger than 1

2 ,
as well as of quantum paradoxes, where the phase plays an important role. Indeed, as we focused
our attention to the argument of the weak value and its associated geometric phase, instead of the
real part of the weak value (as is mostly done in the literature), we provide particular insight into
the interferometric aspects of weak values and weak measurements.

4.10 Conclusions
We described on hyperspheres the geometrical properties of the weak values of general observ-
ables. For projectors on pure states of N−level systems, the argument of the weak value is the
argument the Bargmann invariant of the initial, projector and final states. The argument of the
Bargmann invariant and, hence, the argument of the weak value represent a geometric phase that
is associated with the symplectic area of the geodesic triangle in the projective space CPN−1. The
states are constrained to a (2N− 2)-dimensional subset of the unit sphere SN2−2, which general-
izes the Bloch sphere. For all observables, we express the weak value and its argument in terms of
three Euclidean vectors located on SN2−2: formulas involve the standard Euclidean scalar product,
as well as two vectorial operations inherited from SU(N), represented by the star ⋆ and ∧ products.
We showed that the argument of the weak value is always related to a Bargmann invariant of three
projectors, even when the observable probed by the weak measurement is not a projector. Thus we
found a geometric depiction of the argument of any weak value in terms of a symplectic area of a
geodesic triangle in complex projective space. For arbitrary observables of two-level systems, the
geometric phase corresponds to minus half the solid angle subtended by the three vectors associ-
ated with the initial state, the effective projector linked to the weak value, and the final state. We
studied on the Bloch sphere how the projector associated with the effective Bargmann invariant
evolves as a function of the weakly probed observable in a two-level system. We also investigated
the geometric operations behind this projector in higher dimensional systems, for arbitrary pro-
jectors on degenerate subspaces and for Hermitian quantum gates. We produced the weak values
of the generators of SU(N), including the Pauli and Gell-Mann matrices, which are essential to
all spin and polarization applications of weak measurements. The formalism used here applies to
both weak and average values, and we illustrated its usefulness beyond weak measurements by
expressing the quantities intervening in the Heisenberg inequalities.





Chapter 5
Geometry of N-level operators weak values on
the Bloch sphere

In the previous chapter, we moved out of our quantum comfort zone by providing a geometrical
description in CPN−1. However, as the reader may have noticed, the visualization of the system
in this space is still rather hard. In this chapter, we would like to go back to the quantum comfort
zone, the Bloch sphere. We study the argument of weak values of general observables, succeeding
to give a geometric description to this argument on the Bloch sphere, by applying the Majorana
symmetric representation. The choice of whether to work on the Bloch sphere or on CPN−1 de-
pends on the specific system being studied and the properties that need to be retrieved. In other
words, different systems and different goals may require different mathematical frameworks, and
researchers may choose the one that is most suitable for their particular needs. For example, we
will show in this chapter that, in the Majorana framework, it is possible to calculate the entangle-
ment of the system. This study is not achievable straightforwardly in CPN−1. Nonetheless, the
starting space is CPN−1. Hence, it is more suited to study properties intrinsically related to the
complete complex projective space.
The weak value argument of two-level projectors is linked to a geometric phase that is associated
with the solid angle on the Bloch sphere of a spherical triangle formed by the pre-selected, probed
projector, and post-selected states [112]. In contrast, for N-level systems, the weak value argu-
ment of a projector represents a geometric phase, but it is associated with the symplectic area of a
geodesic triangle formed by the pre-selected state, probed projector state, and post-selected state
in CPN−1, as demonstrated in the previous chapter [19]. This area-based geometric phase is dis-
tinct from the solid angle-based phase, which only applies in CP2. Sometimes, we may not only
be concerned with projectors, but with other observables as well. However, we can approach this
issue by employing the fact that the weak value of any observable can be expressed as the weak
value of a projector, as demonstrated in the preceding chapter.
Cormann et al showed that the argument of the weak value of N-level projectors can be expressed
as the sum of N− 1 solid angles on the Bloch sphere. For this, they applied Majorana represen-
tation to the three states (initial state, probed projector state, and post-selected state) [18]. Ettore
Majorana introduced in the 1930s a mathematical procedure to describe systems larger than qubits
(two-level systems) on the Bloch sphere. N − 1 stars on the Bloch sphere represent an N-level
system [121]. The Majorana representation is a powerful tool to get a geometrical insight and to
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perform calculations [122, 123, 124]. Several studies, from purely theoretical to quantum comput-
ing, made use of this representation [125, 126, 127].
Visualizing a symplectic area in CPN−1 is not an intuitive task, as it is not the usual Riemannian
area. To tackle this problem, in this chapter, we show that, by applying the Majorana representation
to the three states involved in the weak value of any N-level observable (pre-selected state, effec-
tive projector state [19], and post-selected state), the geometry of the full system is brought to the
Bloch sphere. The argument of the weak value is the sum of N−1 solid angles on the Bloch sphere.
The argument of the projector weak value is equivalent to the argument of the Bargmann invariant
associated with the three states (invariant under gauge transformation and re-parametrization).
This chapter is structured as follows. In the first section, we introduce the symmetric Majorana
representation formalism. Then, we present the geometric interpretation of weak values of N-level
general observables, by applying the Majorana representation. In the third section, these calcula-
tions are applied to the specific case of 3-level systems. After this, we present the relevant example
of spin-1 systems: we study the argument of the weak value of a spin-1 operator when the modulus
of the weak value presents a divergence, a typical situation of an amplification effect appearing in
a weak measurement with nearly orthogonal pre- and post-selected states.

5.1 Symmetric Majorana representation

This work will employ the symmetric Majorana representation of CPN−1, which should not be
confused with the Majorana representation of spinors. The representation maps N-level quantum
states to N−1 stars on the Bloch sphere. To do so, it associates the basis of N-level systems with
the symmetric tensorial products of two-level states [93].
Let us consider a four-level system. The Majorana representation maps each of the four pure states
to one of the four possible symmetric states produced with three qubits,

|0⟩ → |Ψ⟩= |0⟩ |0⟩ |0⟩ (5.1)

|1⟩ → |Ψ⟩= 1√
3
(|1⟩ |0⟩ |0⟩+ |0⟩ |1⟩ |0⟩+ |0⟩ |0⟩ |1⟩)

|2⟩ → |Ψ⟩= 1√
3
(|1⟩ |1⟩ |0⟩+ |1⟩ |0⟩ |1⟩+ |0⟩ |1⟩ |1⟩)

|3⟩ → |Ψ⟩= |1⟩ |1⟩ |1⟩
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where the order of the basis can be chosen. This association is straightforwardly generalized to
N-level systems,

|0⟩ → |Ψ⟩= |0⟩ |0⟩ .... |0⟩︸ ︷︷ ︸
N−1

(5.2)

|1⟩ → |Ψ⟩= 1√
N−1 ∑

P
|1⟩ |0⟩ |0⟩ ... |0⟩︸ ︷︷ ︸

N−2
...

|N−2⟩ → |Ψ⟩= 1√
N−1 ∑

P
|0⟩ |1⟩ |1⟩ ... |1⟩︸ ︷︷ ︸

N−2

,

|N−1⟩ → |Ψ⟩= |1⟩ |1⟩ ... |1⟩︸ ︷︷ ︸
N−1

,

where P runs through all the permutations of the states |0⟩ and |1⟩. In general, it is possible to
calculate the Majorana stars (points on the Bloch sphere representing quantum pure state) of any
N-level pure state, which can be expressed in a basis as,

|ψ⟩=
N−1

∑
i=0

ci |i⟩ , (5.3)

by using the following polynomial,

P(z) =
N−1

∑
k=0

(−1)k
√

Ck
N−1ckzN−1−k, (5.4)

where the binomial coefficients CN−1
k = (N−1)!

k!(N−1−k)! and ck are the coefficients of the state |ψ⟩. The
polar, θk, and azimuthal, φk, angles on the Bloch sphere depend respectively on the modulus and
the phase of the roots zk of the polynomial Eq. 5.4,

zk = eiφk tan
θk

2
, (5.5)

where 0≤ φk ≤ 2π , and 0≤ θk ≤ π .
This representation provides a method to describe any N-level system as N−1 qubits. These qubits
can be easily represented as stars on the Bloch sphere. The manner in which the stars are displayed
provides information about intrinsic properties of the system. For example, the angle between
two stars belonging to the same three-level system provides information about the entanglement
of the state. We will exploit these properties in the following sections to obtain a geometrical
representation of weak values on the Bloch sphere.
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5.2 Weak values of N-level observables in terms of Majorana
stars

The initial state, the observable and the post-selected state constitute the required components of
a weak value. Varying any of these parts can completely modify the quantity. In this section, we
provide the theoretical framework to apply the Majorana representation to the different components
of the weak value of an N-level observable.
As seen in the previous chapter, the weak value of any discrete observable is proportional to the
weak value of a very specific projector with a constant of proportionality that is real [19],

Aw =

〈
ψ f
∣∣ Â |ψi⟩〈

ψ f
∣∣ψi
〉 =

⟨ψi| Â2 |ψi⟩
⟨ψi| Â |ψi⟩

〈
ψ f
∣∣Π̂i′ |ψi⟩〈

ψ f
∣∣ψi
〉 , (5.6)

where Π̂i′ = |ψi′⟩⟨ψi′|, with,

|ψi′⟩=
1√

⟨ψi| Â2 |ψi⟩
Â |ψi⟩ . (5.7)

As the weak value is invariant under unitary transformations, two unitary operators are applied to
take two states to separable states in the Majorana representation. It is always possible to map
two states to separable states (degenerate stars, i.e. a coherent state) in the Majorana representa-
tion [99]. The pre-selected state is mapped to

|ψi⟩ →
∣∣Ψ′i〉= |0⟩ ... |0⟩︸ ︷︷ ︸

N−1

, (5.8)

via applying an appropriate unitary operator Û (1). Capital Greek letters are employed to symbol-
ize states within the Majorana representation, particularly the tensorial product of two-level pure
states. Conversely, lowercase Greek letters are utilized when dealing with systems of N-levels.
The general form of the unitary operator to take a state |ψ1⟩ to another state |ψ2⟩ is,

Û = e−iarg⟨ψ2|ψ1⟩
(
Î−2 |∆⟩⟨∆|

)
, (5.9)

where,

|∆⟩= e−iarg⟨ψ2|ψ1⟩ |ψ1⟩− |ψ2⟩√
2(1−|⟨ψ2|ψ1⟩ |)

. (5.10)

The other components are also affected by the unitary transformation,

Â→ Û (1)ÂÛ (1)†
= Â′, (5.11)

and
Û (1) ∣∣ψ f

〉
=
∣∣ψ ′f 〉 . (5.12)

A second unitary operator Û (2) that leaves the pre-selected state invariant,∣∣ψ ′′i 〉= Û (2) ∣∣ψ ′i〉= ∣∣ψ ′i〉 , (5.13)
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is applied to map the state |ψi′⟩ expressed in Eq. 5.7 to a second separable state,∣∣ψ ′i′〉→ ∣∣Ψ′′i′〉= |φi′⟩ ... |φi′⟩︸ ︷︷ ︸
N−1

. (5.14)

This unitary operator should also be applied to the post-selected state,

Û (2) ∣∣ψ ′f 〉= ∣∣ψ ′′f 〉 . (5.15)

After both unitary operators, the pure post-selected state is a general pure N-level state,

∣∣Ψ′′f 〉= 1√
M ∑

P
P̂
[∣∣∣φ (1)

f

〉
...
∣∣∣φ (N−1)

f

〉]
, (5.16)

where the sum runs through all the permutations. After removing the global phase 1, the state can
be written as a symmetric state in the Majorana representation. Writing the state as,

∣∣ψ ′′f 〉= N−1

∑
i=0

ci |i⟩ , (5.17)

and solving the Majorana polynomial, Eq. 5.4, one can express the state in the Majorana symmetric
representation [93, 128].
The weak value is now calculated, following Eq. 5.6, as,

Aw =

〈
ψ ′′f

∣∣∣ Â′′ |ψ ′′i ⟩〈
ψ ′′f

∣∣∣ψ ′′i 〉 =
⟨ψi| Â2 |ψi⟩
⟨ψi| Â |ψi⟩

Π
(1)
i′,wΠ

(2)
i′,w . . .Π

(N−1)
i′,w , (5.18)

where each two-level system weak value is,

Π
( j)
i′,w =

〈
φ
( j)
f

∣∣∣φi′
〉
⟨φi′|φi⟩〈

φ
( j)
f

∣∣∣φi

〉 . (5.19)

The modulus of the weak value is thus the product of N − 1 moduli of weak values of qubit
projectors,

|Aw|=
⟨ψi| Â2 |ψi⟩
| ⟨ψi| Â |ψi⟩ |

|Π(1)
i′,w| · |Π

(2)
i′,w|...|Π

(N−1)
i′,w | (5.20)

=

√
⟨ψi| Â2 |ψi⟩

∣∣∣∣∣∣
〈

φ
(1)
f

∣∣∣φi′
〉

〈
φ
(1)
f

∣∣∣φi

〉
∣∣∣∣∣∣
∣∣∣∣∣∣
〈

φ
(2)
f

∣∣∣φi′
〉

〈
φ
(2)
f

∣∣∣φi

〉
∣∣∣∣∣∣ . . .

∣∣∣∣∣∣
〈

φ
(N−1)
f

∣∣∣φi′
〉

〈
φ
(N−1)
f

∣∣∣φi

〉
∣∣∣∣∣∣ ,

1As the expressions of the weak value only depend on the projector, Π̂i′ , this phase has no impact.
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where the following property has been used ⟨ψi′|ψi⟩= ⟨φi′|φi⟩⟨φi′|φi⟩ . . .⟨φi′|φi⟩︸ ︷︷ ︸
N−1

= ⟨ψi|Â|ψi⟩√
⟨ψi|Â2|ψi⟩

.

The argument of the weak value of Â is the sum of N−1 arguments of weak values of qubit pro-
jectors and the argument of the expectation value of the operator ⟨Â⟩i = ⟨ψi| Â |ψi⟩, which is either
0 or π .

argAw = (5.21)

= argΠ
(1)
i′,w + argΠ

(2)
i′,w + ...+ argΠ

(N−1)
i′,w − arg⟨Â⟩i,

= −
Ωii′1 f

2
−

Ωii′2 f

2
− ...−

Ωii′N−1 f

2
− arg⟨Â⟩i

= ∑
j

arg
(〈

φi

∣∣∣φ ( j)
f

〉〈
φ
( j)
f

∣∣∣φi′
〉)
− arg⟨Â⟩i

Each argument of a qubit projector weak value represents a geometric phase that is associated with
the area of the solid angle on the Bloch sphere of the spherical triangle spanned by the vectors
representing the pre-selected state, the application of the observable over the initial state and the
post-selected state in the Majorana representation.
The argument of the weak value of an observable in N-level system represents a geometric phase
that is associated with the symplectic area of the geodesic triangle spanned by the geodesics linking
the three vectors representing the pre-selected state, the application of the observable over the pre-
selected state and the post-selected state in CPN−1. This space is a Kähler manifold, which means
that there are three compatible structures: the complex structure, the symplectic structure and the
Riemannian structure. In CP1, the symplectic area and the Riemannian one coincide. Hence, the
argument of the weak value of an observable in two-level systems can be described in terms of
solid angles. Using Majorana’s description, we succeed to associate a symplectic area in CPN−1

with N− 1 solid angles on the Bloch sphere. However, the spherical triangle associated with the
solid angles, Ω, are not geodesic curves of CPN−1 in the Majorana representation, apart in CP1.
This description allows to visualize the argument of the weak value and Bargmann invariants as
function of dynamical parameters, giving a direct intuition of the studied system. Sometimes,
the studied systems are actually composed of k different particles. In this case, the Majorana
representation would actually provide the geometry of these particles on the Bloch sphere. As we
will see in the following sections, this approach allows us to study the entanglement of the system.

5.3 Majorana representation of weak values of observables in
three-level systems

In this section, we focus on general weak values of three-level general observables, Â = aI Î +

aLα⃗ ·⃗̂λ , where ⃗̂λ are the Gell-Mann matrices (appendix B). Three-level systems are specially rel-
evant. On the one hand, there are several interesting observables in three-level systems, such as
the spin-1 operators, the 3D Stokes parameter operators, or three-level projectors like those ap-
pearing in the three-box paradox [65, 129, 130, 131]. On the other hand, as weak values depend
only on three vectors, the description of a single weak value is intrinsically a three-level problem.
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As weak values are invariant under unitary transformations, it is feasible to apply three unitary
operators to transform the three N-level vectors into three states with only three components dif-
ferent from zero. In practice, this maps the vectors and their associated geodesic triangles to a
three-dimensional subspace of CPN−1, equivalent to CP2. By applying this procedure, any weak
value of systems larger than three dimensions can be converted to a three-level weak value, pro-
viding a representation of its argument of the weak value as two solid angles on the Bloch sphere.
Consequently, we can always choose to represent the argument with N−1 or two solid angles.
Any projector of a pure three-level state can be written in terms of the Gell-Mann matrices and

the identity as Π̂a =
1
3

(
Î +
√

3⃗a ·⃗̂λ
)

. The weak value of Â is Aw =
⟨ψ f |Â|ψi⟩
⟨ψ f |ψi⟩ =

Tr[Π̂ f ÂΠ̂i]
Tr[Π̂ f Π̂i]

, which

is proportional to the weak value of the projector Π̂i′ , where |ψi′⟩ is defined in Eq. 5.7. Owing to
this property, the weak values of general observables are directly linked to Bargmann invariants.
The argument of the weak value is equal to the argument of a Bargmann invariant up to a phase of
either 0 or π , as seen in the previous chapter.
Having a description of weak values of general observables in terms of projectors, the Majorana
representation can be applied to all three states. In that case, the system is mapped from CP2 to a
representation on the Bloch sphere. The argument of the weak value of a projector of a pure state
is the sum of the arguments of two weak values in two-level systems. Each of these arguments is
associated with a solid angle on the Bloch sphere.
Let us consider a general pre-selected state |ψi⟩ in CP2 (removing the global phase),

|ψi⟩=
(
cosθi,eiχ1i cosεi sinθi,eiχ2i sinεi sinθi

)T
, (5.22)

where i is the complex unit. As the weak value is invariant under unitary transformations, we
choose to map the pre-selected state to the state,∣∣ψ ′i〉= (1,0,0)T , (5.23)

that is separable in the Majorana representation,∣∣Ψ′i〉= |φi⟩ |φi⟩ , (5.24)

with |φi⟩= |0⟩, choosing,
|0⟩= (1,0)T |1⟩= (0,1)T . (5.25)

The unitary operator that maps the pre-selected state to the state |ψ ′i ⟩ is,

Û (1) =

cosθi e−iχ1i cosεi sinθi e−iχ2i sinεi sinθi
sinθi −e−iχ1i cosεi cosθi −e−iχ2i sinεi cosθi

0 −e−iχ1i sinεi e−iχ2i cosεi

 (5.26)

When applying this unitary operator to the system, the post-selected state and the observable are
also modified,

∣∣ψ f
〉
→
∣∣∣ψ ′f〉 and Â→ Â′. After removing the phase on the first component of the

state 2 arising from the application of the observable over the initial state,
∣∣ψ ′i′〉 can be written as,∣∣ψ ′i′〉= (cosθi′,e

iχ1i′ cosεi′ sinθi′,e
iχ2i′ sinεi′ sinθi′

)T
. (5.27)

2As the expressions of the weak value depend on the projector, Πi′ , this phase has no impact.
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At this stage, we apply a second unitary operator Û (2) that leaves |ψ ′i ⟩ invariant and takes the state∣∣ψ ′i′〉 to a separable state,

Û (2) =

1 0 0
0 e−iχ1i′ cosα −e−iχ2i′ sinα

0 e−iχ1i′ sinα e−iχ2i′ cosα

 , (5.28)

where α =−εi′+ arcsin
(

tan θi′
2

)
. This unitary transformation maps

∣∣ψ ′i′〉 to,

∣∣ψ ′′i′ 〉= (cosθi′,
√

2cosθi′ (1− cosθi′),1− cosθi′
)T

, (5.29)

which, in terms of qubits, is
∣∣Ψ′′i′〉= |φi′⟩ |φi′⟩, with,

|φi′⟩=
(√

cosθi′,
√

1− cosθi′
)T

. (5.30)

After applying both unitary transformations (Û (1) and Û (2)), the post-selected state
∣∣∣ψ ′′f 〉 has the

general form,
∣∣∣ψ ′′f 〉= c0 |0⟩+c1 |1⟩+c2 |2⟩. To obtain the Majorana symmetrized state, one should

solve the following polynomial [99],

c2−
√

2c1z+ c0z2 = 0 (5.31)

The polar, θk, and azimuthal, φk, angles on the Bloch sphere can be calculated from the roots zk of
the polynomial, Eq. 5.31.
Once all the transformations are applied, the three states are easily mapped to the Bloch sphere,

|ψi⟩ → |Ψi⟩= |0⟩ |0⟩ (5.32)
|ψi′⟩ → |Ψi′⟩= |φi′⟩ |φi′⟩∣∣ψ f
〉
→

∣∣Ψ f
〉
=

1√
M

(∣∣∣φ (1)
f

〉∣∣∣φ (2)
f

〉
+
∣∣∣φ (2)

f

〉∣∣∣φ (1)
f

〉)
,

with,

M = 2

1+

∣∣∣∣∣〈φ
(1)
f

∣∣∣φ (2)
f

〉∣∣∣∣∣
2
 . (5.33)

The weak value written in terms of the new states is,

Aw =
⟨ψi| Â2 |ψi⟩
⟨ψi| Â |ψi⟩

〈
φ
(1)
f

∣∣∣φi′
〉〈

φ
(2)
f

∣∣∣φi′
〉
⟨φi′|φi⟩2〈

φ
(1)
f

∣∣∣φi

〉〈
φ
(2)
f

∣∣∣φi

〉 (5.34)

=

√
⟨ψi| Â2 |ψi⟩
⟨ψi| Â |ψi⟩

Π
(1)
i′,wΠ

(2)
i′,w,
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where,

Π
(n)
i′,w =

〈
φ
(n)
f

∣∣∣φi′
〉
⟨φi′|φi⟩〈

φ
(n)
f

∣∣∣φi

〉 . (5.35)

The quantity ⟨ψi| Â2 |ψi⟩ is real and positive and the expectation value of the operator Â, ⟨Â⟩i =
⟨ψi| Â |ψi⟩, is real, therefore, the argument of the weak value is the sum of the arguments of both
weak values and an extra phase that is either 0 or π ,

argAw = argΠ
(1)
i′,w + argΠ

(2)
i′,w− arg⟨Â⟩i, (5.36)

The argument of the weak value of any three-level observable is the sum of two arguments of weak
values of projectors of qubits. Each of these arguments is associated with the solid angle on the
Bloch sphere of the triangle spanned by the vectors representing the states |φi⟩, |φi′⟩ and

∣∣∣φ n
f

〉
,

argAw =−
Ωii′ f1

2
−

Ωii′ f2
2
− arg⟨Â⟩i (5.37)

The argument of general observable weak values in 3-level systems has two geometric descrip-
tions, one in CP2 and a second one on the Bloch sphere. The argument of the weak value of any
3-level observable is a geometric phase associated with the symplectic area in CP2 of the trian-
gle spanned by the geodesics connecting the three vectors representing the pre-selected state, the
application of the observable over the initial state and the post-selected state. Additionally, this
symplectic area can be mapped to a Riemannian area on the Bloch sphere thanks to the Majorana
description. In this case, the argument of the weak value is the sum of two arguments that are
associated with solid angles on the Bloch sphere.
Any weak value can be described using a three-level system, only three vectors are involved in the
calculations. In consequence, the results presented in this section are pertinent for the weak value
of any N-level observable. The argument of the weak value of any N-level observable is the sum
of the argument of the weak value of two qubit projectors (up to a phase of 0 or π). Consequently,
in this section, we have linked the symplectic area of a triangle in CPN−1 to two solid angles on
the Bloch sphere.
In Fig. 5.1, we depict the solid angles linked to the argument of the weak value of a chosen Hermi-
tian operator, the controlled NOT gate, essential to produce entangled states in quantum computing,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.38)

In Fig. 5.1a), we represent the three solid angles on the Bloch sphere in the Majorana representation
and the three states involved in the weak value. Nevertheless, one can always reduce the size of
the system to a three-level system (independently on the initial vector space size). In Fig. 5.1b),
we depict the two solid angles induced by the argument of the weak value after reducing the size
of the space from 4 levels (requiring 3 states) to 3 levels (involving only 2 states). In Fig. 5.1c), the
geodesic triangle between the three involved vectors is represented in CP2. To do so, we use the
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Figure 5.1: Representation of the argument of the weak value of the CNOT gate. The pre-selected
state is |ψi⟩ = 1√

4
(1,−i,1,−i)T and the post-selected state is

∣∣ψ f
〉
= 1√

5
(1,0,−2,0)T . a) Repre-

sentation of the three solid angles involved in arg(CNOTw) on the Bloch sphere. b) Representation
of two solid angles concerning the argument of the weak value of the CNOT gate in the reduced
approach (three-level system). c) Depiction of the geodesic triangle in the complex projective
space CP2 between the initial state, the application of the CNOT gate over the initial state and the
post-selected state, using the spherical octant projection. Reproduced from [20].

spherical octant projection. Each point of the octant is associated with a torus formed by the two
phase components of the Hilbert space, χ1 and χ2, |ψ⟩=

(
|ψ0|,eiχ1|ψ1|,eiχ2 |ψ2|

)T [84]. The state
|ψ⟩ is projected to the real point q⃗ = (|ψ1|, |ψ2|, |ψ0|). We also depicted the projected geodesics
between each pair of states in three dimensions. The symplectic area is a contour integral along
these geodesics, but it cannot be directly represented. The geodesics in CP2 do not correspond
to great circles on the sphere S7. Moreover, after applying the Majorana representation to the
geodesic, it does not correspond to great circles on the Bloch sphere. Between separable states,
geodesics correspond to circular segments on the Bloch sphere [132]. However, they can have
very complicated shapes when it comes to states that are not separable. In Fig. 5.2, we depicted
three three-level states on the octant sphere and on the Bloch sphere, after applying the Majorana
representation. The geodesics between the three states have also been added. Furthermore, we
mapped the CP2 geodesics on the Bloch sphere using the Majorana representation. We can see
that the CP2 geodesic between the two separable states is a circular segment. However, the CP2

geodesics between separable and non-separable states have very complicated configurations.

5.4 Weak values of three-level systems: Spin-1

The spin, describing the intrinsic angular momentum of particles, has a central role in quantum
physics. The spin operator depends on the type of particle. The Pauli matrices, the chosen genera-
tors of SU(2), describe the spin-1/2 [133]. In the case of spin-1, the operators can be described in
terms of generators of SU(3). The spin operators along the three different axes are detailed in terms
of the Gell-Mann matrices as, Ŝx =

1√
2

(
λ̂1 + λ̂6

)
, Ŝy =

1√
2

(
λ̂2 + λ̂7

)
, Ŝz =

1
2

(
λ̂3 +

√
3λ̂8

)
[134],
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Figure 5.2: Representation of the states |ψ1⟩ = (0,0,1)T , |ψ2⟩ =
(
0,cos 2π

9 ,sin 2π

9

)T
and |ψ3⟩ =(

3
4 ,
√

3
4 e

iπ
4 , 1

2

)T
in a) the spherical octant. b) Majorana stars representing the previous three-level

states. We also added the three geodesics between the three-level states on the octant sphere b).
Geodesics between quantum states in the Majorana representation. The represented geodesics in
the Majorana representation are not great circles.

where the Gell-Mann matrices are defined in appendix B and h̄ = 1.
In several experiments, the weak value of the spin operators has a central role [17, 135]. The
real and imaginary parts of the weak values of spin-1/2 operators have been theoretically studied,
along with their modulus and argument [14, 17, 112, 102]. As the spin direction can be represented
directly on the Bloch sphere, the situation is easy to visualize. However, the weak values of the
spin-1 operators were much less studied, especially from a geometrical point of view. One possible
method is their study in terms of vectors in CP2, with a generalization of the Bloch sphere [19].
Here, we focus on the description of weak values of the spin-1 operator on the Bloch sphere using
the Majorana formalism introduced in the previous sections.
Let us consider the weak values of a linear combination of the three components of the spin,
⃗̂S = nxŜx + nyŜy + nzŜz. Without loss of generality, by setting an appropriate reference point, we
rotate the direction n⃗ = (nx,ny,nz)

T into n⃗ = (0,0,1). In consequence, we focus on the study of the
weak values of Ŝz, Szw. The general pre- and post-selected states have 4 independent parameters
each. Owing to the substantial multitude of unconstrained parameters inherent in the general weak
value of the spin-1 operator, our approach involves a strategic reduction of these unconfined vari-
ables by opting for a specific pre-selected state—a choice that streamlines the complexity while
maintaining its nontrivial nature. It is essential to note that the outcomes detailed in this section
pertain exclusively to this particular selection. To extrapolate these findings to broader scenar-
ios, it becomes imperative to embark on further explorations. Yet, as we shall demonstrate, these
outcomes hold profound intrigue; even in this straightforward scenario, a tapestry of intricate be-
haviors unfurls, underscoring the significance of delving deeper into the spin-1 illustration. The
pre-selected state is chosen to be,

|ψi⟩=
1√
6
(2,1, i)T , (5.39)
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where we set the parameters in Eq. 5.22 to εi =
π

4 , χ1i = 0, χ2i =
3π

2 , and θ = arccos
√

2
3 , a simple

state, but not a trivial one. In the case of the post-selected state, only two parameters are fixed,
ε f =

π

4 , and χ2 f = 0, ∣∣ψ f
〉
=

(
cosθ ,

1√
2

sinθeiξ ,
1√
2

sinθ

)T

. (5.40)

These states provide a system with two independent parameters, θ and ξ , to study. The application
of the spin operator to the pre-selected state is,

|ψi′⟩=
1√
5
(2,0,−i) . (5.41)

Applying the appropriate unitary operators, the initial state is moved to,∣∣ψ ′′i 〉= (1,0,0)→
∣∣Ψ′′i 〉= |0⟩ |0⟩ , (5.42)

and the state |ψi′⟩ to,

∣∣ψ ′′i′ 〉=
√ 3

10
,

√
−3

5
+

√
6
5
,1−

√
3
10

T

→
∣∣Ψ′′i′〉= |φi′⟩ |φi′⟩ , (5.43)

where,

|φi′⟩=

( 3
10

) 1
4

,

√
1−
√

3
10

T

. (5.44)

Making use of these states and applying the Majorana representation to the post-selected state (in
Eq. 5.4) one finds the Majorana polynomial that should be solved), we study the argument of the
weak value of the spin-1 as the sum of two arguments of two-level projectors of pure states that
are associated with two solid angles on the Bloch sphere.
One of the most useful characteristics of weak values is their ability to amplify minute phenomena

thanks to their unbounded property. Identifying the behavior of the argument of the weak value
when the absolute value tends to infinity is essential due to both the discontinuities that appear in
that range and their usefulness.
We study the weak value of Ŝz, as a function of a family of post-selected sates described by the
parameters θ and ξ . In Fig. 5.3, we represent the maximum value of the modulus of the weak
value of Ŝz for each value of ξ . The maximum of the modulus of the weak values takes place for
a determined θmax (ξ ). We use this value to plot the argument of the weak value at θmax (ξ ) in
terms of ξ . We also depict the angle between the two stars on the Bloch sphere representing the
post-selected state, f⃗1 and f⃗2 at θmax (ξ ) as a function of ξ . The angle between the two vectors on
the Bloch sphere represents an entanglement measure of the two-qubit state. If the angle between
the vectors is 0◦, the state is separable and thus the entropy of entanglement is 0. On the opposite
side, if the angle between the two vectors is 180◦, the state is a maximally entangled Bell state.
The modulus of the weak value presents a vertical asymptote at ξ = π

2 because the initial and final
states are then orthogonal. At the divergence point, the argument of the weak value presents a π

jump. This behavior is typical of the argument of the weak value when there is a divergence in the
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Figure 5.3: Representation of the maximum value of the modulus of the weak value for each value
of ξ (blue), of the argument of the weak value for the value of θmax (ξ ) at the maximum of the
modulus in terms of ξ (green) and of the angle between f⃗1 and f⃗2 at θmax (ξ ) as a function of ξ

(orange). Reproduced from [20].

modulus [18].
The two vectors on the Bloch sphere associated with the final state, f⃗1 and f⃗2, are the closest,
29.42◦, where the maximum value of the modulus tends to infinity. Both the initial state and the
application of the operator over the initial state present an entropy of entanglement equal to 0, as
the states are separable. Hence, the angle between f⃗1 and f⃗2 represents the total entanglement of
the system.
Having a minimum of entropy of entanglement at the divergence in the modulus of the weak
values is counter-intuitive at first. Anomalous weak values are a proof of contextuality [31], a
characteristic of non-classicality. Therefore, it could have been expected to find a maximum in the
entanglement, which is also a characteristic of non-classicality, at the most anomalous weak value
(divergence). To clarify if this is an intrinsic characteristic of the system, we depict the value of the
angle between the vectors f⃗1 and f⃗2 for all values of θ and ξ in Fig. 5.4. We also include the value
of θ at the maximum of the modulus of the weak value, θmax (ξ ) (red line). We plot the same line
for the minimum of the weak value θmin (ξ ) (green line). There are two absolute minima of the
entropy of entanglement. None of them is at the maximum of the modulus of the weak value (red
line in the plot). However, the maximum of modulus of the weak value is always located near to
the minimum of the entanglement, as it follows the bottom of the valley of minimal entanglement
on Fig. 5.4 (slightly to the left). A very similar correlation links the minimum of the modulus of
the weak value (green line) and the maximum of the entanglement. The trends are very similar,
but slightly shifted. This behavior is very intriguing due to the correlation of the anomalous weak
values and non-classicality. We think this should be explored further in the future.
The weak value diverges for ξ = π

2 , θ = π

2 , as it can been seen in Fig. 5.3. In Fig. 5.5 and Fig. 5.6,
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Figure 5.4: Color map of of the angle between the vectors representing the post-selected state
on the Bloch sphere f⃗1 and f⃗2 as a function of θ and ξ . The red line represents the angle θ for
which the modulus of the weak value is maximum for fixed values of ξ , θmax (ξ ). The green line
represents the angle θ for which the modulus of the weak value is minimum for fixed values of ξ ,
θmin (ξ ). Reproduced from [20].

we depict the evolution of the argument of the weak value in the Majorana representation in terms
of ξ (a), the representation on the Bloch sphere of the solid angles associated with the argument
of the weak value for the maximum of the modulus of the weak value (b), and the evolution of
the angles on the Bloch sphere as a function of ξ (c). In Fig. 5.5, we represent a case with θ

smaller than at the divergence (θ = π

2 −0.2) and in Fig. 5.6, a case very near the vertical asymp-
tote, (θ = π

2 −10−11).
In Fig. 5.5a), one can perceive that, around θ = π

2 , the slope of the function is quite big. The
closer the angle θ is from the divergence case, the larger the slope. In Fig. 5.6a), we represent the
extreme case, when θ = π

2 . There, the slope is infinite, as the argument presents a π jump. In the

first case, Fig. 5.5, the big slope in the argument of the weak value occurs when argΠ
(2)
i′,w passes

by 0, so that there is no discontinuity. The other projector presents an argument of the weak value
that also has a smooth variation at that point. However, argΠ

(1)
i′,w passes by 0 at ξ = 3π

2 . In the
second case, Fig. 5.6, the argument varies linearly with ξ , except at the point of the maximum of
the modulus of the weak value, where it exhibits a π jump. This jump is associated with a π jump
in the argument of the weak value of the second projector, argΠ

(2)
i′,w. This jump is natural, as the

vector is passing by the pole of the Bloch sphere. To observe a smooth movement of the star on
the Bloch sphere (without change of sense of the movement), a π jump should be present in the
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function of azimuthal angle, φ . The argument of Π
(2)
i′,w also passes by 0 at ξ = 3π

2 . It appears that
the non-smooth behavior of the argument of the weak value induces a non-smooth behavior in one
argument of the weak value of a projector in the Majorana representation, while the other argument
keeps a smooth behavior.
In figures b) of Fig. 5.5 and Fig. 5.6, we represent the solid angles on the Bloch sphere associ-
ated with the argument of the weak value. In each figure, the solid angles correspond to the case in
which the modulus of the weak value is maximum, {θ = π/2−0.2,ξ = 2.09} and {θ = π

2 ,ξ = π

2}
respectively. The value of the maximum is highlighted with a vertical line (pink in Fig. 5.5 and
green in Fig. 5.6). Far from the divergence, Fig. 5.5, there are clearly two solid angles. However,
very close to the divergence, Fig. 5.6, all the vectors are nearly on the same plane on the Bloch
sphere. One of the qubit states representing the post-selected state in the Majorana representation
is orthogonal to the qubit state representing the initial state, a condition required for the appear-
ance of a divergence. All vectors on the Bloch sphere are not necessarily on the same plane when
a divergence is present. When the initial and final states are orthogonal, the great circle between i⃗
and f⃗2 is not unique as there are different paths with the same distance. At θ = π

2 , in Fig. 5.6, the
vectors f⃗1 and f⃗2 are the closest and thus the entanglement between them is the minimum.
In Fig. 5.5c, 5.6c, we depict both the azimuthal and the polar angles of the two qubits representing
the final state, at the divergence position, θ = π

2 in Fig. 5.6 and at a smaller value of θ , Fig. 5.5.
In Fig. 5.5c, the polar angle θ f 1 is approximately constant from ξ = 0 until the maximum of the
modulus of the weak value (vertical line), ξ = 2.09. The maximum occurs at a value a bit larger
than ξ = 2.09. Then, it decreases, presenting a minimum at ξ = 3π

2 , where the azimuthal angle,
φ f 1, passes by 0. After that point, the polar angle increases until reaching the initial value. At the
jump position, in Fig. 5.6. The polar angle of one of the qubits, θ f 2, representing the post-selected
state has a maximum at the position of the maximum of the modulus of the weak value (vertical
line), where it is orthogonal to the pre-selected state, ⟨ f2|i⟩= 0. The polar angle of the other qubit,
θ f 1, is almost constant in terms of ξ for θ = π

2 . It exhibits a smooth maximum at ξ = π

2 . At this
point the two polar angles are the closest. In Fig. 5.5c, φ f 2 has a large slope near the maximum of
the modulus, similarly to the argument of the weak value. In Fig. 5.6c, φ f 2 has a π jump at ξ = π

2 ,
where the divergence takes place. It also presents a large slope when the argument of the weak
value passes by π , when the weak value is purely real. It appears that the azimuthal angle presents
a similar behavior as the argument of the weak value when a non-smooth behavior appears.
Using the Majorana representation, we studied different aspects of the weak values, such as the
entropy of entanglement. We noticed that an interesting behavior occurs: a maximum (minimum)
of the entanglement is near a minimum (maximum) of the modulus of the weak value. The en-
tanglement of the Majorana stars has a clear meaning when the initial state is an actual 2-particle
system in a symmetric state. Otherwise, the results can be interpreted following a single-particle
entanglement formalism [136]. Only the Majorana approach allows this analysis. Simply visualiz-
ing the behavior of the qubits representing the different states on the Bloch sphere, we can interpret
the evolution of the argument of the weak value.

5.5 Conclusions
In this chapter, we applied the Majorana symmetric representation to study the geometry of the
argument of weak values of N-level general observables on the Bloch sphere. The weak value of
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Figure 5.5: a) Argument of the weak value of the spin operator, Szw, in terms of ξ , argument of
the weak value Π

(1)
i′,w and Π

(2)
i′,w in terms of ξ for θ = π

2 −0.2. b) Solid angles on the Bloch sphere
Ωii′ f1 and Ωii′ f2 for θ = π

2 −0.2 and ξ = 2.09. c) Argument of the weak value of Ŝz and polar and
azimuthal angles, θ and φ , of the vectors representing the post-selected state on the Bloch sphere
for θ = π

2 − 0.2, in terms of ξ . A vertical line has been added in a) and c) at the value of ξ for
which the modulus of the weak value is maximum, ξ = 2.09. Reproduced from [20].

any observable is proportional to the weak value of an effective projector that is defined as the nor-
malized application of the observable over the pre-selected state. The constant of proportionality
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Figure 5.6: a) Argument of the weak value of of the spin operator, Szw, in terms of ξ , argument of
the weak value Π

(1)
i′,w and Π

(2)
i′,w in terms ξ with θ = π

2 −10−11. b) Solid angles on the Bloch sphere
Ωii′ f1 and Ωii′ f2 for ξ = π

2 and θ = π

2 . c) Argument of the weak value of Ŝz and polar and azimuthal
angles, θ and φ , of the vectors representing the post-selected state on the Bloch sphere for θ = π

2 ,
in terms of ξ . A vertical line has been added in a) and c) at the value of ξ for which the modulus
of the weak value is maximum, ξ = π

2 . Reproduced from [20].

is real. Hence, the argument of the weak value of any observable is the argument of the weak value
of a projector modulo π .
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The modulus of the weak value of a general observable is the product of N− 1 moduli of weak
values of projectors in CP1 and constants that are independent on the post-selected state. The ar-
gument of the weak value of any observable is the sum of N−1 arguments of 2-level systems, plus
a phase that is either 0 or π . Each of these arguments represents a solid angle on the Bloch sphere.
Any weak value depends only on three states. Thus, applying different unitary operators, it is
possible to map these states to a three-level system, giving a special importance to the qutrit case.
Doing so, we map a symplectic area in CPN−1 to a sum of two solid angles, instead of N− 1, on
the Bloch sphere (up to a constant that is either 0 or π). The solid angles on the Bloch sphere are
determined by the great circles between the four qubit vectors (the two degenerate states associ-
ated with the initial state, the two degenerate states linked to the observable, and the two entangled
states describing the final state). However, these great circles are not geodesics between the states
in CPN−1.
We applied these results to the spin-1 operator for anomalous weak values in the region of weak
value amplification. Using a specific case, we studied the argument of the weak value when the
modulus tends to infinity (asymptotic behavior). We found that when the weak value diverges, the
angle between the two vectors representing the post-selected state on the Bloch sphere presents a
constrained minimum. The angle between the two qubits describing the post-selected state on the
Bloch sphere gives a measure of the total entanglement of the system. The maximum value of the
modulus is for any value of the angle ξ near the minimum of entanglement. The physical meaning
of entanglement when the initial state is a 2-particle system in a symmetric state is straightforward.
However, when this is not the case, studies should be performed in the light of single-particle
entanglement [136]. The non-smooth behavior of the argument of the weak value seems to be as-
sociated with the evolution of the azimuthal angle of the qubits on the Bloch sphere. The azimuthal
angle controls the phase of the qubit state components. Ultimately, it is thus responsible for any
phase appearing in the qubit weak value.



Chapter 6
Revisiting weak value from a non-normal
perspective

In the previous two chapters, our focus was primarily on exploring the concept of the argument
of weak values. Now, we shift our attention towards examining the modulus of weak values—an
essential element in amplifying weak values that enable the measurement of subtle signals.
Weak values play a role similar to expectation values in certain types of quantum measurements.
However, they can be anomalous, meaning that they lie outside the range of eigenvalues of the
measured operator, which represents a determined quantum property. Hence they can become
complex numbers and unbounded [46, 50, 137]. Anomalous weak values are used to amplify
signals [57], to measure complex properties such as wave functions [68] or expectation values of
non-Hermitian operators [69], and to study fundamental quantum phenomena, like paradoxes [138,
139, 140, 141]. Anomalous weak values evidence an intrinsic property of non-classicality, called
contextuality [31, 32]. A particular subset of anomalous weak values yields weak-value amplifica-
tion. This phenomenon occurs when the modulus of the weak value is larger than the modulus of
all the observable eigenvalues. Such weak values are said to be in the amplifying range.
The weak value can always be expressed as the expectation value of an operator, defined in
terms of the pre-selected state, the observable and the post-selected state, Ow = Tr

[
Π̂iÂ

]
, with

Â = ÔΠ̂i
Tr[Π̂ f Π̂i]

. This operator is not necessarily Hermitian. Most non-Hermitian operators are also

non-normal, meaning that ÂÂ† ̸= Â†Â. The choice of definition of Â is arbitrary to some extent,
as the weak value can also be defined in terms of an operator involving the post-selected state Â′,

Ow = Tr
[
Π̂ f Â′

]
, with Â′ = Π̂ f Ô

Tr[Π̂ f Π̂i]
. In the framework of matrices, relevant to this chapter, the

above definition of non-normality implies that the matrix cannot be diagonalized through an or-
thonormal transformation [142]. Non-normality is a stronger relation of asymmetry than simple
non-Hermicity: in fact, all non-normal matrices are non-Hermitian, but there is a class of non-
Hermitian matrices which are normal, the circulant matrices [143]. Such stronger asymmetry can
be thought of as a hierarchical structure of the matrix. This clearly emerges when we consider net-
works: in such context, the adjacency matrix represents the way in which the nodes (i.e, the units
of the network) are connected to each other; when the structure of the connections is hierarchical,
the adjacency matrix is non-normal [144, 145]. The latter framework results are particularly inter-
esting for applications, as real-world networks are non-normal [146].

69
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In particular, this work shows that the operators Â and Â′ must be non-normal for the weak value
to become anomalous. When imposing an arbitrary post-selection, the weakly measured quantity
changes from an expectation value of a Hermitian operator representing the observable of interest,
to an expectation value of a specific non-normal operator. Interpreting weak values from this point
of view might involve studying the energetics of the protocol, especially the post-selection pro-
cess. Possible links with open systems and non-Hermitian quantum physics [147] might appear, as
post-selection involves a discarding process.
Non-normality of matrices and operators has been studied in numerical analysis by Trefethen and
collaborators [142, 148], triggered by the effects observed in fluid dynamics [149]. In fact, such
property makes the matrix more sensible to perturbations, which results in an amplifying effect of
the latter, with dramatic consequences on the dynamics. For example, in fluid dynamics, it gives
rise to a premature emergence of turbulence [142], while in epidemics it may lead to a lower thresh-
old for an outbreak [150]. Effects of non-normality have also been studied in ecology [151, 152],
Turing pattern formation [153], chemical reaction networks [154], and synchronization dynam-
ics [143]. Such a change in the behavior of the system can be ascribed to the possible emergence of
an initial transient growth, whose intensity is proportional to the non-normality of the system [146].
The degree of non-normality is estimated by the spectral properties of the matrix, resulting in dif-
ferent metrics [142, 146]. Those metrics will be used in the following to assess the strength of
the anomalous weak value. In particular, we will be interested in using the Henrici departure from
normality.
In this chapter, we show that non-normality is a necessary condition for obtaining a weak value
that is different from an eigenvalue of the observable. We will show that in order to have a large
weak value, the operator Â and Â′ must be non-normal; hence, the latter property is necessary to
obtain amplification. Furthermore, by comparing the modulus of the weak value and the Henrici
departure from normality with varying pre- and post-selected states, we make a direct connection
between the degree of weak-value amplification and the degree of non-normality of the operator
Â. As a next step, we vary the observable, which is the other component involved in the weak
value. Ordinarily, experimenters select pre- and post-selected states that are nearly orthogonal in
order to achieve amplification. However, in some cases, we have some freedom to choose the ob-
servable. In this study, we demonstrate the critical role that this choice plays in the amplification
yield. By varying the observable, we discovered that the maximum weak value always occurs at
the arithmetic average of the maximum Henrici departure from normality of both matrices Â and
Â′. Furthermore, the weak value tends toward infinity when the points at which the matrices Â and
Â′ are degenerate and nilpotent coincide.

6.1 Weak values as expectation values of non-normal operators

The aim of this section is to show the importance of non-normality for the emergence of weak
values. To achieve this goal, we rewrite the weak value as the expectation value of a non-normal
operator, Â. Then, we prove that when the latter operator is normal, the weak value is simply an
eigenvalue of the observable, Ô. This shows that weak values are directly linked to non-normal
operators.
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The weak value of the system using pure pre- and post-selected states can be expressed as

Ow =

〈
ψ f
∣∣ Ô |ψi⟩〈

ψ f
∣∣ψi
〉 =

Tr
[
Π̂ f ÔΠ̂i

]
Tr
[
Π̂ f Π̂i

] . (6.1)

A simple algebraic manipulation1 of the previous formula expresses the weak value in terms of the
expectation value of the operator Â,

Ow =
〈
ψ f
∣∣ Â ∣∣ψ f

〉
, (6.2)

where the non-normal operator Â is defined in terms of the operator Ô and the pre- and post-
selected states as follows:

Â =
ÔΠ̂i

Tr
[
Π̂ f Π̂i

] . (6.3)

To measure the non-normality of a matrix M, we use the Henrici departure from normality, d f ,
defined as

d f (M) =

√
||M||2F −

n

∑
i=1
|λi|2, (6.4)

where λi are the eigenvalues and ||M||F =
√

∑
n
i, j=1 |mi j|2, the Frobenius norm of the matrix M

whose elements are mi j [142]. The Henrici departure from normality of the matrix Â is thus,

d f
(
Â
)
=

√
⟨ψi| Ô2 |ψi⟩−⟨ψi| Ô |ψi⟩2

|
〈
ψ f
∣∣ψi
〉
|2

=
∆iÔ

|
〈
ψ f
∣∣ψi
〉
|2
, (6.5)

where ∆iÔ is the uncertainty of the observable Ô in the initial state. The details on the derivation
of this equation can be found in appendix H. The Henrici departure from normality of Â vanishes
and the matrix is normal, only when the expectation value of Ô2 in the initial state is equal to the
square of the expectation of Ô in the initial state, namely

⟨ψi| Ô2 |ψi⟩= ⟨ψi| Ô |ψi⟩2 . (6.6)

However the Cauchy-Schwarz inequality implies that,

⟨ψi| Ô2 |ψi⟩ ≥ ⟨ψi| Ô |ψi⟩2 , (6.7)

where the equality holds true only when |ψi⟩ is an eigenvector of Ô, Ô |ψi⟩= λ |ψi⟩. In that case,
the operator is normal and the weak value is simply the eigenvalue λ .
Obviously, defining the operator Â in terms of the final or the initial state is an arbitrary choice.
Hence, following a very similar algebraic manipulation2, the weak value can also be defined as the
expectation value in the initial state,

O′w = ⟨ψi| Â′ |ψi⟩ , (6.8)

1Ow =
⟨ψ f |Ô|ψi⟩
⟨ψ f |ψi⟩ =

⟨ψ f |Ô|ψi⟩⟨ψi|ψ f ⟩
⟨ψ f |ψi⟩⟨ψi|ψ f ⟩ =

⟨ψ f |ÔΠ̂i|ψ f ⟩
|⟨ψ f |ψi⟩|2 =

〈
ψ f
∣∣ ÔΠ̂i

Tr[Π̂ f Π̂i]

∣∣ψ f
〉
=
〈
ψ f
∣∣ Â ∣∣ψ f

〉
2Ow =

⟨ψ f |Ô|ψi⟩
⟨ψ f |ψi⟩ =

⟨ψi|ψ f ⟩⟨ψ f |Ô|ψi⟩
⟨ψi|ψ f ⟩⟨ψ f |ψi⟩ =

⟨ψi|Π̂ f Ô|ψi⟩
|⟨ψ f |ψi⟩|2 = ⟨ψi|

Π̂ f Ô
Tr[Π̂ f Π̂i]

|ψi⟩= ⟨ψi| Â′ |ψi⟩
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of the operator Â′ given by

Â′ =
Π̂ f Ô

Tr
[
Π̂ f Π̂i

] . (6.9)

Weak values are called anomalous when the imaginary part is different from 0 or, otherwise, when
their value lies outside the range of the spectrum of the Hermitian operator Ô [31, 155, 156],
namely

ImOw ̸= 0 (6.10)

or Ow > max
(
⟨Ô⟩
)
= Tr

(
ρ̂Ô
)
= max(λi)

or Ow < min
(
⟨Ô⟩
)
= Tr

(
ρ̂Ô
)
= min(λi) ,

where λi are the eigenvalues of the operator Ô and ρ̂ is an arbitrary (not necessarily pure) quantum
state represented here as a density operator. Amplifying weak values correspond to |Ow|>max |λi|.
If Â or Â′ are normal, the weak value cannot be anomalous. Moreover, the weak value is one of
the eigenvalues of the observable Ô. The operator Â, resp. Â′, have both eigenvalue zero with
multiplicity N−1 and one eigenvalue equal to an expectation value of the observable in the initial
state ⟨ψi| Ô |ψi⟩, resp. final state

〈
ψ f
∣∣ Ô ∣∣ψ f

〉
. Another interesting case arises when the expectation

value is equal to 0. In such a setting, the weak value is not necessarily equal to zero, but the non-
normal matrix has all eigenvalues equal to zero and it is degenerate, hence it is a nilpotent matrix
3.
We have thus shown that weak values can be different from an eigenvalue only if both operators
Â and Â′ are non-normal. Since the anomalous properties are fundamental in all applications of
weak values, our setting becomes interesting when the involved operators are non-normal.
Beyond this chapter’s specific focus on weak values, we would like to stress that our results also
establish a truly general connection between quantum fluctuations and non-normality. Indeed,
assuming identical initial and final pure states Π̂ f = Π̂i, the weak value Eq. 6.1 is simply the
expectation value ⟨Ô⟩i of the observable in the considered quantum state Π̂i. We can as well
express it as the average of the non-normal operator Â = ÔΠ̂i in the initial state, given simply
by the trace Tr

(
ÔΠ̂i

)
. Then, Henrici’s departure from non-normality becomes exactly equal to

the uncertainty of the observable in the quantum state d f (ÔΠ̂i) = ∆iÔ. It appears thus that the
non-normality of the operator ÔΠ̂i is a measure of the quantum fluctuations around the observable
expectation value evaluated through the trace of the same operator ÔΠ̂i. When the state Π̂i is an
eigenstate of the observable Ô, the operator is normal and the quantum uncertainty is zero. Indeed,
measurements of a quantum system in an eigenstate of the probed observable yield the associated
eigenvalue with probability 1. This general link between quantum uncertainties and non-normality,
and their relationship with Henrici’s departure from normality in particular, does not seem to have
been recognized in practice, to the best of our knowledge.

3The only matrix with a zero spectrum that is not nilpotent is the zero matrix, which is not degenerate, since it has
full geometric multiplicity. Our case does not fall in the latter, our matrix being non-normal.
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6.2 Correlation between non-normality and amplifying weak
values

Non-normality, as we have shown in the previous sections, is necessary to obtain weak values
different from an eigenvalue of the observable, and thus also to have amplifying and complex
weak values. The goal of this section is to study the relation between the level of amplification of
the modulus of the weak value, and the non-normality of the matrix Â, defined in Eq. 6.3. We show
that there is a direct dependence between the two. The larger the amplification, the larger the level
of non-normality. To measure the non-normality of a matrix, we use the Henrici departure from
normality, d f , defined in Eq. 6.4. For sake of clarity, we consider the case of two-level systems. A
general qubit pure state |ψa⟩ can be expressed as

|ψa⟩=
(

cosθa

eiξa sinθa

)
, (6.11)

where 0≤ θa ≤ π

2 and 0≤ ξa ≤ 2π .
The pre- and post-selected states, |ψi⟩ and

∣∣ψ f
〉
, are described similarly to Eq. 6.11. Each pure

state, pre- and post-selected, depends on two free parameters and the measured operator depends
on four free parameters. Consequently, the full description of the process depends on eight free
parameters. In this section, we will vary the pre- and post-selected states and fix the observable,
while in the next section, we will do the opposite. We restrict the parametric freedom of the states
by imposing the absence of phase of the initial and final states, ξi = 0 and ξ f = 0. We refer the
interested reader to appendix I for the analysis of the general case.
To elucidate the correlation between amplifying weak values and non-normality, the modulus of the
weak value is qualitatively and quantitatively compared to the Henrici departure from normality.
The chosen observables to study are the Pauli matrices and a linear combination of them, Ô =

1√
3
(σ̂x + σ̂y + σ̂z), where the Pauli matrices have been defined in Eq. 3.4. Our choice has been

motivated by the important role the latter play in quantum physics by describing the spin [157,
158, 159].
Let us consider the Pauli matrix σx. Then by using the previous definitions we get

d f
(
Âx
)
=
|cos(2θi)|
|
〈
ψ f
∣∣ψi
〉
|2
, (6.12)

where Âx denotes the operator Â built from σ̂x,

Âx =
σ̂xΠ̂i

|
〈
ψ f
∣∣ψi
〉
|2

(6.13)

and the modulus of the weak value to the square is,

|σx,w|2 =
sin2(θ f +θi)

|
〈
ψ f
∣∣ψi
〉
|2

, (6.14)

with |
〈
ψ f
∣∣ψi
〉
|2 = cos2(θ f −θi). The level curves of the latter are reported in Fig. 6.1 as a function

of the angles θi and θ f . The red line define the 1-level, where the modulus of the weak value
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Figure 6.1: a) Color map of the modulus of the weak value of σ̂x in terms of the polar angles of the
pure pre- and post-selected states (θi,θ f ), imposing ξi = 0, ξ f = 0. b) Color map of the Henrici
departure from normality of the non-normal matrix Â associated to the weak value σx,w. a,b) The
red curve corresponds to the border of the area in which the modulus of the weak value is larger
than 1. The black curve corresponds to the border of the area in which the modulus of the weak
value is twice the maximum possible expectation weak value. c) Square modulus of the weak
value as a function of the Henrici departure from normality for anomalous weak values, |σx,w|> 1,
obtained by varying θ f between 0 and π

2 , while θi is fixed (colored dots in the legend).
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Figure 6.2: a) Color map of the modulus of the weak value of σ̂y in terms of the polar angles of
the pre- and post-selected states (θi,θ f ), imposing ξi = 0, ξ f = 0. b) Color map of the Henrici
departure from normality of the non-normal matrix associated to the weak value, Â. a,b) The red
curve corresponds to the border of the area in which weak value amplification occurs. The black
curve corresponds to the border of the area in which the modulus of the weak value is twice the
maximum possible expectation value. c) Square modulus of the amplified weak value as function
of the Henrici departure from normality, for various 0 < θ f <

π

2 .
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equals 1, while the black line denotes the 2-level. In the region beyond the 1-level, weak value
amplification occurs (as the eigenvalues of Pauli matrices are ±1). We can observe a very good
agreement among the results shown in the two top panels. Since we are considering pure pre- and
post-selected states with real coefficients, the 1-level curve also define the region beyond which
weak values of σ̂x are anomalous. In other words, all real, anomalous weak values of Pauli matrices
provide amplification.
To strengthen this claim we can express |σx,w|2 in terms of d f

(
Âx
)

by eliminating, e.g., the variable
θ f and considering thus θi as a free parameter. We can thus obtain

|σ̂x,w|2 =
1

1+ tan2 θi

1
1+ tan2 θ f

(tanθ f + tanθi)
2

|cos(2θi)|
d f , (6.15)

where tanθ f can be expressed as a function of d f by using Eq. 6.12. The explicit formula can be
found in appendix I. This relation is shown in panel c) of Fig. 6.1 for several values of the parame-
ter θi and by restricting d f to the range corresponding to anomalous weak values, i.e., |σ̂x,w|2 > 1.
A similar analysis can be performed by using as observables the remaining Pauli matrices and a
combination of them. In the following Figs. 6.2, 6.3, 6.4, we report the dependence of the modulus
of the weak value of σ̂y, σ̂z and Ô = 1√

3
(σ̂x + σ̂y + σ̂z) respectively, as a function of the parameters

θi and θ f by using adapted color maps to emphasize the level curves. In the same figures, we
also show the Henrici departure from normality as a function of the same parameters. As in the
case of the observable σ̂x, for σ̂y and Ô = 1√

3
(σ̂x + σ̂y + σ̂z), we can observe (see top panels in

Figs. 6.2, 6.4) a very good agreement between the square of the modulus of the weak value and
the Henrici departure from normality. We have also shown the region in which the modulus of the
weak value is larger than the absolute value of the largest eigenvalue of the observable (red curve)
and the one for which the modulus is at least twice the maximum eigenvalue (black curve). Out-
side the regions bounded by the latter curves, i.e., the yellow regions, the weak value is amplifying.
Inside the regions bounded by the red curve, i.e., the blue ones, the modulus of the weak value lies
in the range of eigenvalues of the studied operator (but the weak value can still be anomalous, i.e.
if it is a complex number).
In Fig. 6.1, we consider the case for the observable σ̂x and we can observe that the Henrici depar-
ture from normality (panel a) and the pattern of the modulus of the weak value (panel b) exhibit a
good correlation in the region of anomalous weak values, especially in the region where |Ow|> 2,
namely associated to yellow values. Near the boundary between anomalous and non-anomalous
weak values (red curves), some differences are appreciable: in particular, the value of the minimum
of the Henrici departure from normality is smaller than the modulus of the weak value (the former
is associated with a darker blue than the latter). On the other hand, considering the region asso-
ciated to values that are not anomalous, i.e., the region bounded by the red curve and containing
the point (π/4,π,4), the patterns are completely different, we can indeed appreciate the presence
of minima in the top-left and bottom-right corners for the weak value (b) and in the center in the
case of the Henrici departure from normality (a). In Fig. 6.1c), one can observe that the squared
modulus of the weak value increases as a function of the Henrici departure from normality. The
dependence appears linear once the weak value reaches large values (red and orange curves). The
point of interception with the axis

(
|σx,w|2 = 0

)
depends on the initial angle, θi. However, when

the weak value does not reach large values (green and yellow curves), the dependence is closer to
quadratic. The analytical formulas can be found in appendix I. The behaviour of these functions is
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Figure 6.3: a) Color map of the modulus of the weak value of σ̂z in terms of the polar angles of the
pre- and post-selected states (θi,θ f ), imposing ξi = 0, ξ f = 0. b) Color map of the Henrici depar-
ture from normality of the non-normal matrix associated to the weak value. c) Square modulus of
the weak value as a function of the Henrici departure from normality, with 0 < θ f <

π

2 .
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very rich.
In Fig. 6.2, the chosen observable is σ̂y and we report again the weak value and the Henrici depar-

ture from normality as a function of the angles by using a color code match. In this case too, we
have a perfect agreement of the behavior of the two quantities in the parameter region associated
to anomalous weak values. In the complementary region, a central minimum appears in the case
of the weak value that is absent in the Henrici departure from normality plot. In Fig. 6.2c), the
square of the modulus of the weak value depends linearly on the Henrici departure from normality,
irrespective of the magnitude of the maximum weak value for the specific case. Furthermore, the
slope and the point of interception with the axis (

(
|σy,w|2 = 0

)
) are independent on the value of

θi. In appendix J, one can find the analytical formula showing that the modulus of weak value to
the square depends linearly on the Henrici departure from normality, when both phases are null.
Note that in Fig. 6.2b), all non-zero weak values are anomalous because they are purely imaginary
numbers (anomalousness is not equivalent with amplification in this case).
In Fig. 6.3, where the chosen observable is σ̂z, the patterns of both quantities do not exhibit similar-
ities. This difference with respect to the other cases is due to the fact that no amplification occurs
for this observable with the chosen pre- and post selected states. The weak value is real and never
anomalous. In Fig. 6.3c), we have plotted the dependence of the modulus of the weak value on the
Henrici departure from normality for many value of the angles. As one can see, a large weak value
does not imply a large Henrici departure from normality, indeed there is a parabola-like behavior.
The analytical formulas can also be found in appendix J.
In Fig. 6.4, we show the results for the observable Ô = 1√

3
(σ̂x + σ̂y + σ̂z). The pattern of the mod-

ulus of the weak value and the Henrici departure from normality show a good correlation in the
region of weak value amplification, especially from |Ow|> 2 (black curve). Some differences can
be appreciated near the boundary (red curves) separating the regions where amplification occurs
or not, as the weak value and the departure from normality exhibit different patterns near that area.
In the complementary region, i.e., inside the region bounded by the red curves and containing the
point (π/4,π/4), large differences can be appreciated: the level sets for the weak value show a
ring-like shape absent in the Henrici departure from normality case. In Fig. 6.4c), there is a linear-
like dependence of the modulus square of the weak value on the Henrici departure from normality.
However, in this case, both the point of interception with the axis

(
|Ow|2 = 0

)
and the slope depend

on θi. When the modulus of the weak value does not reach large values (green and blue lines), the
dependence is quadratic and not linear. For this observable and the chosen pre- and post-selected
states, the weak value is a complex number whenever θi ̸= θ f , and thus anomalous everywhere but
on the descending diagonal of Fig. 6.4b).
For the sake of completeness, we have also computed the weak value and the Henrici departure
from normality for a three-level system, whose general pure state is

|ψa⟩=
(
cosθa,eiχ1,a cosαa sinθa,eiχ2,a sinαa sinθa

)⊤
. (6.16)

The chosen three-level operator is the Gell-Mann matrix Ô = λ̂5 (see appendix B). The Gell-Mann
matrices are the traceless generators of the Lie group SU(3) that generalize the Pauli matrices, the
traceless generators of SU(2). In Fig. 6.5, the weak value and the Henrici departure from normality
have been depicted by using a color map scheme. As one can see, the plots match pretty well, with
the exception of the angles located in the top-right corner, for which the Henrici departure from
normality assumes larger values than the squared modulus of the weak value, in particular in the
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Figure 6.4: a) Color map of the modulus of the weak value of the operator Ô = 1√
3
(σ̂y + σ̂x + σ̂z)

in terms of the polar angles of the pre- and post-selected states (θi,θ f ), imposing ξi = 0, ξ f = 0.
b) Color map of the Henrici departure from normality of the non-normal matrix associated with
the weak value in terms of the polar angles of the pre- and post-selected states (θi,θ f ). a,b) The
red curve corresponds to the border of the area in which the weak value amplification occurs. The
black curve corresponds to the border of the area in which the modulus of the weak value is twice
the maximum possible expectation value. c) Square modulus of the weak value as a function of the
Henrici departure from normality for amplified anomalous weak values, |Ow|> 1, with 0< θ f <

π

2 .
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strip contained between the red and black curves. The square of the modulus of the weak value
depends linearly on the Henrici departure from normality. The slope and the point of interception(
|λ5,w|2 = 0

)
depend on the pre-selected polar angle.

In conclusion, we have shown that the amplification degree of the weak value depends on the
non-normality of the matrix Â when weak value amplification occurs (so that the weak value is
necessarily anomalous, even if a real number). When one feature increases, the other does too.
However, this does not happen when amplified weak values are not present. In general, the be-
haviour is complex, and there are cases in which some regions of discordance are present, as
shown in appendix I.

6.3 A reformulation of the problem with a varying observable
In the previous section, we examined the relationship between the Henrici departure from normal-
ity and the weak value by varying the pre- and post-selected pure states. However, in some cases,
we may have the freedom to select the observable for a given experiment. Here, we investigate
how varying the observable impacts non-normality and the modulus of weak values, for given pre-
and post selected pure states. To narrow our focus, we restrict our analysis to two-level systems.
Specifically, we consider an observable that depends on two parameters,

Ô = sinθ cosφ σ̂x + sinθ sinφ σ̂y + cosθ σ̂z , (6.17)

where 0≤ θ ≤ π

2 , 0≤ φ ≤ 2π , and σ̂i are the Pauli matrices (Eq. 3.4). In the present analysis, we
investigate the relationship between the weak value and the Henrici departure from normality for
the two matrices: Â and Â′, which are defined in Eq. 6.3 and Eq. 6.9, respectively. Because the
denominators of the latter matrices do not vary by modifying the operator, we decided to compare,
in this section, the normalized Henrici departure from normality – d f ,n

(
Â
)

and d f ,n
(
Â′
)

– with the
modulus of the numerator of the weak value, |

〈
ψ f
∣∣ Ô |ψi⟩ |.

The results reported in Fig. 6.6a) show a clear trend. Since the operator Â′ does not depend on
the initial state, the normalized Henrici departure from normality d f ,n

(
Â′
)

does not vary when we
change the pre-selected state, with a fixed final state θ f = 0; obviously, this is not the case for
d f ,n

(
Â
)
, as the different black curves clearly show. When the initial state is completely orthogonal

to the final one, i.e., θi =
π

2 , the two Henrici indexes and the weak value coincide. Starting from
this value, the two indexes differ from each other but evolve similarly, and the weak value also
follows a similar trend in between both departures from normality in most of the range of values
of θ .
In order to understand this behavior, we study the derivative of the three functions (see Fig. 6.6b)).

As one can appreciate, the derivative of the weak value with respect to θ is always between the
ones of the two normalized Henrici departures from normality, for the studied system. Conse-
quently, the variation of the weak value is not only determined by the orthogonality of the pre-
and post-selected states, as seen when varying θi, but also by the normalized non-normality of the
operators Â and Â′.
In some cases, the behavior of the numerator of the weak value and the normalized Henrici de-

partures from normality can be vastly different, as shown in Fig. 6.7. For the chosen parameters in
this scenario, the numerator of the weak value does not fall between the two normalized Henrici
departures from normality of Â and Â′. Moreover, as θi decreases, the curve of the weak value
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Figure 6.5: a) Color map of the modulus of the weak value of the operator Ô = λ̂5, χ1,i =
π

7 , χ2,i =
π

21 , αi =
π

8 , χ1, f =
π

4 , χ2, f = 0, α f =
π

3 in terms of the polar angles of the pre- and post-selected
states (θi and θ f ), imposing ξi = 0, ξ f = 0. b) Color map of the Henrici departure from normality of
the non-normal matrix associated to the weak value, Â. a,b) The red curve corresponds to the border
of the area in which the weak value is in the amplification range. The black curve corresponds to
the border of the area in which the modulus of the weak value is twice the maximum possible
expectation value. c) Square modulus of the weak value as function of the Henrici departure from
normality for amplifying weak values, |Ow|> 1, having 0 < θ f <

π

2 .
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(a) (b)

Figure 6.6: a) For different initial states (θi), modulus of the numerator of the weak value (red),
normalized Henrici departure from normality of Â′ (blue), and normalized Henrici departure from
normality of Â (black), all as a function of θ in the range of weak value amplification. b) For dif-
ferent initial states (θi), derivative of the modulus of the numerator of the weak value |

〈
ψ f
∣∣ Ô |ψi⟩ |

(red), the normalized Henrici departure from normality of Â′ (blue), and the normalized Henrici
departure from normality of Â (black), all as a function of θ in the range of weak value amplifica-
tion. The chosen parameters are: θ f = ξi = ξ f = 0, φ = π

12 , while θi varies from from 1.5446 to
1.3352. θi decreases in the direction of the green arrow.

moves down in the plot, whereas the normalized Henrici departure from normality of Â moves
in the opposite direction (see opposite orientations of the green arrows). It is worth noting that
this type of behavior commonly occurs near the boundary of the amplification region of the weak
values. Fig. 6.8 shows the modulus of the weak value plotted against θ . In the second case, the
modulus of the weak value does not even reach twice the largest eigenvalue of the observable,
whereas in the first case, the anomalous weak value is significantly larger. The intricate relation-
ship between the weak value and the Henrici departure from normality of Â and Â′ in two-level
systems is an area that warrants further investigation. Detailed studies can uncover more about this
behavior. The interested readers can find the expressions of the weak value, the Henrici departure
from normality, and their derivatives in appendix L, with the assumption that ξi = ξ f = 0.
As already stated, the operators Â, resp. Â′, have an eigenvalue equal to zero and the other one

equal to ⟨ψi|Ô|ψi⟩
⟨ψ f |ψi⟩ , resp. ⟨ψ f |Ô|ψ f ⟩

⟨ψ f |ψi⟩ . For the parameter value at which the expectation value of the

operator is also equal to 0, the matrix is nilpotent. This is an interesting observation because it
is well known that nilpotent matrices and operators affect the system dynamics [160, 161]. Fur-
thermore, the 0 eigenvalue is now degenerate, as one can observe from Fig. 6.9, where the largest
eigenvalue in absolute value and the angle between eigenvectors have been plotted for different
initial states. As one can appreciate, for any value of the initial state, when the largest eigenvalue
in absolute value is 0 (nilpotent matrix), the angle between the eigenvectors is null, and thus the
matrix becomes degenerate.
Furthermore, the point of the maximum modulus of the numerator of the weak value in the ampli-



83 6.3. A reformulation of the problem with a varying observable

(a) (b)

Figure 6.7: a) For different initial states (θi), modulus of the numerator of the weak value (red),
normalized Henrici departure from normality of Â′ (blue), and normalized Henrici departure from
normality of Â (black), all as a function of θ in the range of weak value amplification. b) For dif-
ferent initial states (θi), derivative of the numerator of the modulus of the weak value |

〈
ψ f
∣∣ Ô |ψi⟩ |

(red), the normalized Henrici departure from normality of Â′ (blue), and the normalized Henrici
departure from normality of Â (black), all as a function of θ in the range of weak value amplifica-
tion. The chosen parameters are: θ f = ξi = ξ f = 0, φ = 3π

2 , while θi varies from from 1.5446 to
1.3352. θi decreases in the direction of the green arrow.

(a) (b)

Figure 6.8: a) Modulus of the weak value of Ô in terms of θ , for the cases of Fig. 6.6. The
chosen parameters are: θ f = ξi = ξ f = 0, φ = π

12 , while θi varies from from 1.5446 to 1.3352. b)
Modulus of the weak value of Ô in terms of θ , for the cases of Fig. 6.7. The chosen parameters
are: θ f = ξi = ξ f = 0, φ = 3π

2 , while θi varies from from 1.5446 to 1.3352. θi decreases in the
direction of the green arrow.
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Figure 6.9: For any given polar initial angle, a completely degenerate nilpotent point exists. The
largest eigenvalue in absolute value of Â, α2, has been plotted in terms of θ and the angle between
the eigenvectors of Â, β1,2, in terms of θ . The chosen parameters are φ = π

12 , θ f = 0, ξ f = 0,
ξi = 0. The polar angle of the initial state varies between π

2 and 5π

12 .

fication regime (when the modulus of the weak value is largest than the maximum absolute value
of the eigenvalues of the operator) is totally determined by the two points where the normalized
Henrici departure from normality of the matrices Â and Â′ reach their maximum values (this point
is the same as the one in which the minimum of the absolute value of the eigenvalue different from
0 is reached, see appendix K). Indeed, the maximum modulus of the numerator of the weak value
is always attained at the average of the two points where the normalized Henrici departure from
normality reaches its maximum for the two matrices, Fig. 6.10. More details of these results can
be found in appendix K.
As the angle θi increases, the parameter range in which weak value amplification occurs becomes
more pronounced. From θi =

π

4 , the degeneracy point, where both eigenvalues of Â and Â′ are
equal to zero, is located inside the amplification region, Fig. 6.11. Until this point, the maximum
modulus of the weak value is smaller than twice the largest eigenvalue of Ô. However, as θi in-
creases beyond π

4 , the maximum modulus of the weak value begins to rise much more rapidly. The
closer the degeneracy points of the eigenvalues of the operators Â and Â′, the larger the maximum
of the modulus of the weak value. Actually, the maximum of the modulus of the weak value tends
to infinity when the degeneracy points are identical (i.e. located at the same value of θ ). In sum-
mary, the closer the degeneracy points of the eigenvalues of Â and Â′ are to each other, the larger
the maximum modulus of the weak value becomes. Ultimately, the maximum modulus of the weak
value tends to infinity when the points of zero eigenvalues occur at the same angle θ .

6.4 Discussion and conclusions
In this chapter, we have shown the link existing between non-normality and anomalous weak val-
ues, with particular attention to weak values in the amplification regime. Weak values, unlike
expectation values, can exhibit complex values and be outside the range of eigenvalues of the op-
erator under scrutiny. A weak value is anomalous when it is complex or, if it is real, when its value
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Figure 6.10: Value of θ from the observable Ô corresponding to the minimum of the largest eigen-
value in absolute value of Â, α2 (green) and Â′, α ′2 (black), and to the maximum modulus of the
weak value (blue) as a function of θi, the polar angle of the pre-selected pure state, for anomalous
weak values in the amplification range. The average of the value of θ corresponding to the min-
ima of the maximum of the absolute value of eigenvalue of both matrices (orange) has also been
included. The chosen parameters are φ = π

4 , θ f = 0, ξ f = 0, ξi = 0.

Figure 6.11: Largest value of the modulus of the weak value (orange), smallest value of the largest
eigenvalue in absolute value of Â, α2 (blue) and Â′, α ′2(green), as a function of the initial state (θi).
The extremal values are computed over the range of all allowed values for the angle θ associated
to the varying observable Ô. The chosen parameters are φ = π

4 , θ f = 0, ξ f = 0, ξi = 0.



Chapter 6. Revisiting weak value from a non-normal perspective 86

is larger than the maximum eigenvalue or smaller than the minimum eigenvalue of the measured
operator, Ô. When the anomalous weak value has a modulus larger than the largest modulus of the
eigenvalues, the weak value amplification regime is reached.
We have first proved that weak values can be expressed as the expectation value of a typically non-
normal matrix, Â, Eq. 6.2 and Eq. 6.3. Then, we have shown that this matrix must be non-normal
to obtain a weak value different from an eigenvalue of the observable. There are two arbitrary
ways to define the non-normal matrix, in terms either of the initial, pre-selected pure state or of
the final, post-selected pure state. Consequently, to obtain anomalous weak values, both matrices,
called here Â and Â′, must be non-normal. The non-normality is linked to the quantum fluctuations
of the observable in the pre- or post-selected pure states. Actually, the quantum uncertainty of an
arbitrary observable of any system in a given quantum state is exactly equal to Henrici’s departure
from normality of a specific operator built naturally from the product of the observable operator
with the quantum state projector. This result highlights the importance of non-normality in quan-
tum systems far beyond the specific context of weak measurements.
We showed for two-level systems that the two matrices Â and Â′ can become simultaneously nilpo-
tent, i.e., all the eigenvalues are null and both matrices are degenerate. For a given observable, this
point is found by searching appropriate pre- and post-selected states. In the case of two-level sys-
tems, the matrices are completely degenerate.
We compared numerically the modulus of weak values and non-normality when varying the pre-
and post-selected pure states. We have found a good correlation between such quantities once pa-
rameters allow for anomalous weak values firmly in the amplification regime.
Eventually, we have also analyzed the relation between the normalized Henrici departure from
normality of both non-normal matrices Â and Â′ when considering a 1-parameter family of observ-
ables in the weak-value amplification regime. In this case, the point of the maximum modulus of
the numerator of the weak value is reached at the arithmetic average of the two points where the
Henrici departure from normality of the matrices Â and Â′ are maximal.
Non-Hermitian Hamiltonians describe the evolution of systems that are not isolated [147]. Even
though in weak measurements the Hamiltonian of the weak process is Hermitian, post-selection
seems to introduce non-normality in the process. It is interesting to observe the analogy with net-
works, where it is conjectured that non-normality (namely the presence of source and sink nodes)
is correlated to the fact that the modeled system is an open one [145]. In weak measurements, it is
clear that post-selection plays an important role by transforming an expectation values into weak
values that can become anomalous. A reconsideration of weak measurements by viewing them as
open rather than closed processes appears necessary.
Moreover, the fact that a non-normal matrix cannot be diagonalized through an orthonormal trans-
formation means that the information encoded in the system cannot be completely disentangled.
This is particularly interesting thinking about the present framework, as when post-selection is
executed on the system, all the ancilla’s wave-function shifts are projected on a common state and
thus interfere. This interference seems to mix the information of the different shifts in a disentan-
gled manner. To do so, the expectation value of the operator is transformed into a weak value that,
as we have seen in this chapter, is strongly correlated to the non-normality of the operators Â and
Â′ in the amplification regime.
Lastly, let us recall that, in other fields, it has been observed that non-normal operators enhance the
possibility of phase transitions to occur [143, 153]. Since phase transitions can be observed in post-
selected measurements [162], we believe that revisiting quantum systems from this new perspective
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could lead to the appearance of new, unexploited quantum phenomena linked to anomalous weak
values.





Chapter 7
Quantum weak values: paraconsistency and
paracompletness

Anomalous quantum weak values are values that fall outside the range of eigenvalues of the mea-
sured observable. These values provide evidence of contextuality [31, 32], a fundamental quantum
property that challenges the classical notion of objective reality by showing that a measurement
outcome cannot be reduced to pre-existing properties of the system. In fact, contextuality is mathe-
matically equivalent to negativity in Wigner functions [163]. This intriguing feature has motivated
many studies to investigate the role of contextuality in quantum computing, where it is believed to
play a key role in achieving quantum speed-up [164, 165].
In this chapter, we explore the connection between weak values and paraconsistent logic. Paracon-
sistent logic is unique in that it tolerates contradictions, making it a valuable tool for examining the
intrinsic logic of anomalous weak values. Specifically, we apply this logic to paradoxes involving
weak values, such as the three-box paradox, to gain insights into the nature of anomalous weak
values and their role in quantum mechanics.
In the previous section, we discussed weak values as the expectation value of a non-normal oper-
ator. However, it is also possible to view weak values from a different perspective, by considering
the weak value as the expectation value of an observable, but considering an η-Hermitian pseudo-
projector. This pseudo-projector is not Hermitian, but it is pseudo-Hermitian, satisfying the condi-
tion ρ̂†η = ηρ̂ , where η represents the metric. When the metric satisfies η3 = η , the density op-
erator becomes Hermitian in an indefinite inner product space known as a Krein space [166, 167].
The inner product in this space is defined as

(x,y) := ⟨x,ηy⟩, (7.1)

which indicates that to calculate the scalar product, the second term should be multiplied by the
metric η .
Krein spaces contain vectors that are orthogonal to themselves, similar to the case of special rel-
ativity, where the past and future events can be described in a light cone. In non-classical logic,
orthogonality is interpreted as negation. Consequently, a vector orthogonal to itself in a Krein
space can be used to represent a proposition equal to its negation, which supposes a contradiction
intrinsic to the space. In classical logic, it should always be false. However, in paraconsistent
logic, it is not, and the contradiction is accepted. The pseudo-projector can be described as an

89
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η-Hermitian projector of the pre-selected state in Krein space. As a result, we can shift the entire
problem to this new space and consider the weak value as an expectation value on the pre-selected
state, but with an alternative metric.
With the tools to characterize weak values in paraconsistent logic, we can examine the three-box
paradox with pre- and post-selection and observe how the contradiction arises naturally from the
paradox. This discovery offers a new proof that weak values possess non-classical characteristics,
in addition to contextuality [31, 32] and the requirement of coherence to achieve anomalous weak
values [168].
This development takes us further by demonstrating that paraconsistency, unlike other non-classical
properties, arises for any type of weak value, not just anomalous ones. The phenomenon of para-
consistency is related to post-selection in general and thus goes beyond the particular paradoxes
case.

7.1 Weak values as expectation values employing η-Hermitian
pseudo-projectors

In this section, we demonstrate how to re-express the weak value as the expectation value of an
observable, using an η-Hermitian pseudo-projector. Additionally, we illustrate that it is always
possible to select a metric η̂ such that the pseudo-projector is Hermitian in an indefinite inner
product space. Specifically, we examine a weak value Aw that can be represented as follows

Aw =

〈
ψ f
∣∣ Â |ψi⟩〈

ψ f
∣∣ψi
〉 = Tr

[
Âρ̃
]
, (7.2)

where the pseudo-projector ρ̃ is defined as

ρ̃ =
|ψi⟩

〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 . (7.3)

We observe that the operator ρ̃ is idempotent,

ρ̃
2 =
|ψi⟩

〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 |ψi⟩

〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 =

|ψi⟩
〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 = ρ̃. (7.4)

We would also like to remark that ρ̃ is not Hermitian,

ρ̃ =
|ψi⟩

〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 ̸= ρ̃

† =

∣∣ψ f
〉
⟨ψi|〈

ψi
∣∣ψ f
〉 , (7.5)

where ρ̃† is the conjugate transpose of the operator ρ̃ . The operator ρ̃ is not Hermitian, but it is
idempotent. We would like to find a metric, η such that,

η̂ρ̃ = ρ̃
†
η̂ ρ̃

† = η̂ρ̃η̂
−1, (7.6)
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where η̂−1 is the inverse of η̂ .
The choice of η̂ is not unique, there exist different metrics that fulfill Eq. 7.6. Despite the availabil-
ity of various metrics to choose from, we opt to select the metric η̂ with desirable mathematical
properties, Hermiticity and unitarity,

η̂ = η̂
† = η̂

−1
η̂

2 = Î (7.7)

These mathematical properties guarantee, among other things, that the metric is invertible. These
properties are very restrictive and highly desirable making the metric "ideal" in many respects.
With these properties in mind, it is possible to express the metric η̂ as a Householder transforma-
tion, which represents a reflection about a plane,

η̂ = Î−2 |∆⟩⟨∆| , (7.8)

where the state |∆⟩ is,

|∆⟩=
e−iα |ψi⟩−

∣∣ψ f
〉√

2
(
1−|

〈
ψi
∣∣ψ f
〉
|
) , (7.9)

where

eiα =

〈
ψ f
∣∣ψi
〉

|
〈
ψ f
∣∣ψi
〉
|
. (7.10)

As a result, the metric is expressed in terms of the pre- and post-selected state as

η̂ = Î−
|ψi⟩⟨ψi|+

∣∣ψ f
〉〈

ψ f
∣∣− e−iα |ψi⟩

〈
ψ f
∣∣− eiα

∣∣ψ f
〉
⟨ψi|

1−|
〈
ψ f
∣∣ψi
〉
|

. (7.11)

When applying the metric η̂ to the pre-selected state, |ψi⟩, we obtain

η̂ |ψi⟩= |ψi⟩−
|ψi⟩

(
1−|

〈
ψ f
∣∣ψi
〉
|
)
+
∣∣ψ f
〉

eiα (|〈ψ f
∣∣ψi
〉
|−1

)
1−|

〈
ψ f
∣∣ψi
〉
|

= eiα ∣∣ψ f
〉
. (7.12)

When applying the metric to the post-selected state,
〈
ψ f
∣∣, the result is

〈
ψ f
∣∣ η̂ =

〈
ψ f
∣∣− ⟨ψi|eiα (|〈ψ f

∣∣ψi
〉
|−1

)
+
〈
ψ f
∣∣(1−|〈ψ f

∣∣ψi
〉
|
)

1−|
〈
ψ f
∣∣ψi
〉
|

= ⟨ψi|eiα . (7.13)

First, it is essential to emphasize that η̂ is Hermitian,

η̂
† = Î†−2(|∆⟩⟨∆|)† = Î−2 |∆⟩⟨∆|= η̂ . (7.14)

As the state |∆⟩ is normalized, η̂ is its own inverse, η̂ = η̂−1,

η̂
2 = Î−4 |∆⟩⟨∆|−4 |∆⟩⟨∆|∆⟩⟨∆|= Î. (7.15)

Consequently, the metric η̂ fulfills Eq. 7.6,

η̂ρ̃η̂ =
η̂ |ψi⟩

〈
ψ f
∣∣ η̂〈

ψ f
∣∣ψi
〉 =

∣∣ψ f
〉
⟨ψi|e2iα

|
〈
ψ f
∣∣ψi
〉
|eiα

=

∣∣ψ f
〉
⟨ψi|〈

ψi
∣∣ψ f
〉 = ρ̃

†. (7.16)
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Figure 7.1: Representation of the initial state, post-selected state and the eigenvectors of η̂ , |∆⟩
and

∣∣∆⊥〉 on the Bloch sphere. The chosen state are: |ψi⟩= (1,0)T and
∣∣ψ f
〉
= 1√

2
(1, i)T .

It is worth noting that since η̂ satisfies η̂ = η̂−1 and η̂3 = η̂ , the metric establishes a Krein space.
The metric η̂ has always N−1 eigenvalues equal to 1 and one eigenvalue equal to−1. η̂ has N−2
eigenvectors orthogonal to both |ψi⟩ and

∣∣ψ f
〉

with eigenvalue equal to 1. It also has 2 eigenvectors
in the span of |ψi⟩ and

∣∣ψ f
〉

with eigenvalues 1 and −1. The eigenvalue −1 is associated with the
state |∆⟩,

η̂ |∆⟩= Î |∆⟩−2 |∆⟩⟨∆|∆⟩=−|∆⟩ . (7.17)

One of the states orthogonal to |∆⟩,
∣∣∆⊥〉, 〈∆∣∣∆⊥〉= 0 that is associated with an eigenvalue 1 is,

η̂

∣∣∣∆⊥〉= Î
∣∣∣∆⊥〉−2 |∆⟩

〈
∆

∣∣∣∆⊥〉=
∣∣∣∆⊥〉 , (7.18)

with the state
∣∣∆⊥〉 given by ∣∣∣∆⊥〉=

e−iα |ψi⟩+
∣∣ψ f
〉√

2
(
1+ |

〈
ψi
∣∣ψ f
〉
|
) . (7.19)

Fig. 7.1 depicts the two-level scenario on the Bloch sphere, where the initial and post-selected
states are presented alongside the two η̂ eigenvectors, namely, |∆⟩ and

∣∣∆⊥〉. The state
∣∣∆⊥〉 lies

halfway between the initial and final states, whereas |∆⟩ is orthogonal to the
∣∣∆⊥〉.

We can explore the possibility of representing the operator ρ̃ as a projector in the Krein space,
rather than the conventional complex projective space. To achieve this, we must re-express ρ̃

using a single state, |θ⟩, instead of the two-state formula we currently have, Eq. 7.3, but utilizing
the metric η̂ ,

ρ̃ =
|ψi⟩

〈
ψ f
∣∣〈

ψ f
∣∣ψi
〉 =

|θ⟩⟨θ | η̂
⟨θ | η̂ |θ⟩

. (7.20)
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One can easily find that by employing the metric η̂ , the searched state |θ⟩ is equal to the pre-
selected state,

|θ⟩= |ψi⟩ . (7.21)

Therefore, it is possible to express the weak value as an expectation value by utilizing the pre-
selected projector in Krein space.
In summary, we have expressed weak values in terms of expectation values using a novel peudo-
projector, ρ̃ , which maps the initial state onto a new space, the Krein space. In effect, we are
relocating the problem from the Hilbert space to an indefinite inner product space. In the upcoming
section, we will delve deeper into the subject of weak values in Krein spaces. The appeal of such
spaces is that paraconsistency is an inherent feature of them, as we will explore further.

7.2 Linking Krein spaces with paraconsistent and paracom-
plete logic

In the previous section, we demonstrated that any weak value can be expressed as an expectation
value on an indefinite inner product space (Krein space), denoted as S . Specifically, the weak
value corresponds to the expectation value of the observable under study, evaluated on the pre-
selected state in this new space. To achieve this, we utilized the metric η̂ , whose signature for an
N-level system is (−1,1, . . . ,1). In this section, we explore the connection between Krein spaces
and paraconsistent logic.
Let us consider a plane within the Krein space L0 j, which is spanned by all possible linear com-
binations of the two states |0⟩ and | j⟩. Specifically, |0⟩ is associated with the eigenvalue −1 in the
metric, while | j⟩ is one of the states associated with an eigenvalue of 1:

L0 j = α |0⟩+β | j⟩ , (7.22)

where α and β are complex numbers. The η-orthogonal space, L
⊥η

0 j , is formed by all vectors
|x⟩= ∑

N−1
i=0 xi |i⟩ such that

−x0ᾱ + x jβ̄ = 0 ∀α,β ∈ C, (7.23)

where x0 and x j are the first and the j+1 components of the vector |x⟩, associated with the states
|0⟩ and | j⟩. In general, this condition is fulfilled when x0 = x j = 0. Hence, the space L

⊥η

0 j is,

L
⊥η

0 j =
N−1

∑
i=1,i ̸= j

αi |i⟩ . (7.24)

No non-zero vector of the subspace L0 j is η-orthogonal to all vectors of the L0 j subspace. There-
fore, this subspace is non-degenerate. Furthermore, the only vector that lies in both L0 j and its
orthogonal complement, L

⊥η

0 j , is the zero vector |∅⟩. The intersection of both spaces is the |∅⟩
vector,

L0 j∩L
⊥η

0 j = {|∅⟩}. (7.25)

No vector within the subspace L0 j can be expressed as a linear combination of vectors from its
orthogonal subspace, L ⊥η

0 j . This property is intuitive to us because we are familiar with Euclidean



Chapter 7. Quantum weak values: paraconsistency and paracompletness 94

Figure 7.2: Representation of the three-dimensional Euclidean space. The green plane represents
the x-y plane and the orange line is the orthogonal subspace, the z line.

spaces. To illustrate, consider a Euclidean 3-dimensional space. The intersection of the linear
span of all real vectors in the x-y plane and the span of vectors with only a z component (the
orthogonal space) is the zero vector 0⃗. In Fig. 7.2, we have plotted the 3-dimensional Euclidean
space with the x-y plane in green and the z line in orange. As you can see, the origin of the
Euclidean coordinate system, the vector 0⃗, coincides with the intersection of these two subspaces.
In this context, orthogonality is defined with respect to the identity metric with signature (1,1,1),
which is the standard metric used in Newtonian physics.
Let us consider now two one-dimensional subspaces of L0 j, L ±

0 j ,

L ±
0 j =±λ |0⟩+λ | j⟩ , (7.26)

where λ is a complex number. The η-orthogonal subspaces to L ±
0 j are composed by all vectors

|x⟩ fulfilling
∓x0λ̄ + x jλ̄ = 0 ∀λ ∈ C. (7.27)

The subspaces formed by all vectors with x j =±x0 are the orthogonal subspaces of L ±
0 j , L

±⊥η

0 j

L
±⊥η

0 j =

(
N−1

∑
i=0,i ̸= j

xi |i⟩
)
± x0 | j⟩=

(
N−1

∑
i=1,i̸= j

xi |i⟩
)
+ x0 |0⟩± x0 | j⟩ , (7.28)

this equation can be derived from a more general one, as found in the literature [167]. The inter-
section between the subspaces L ±

0 j and L
±⊥η

0 j are the first subspaces themselves,

L ±
0 j ∩L

±⊥η

0 j = L ±
0 j . (7.29)

At first glance, this property may seem counterintuitive1. To better understand it, let us return to
the Euclidean space but now consider a metric with signature Ĵ = (1,1,−1). Let us examine the

1It should be noted that this property only applies to subspaces built on the state |±⟩ = ±|0⟩+| j⟩√
2

, which is highly
symmetric.
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Figure 7.3: Representation of the J-orthogonal subspace to the line y = z,x = 0. The turquoise line
is the intersection of the y = z,x = 0 line and the orthogonal subspace, the plane (x,y,y).

subspace defined by the line y = z,x = 0. The J-orthogonal subspace to this line is illustrated in
Fig. 7.3, and it is the plane:

L⊥J =

{x
y
y

} (7.30)

The intersection between this plane and the line y = z,x = 0 is the line itself, depicted in turquoise
in Fig. 7.3. This case illustrates the main properties of the subspaces L ±

0 j and the η metric, where

the intersection of the L ±
0 j with its orthogonal L

±⊥η

0 j is itself, L ±
0 j .

All vectors of L ±
0 j are orthogonal to all vectors of L ±

0 j . Consequently, L ±
0 j is an isotropic subspace

of L0 j.
We also notice a very general property of Krein spaces [167],(

L ±
0 j +L

±⊥η

0 j

)
⊕ηL ±

0 j = S , (7.31)

where ηL ±
0 j is the subspace generated by the application of η to all states of L ±

0 j , and⊕ represents
the direct sum, while + represents the usual sum. As the metric is composed by ones and a minus
one, it would imply, (

L +
0 j +L +⊥

0 j

)
⊕L −

0 j = S (7.32)(
L −

0 j +L −⊥
0 j

)
⊕L +

0 j = S

If we consider the Krein space, it turns out that the whole space cannot be generated using only
the subspaces L ±

0 j and L ±⊥
0 j . Instead, an additional subspace, namely ηL ±

0 j , is required. This
fact can be counterintuitive at first glance. To better understand this, let us return to the Euclidean
space with the standard metric, the identity. In Fig. 7.3, we see that the x-y plane and its orthogonal
complement, the z-axis, together generate the entire Euclidean space.{x

y
0

}∪{
0

0
z

}=

{x
y
z

}= R3. (7.33)
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Nonetheless, if we consider the metric Ĵ and the Euclidean space depicted in Fig. 7.3, it is not pos-
sible to reconstruct the entire space using only the line y = z,x = 0 and its orthogonal complement,
the plane L⊥J {0

λ

λ

}∪{
x

y
y

}=

{ x
y+λ

y+λ

} ̸= R3. (7.34)

To reconstruct the whole Euclidean space, we should add a line that is perpendicular to the plane.
This line is actually J times the subspace defined by the line y = z,x = 0,{ 0

µ

−µ

}. (7.35)

The whole Euclidean space is then build as{0
λ

λ

}∪{
x

y
y

}∪{
 0

µ

−µ

}=

{ x
y+λ +µ

y+λ −µ

}= R3. (7.36)

Let us consider the propositional variable pα . As usually done in quantum logic, this propositional
variable can be linked to a closed subspace of the Krein space detailed before, V

(
p±0 j

)
= L ±

0 j ,
where V is the function that links the propositional variables to the Krein subspaces. Thanks to
this mapping, it is possible to define a semantic for the propositional variable in the Krein space.
Specifically, this link provides a connection of any measurement result with a proposition. The
conjunction of the probability of the propositional variables p±0 j and the paraconsistent negation of
this variable can be mapped to the intersection of the subspaces L ±

0 j and their orthogonal L ±⊥
0 j as

p±0 j∧ ∼ p±0 j→V
(

p±0 j

)
∩V

(
p±0 j

)⊥
= L ±

0 j ∩L ±⊥
0 j = L 0

0 j ̸= {|∅⟩}, (7.37)

where ∼ is a paraconsistent negation, and the paraconsistent negation is interpreted as the η-
orthogonal, the pseudo-orthogonal subspace. The connection between negation and orthogonality
is commonly utilized in quantum logics. As the intersection of the subspace and its negation
(orthogonal) is not the null vector |∅⟩, V

(
p±0 j∧ ∼ p±0 j

)
̸= |∅⟩, there is an intrinsic contradiction

in the Krein subspace. This implies that a proposition can be true and false at the same time, as
the probability of having p±0 j and not p±0 j is not 0. These two properties are not orthogonal to each
other. The non-classical logic is paraconsistent.
In classical logic, the conjunction of a variable and its negation is always false, since it is impossible
to have a variable and its negation true at the same time. For example, it is not possible to have and
to not have a bridge at the same time. However, in quantum mechanics, a probability amplitude
different from zero can be assigned to both a property and its negation being true simultaneously.
This phenomenon may appear counterintuitive, but it arises from the superposition principle of
quantum mechanics. For instance, a quantum system can exist in a superposition of two states,
such as a Schrödinger cat being both dead and alive (not dead) at the same time.
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Furthermore, the disjunction of p±0 j and its paraconsistent negation ∼ p±0 j that can be mapped to
the sum of the subspaces L ±

0 j and L ±⊥
0 j , that it is different from the complete space,

p±0 j∨ ∼ p±0 j→V
(

p±0 j

)
+V

(
p±0 j

)⊥
= L ±

0 j +L ±⊥
0 j ̸= S . (7.38)

The sum of both subspaces L ±
0 j and L ±⊥

0 j is different from the whole Krein space, S . The sum
of the probabilities of proposition p±0 j happening and p±0 j not happening is different from 1. The
logic is paracomplete. The logics do not satisfy the excluded middle principle, which implies that
either a proposition or its negation is true.
In classical logic the disjunction of a property and its negation is always equal to one. The prob-
ability of having a bridge or not having a bridge should be equal to one, there is not other pos-
sibility, either the bridge exits or it does not exist. In contrast, certain interpretations of quantum
mechanics, such as hidden variable theories, could be based in paracompleteness. The logic that
characterizes the Krein space, emerging from the framework of weak value representations and,
by extension, general post-selected measurements, possesses a distinctly non-classical nature. This
unique logic not only showcases paraconsistency but also unveils the facet of paracompleteness.
Within the space, contradictions are inherent, as is the fact that the sum of all commonly consid-
ered probabilities is not equal to unity, which implies that other missing components should be
considered. Many non-classical logics used to describe quantum mechanics are based solely on
paraconsistency or paracompleteness [169]. In contrast, our new logic is both paraconsistent and
paracomplete, offering a fresh perspective on the subject.

7.3 Three-box paradox
In the previous sections, we established a connection between weak values and Krein spaces by
depicting the weak value as the expectation value of an observable in the initial state within the
Krein space. Furthermore, we have successfully forged a connection between Krein spaces and
the realms of paraconsistency and paracompleteness, implying that weak values can be described
using a paraconsistent and paracomplete logic. Building on these findings, we now aim to apply
them to the three-box paradox, taking into account pre- and post-selection, as explained in [65].
The quantum three box paradox considers a particle that can be in the three boxes noted by |1⟩,
|2⟩, and |3⟩. Let us consider that the particle is pre-selected in a state,

∣∣ψbox
i
〉
, that is a linear

combination of the three boxes ∣∣∣ψbox
i

〉
=

1√
3
(|1⟩+ |2⟩+ |3⟩) . (7.39)

Thereafter, the particle is post-selected in a state,
∣∣∣ψbox

f

〉
that only differs from the initial state by

a phase, ∣∣∣ψbox
f

〉
=

1√
3
(|1⟩+ |2⟩− |3⟩) . (7.40)

The paradox deals with the question of determining in which box the particle is located in-between
pre- and post-selection. This issue can be tackled conceptually and experimentally by performing
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a quantum weak measurement of the box projectors (the weak interaction should occur in-between
pre- and post-selection). Let us suppose that, in the weak measurement, we query whether the
particle is in box |1⟩. Then, we would find that the weak value of the weakly probed projector
Π̂1 = |1⟩⟨1| is equal to 1. One interpretation of Π1,w = 1 is that the particle was in box |1⟩. Such
an interpretation associates a "probability" (actually, a quasi-probability distribution) to the weak
value of projector (an interpretation suggested by extending the standard probabilistic interpreta-
tion of the average value of a projector). Paradoxically, due to the symmetry of the situation, we
will reach an equivalent conclusion if we query about box |2⟩, as Π2,w = 1 as well. How could
the particle be in both boxes at the same time? This seems contradictory. What is even more sur-
prising is that if we inquire about box |3⟩, the resulting weak value is Π3,w = −1. This negative
"probability" may seem puzzling. However, the total "probability" of the particle existing in one
of the three boxes sums up to 1, as expected.
Let us reconsider this paradox from a Krein space point of view. The weak value of the projector
Π̂i, where i goes from 1 to 3, can be described as the expectation value of the pseudo-projector,

ρ̃ =

∣∣ψbox
i
〉〈

ψbox
f

∣∣∣〈
ψbox

f

∣∣∣ψbox
i

〉 =

1 1 −1
1 1 −1
1 1 −1

 , (7.41)

considering the basis

|1⟩=

1
0
0

 |2⟩=

0
1
0

 |3⟩=

0
0
1

 . (7.42)

The metric, η̂box, corresponding to the pre- and post-selected states is

η̂box =

1 0 0
0 1 0
0 0 −1

 , (7.43)

where Eq. 7.11 has been employed.
As one can appreciate, η̂3 = η̂ , and the space of the pseudo-operator is a Krein space, as expected.
The projector in this space corresponds to the pre-selected state,

ρ̃ =

∣∣θ box〉〈θ box
∣∣ η̂box

⟨θ box| η̂box |θ box⟩
=

∣∣ψbox
i
〉〈

ψbox
i

∣∣ η̂box〈
ψbox

i

∣∣ η̂box
∣∣ψbox

i
〉 . (7.44)

We can now build two subspaces of the Krein space that are a homogenous linear combination of
|1⟩ and |3⟩,

L ±
1,box = β |1⟩±β |3⟩ , (7.45)

with β a complex number. The ηbox-orthogonal subspace to L ±
1,box is

L
±⊥ηbox

1,box = β |1⟩+α |2⟩±β |3⟩ , (7.46)
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where α is a complex number. The intersection of the subspaces L ±
1,box and L

±⊥ηbox
1,box are the

subspaces L ±
1,box themselves,

L ±
1,box∩L

±⊥ηbox
1,box = L ±

1,box ̸= {|∅⟩} (7.47)

Considering the subspaces as propositional variables, the variables can be true and false at the same
time. The non-classical logic is paraconsistent.
Furthermore, two subspaces, L ±

1,box and L
±⊥ηbox

1,box do not generate the full Krein space Sbox,

L ±
1,box +L

±⊥ηbox
1,box ̸= Sbox (7.48)

To obtain the full Krein space we should add the subspace ηboxL
±

1,box,

η̂boxL
±

1,box = µ |1⟩∓µ |3⟩ , (7.49)

with µ a complex number. The sum of the three subspaces builds the full Krein space(
L ±

1,box +L
±⊥ηbox

1,box

)
⊕ηboxL

±
1,box = Sbox. (7.50)

The Krein space defining the three-box paradox is also paracomplete, as the sum of the probability
of the proposition variable and its negation is different from the unity.
The three-box paradox can be described in a paracomplete and paraconsistent logic. In this type
of logic, contradictions are intrinsic.
The paradox exhibits a remarkable symmetry, which allows for a similar approach to constructing
the subspaces that result in the paracomplete and paraconsistent properties. In this scenario, the
subspaces are formed by taking equally weighted linear combinations of the box states |2⟩ and |3⟩,
incorporating both positive and negative signs, as follows,

L ±
2,box = β |2⟩±β |3⟩ . (7.51)

The pseudo-orthogonal subspace is

L
±⊥η

2,box = α |1⟩+β |2⟩±β |3⟩ . (7.52)

From these subspaces arise the paracomplete and paraconsistent properties as

L ±
2,box∩L

±⊥ηbox
2,box = L ±

2,box ̸= {|∅⟩} (7.53)(
L ±

2,box +L
±⊥ηbox

2,box

)
⊕ηboxL

±
2,box = Sbox.

In this particular paradox, there exist four distinct subspaces that give rise to both paracomplete-
ness and paraconsistency. It is crucial to consider these subspaces when interpreting the paradox,
as they play a significant role in understanding its counterintuitive properties. The remarkably high
level of symmetry observed in this paradox is likely a contributing factor to the emergence of these
counterintuitive properties.
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Figure 7.4: Krein space formed by quantum states with real components. The pink lines represent
Lbox and η̂boxLbox. Several interesting points have been plotted, the purple ones are inside the
cone, while the blue ones are outside. We have also included the plane x = z in orange.

Fig. 7.4 illustrates the geometry of the Krein space determined by the three-box paradox, employ-
ing quantum states with real components only (in other words, it is actually a representation of
the three-box paradox in RP2 instead of CP2). Notably, it resembles the light cone in Minkowski
space. This similarity is not surprising, given that the metric is the same, as the light cone considers
only two spatial dimensions. Neither the pre-selected state nor the post-selected one reside within
the cone, and neither does any of the three boxes represented by |1⟩, |2⟩, and |3⟩. Consequently,
all components of the paradox lie outside this cone. The states |ψi⟩ and

∣∣ψ f
〉

are positioned in a
highly symmetrical manner relative to the plane defined by L +

1,box and L −
1,box. This observation

may help explain some of the counterintuitive properties of the paradox.
Let us reconsider the paradox by calculating the pseudo-probabilities of finding the particle in
the boxes formed by the subspaces of the Krein space, namely L +

1,box, L
+⊥η

1,box , and ηboxL
+

1,box =

L −
1,box, as renamed

∣∣1̃〉, ∣∣2̃〉, and
∣∣3̃〉 as

∣∣1̃〉 =
1√
2
(|1⟩+ |3⟩) (7.54)∣∣2̃〉 =
1√

2+α2
(|1⟩+α |2⟩+ |3⟩)∣∣3̃〉 =

1√
2
(|1⟩− |3⟩)
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Figure 7.5: Π̃2,w in terms of α , where α ∈ R. When α = 0, the weak value Π̃2,w equals zero. The
minimum weak value is−0.366, which occurs when α =−0.732, while the maximum weak value
is 1.36, which occurs when α = 2.732. Finally, the weak value is equal to 1 when α = 1.

With these subspaces in mind, we can calculate the pseudo-probabilities, or weak values, of finding
the particle in the corresponding boxes. The weak values of boxes

∣∣1̃〉 and
∣∣3̃〉 are 0, the pseudo-

probability to find the particle in those boxes is 0. We might find the particle in box
∣∣2̃〉 with

probability,

Π̃2,w =

〈
ψ f
∣∣2̃〉〈2̃∣∣ψi

〉〈
ψ f
∣∣ψi
〉 =

α (2+α)

2+α2 , (7.55)

considering the values of α ∈ R. When α = 0 (Fig. 7.5), the probability of finding the particle in∣∣2̃〉 is zero, since the box
∣∣2̃〉 becomes equivalent to the box

∣∣1̃〉, and the particle is not found in
any box. However, when α = 1, the probability of finding the particle in box

∣∣2̃〉 becomes equal
to one. In this case, the new basis is neither paracomplete nor paraconsistent, as we can be certain
that the particle is located in box

∣∣2̃〉. The same holds true when α tends towards infinity or nega-
tive infinity. For other values of α , the probability ranges between negative values of −0.366 and
positive values larger than 1.36.
The paradox initially appears to be paraconsistent in the system of boxes |1⟩, |2⟩, and |3⟩, as the
particle can be found in boxes |1⟩ and |2⟩ with a probability of 1, but the sum of all probabilities
is equal to 1, suggesting that paracompleteness might not be inherent to the problem. However, by
transitioning to the Krein space and calculating the probabilities there, we can eliminate the para-
consistent behavior by determining that the particle is in box

∣∣2̃〉, if it exists somewhere. However,
this transition may also introduce paracompleteness, as the sum of all probabilities is no longer
equal to 1.

7.4 Conclusions
In this chapter, we established a connection between quantum weak values and non-classical log-
ics. The inherent logics governing weak values and, by extension, anomalous weak values, are
characterized by both paraconsistency and paracompleteness. As a result, the same proposition
can be both true and false simultaneously, while the probability of it being true or false need not
necessarily be equal to 1.
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The weak value can be described as the expectation value of a novel pseudo-projector, denoted as
ρ̃ , which is idempotent but not Hermitian. In fact, the operator ρ̃ is classified as pseudo-Hermitian,
i.e., it is Hermitian with respect to a specific metric, denoted by η̂ . The metric η̂ is not unique, and
thus requires additional properties to be imposed for the selection of a specific metric. In our case,
we decided to pick a unitary and Hermitian metric. This particular choice enables straightforward
algebraic calculations, allowing for ease of computation. From a logical perspective, it imposes
significant constraints on the associated logic, aiding in the identification of the most suitable and
appropriate logic for the given context.
As demonstrated in this chapter, the metric η̂ that corresponds to weak values satisfies the neces-
sary conditions to describe an indefinite inner product space (Krein space).
In non-classical logics, it is possible to establish a correlation between orthogonality and negation,
specifically the η-orthogonality in this case. By doing so, it can be inferred that certain intrinsic
characteristics of a Krein space—such as having an intersection of η-orthogonal subspaces that
are distinct from the null vector |∅⟩, and having a sum of η-orthogonal subspaces that are distinct
from the entire Krein space—lead to the emergence of a paraconsistent and paracomplete logic.
Furthermore, it is noteworthy that the metrics linked to weak values take the form of (−1,+1,+1, . . . ,+1)
rather than (−1,−1,−1, . . . ,+1,+1, . . . ,+1). This distinction holds significant importance. The
metric associated with the weak value expression is a Minkowski-like metric, which character-
izes special relativity! The existence of vectors with (pseudo-)norms that can be either positive or
negative, as well as vectors that are not null but have zero norms (i.e., isotropic vectors that are
pseudo-orthogonal to themselves), is significant in the context of paraconsistent logic.
A logic can be assigned to the Krein space used in weak value contexts, following a similar ap-
proach to that used in conventional quantum logic. In this case, a proposition p (from a non-
classical propositional calculus) is linked to a closed subspace L (p) of the Krein space, which
defines a semantics for this propositional calculus on the Krein space. Specifically, for any query
about the outcome of measuring a particular observable, a proposition can be associated with it,
indicating that certain physical states give rise to those measurement results.
The negation of a proposition is then associated with the pseudo-orthogonal space L⊥ (i.e. the
orthogonal in the sense of the pseudo-euclidean metric defined on the Krein Space). The disjunc-
tion p∨ q is linked to the closure of the direct sum of the subspaces L (p) and L (q), while the
conjunction p∧q is associated with the intersection of the subspaces L (p) and L (q). Using the
properties of the Krein spaces, we discover that this logic is non-classical. It does not satisfy the
"excluded middle principle" ((p∨ (¬p)) ↔ tautology), and it is therefore a paracomplete logic.
Furthermore, it does not satisfy the "non-contradiction principle" (p∧ (¬p) is a contradiction),
making it a paraconsistent logic. The conclusion of our analysis is the following: we discover
a link between weak values and Minkowskian metric, giving rise to a link between those values
and Krein spaces. Moreover, Krein spaces provide a semantic for a logic that is paracomplete and
paraconsistent. This finding is relevant to the fundamental issue of interpreting quantum mechan-
ics because quantum mechanics is sometimes considered to have an intrinsic paracomplete logic,
where the "Tertium non datur" principle must be relinquished, neither a proposition nor its nega-
tion is necessarily true. Furthermore, in the context of weak measurements, pre- and post-selected
states require us to abandon the non-contradiction principle. Thus, quantum mechanics can be
associated with a logic that is both paracomplete and paraconsistent.
The situation may appear unsettling at first, but fortunately, mathematics provides us with tools
to handle it. In particular, classical logic is associated with Boolean algebra, while intuitionistic



103 7.4. Conclusions

logic, which lacks the excluded-middle principle (Tertium non datur), is associated with Heyting
algebra 2. Similarly, we can associate paraconsistent logic with co-Heyting algebras, which is the
dual algebra to Heyting albegras.
The algebra utilized in Krein spaces consists of all closed subspaces of the Krein space. Notably,
this lattice diverges from the distributive properties. It also deviates from regularity, implying
that the closure of the sum of two positive or negative definite subspaces (i.e., those containing
solely vectors with positive or negative norms) no longer remains a positive or negative definite
subspace. Moreover, this algebra departs from being Boolean, Heyting, and co-Heyting due to its
non-distributive nature. Furthermore, the disjunction, represented by the closure of the sum, fails
to adhere to the excluded middle principle, where the statement ’p OR NOT-p’ does not hold true
for the entire Krein space. Similarly, the conjunction, symbolized by the intersection of closed
subspaces, does not satisfy the non-contradiction principle, as ’p AND NOT-p’ does not yield the
empty space. The introduction of this algebraic structure was initially documented in [170]. De-
spite its theoretical significance, it remains relatively uncommon in practical applications. Let us
note that logic of indefinite metric space was deeply studied in the context of quantum mechan-
ics and quantum field theory [171, 172]. However, in most cases, the subspaces associated with
propositions of the propositional calculus are required to be regular, meaning they do not contain
non-null vectors whose norm is zero. However, we are not required to limit ourselves to regular
subspaces. On the contrary, the weak measurement situation leads us to consider subspaces that
are not regular, and we can work with a lattice of non-regular subspaces. The three-box paradox
shows precisely that we need to consider the logic of non-regular space.
To gain a better understanding of situations involving post-selected states, it may be beneficial
to adopt a different logical framework and to utilize the algebra associated with Krein spaces,
which arise naturally in the context of weak values expressed using Minkowskian metric. The
aforementioned association can offer us an alternative perspective to comprehend well-established
paradoxes. In this chapter, we directed our attention towards the three-box paradox and observed
how paraconsistency and paracompleteness arise from the metric. This indicates that contradic-
tions are inherent in this paradox, and, in fact, in all weak values.
This connection paves the way to an interpretation of all post-selected measurements as para-
consistent and paracomplete phenomena. This perspective is novel, as traditional philosophical
discussions on quantum mechanics have focused on non-classical logics that are either paraconsis-
tent or paracomplete. By exploring both properties simultaneously, we can acquire fresh insights
and expand our comprehension of the foundational principles of quantum mechanics.

2A Heyting algebra, also known as a pseudo-Boolean algebra, is a bounded lattice with a partial order. In this
algebraic structure, the greatest element is denoted as 1, and the least element is denoted as 0. The algebra is equipped
with two fundamental operations: the meet operator (∧) representing conjunction, and the join operator (∨) repre-
senting disjunction. Additionally, it features an implication operation. It is important to note that Heyting algebras do
not necessarily adhere to the law of excluded middle. Heyting algebras are a generalization of Boolean algebras, with
Boolean algebras being a specific type of Heyting algebra that adheres to the principle of excluded middle.





Chapter 8
Weak measurements in dissipative quantum
systems

Weak values are widely used in the context of weak measurements for their amplification capac-
ity [44, 57, 173] and the advantageous property of being complex numbers [68, 69]. However, as
all quantum systems are open in practice, dissipative effects can affect the amplification qualities
of weak values [174]. In this chapter, we explore the impact of dissipation on weak measurements.
We also look at how weak values, because they are complex and unbounded, can be exploited to
extract information on the dissipative dynamics of open quantum systems, such as the dissipation
rate or non-markovianity [175].
In practice, quantum systems cannot be completely isolated. They always interact with the sur-
rounding environment. The study of these dynamics falls within the scope of open quantum sys-
tems theory, which aims to understand how the interaction with the environment affects the system
of interest [174, 176, 177]. The environment can usually be described in terms of bosonic modes
and, in the Born-Markov and secular approximations, the system’s dynamics can be modeled by a
Lindblad master equation [178],

˙̂ρ =−i
[
ĤS, ρ̂

]
+∑

i
γi

(
L̂iρ̂L̂†

i −
1
2
{L̂†

i L̂i, ρ̂}
)
≡L (ρ̂) , (8.1)

where L̂i are a set of jump operators, γi are dissipation rates, and h̄= 1. In the following, to describe
the time evolution over a time t of the operator ρ̂ governed by the Lindblad master equation, we
will use the superoperator notation eL t ρ̂ . This equation consists of two terms: the first term repre-
sents the unitary evolution of the density operator according to von Neumann’s equation, while the
second term, also noted D (ρ̂), accounts for the non-unitary dynamics resulting from dissipation,
decoherence and dephasing. The dissipator D involves dissipation rates γi, one for each dissipation
channel present [174].
Wiseman introduced the concept of weak values in dissipative systems in the context of homodyne
measurements [11]. Since then, a few studies investigated weak measurements in open quantum
systems. Two studies focused on the detrimental effects of decoherence on weak values, in par-
ticular, on the possibility that decoherence limits the sensitivity of sensors based on weak value
amplification [179, 180]. Other research explored how Markovian environments prevent weak val-
ues from exhibiting anomalous properties and how quickly this process occurs [180, 181, 182, 183]

105



Chapter 8. Weak measurements in dissipative quantum systems 106

(an anomalous weak value has a value different from any average of the observable). Studies also
sought to identify the optimal combination of a reservoir and a quantum system that minimizes the
detrimental effects of dissipation on weak values at any given time. Non-Markovian environments
appear to degrade the anomalous properties of weak values more slowly [184].
Our work expands upon previous studies by exploring the general limit of weak values at large
dissipation times. Furthermore, we study the case of systems with degenerate ground states in the
context of weak measurements and show that these systems can preserve the anomalous behaviour
of weak values even in the limit of infinite dissipation times.
In addition, we leverage the amplification properties of weak values at short dissipation times and
small dissipation rates to extract valuable information about the dissipation process. This approach
serves as a valuable supplementary experiment, shedding light on the significance of incorporating
dissipation rates in the modelling process of the main experimental setup, particularly when there
is limited time available for dissipation. After a brief dissipation period, it enables an effective
measurement of an amplified interaction rate, facilitating a comprehensive evaluation of its impli-
cations in the original experiment.
As after a short dissipation, one could measure an amplified interaction rate. Specifically, we
focus on weak measurements where dissipation occurs after the weak interaction and before post-
selection. The sequence involves pre-selecting the system, applying a general unitary operator
Û = e−igtÂS⊗N̂ , allowing for dissipative dynamics during a time τ , and finally performing post-
selection. This scheme is present in any experimental setup with a time delay between the system-
meter interaction and post-selection. We assume that the duration of the weak interaction is suffi-
ciently short, so that any dissipation during this period is negligible.
We finally consider how our protocol would perform in a specific setup involving a two-level atom
as the system and a single-mode cavity field as the meter. The weak measurement relies on a
small interaction between the atom and the cavity field during the atom’s short transit through the
cavity. Subsequently, the atom undergoes dissipation through its interaction with the quantized
radiation field of free space or another (leaky) cavity through which it passes. Post-selection is
then performed and the real and imaginary parts of the weak value are measured by reading out the
Q̂ or P̂ quadrature of the cavity field. The dissipation rate can be inferred by measuring the meter
state with the benefits of weak value amplification. Additionally, if the dissipation process is non-
Markovian, under certain circumstances, we show that it can be distinguished from a Markovian
one based on the amplified weak value.

8.1 General weak measurements with dissipation
In this section, we consider the general theory of weak measurements, following the procedure
of [26], but adding a dissipative evolution. The dissipation occurs during the time delay between
the weak system–meter interaction and the post-selection. The protocol consists of five steps:
system pre-selection, weak interaction, dissipative dynamics, post-selection on the system, and
meter readout, as illustrated in Fig. 8.1. Consider that the initial state of the system is described by
the density operator σ̂i and that of the meter by µ̂0. The tensor product of the states of the system
and the meter provides the state of the full composite system, resulting in

ρ̂0 = σ̂i⊗ µ̂0. (8.2)



107 8.1. General weak measurements with dissipation
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Figure 8.1: Overview of the steps involved in the dissipative weak measurement protocol. The
process begins with pre-selection of the system, followed by the implementation of a weak mea-
surement described through the unitary operator Û . After the weak interaction, the system under-
goes dissipation for a duration τ before a post-selection. Finally, the meter is readout to extract
information on the weak value.

The full system evolution depends on three components: the system Hamiltonian ĤS, the meter (or
ancilla) Hamiltonian ĤA, and the interaction Hamiltonian

Ĥint = gÂS⊗ N̂, (8.3)

where ÂS is the observable of interest acting in the system Hilbert space, N̂ is an operator acting in
the meter Hilbert space, g is the interaction strength, and h̄ = 1.
In the interaction picture with respect to Ĥ0 = ĤS⊗ Î+ Î⊗ĤA, the density operator of the composite
system evolves as

dρ̂I (t)
dt

=−i
[
V̂ (t) , ρ̂I (t)

]
, (8.4)

where the interaction Hamiltonian and the global density operator are given in the interaction
picture by

V̂ (t) = eiĤ0tĤint e−iĤ0t , ρ̂I (t) = eiĤ0t
ρ̂0 e−iĤ0t , (8.5)

where h̄ = 1.
The solution of Eq. 8.4 reads

ρ̂I (t) =
−→
T exp

[
−i
� t

0
V̂
(
t ′
)

dt ′
]

ρ̂I (0)exp
[

i
� t

0
V̂
(
t ′
)

dt ′
]
←−
T , (8.6)

where T is the time ordering operator. Given the small interaction strength g and the fact that
V̂ (t) ∝ g, we can expand the exponential in Eq. 8.6 in a Taylor series to first order in the interaction
strength. As a result, we can express the density operator at time t as follows

ρ̂I (t) ≈
[

Î− i
� t

0
V̂
(
t ′
)

dt ′
]

ρ̂0

[
Î + i

� t

0
V̂
(
t ′
)

dt ′
]

(8.7)

≈ ρ̂0 + iρ̂0

� t

0
V̂
(
t ′
)

dt ′− i
� t

0
V̂
(
t ′
)

dt ′ρ̂0

= ρ̂0 + i
[

ρ̂0,

� t

0
V̂
(
t ′
)

dt ′
]
.
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We assume that the weak interaction duration t is sufficiently short, so that the interaction Hamil-
tonian V̂ (t) does not evolve much from Ĥint under the free evolution due to Ĥ0. In these circum-
stances, we can make a series development of V̂ (t ′) around t/2 to first order:

V̂
(
t ′
)
≈ V̂ (t/2)+ ˙̂V (t/2)

(
t ′− t/2

)
(8.8)

with ˙̂V (t/2) = dV̂
dt ′
∣∣
t ′=t/2. Then, the density operator is given, at first order in time, by

ρ̂I (t) ≈ ρ̂0 + i
[

ρ̂0,

� t

0
dt ′
(

V̂ (t/2)+ ˙̂V (t/2)
(
t ′− t/2

))]
(8.9)

= ρ̂0 + it
[
ρ̂0,V̂ (t/2)

]
,

since the integral of the second term is exactly 0. The first contribution neglected in Eq. 8.9 due to
the approximation Eq. 8.8 is of the order

( i
2

)2 1
3!t

3 [Ĥ0,
[
Ĥ0,V̂ (t/2)

]]
.

After the unitary evolution of the composite system, the system S follows a dissipative dynamics
during a time interval τ , while it is assumed that the meter does not undergo any dissipative process.
The total density operator ρ̂I (t + τ) is given, after the dissipative evolution, by

ρ̂I (t + τ) =
(

eDτ ⊗ Î
)

ρ̂I (t)≈
(

eDτ ⊗ Î
)(

ρ̂0 + it
[
ρ̂0,V̂ (t/2)

])
, (8.10)

where the dissipator D has replaced the full Linbladian L because we are working in the in-
teraction picture. Indeed, in the interaction picture, the evolution defined in Eq. 8.1 becomes
˙̂ρI = D (ρI). Note that the dissipator remains identical to the one defined in the Schrödinger rep-
resentation, as a result of the commutation rules obeyed by the jump operators L̂i with the system
Hamiltonian ĤS [185]. After the dissipation time τ , the system is post-selected to the final state σ̂ f .
Post-selection is carried out by performing a projective measurement and filtering the information
relevant to the state σ̂ f . At this point, the meter state is, in the interaction picture,

µ̂ f I (t + τ) =
TrS
[(

σ̂ f I (t + τ)⊗ Î
)(

eDτ ⊗ Î
)

ρ̂I (t)
]

Tr
[(

σ̂ f I (t + τ)⊗ Î
)(

eDτ ⊗ Î
)

ρ̂I (t)
] , (8.11)

where TrS is the partial trace over the system degrees of freedom, and the post-selection operator
in the interaction picture depends on the post-selection time t + τ as

σ̂ f I (t + τ) = eiĤS(t+τ)
σ̂ f e−iĤS(t+τ), (8.12)

where h̄ = 1. In the remainder of this section, we will drop the explicit time dependence of
σ̂ f I (t + τ) and note it σ̂ f I for simplicity. The expression in the denominator of Eq. 8.11 corre-
sponds to the probability of obtaining the post-selected state σ̂ f , given the state of the composite
system ρ̂I (t + τ). The denominator is equal to the trace of the numerator, ensuring that the trace
of the meter state is equal to 1. Using Ĥint = 1gÂS⊗ N̂, the denominator of Eq. 8.11 becomes, to
first order in gt,

Tr
[(

σ̂ f I⊗ Î
)(

eDτ ⊗ Î
)

ρ̂I (t)
]

≈ Tr
[
σ̂ f I eDτ (σ̂i)

]
+2gt Im

(
Tr
[
σ̂ f I eDτ

(
ÂSI(t/2) σ̂i

)]
Tr
[
µ̂0N̂I(t/2)

])
= Tr

[
σ̂ f I eDτ (σ̂i)

](
1+2gt Im

[
AS,w (τ)

]
⟨N̂I(t/2)⟩0

)
, (8.13)
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where we have defined the weak value with dissipation, denoted AS,w (τ), as

AS,w (τ) =
Tr
[
σ̂ f I eDτ

(
ÂSI(t/2) σ̂i

)]
Tr
[
σ̂ f I eDτ (σ̂i)

] , (8.14)

and ⟨N̂I(t/2)⟩0 = Tr
[
µ̂0N̂I(t/2)

]
corresponds to the expectation value of the operator N̂I(t/2) in

the initial meter state µ̂0. Our definition (8.14) is very general and coincides with Wiseman’s
definition in the special case of homodyne measurements in cavity QED [27]. We stress that the
weak value Eq. 8.14 has been calculated in the interaction picture and that the system and meter
observables ÂS and N̂ appear thus as ASI(t/2) and NI(t/2), respectively. Their time dependence at
t/2 results from the approximation Eq. 8.8. The operator σ̂ f I corresponds to the post-selected state
σ̂ f at time t + τ in the interaction picture, as expressed in Eq. 8.12. If we revert to the Schrödinger
picture, we see that t/2 corresponds to the effective time of the pre-selection and the post-selection
for an instantaneous weak interaction that is symmetric with respect to pre- and post-selection.
Advantageously, by setting the post-selection operator as a constant in the interaction picture,
namely σ̂ f I (t + τ) = σ̂ f I (t/2) (the constant is defined with respect to the effective pre- and post-
selection time), we can suppress in practice the effects of the system free evolution during time
τ + t/2 on the weak value, so that we can focus specifically on the repercussions of dissipation, as
analyzed later on in this chapter.
Similarly, for the numerator of Eq. 8.11, we obtain

TrS

[(
σ̂ f I⊗ Î

)(
eDτ ⊗ Î

)
ρ̂I (t)

]
≈ Tr

[
σ̂ f I eDτ (σ̂i)

]
µ̂0 + igt

{
Tr
[
σ̂ f I eDτ

(
σ̂iÂSI

)]
µ̂0N̂I−Tr

[
σ̂ f I eDτ

(
ÂSIσ̂i

)]
N̂I µ̂0

}
= Tr

[
σ̂ f I eDτ (σ̂i)

][
µ̂0 + igt

(
AS,w (τ)µ̂0N̂I−AS,w (τ) N̂I µ̂0

)]
, (8.15)

where the interaction picture operators ÂSI and N̂I should be evaluated at time t/2, and where we
used the property

[
eDτ

(
Ô
)]†

= eDτ
(
Ô†), valid for an arbitrary operator Ô.

By combining the denominator Eq. 8.13 and the numerator Eq. 8.15, the final meter density matrix
is, at first order in gt,

µ̂ f I (t + τ) =
µ̂0 + igt

(
AS,w (τ)µ̂0N̂I(t/2)−AS,w (τ) N̂I(t/2) µ̂0

)
1+2gt Im

[
AS,w (τ)

]
⟨N̂I(t/2)⟩0

. (8.16)

Up to a normalization constant, the final meter state can be expressed as the initial meter state
µ̂0 plus a term that depends on the pre-selected state, the observable, and the post-selected state.
While this new term may seem small in principle, as it depends on a small parameter gt, there
are cases where the weak value AS,w (τ) becomes large, specifically when its denominator is close
to zero due to the near-orthogonality of the pre- and post-selected states, resulting in a significant
contribution to the meter state.
To actually perform the weak measurement, one should measure the expectation value of a meter
observable, L̂. The measurement result will depend on the weak value that appears in the meter
final state, as described by Eq. 8.16. In the interaction picture, L̂ is given by

L̂I (t + τ) = eiĤA(t+τ)L̂ e−iĤA(t+τ), (8.17)
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while its expectation value takes the form

⟨L̂⟩ f = Tr
(
L̂I (t + τ) µ̂ f I

)
=
⟨L̂I(t + τ)⟩0 +2gt Im

[
AS,w (τ)⟨L̂I(t + τ) N̂I(t/2)⟩0

]
1+2gt Im

[
AS,w (τ)

]
⟨N̂I(t/2)⟩0

, (8.18)

where a procedure similar to [26] was followed to obtain the numerator expression. All expectation
values are computed with respect to the initial meter state µ̂0.
From now on, let us assume that the expectation value of the meter operator N̂I (t/2) in the meter
initial state is zero, that is, ⟨N̂I(t/2)⟩0 = 0. If this is not the case, we could possibly redefine and
translate the meter operator N̂ to satisfy ⟨N̂I(t/2)⟩0 = 0. When the meter free evolution is fully
negligible during the short interaction time t, this assumption states that the expectation value of
the meter observable is zero in the meter initial state, a natural calibration requirement imparted
to the meter initial state. In the Schrödinger picture, the assumption requires the expectation value
of the meter observable N̂ to be zero in the state µ̂0(t/2) resulting from the free evolution for a
duration t/2 of the meter initial state µ̂0. In these conditions, the meter expectation value at the
end of the measurement is simply the numerator of Eq. 8.18, namely

⟨L̂⟩ f = Tr
(
L̂I (t + τ) µ̂ f I

)
= ⟨L̂I(t + τ)⟩0 +2gt Im

[
AS,w (τ)⟨L̂I(t + τ) N̂I(t/2)⟩0

]
. (8.19)

In addition, if we select an initial meter density operator that commutes with the meter Hamilto-
nian, i.e.

[
µ̂0, ĤA

]
= 0, the final meter average simplifies to

⟨L̂⟩ f = ⟨L̂⟩0 +2gt Im
[
AS,w (τ)⟨L̂I(t/2+ τ) N̂⟩0

]
, (8.20)

where only the operator L̂I remains in the interaction picture, evaluated at the effective time t/2+τ .
The latter reflects the natural evolution under ĤA of the meter state perturbation due to the weak
interaction. For short dissipation times τ , this time dependence could be neglected whenever
i(t/2+ τ)⟨

[
ĤA, L̂

]
N̂⟩0≪ ⟨L̂N̂⟩0.

The shift in the expectation value of a general meter observable, L̂, as given by Eq. 8.19, depends
on both the real and imaginary parts of the weak value. It is enlightening to reformulate it the
following way:

⟨L̂⟩ f = ⟨L̂I⟩0− igt ReAS,w (τ)⟨
[
L̂I, N̂I

]
⟩0 +gt ImAS,w (τ)⟨

{
L̂I, N̂I

}
⟩0, (8.21)

where the interaction operators should be evaluated at the appropriate times L̂I(t + τ) and N̂I(t/2).
This expression makes the real and imaginary parts of the weak value appear explicitly. We can
choose L̂ such that ⟨L̂I(t + τ)⟩0 = 0, to ensure that the expectation value of L̂ is now directly
proportional to the terms which depend on the weak value. To separate the shifts due to the real
and imaginary components, we can choose specific meter observables. For instance, when the
meter observable at time t + τ is equal to the pointer at time t/2, i.e. L̂I(t + τ) = N̂I(t/2), the
expectation value of the meter observable is proportional to the imaginary part of the weak value.
Indeed, in this case, the expectation value Eq. 8.21 reads

⟨N̂⟩ f = 2gt⟨N̂2
I (t/2)⟩0 ImAS,w (τ) , (8.22)

where ⟨N̂2
I (t/2)⟩0 = Tr

[
µ̂0N̂2

I (t/2)
]
= ∆2N̂I(t/2) ̸= 0, considering that ⟨N̂I(t/2)⟩0 = 0. On the

other hand, when the meter observable, L̂= M̂, at time t+τ is the canonical conjugate of the pointer
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at time t/2, such that
[
M̂I(t + τ) , N̂I(t/2)

]
= iÎ, its expectation value has a term proportional to the

real part of the weak value. More specifically, we have

⟨M̂⟩ f =
[
gt ReAS,w (τ)+gt ⟨

{
M̂I(t + τ) , N̂I(t/2)

}
⟩0 ImAS,w (τ)

]
, (8.23)

assuming that ⟨M̂I(t + τ)⟩0 = 0. It is sometimes possible to choose the observables and the initial
state in such a way that we also have ⟨

{
M̂I(t + τ) , N̂I(t/2)

}
⟩0 = 0. This then leads to the expec-

tation value of M̂ being directly proportional to the real part of the weak value. Using N̂ and M̂
as meter observables enables separating the real and imaginary components of the weak value,
which is often desirable in many experimental setups. In addition, they enable describing the argu-
ment of the weak value [18, 112], here as a function of the dissipation time τ , in the meter phase
space [19]. In section 8.3, we will show how Eq. 8.19 connects directly the meter measurement to
the modulus and argument of the weak value. We remind the reader that equations Eq. 8.19–8.23)
were obtained under the assumptions that the expectation value ⟨N̂I (t/2)⟩0 = 0. If this is not the
case, the denominator present in Eq. 8.18 should be kept. In particular, the general expression for
Eq. 8.21 is

⟨L̂⟩ f =
⟨L̂I⟩0− igt ReAS,w (τ)⟨

[
L̂I, N̂I

]
⟩0 +gt ImAS,w (τ)⟨

{
L̂I, N̂I

}
⟩0

1+2gt Im
[
AS,w (τ)

]
⟨N̂I⟩0

, (8.24)

with the appropriate time dependence L̂I(t + τ) and N̂I(t/2).
The main results of this section, namely Eqs. 8.14, 8.19 and 8.21, as well as 8.24, describe the
consequences on weak measurements of dissipation occurring after the weak interaction, before
post-selection. These expressions ensue from the weak interaction approximation Eq. 8.8–8.9, that
was used in Eq. 8.13 and Eq. 8.15 to evaluate the meter reduced density matrix Eq. 8.11 to first
order in gt. By using expressions in the interaction picture, we also include the full treatment of
the free Hamiltonian evolution of both the system and the meter, which is required for describing
long dissipation times τ .
While there could also be dissipation during the time delay between pre-selection and the system–
meter interaction, this would only alter the initial system state from σ̂i (−T ) to σ̂i (0), where
σ̂i (−T ) is the density operator produced by the pre-selection procedure at time −T (either as
characterized experimentally or as defined theoretically) and where T is the time delay between
pre-selection and the application of the unitary operator at time 0. In that case, in the definition
Eq. 8.14 of the weak value with dissipation, we should simply use σ̂i (0) for the effectively pre-
selected density operator: σ̂i = σ̂i (0) = eL T (σ̂i (−T )) = eDT (σ̂iI (−T )), with the last equality
expressed in the interaction picture. The effect of dissipation before the weak interaction is thus
simply that the effective initial state σ̂i (0) may differ from the desired initial state. As a result, it is
generally possible to modify the post-selected state in order to partially preserve the amplification
capabilities of the weak value (if this is the objective), provided that the evolution of the system is
well-known and that the actual initial state σ̂i (−T ) is not completely mixed. In general, Eq. 8.19
does not account for dissipation occurring during the weak interaction, unless we assume that it is
negligible because of the short duration t of the weak interaction.
As an illustration of the impact of dissipation before the weak interaction, let us consider the case
of dissipation occurring only before the weak interaction (no dissipation in between the weak in-
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teraction and post-selection). In that situation, the weak value would be

ÃS,w (T ) =
Tr
[
σ̂ f I(t + τ) ÂSI(t/2)eDT (σ̂iI(−T ))

]
Tr
[
σ̂ f I(t + τ)eDT (σ̂iI(−T ))

] , (8.25)

where T is the dissipation duration. If the system state at time−T is not completely mixed, the pre-
selected state evolution under dissipation can be taken into account by modifying the post-selected
state, in order to preserve some amplification, even at a very large dissipation time T . In other
words, we can often choose a post-selected state that is sufficiently orthogonal to the pre-selected
state after dissipation, σ̂i (0). As an illustration, if the dissipation time is infinite and the system
possesses a single non-degenerate ground state |g⟩, considering a pure post-selected state

∣∣ψ f
〉
,

and ignoring the effects of the system free evolution, the weak value is

lim
T→∞

ÃS,w (T ) =

〈
ψ f
∣∣ Â |g⟩〈

ψ f
∣∣g〉 . (8.26)

By choosing a post-selected state that is almost orthogonal to |g⟩, we can find amplification even at
infinite dissipation time. We will show in the next section that this is not the case when dissipation
takes place after the weak interaction.
The consequences on the weak value of having dissipation before or after the weak interaction
are completely different. Having dissipation before the weak interaction simply alters the initial
state. However, having dissipation after the weak interaction destroys the coherences of the system,
partially or completely, as we will show in the next section. Consequently, both types of dissipation
should be studied separately. Furthermore, all the results of this chapter can be extended to the case
in which there is dissipation before the weak interaction by changing the initial density operator,
σ̂i (−T ) by an initial density operator after dissipation σ̂i (0), just before the weak interaction.

8.2 Weak value evolution

In this section, we investigate the properties of the weak value of an arbitrary operator in the
context of long dissipation times. Previous studies have suggested that dissipation can destroy the
anomalous properties of the weak value [180, 179, 181, 182, 183, 184], which means that weak
values converge to values within the range of the eigenvalues of the observable in the presence
of dissipation. Our findings reveal that, in non-degenerate systems, the weak value approaches
the expectation value of the operator as the dissipation time tends to infinity. Furthermore, we
demonstrate that the anomalous properties of the weak value can persist at infinite dissipation
time in systems with degenerate ground states. This suggests that dissipation does not always
necessarily result in the loss of the amplification effect that the weak value can provide.

8.2.1 Non-degenerate ground state

Let us assume that the system under study possesses only one ground state, denoted by |g⟩. In
this case, the dissipative evolution invariably destroys anomalous properties of weak values at very
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long times, regardless of the system’s markovianity1.
For simplicity of calculation, and without loss of generality, let us consider a two-level system.
The excited state of the system is denoted by |e⟩, and we assume that the pre- and post-selected
states, |ψi⟩ and

∣∣ψ f (τ)
〉
, are both pure states. We choose a post-selected state that depends on

the dissipation duration τ in such a way that the post-selected state is constant in the interaction
representation, noted

∣∣ψ f I
〉
. This allows us to focus on analyzing the consequences of dissipation

without observing effects of the free Hamiltonian evolution of the system during time τ . In prac-
tice, this is equivalent to ensuring that the effectively post-selected state at time t/2 does not depend
on the dissipation duration. In this scenario, the weak value with dissipation can be expressed as
follows

AS,w (τ) =
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ

(
ÂSI |ψi⟩⟨ψi|

)]
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ (|ψi⟩⟨ψi|)

] (8.27)

=
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣(Dee (τ) |e⟩⟨e|+Deg (τ) |e⟩⟨g|+Dge (τ) |g⟩⟨e|+Dgg (τ) |g⟩⟨g|)

]
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ (|ψi⟩⟨ψi|)

] ,

where
D̂(τ) = eDτ

(
ÂSI |ψi⟩⟨ψi|

)
(8.28)

and the Di j (τ) coefficients are the matrix elements of the operator D̂(τ). The dissipator D rep-
resents the Lindbladian in the interaction picture. The observable ÂSI is in principle evaluated in
the interaction picture at time t/2. However, for the purpose of this discussion, we could neglect
the small effect of the free evolution and consider that ÂSI (t/2) = ÂS without loss of generality,
since t is a small constant parameter. The trace of D̂(τ), the result of the evolution of the operator
ÂSI |ψi⟩⟨ψi|, is preserved at all times τ , i.e., Tr

(
eDτ

(
ÂSI |ψi⟩⟨ψi|

))
= Tr

(
ÂSI |ψi⟩⟨ψi|

)
. Given

that the Lindbladian dynamics associated with dissipation drives any operator to the ground state
in the limit of infinite time (in other words, limτ→∞ eDτ(Ô) = Tr[Ô] |g⟩⟨g|), the coefficient that
multiplies the ground density operator at long times should be equal to the expectation value of the
operator ÂSI , i.e., limτ→∞ Dgg (τ) = Tr

(
ÂSI |ψi⟩⟨ψi|

)
. Therefore, the limit of the weak value can

be expressed as

lim
τ→∞

AS,w (τ) =
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣Tr
(
ÂSI |ψi⟩⟨ψi|

)
|g⟩⟨g|

]
|
〈
ψ f I
∣∣g〉 |2 (8.29)

= Tr
(
ÂSI |ψi⟩⟨ψi|

) Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣g〉⟨g|]

|
〈
ψ f I
∣∣g〉 |2 = Tr

(
ÂSI |ψi⟩⟨ψi|

) |〈ψ f I
∣∣g〉 |2

|
〈
ψ f I
∣∣g〉 |2

= Tr
(
ÂSI |ψi⟩⟨ψi|

)
= ⟨ψi| ÂSI |ψi⟩ .

In conclusion, under dissipation, any weak value of a general observable approaches its expectation
value on the initial state in the limit of infinite time. In particular, this result remains true regardless
of the dimensionality of the quantum state and the chosen post-selected state, under the assumption
of a unique steady state.

1Markovianity characterizes a process or system with memorylessness, meaning its state at time t is solely influ-
enced by its state at time t−1, uninfluenced by preceding temporal stages. In contrast, a non-Markovian process relies
on its entire historical sequence, diverging from the behaviour of a Markovian counterpart.
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8.2.2 Degenerate ground state
We demonstrate that when a system’s ground state is degenerate, amplification can occur at infi-
nite dissipation times. Specifically, let us consider an N-level system that has a two-dimensional
degenerate ground state. We chose the two orthogonal states |g1⟩ and |g2⟩ as a basis to describe
the ground state. Depending on the initial state, the final evolution of the system can result in the
final state being either |g1⟩, |g2⟩, a linear combination of the two, or a density matrix involving
both states. In cases where the evolutions under dissipation in the denominator and numerator of
the weak value yield the same final state, the weak value at infinite dissipation times tends towards
the expectation value, as in Eq. 8.29. However, in cases where the final operators differ, amplifica-
tion can occur at very long times. In this scenario, assuming pure pre- and post-selected states for
simplicity, the weak value at infinite dissipation times can be expressed as follows,

lim
τ→∞

AS,w (τ) = lim
τ→∞

Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ

(
ÂSI |ψi⟩⟨ψi|

)]
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ (|ψi⟩⟨ψi|)

] (8.30)

=
a11
∣∣〈ψ f I

∣∣g1
〉∣∣2 +a22

∣∣〈ψ f I
∣∣g2
〉∣∣2 +a21

〈
ψ f I
∣∣g2
〉〈

g1
∣∣ψ f I

〉
+a12

〈
ψ f I
∣∣g1
〉〈

g2
∣∣ψ f I

〉
b11
∣∣〈ψ f I

∣∣g1
〉∣∣2 +b22

∣∣〈ψ f I
∣∣g2
〉∣∣2 +b21

〈
ψ f I
∣∣g2
〉〈

g1
∣∣ψ f I

〉
+b12

〈
ψ f I
∣∣g1
〉〈

g2
∣∣ψ f I

〉 ,
where

lim
τ→∞

eDτ
(
ÂSI |ψi⟩⟨ψi|

)
=

2

∑
j=1

2

∑
k=1

a jk
∣∣g j
〉
⟨gk| , (8.31)

lim
τ→∞

eDτ (|ψi⟩⟨ψi|) =
2

∑
j=1

2

∑
k=1

b jk
∣∣g j
〉
⟨gk| . (8.32)

One can find amplification and complex weak values even at infinite time by choosing the appropri-
ate post-selected state and observable. In that case, since these quantities cannot be any expectation
value of the operator ÂS, the weak value is considered anomalous.
An alternative explanation stems from the decomposition of the unnormalized state ÂSI |ψi⟩ =〈
ÂSI
〉

i |ψi⟩+∆iÂSI
∣∣ψ⊥i 〉, where the average is

〈
ÂSI
〉

i = ⟨ψi| ÂSI |ψi⟩, the quantum uncertainty is

∆iÂSI =

√〈
Â2

SI

〉
i−
〈
ÂSI
〉2

i , and the normalized state
∣∣ψ⊥i 〉 is orthogonal to the initial state |ψi⟩.

Therefore, considering the linearity of the dissipator evolution, we can write the weak value as

AS,w (τ) =
〈
ÂSI
〉

i +∆iÂSI
Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ

(∣∣ψ⊥i 〉⟨ψi|
)]

Tr
[∣∣ψ f I

〉〈
ψ f I
∣∣eDτ (|ψi⟩⟨ψi|)

] , (8.33)

where the second term is responsible for any anomalousness of the weak value. We note that the
trace of the coherence

∣∣ψ⊥i 〉⟨ψi| is zero. When the ground state is not degenerate, the operator
eDτ

(∣∣ψ⊥i 〉⟨ψi|
)

can only decay to 0 in the ground state and this second term does not contribute
to the weak value. As explained previously, the weak values then decays to the average value.
However, when the ground state is degenerate, depending on the nature of the various dissipation
channels, the non-Hermitian operator

∣∣ψ⊥i 〉⟨ψi| can decay to a mixture of the zero operator and
coherences in the ground state manifold. The part that decays to zero does not contribute to the
weak value in the limit of infinite dissipation time, similarly to the non-degenerate case. However,
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Figure 8.2: Atomic transition Jg =
1
2 ↔ Je =

3
2 . The Clebsch-Gordan coefficients for each transi-

tion, CJg,1,Je
mg,q,me =

〈
Jg,mg;1,q

∣∣Je,me
〉

are shown for each allowed transition.

the part that decays to non-Hermitian coherences of the type |gm⟩⟨gn| (with ⟨gm|gn⟩= 0) has trace
zero but does contribute to the weak value, even in the limit of infinite dissipation time. This
argument can easily be generalized to mixed initial states, beyond the pure state case examined
here. Analyzing the evolution of the coherence eDτ

(∣∣ψ⊥i 〉⟨ψi|
)

under dissipation may help find
specific initial and final states to evidence anomalous weak values in degenerate systems.
As an example to demonstrate the anomalous properties of weak values in systems with degenerate
ground states, we examine a simple case involving a sodium atom. Specifically, we consider a
situation in which the orbitals 1s, 2s, and 2p are all fully occupied, and there is one electron in the
degenerate level 3s. When this electron is excited, it can undergo a transition to the nearby 3p level.
In particular, one of the most intense transitions is the Jg =

1
2 ↔ Je =

3
2 transition that produces the

main spectral line in the sodium doublet. In this system, the ground state is degenerate, while there
are four possible excited states, making it a six-level system, Fig. 8.2.
The Lindbladian governing the de-excitation of the atom can be expressed in the interaction picture
as

D (σ̂I) = Γ ∑
q=0,±

(
L̂qσ̂IL̂†

q−
1
2
{L̂†

qL̂q, σ̂I}
)
, (8.34)

where Γ is a characteristic spontaneous emission rate for the transition Jg =
1
2 ↔ Je =

3
2 , and

L̂q
∣∣Je,me = mg +q

〉
=CJg,1,Je

mg,q,me

∣∣Jg,mg
〉
, L̂q

∣∣Jg,mg
〉
= 0. (8.35)

For more details on the expression of L̂q, see appendix M. To give a concrete example of the anoma-
lous weak value generated by dissipation, let us consider the following pre- and post-selected
states,

|ψi⟩ =
1
2
(|Je,−3/2⟩+ i |Je,−1/2⟩+ |Je,1/2⟩+ |Je,3/2⟩) , (8.36)∣∣ψ f I

〉
= α |Je,−3/2⟩+−0.995 |Je,−1/2⟩−α (1+ i) |Je,3/2⟩+α

∣∣Jg,−1/2
〉

+(−0.00734+0.00114i)
∣∣Jg,1/2

〉
,
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Figure 8.3: Real and imaginary parts of the weak value of Ĵy as a function of the product of the
dissipation time and the dissipation rate. The pre- and post-selected states are detailed in the text
and chosen to illustrate the occurrence of an increasing anomaly due to dissipation.

with α = 0.0498. We choose again a state that is constant in the interaction picture to analyze solely
the effects of the dissipation. The chosen observable to be measured is the angular momentum
ÂS ≈ ÂSI (t/2) = Ĵy, or by setting h̄ = 1,

Ĵy =



0 i
√

3
2 0 0 0 0

−i
√

3
2 0 i 0 0 0

0 −i 0 i
√

3
2 0 0

0 0 −i
√

3
2 0 0 0

0 0 0 0 0 i
2

0 0 0 0 − i
2 0


, (8.37)

in a basis ordered by decreasing magnetic quantum number m starting from the four excited states
and ending with the two ground states (see Fig. 8.2).

Using the chosen pre- and post-selected states and observable, we find that the weak value
without dissipation is Aw(τ = 0) = 0.0954. This weak value is not anomalous, as its imaginary
part is zero and its modulus, 0.0954, lies in the range of the spectrum of Ĵy, whose smallest and
largest eigenvalues are ±3

2 . At infinite dissipation time, the modulus and the imaginary part of the
weak value increase in magnitude to Aw(τ → ∞) = −0.346+ 0.151i. The dissipation generates
an anomalous behavior of the weak value, by increasing the imaginary part from 0 to 0.151. In
Fig. 8.3, we show the evolution of the real and imaginary parts of the weak value as a function of
the product Γτ of dissipation time and dissipation rate. One can appreciate that, at very long times,
the imaginary part of the weak value is not zero and the real part is larger in modulus than it was
at null dissipation time.
We can also obtain an anomalous weak value that is preserved and completely constant over time,
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Figure 8.4: Real and imaginary parts of the weak value of Ĵy as a function of the product of the
dissipation time and the dissipation rate. The pre- and post-selected states are detailed in the text
and are chosen to create a constant anomalous weak value.

by choosing the following pre- and post-selected states for the same system:

|ψi⟩ =
1
2
(|Je,−3/2⟩+ i |Je,−1/2⟩+ |Je,1/2⟩+ |Je,3/2⟩) , (8.38)∣∣ψ f I

〉
= 0.989

∣∣Jg,−1/2
〉
+(−0.146+0.0226i)

∣∣Jg,1/2
〉
.

Despite the orthogonality of the pre- and post-selected states, as defined in Eq. 8.38, the presence
of dissipation in the system ensures that the weak value denominator is non-zero for τ > 0. Fig. 8.4
depicts the evolution of the real and imaginary part of the weak value of Ĵy. As one can see, the
weak value is constant and has an imaginary part different from 0.
Anomalous weak values, which are quantities different from any possible expectation value (i.e.,
larger than the maximum expectation value, smaller than the minimal expectation value, or com-
plex values), are linked to contextuality [31, 32], a non-classical property. Dissipation generally
destroys the quantum superposition and coherence of a system, and without these quantum prop-
erties, there is no amplification through anomalous weak values. However, in systems with a
degenerate ground state, the final state can still present quantum superposition and coherence,
which allows us to maintain the anomalous character of the weak value even in the limit of infinite
dissipation times.
In non-degenerate systems, dissipation inevitably eliminates the anomalous properties of weak
values over time, preventing amplification in this regime. Nonetheless, weak values can still be
leveraged to extract information about the system evolution over short dissipation times. During
the early stages of dissipation, the Lindbladian can be approximated by a Taylor series, enabling
us to extract parameters related to the dynamics from the weak value evolution. In the upcoming
sections, we will examine a few examples.

8.3 Weak measurement in the Rabi model
In this section, we apply the theoretical principles of weak measurements under dissipation to
a specific setup involving a two-level atom system. In this system, a weak measurement of the
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internal state of the atom is performed using the field of a cavity. The cavity mode serves as the
meter or ancilla, and the atom-cavity dynamics are governed by the Rabi model. Fig. 8.5 illustrates
the various steps in this process. Initially, the atom is pre-selected, for example by pumping it with
a laser pulse of appropriate frequency and intensity, leaving it in a superposition of its ground and
excited states, as shown in (a). Following pre-selection, the weak interaction occurs with a cavity
mode whose initial quantum state is known, as shown in (b). Dissipation then occurs as soon as
the atom leaves the cavity, as a result of its interaction with a quantized radiation field (either the
free field or the field of a second lossy cavity into which it moves) acting as an environment with
an infinite number of degrees of freedom, as shown in (c). Finally, post-selection is performed on
the atom and the bosonic cavity mode is read out. By measuring the field quadratures of the cavity
mode, Q̂ and P̂, we can extract the real and imaginary components of the weak value from the shift
in the expectation value of the quadratures.

Figure 8.5: The weak measurement under dissipation scheme involves four stages. Firstly, pre-
selection of the system is achieved by pumping the atom, as shown in (a), leaving it in a chosen
superposition of the ground and excited states. Secondly, a weak interaction occurs in a closed
single-mode cavity, as depicted in (b). Thirdly, after the weak interaction, the atom undergoes
dissipation, as shown in (c). Finally, post-selection is performed on the atom.

When the atom is in the cavity, its interaction with the field mode is described by the Rabi model,
corresponding to the atom-field Hamiltonian Ĥ = Ĥatom + Ĥfield + Ĥint with

Ĥatom =
1
2

ωaσ̂z, (8.39)

Ĥfield = ω f â†â,

Ĥint = gintσ̂x⊗
(

â† + â
)
.

where ωa and ω f are respectively the frequencies of the atom and the cavity, gint is the atom-cavity
coupling constant, â† and â are the creation and annihilation operators of the field, σ̂ j the Pauli ma-

trices, and h̄ = 1. The field quadratures are defined by Q̂ =
√

1
2ω f

(
â† + â

)
and P̂ = i

√
ω f
2

(
â†− â

)
.

In this model, the pointer N̂ from Eq. 8.3 is thus given by N̂ =
√

2ω f Q̂. (N̂ should not to be con-
fused here with the number operator â†â.)
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8.3.1 Usual weak measurement approximation

To begin, the atomic system is pre-selected in the state σ̂i. The meter initial state is denoted
by µ̂0. For an arbitrary initial state of the meter, the weak measurement results are provided by
the general expressions Eq. 8.18 or Eq. 8.24. In order to use the corresponding simpler results
Eq. 8.19 or Eq. 8.21 for the measurement average, we can require that ⟨N̂I (t/2)⟩0 = 0; we can
also take advantage of Eq. 8.20 when the initial meter state commutes with Ĥfield. The simplest
meter state to consider is the vacuum state, denoted by |0⟩⟨0|, but the meter shifts observed with
energy eigenstates, coherent states, squeezed states, and thermal-equilibrium states can all be eval-
uated straightforwardly, enabling the determination of the weak value. In the following, we will
determine the meter shifts for a general meter state at first. Then, we will discuss a few simple
examples.
The observable weakly measured as a result of the interaction Ĥint Eq. 8.39 of the Rabi model is the
operator σ̂x, at least if we assume an instantaneous weak interaction (equivalent to adding a Dirac
distribution δ (t) in the interaction Hamiltonian). For a short –but not instantaneous– interaction
time with respect to the free evolution of the atom (ωat ≪ 1) and cavity field (ω f t ≪ 1), we can
use the weak measurement approximation Eq. 8.8–8.9 on which relies our general theory. In that
case, we showed that the operator effectively probed is

σ̂xI (t/2) = e
i
4 ωatσ̂zσ̂xe−

i
4 ωatσ̂z = cos

(
ωat
2

)
σ̂x− sin

(
ωat
2

)
σ̂y. (8.40)

We see that it corresponds to a small clockwise rotation of the σ̂x operator around the z axis. We
will use the notation σ̂xI = n⃗I · ˆ⃗σ to represent this operator, with n⃗I = (cos ωat

2 ,−sin ωat
2 ,0) a three-

dimensional real vector representing σ̂xI on the Bloch sphere.
We use Eq. 8.24 to determine the shifts in terms of the real and imaginary parts of the weak value.
Therefore, we need to compute the meter observables N̂I and L̂I in the interaction picture, as well
as the commutator

[
L̂I, N̂I

]
and anti-commutator

{
L̂I, N̂I

}
for both cases L̂I = Q̂I and L̂I = P̂I , since

the two field quadratures serve as our conjugate meter observables. In the interaction picture, the
creation and annihilation operators are represented as âI (t ′) = e−iω f t ′ â and â†

I (t
′) = eiω f t ′ â†. Thus,

we can promptly determine the observables

N̂I (t/2) =
[
â†eiω f (t/2)+ âe−iω f (t/2)

]
, (8.41)

Q̂I (t + τ) =

√
1

2ω f

[
â†eiω f (t+τ)+ âe−iω f (t+τ)

]
, (8.42)

P̂I (t + τ) =

√
ω f

2
i
[
â†eiω f (t+τ)− âe−iω f (t+τ)

]
, (8.43)

the commutators

[
Q̂I (t + τ) , N̂I (t/2)

]
= −2i

√
1

2ω f
sin
[
ω f (t/2+ τ)

]
Î, (8.44)

[
P̂I (t + τ) , N̂I (t/2)

]
= −2i

√
ω f

2
cos
[
ω f (t/2+ τ)

]
Î, (8.45)
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as well as the anti-commutators

{
Q̂I (t + τ) , N̂I (t/2)

}
= 2

√
1

2ω f
cos
[
ω f (t/2+ τ)

] (
2â†â+ Î

)
+ 2

√
1

2ω f

[
â†2eiω f (3t/2+τ)+ â2e−iω f (3t/2+τ)

]
, (8.46)

{
P̂I (t + τ) , N̂I (t/2)

}
= −2

√
ω f

2
sin
[
ω f (t/2+ τ)

] (
2â†â+ Î

)
+ 2i

√
ω f

2

[
â†2eiω f (3t/2+τ)− â2e−iω f (3t/2+τ)

]
. (8.47)

Now, we can simply evaluate the expectation values of these quantities in the meter initial state
to determine the meter shifts Eq. 8.24. Interestingly, we can already observe that the expectation
value of the commutators Eq. 8.44 and Eq. 8.45 do not depend on the meter initial state since
they are proportional to the identity. This means that the initial meter state does not influence the
meter shift arising from the real part of the weak value (at least when we can neglect the effect of
the denominator in the shift expression). In contrast, the expectation value of the anti-commutators
depends on the initial meter state. Thus, the choice of the initial meter state will influence the meter
shift associated to the imaginary part of the weak value. It is worth noticing that the expectation
value of the operator 2â†â+ Î present in Eq. 8.46 and Eq. 8.47 is proportional to the average energy
in the initial meter state (including the zero-point energy term). Using an initial meter state with
an average energy larger than the energy of the vacuum state will thus generally increase the meter
shift resulting from the imaginary part of the weak value, relatively to the shift due to the real part
(at least, when we can ignore the contributions of the â2 and â†2 terms).
For simplicity, let us now assume that the meter initial state is an energy eigenstate µ̂0 = |n⟩⟨n|. In
that case, all the expectation values of the meter observables N̂I , Q̂I , and P̂I Eq. 8.41–8.43 are 0,
while terms in â2 and â†2 in Eq. 8.46 and Eq. 8.47 average to zero as well. As a result, we find the
following meter shifts at the end of the weak measurement:

⟨Q̂⟩ f =−2gt

√
1

2ω f

[
sinω f (t/2+ τ) ReσS,w (τ)− (2n+1)cosω f (t/2+ τ) ImσS,w (τ)

]
, (8.48)

⟨P̂⟩ f =−2gt

√
ω f

2
[
cosω f (t/2+ τ) ReσS,w (τ)+(2n+1)sinω f (t/2+ τ) ImσS,w (τ)

]
. (8.49)

As just discussed before, the shifts proportional to the real part of the weak value are identical
for all the energy eigenstates, while the shifts proportional to the imaginary part increase linearly
with the energy level n. In these expressions, the weak value σS,w (τ) is the weak value of the
observable n⃗I · ˆ⃗σ Eq. 8.40 under dissipation, defined as in Eq. 8.14 by imposing ÂSI = σ̂xI . The
expressions Eq. 8.48 and Eq. 8.49 would remain essentially identical for a meter initial state in
thermal equilibrium: in that case, the energy level n should be replaced by the average energy level
in the thermal state neq(T ), with 2neq+1 = coth

[
ω f /(2kBT )

]
where kB is the Boltzmann constant

and T the temperature. We see thus that the meter shift due to the imaginary part of the weak
value is temperature dependent, while the shift due to the real part is not. For a squeezed vacuum
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state as the meter initial state, it is theoretically possible to amplify or attenuate exponentially the
shift due to the imaginary part of the weak value as a function of the squeezing parameter z (with
a factor e±2|z| replacing (2n+1) in Eq. 8.48 and Eq. 8.49 for the particular argument argz = ω f t;
also, because the terms â2 and â†2 contribute to the anti-commutator average for squeezed states,
the factor e±2|z| is not proportional to the mode average energy sinh |z|). When choosing a coherent
state for the meter initial state, the shift expressions remain straightforward to compute. However,
they become much less practical to handle because the expectation values of the meter observables
N̂I , Q̂I , and P̂I are generally non-zero and then contribute to Eq. 8.24 by adding a term independent
on the weak value on the numerator and by preserving the term proportional to the imaginary part
of the weak value in the denominator. From that perspective, coherent states do not seem ideal to
retrieve the weak values from the experimental meter shifts.
Now, we turn our attention to the dependence of the meter shifts on the dissipation duration τ ,
which determines the post-selection time. For reasons that will soon become apparent, we define
the polar representation of the weak value [18, 19, 112] by σS,w (τ) =

∣∣σS,w (τ)
∣∣eiϕw(τ), where∣∣σS,w (τ)

∣∣ is its modulus and ϕw(τ) is its argument as a function of the dissipation duration τ . We
consider that the meter initial state is the vacuum state for simplicity. After setting n= 0 in Eq. 8.48
and Eq. 8.49, the expectation values of the Q̂ and P̂ field quadratures become

⟨Q̂⟩ f = 2gintt

√
1

2ω f

∣∣σS,w (τ)
∣∣sin

[
ϕw(τ)−ω f (t/2+ τ)

]
, (8.50)

⟨P̂⟩ f = −2gintt

√
ω f

2

∣∣σS,w (τ)
∣∣cos

[
ϕw(τ)−ω f (t/2+ τ)

]
. (8.51)

In the limit of negligible free evolution of the meter, i.e. when ω f (t/2 + τ) ≈ 0, the expec-
tation value of the Q̂ field quadrature is proportional to the imaginary part of the weak value∣∣σS,w (τ)

∣∣sinϕw(τ), as seen from Eq. 8.22. In the same limit, the expectation value of the P̂ quadra-
ture, associated with the canonical conjugate of the weak measurement pointer, is proportional to
the real part of the weak value

∣∣σS,w (τ)
∣∣cosϕw(τ), as seen from Eq. 8.23. When the meter evo-

lution due to its Hamiltonian Ĥfield can be neglected, the shifts in position and momentum are
proportional to the real and imaginary parts of the weak value, respectively. When the contribu-
tions from the term ω f (t/2+ τ) cannot be neglected in Eqs. 8.50 and 8.51, then the weak value
rotates with time τ in the meter phase space defined by the Q̂–P̂ quadratures (assuming that the
contribution ω f τ varies much faster than the weak value argument ϕw(τ)). This apparent rotation
of the weak value results purely from the free meter evolution with time and does not arise from
a modification of the weak value itself. Consequently, practical measurements need to be imple-
mented differently for cases where the weak value evolution is much faster than the free-meter
evolution, and for cases where the free-meter evolution significantly outpaces the weak value evo-
lution. Nevertheless, in both situations, by knowing the parameters of the weak measurement, t
and gint, we can determine the weak value as a function of the dissipation time τ from the weak
measurement results and, in turn, use it to extract information about the dissipative evolution. Even
for more complex initial meter states, it is possible to invert the expressions linking the two meter
expectation values to the complex weak value (see appendix N).
In the upcoming sections, we examine how to use the weak value expression to extract information
regarding the dissipative dynamics of the atom. In this section, we provide a more comprehensive
treatment of the weak measurement in the presence of dissipation, illustrating the general theory



Chapter 8. Weak measurements in dissipative quantum systems 122

in depth.

8.3.2 General expression of the weak value for two-level systems with dissi-
pation

The Rabi model allows us to investigate analytically how the weak value evolves with the dissipa-
tion duration τ . Indeed, taking a single dissipation channel characterized by the time-independent
damping constant γ and the jump operator σ̂− in the dissipator D defined in Eq. 8.1, an arbitrary
matrix C = cgg |g⟩⟨g|+ cge |g⟩⟨e|+ ceg |e⟩⟨g|+ cee |e⟩⟨e| becomes

eDτ (C) =

(
ceee−γτ cege−

1
2 γτ

cgee−
1
2 γτ cgg + cee (1− e−γτ)

)
. (8.52)

Therefore, computing the weak value under dissipation Eq. 8.14 becomes straightforward. We
choose arbitrary initial and final states characterized by the three-dimensional, real Bloch sphere
vectors i⃗ and f⃗ , respectively: σ̂i =

1
2(Î + i⃗ · ˆ⃗σ) and σ̂ f =

1
2(Î + f⃗ · ˆ⃗σ). Unit vectors corresponds to

arbitrary pure states of the atom, while vectors of length < 1 describe arbitrary mixed states of the
two-level system. In the weak value expression, the post-selected state should be evaluated in the
interaction representation at time t+τ . In particular, σ̂ f I (t + τ)=

{
cos
[

ωa
2 (t + τ)

]
Î + isin

[
ωa
2 (t + τ)

]
σ̂z
}

σ̂ f
{

cos
[

ωa
2 (t + τ)

]
Î− isin

[
ωa
2 (t + τ)

]
σ̂z
}

.
If we denote f⃗ = ( fx, fy, fz), then σ̂ f I is described by the vector

f⃗I (t + τ) =

 fIx
fIy
fIz

=

 fx cos [ωa (t + τ)]+ fy sin [ωa (t + τ)]
fy cos [ωa (t + τ)]− fx sin [ωa (t + τ)]

fz

 , (8.53)

which corresponds to a clockwise rotation of the initial vector f⃗ over time around the z axis of
the Bloch sphere. We thus see that the actual time of post-selection influences the state that is
effectively post-selected in practice. Since the weakly measured operator is given by Eq. 8.40 and
characterized by the vector n⃗I , we now have the following expression for the weak value

σ̂S,w (τ) =
f⃗ γ

I · n⃗I + i⃗ · n⃗I
(
1+ f γ

Iz− fIz
)
+ i f⃗ γ

I ·
(⃗

nI× i⃗
)

1+ f⃗ γ

I ·⃗ i+
(

f γ

Iz− fIz
) , (8.54)

where the vector f⃗ γ

I is defined as

f⃗ γ

I (t + τ) =

 fIxe−
1
2 γτ

fIye−
1
2 γτ

fIze−γτ

= e−
1
2 γτ

 fx cos [ωa (t + τ)]+ fy sin [ωa (t + τ)]
fy cos [ωa (t + τ)]− fx sin [ωa (t + τ)]

fz e−
1
2 γτ

 . (8.55)

It is quite interesting to note that the consequences of the quantum system evolution under the
full Lindbladian Eq. 8.1 can be taken into account by specifying an attenuated post-selected state
f⃗ γ

I (t + τ) that picks up the complete evolution after the weak interaction, including the free evo-
lution and the dissipation. We see that the effect of dissipation for a long time τ is to drive the
attenuated post-selected state to f⃗ γ

I = 0. In that case, the density operator associated with the
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attenuated post-selected state becomes the maximally mixed state Î/2. This explains why anoma-
lousness disappears at long dissipation times. In that case, we also see that the weak value becomes
real and converges towards the simple scalar product i⃗ · n⃗I , which corresponds to the expectation
value of the operator n⃗I · ˆ⃗σ in the initial state i⃗ expressed in terms of Bloch vectors (as shown in
section 8.2). We should be careful, though, and note that the effect of dissipation is not strictly
to post-select in f⃗ γ

I : indeed, the formula giving the weak value with dissipation is not exactly the

same as the weak value without dissipation with f⃗I replaced by f⃗ γ

I . However, we see that the con-
sequences of dissipation can always be anchored to the final state. In particular, if we set γ = 0
to cancel the effects of dissipation, we recover the expression of a standard weak value of a Pauli
operator [18, 19]:

lim
γ→0

σS,w (τ) =
f⃗I · n⃗I + i⃗ · n⃗I + i f⃗I ·

(⃗
nI× i⃗

)
1+ f⃗I ·⃗ i

. (8.56)

The structure of the expressions Eq. 8.54 and Eq. 8.56 differ by the presence of two additional
terms, proportional to the difference of the z components of f⃗ γ

I and f⃗I , in the case of dissipation.
In practice, the effect of the system free evolution during the time t + τ is to rotate the post-
selected vector Eq. 8.53. In order to focus for the weak measurement specifically on the con-
sequences of dissipation, we can choose to set, as done in section 8.2 and 8.4, a constant post-
selected vector in the interaction representation: f⃗I (t + τ) =

(
fIx0, fIy0, fIz0

)
and, thus, f⃗ γ

I (t + τ) =(
fIx0 e−

γ

2 τ , fIy0 e−
γ

2 τ , fIz0 e−γτ

)
. In that case, the post-selection must depend on time τ in the

Schrödinger representation, meaning that the experimentalist must rotate its post-selection choice
as a function of the dissipation duration τ:

f⃗ =

 fx
fy
fz

=

 fIx0 cos [ωa (t + τ)]− fIy0 sin [ωa (t + τ)]
fIy0 cos [ωa (t + τ)]+ fIx0 sin [ωa (t + τ)]

fIz0

 . (8.57)

This time dependence in the Schrödinger representation requires the experimenter to choose a
different post-selection depending on the time of post-selection.
Although we derived the expression of the weak value Eq. 8.54 in the context of the Rabi model, the
expression is quite generally valid in the context of two-level systems. For an arbitrary observable
of a two-level system undergoing dissipation as in Eq. 8.52, we can write ÂS = a Î+b m⃗ · ˆ⃗σ . Then,
for arbitrary initial and final states, the weak value expression is

AS,w (τ) = a+b
f⃗ γ

I · m⃗I + i⃗ · m⃗I
(
1+ f γ

Iz− fIz
)
+ i f⃗ γ

I ·
(

m⃗I× i⃗
)

1+ f⃗ γ

I ·⃗ i+
(

f γ

Iz− fIz
) . (8.58)

with f⃗I the Bloch vector representing the post-selected state at time t + τ in the interaction pic-
ture and f⃗ γ

I , the attenuated post-selected vector, constructed from f⃗I as in the left-hand side of
Eq. eq:attenuatedPostSelection, while m⃗I is the Bloch vector associated to ÂSI(t/2) in the interac-
tion picture. Within the weak value, the attenuated post-selection vector f⃗ γ

I contains the informa-
tion on the dissipation of the system after the weak interaction, which can be analyzed through the
related weak measurement shifts.
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8.3.3 Rotating-wave approximation

The standard weak measurement approximation enables expressing the final meter state as a func-
tion of the weak value of the weakly measured Hermitian operator in the pre- and post-selected
quantum system. In the general Rabi model, this requires ωat ≪ 1 and ω f t ≪ 1, meaning that
the free evolution can be evaluated to first order during the short interaction time t. However, this
assumption may not always be warranted. For example, the transit time of an atom passing through
a cavity may be several orders of magnitude longer than the oscillation period of the cavity field.
In that case, considering a weakly coupled atom–cavity system near resonance, the atomic Hamil-
tonian will also generate many oscillations during the interaction as |∆| ≪ ωa +ω f = 2ω with
∆ = ωa−ω f . In order to make progress, we thus have to come back to the atom-field joint state
after the weak interaction given by Eq. 8.7, knowing that the approximation Eq. 8.8 is now invalid.
Then, we have to evaluate the integral of the interaction Hamiltonian in the interaction picture:

� t

0
V̂
(
t ′
)

dt ′ = gint

� t

0
σ̂xI
(
t ′
)
⊗
[
â†

I
(
t ′
)
+ âI

(
t ′
)]

dt ′ (8.59)

= gint

� t

0

[
σ̂+eiωat ′+ σ̂−e−iωat ′

]
⊗
[
â†eiω f t ′+ âe−iω f t ′

]
dt ′ (8.60)

≈ gint

� t

0

[
ei(ωa−ω f )t ′

σ̂+⊗ â+ e−i(ωa−ω f )t ′
σ̂−⊗ â†

]
dt ′ (8.61)

= gint
sin∆t

∆

[
ei∆t/2

σ̂+⊗ â+ e−i∆t/2
σ̂−⊗ â†

]
(8.62)

≈ gintt
[
ei∆t/2

σ̂+⊗ â+ e−i∆t/2
σ̂−⊗ â†

]
, (8.63)

where we used the fact that the atom and field Hamiltonians commute Eq. 8.59; we developed
σ̂x = σ̂+ + σ̂− Eq. 8.60; we neglected the fast oscillating terms σ̂−â†e2iω and σ̂+âe−2iω with
respect to the slow ones Eq. 8.61, as they will contribute a term in 1/(2ω) in Eq. 8.62; where we
expanded sin(∆t) to first order in Eq. 8.63, assuming that the interaction time is short with respect
to the detuning ∆t≪ 1, and h̄ = 1.
In practice, the rotating-wave approximation that we carried out leads to the conservation of the
excitation number, by neglecting the non-resonant terms originating from Ĥint in Eq. 8.39. Note
that the rotating-wave approximation also requires the condition ω f ≫ gint, which is met in most,
if not all, atomic cavity QED experiments.
We observe that the effective interaction Hamiltonian in the weak measurement and rotating-wave
approximations comprises two terms built from non-Hermitian operators. In the first one, the
raising operator σ̂+ of the system is coupled to the annihilation operator â of the meter, while,
in the second term, the lowering operator σ̂− of the system is coupled to the creation operator â†

of the meter. The sum of the two coupling terms is nevertheless a Hermitian operator. Starting
from the effective interaction Hamiltonian VI (t/2) given by Eq. 8.63, by following the exact same
theoretical developments performed in section 8.1, beginning from equation Eq. 8.10, we deduce
immediately the equivalent of equation Eq. 8.18

⟨L̂⟩ f =
⟨L̂I⟩0 +2gintt Im

[
ei∆t/2σ+,w (τ)⟨L̂I â⟩0

]
+2gintt Im

[
e−i∆t/2σ−,w (τ)⟨L̂I â†⟩0

]
1+2gintt Im

[
ei∆t/2σ+,w (τ)⟨â⟩0

]
+2gintt Im

[
e−i∆t/2σ−,w (τ)⟨â†⟩0

] , (8.64)
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with L̂I(t + τ) and the weak values

σ±,w (τ) =
Tr
[
σ̂ f I(t + τ) eDτ (σ̂±σ̂i)

]
Tr
[
σ̂ f I(t + τ) eDτ (σ̂i)

] . (8.65)

We would like to point out that the operators σ̂± appear in the Schrödinger representation, as their
time dependence has been explicitly factored out in Eq. 8.63 and Eq. 8.64. The meter shift exhibits
now two contributions, one from each coupling term. Very interestingly, the weak measurement
result depends on the weak values of the non-Hermitian raising and lowering operators σ̂± of the
system.
To determine the weak values, we consider measuring the two meter quadratures Q̂I(t + τ) and
P̂I(t + τ). Assuming that the initial meter state is an energy eigenstate |n⟩⟨n| or a thermal state, we
have ⟨â⟩0 = ⟨â†⟩0 = 0 in the denominator, as well as ⟨L̂I⟩0 = 0 in the numerator. We get thus the
simple expressions

⟨Q̂⟩ f = 2gintt

√
2

ω f
Im
[
ei∆t/2+ω f (t+τ)

σ+,w (τ)⟨â†â⟩0 + e−i∆t/2−iω f (t+τ)
σ−,w (τ)⟨ââ†⟩0

]
, (8.66)

⟨P̂⟩ f = 2gintt
√

2ω f Re
[
ei∆t/2+ω f (t+τ)

σ+,w (τ)⟨â†â⟩0− e−i∆t/2−iω f (t+τ)
σ−,w (τ)⟨ââ†⟩0

]
, (8.67)

with ⟨â†â⟩0 = n and ⟨ââ†⟩0 = n+ 1, where n labels the energy level in an energy eigenstate, or

corresponds to the average energy level neq =
[
eω f /(kBT )−1

]−1
in a thermal-equilibrium state of

the meter. We thus see that there are generally two contributions to the observed shifts, arising
from two weak values.
The simplest case, yet fascinating, corresponds to a meter initially in the vacuum state |0⟩⟨0|, so
that only the weak value of σ̂− contributes to the shift since ⟨â†â⟩0 = 0. In that case, the weak
measurement expectation values are given by

⟨Q̂⟩ f = 2gintt

√
1

2ω f
|σ−,w (τ)|sin

[
ϕw(τ)−∆t/2−ω f (t + τ)

]
, (8.68)

⟨P̂⟩ f = −2gintt

√
ω f

2
|σ−,w (τ)|cos

[
ϕw(τ)−∆t/2−ω f (t + τ)

]
, (8.69)

where ϕw(τ) is the argument of the weak value of σ̂− Eq. 8.65. These shifts should be compared
to the results obtained before in the Rabi model Eq. 8.50 and Eq. 8.51, which are functions of
the weak value of the operator σ̂xI(t/2). In a weak measurement performed within the validity
of the Jaynes-Cumming model with a meter initially in the vacuum state, the meter shifts depend
on the single weak value of the lowering operator of the system, a non-Hermitian operator. This
approach enables using the weak value approximation for interaction times t such that ω f t ≫ 1
and ωat≫ 1, on the condition that the interaction time remains short with respect to the frequency
detuning ∆t ≪ 1. In these circumstances, it is possible to investigate the dissipation dynamics of
the system through the weak value of the non-Hermitian operator σ̂−.
The general formula Eq. 8.58 for a two-level weak value affected by dissipation enables expressing
the weak value of the non-Hermitian operators σ̂± straightforwardly. By setting a = b = 1 and
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using a complex three-dimensional vector m⃗± = (1,±i,0)/2 because 2σ̂± = σx± iσy, we obtain

σ±,w (τ) =
f⃗ γ

I · m⃗±+ i⃗ · m⃗±
(
1+ f γ

Iz− fIz
)
+ i f⃗ γ

I ·
(

m⃗±× i⃗
)

1+ f⃗ γ

I ·⃗ i+
(

f γ

Iz− fIz
) , (8.70)

which becomes

σ−,w (τ) =
ix (1− fIz)+ f γ

Ix (1+ iz)− i
[
iy (1− fIz)+ f γ

Iy (1+ iz)
]

2
[
1+ f⃗ γ

I ·⃗ i+
(

f γ

Iz− fIz
)] , (8.71)

σ+,w (τ) =
ix
(
1− fIz +2 f γ

Iz
)
+ f γ

Ix (1− iz)+ i
[
iy
(
1− fIz +2 f γ

Iz
)
+ f γ

Iy (1− iz)
]

2
[
1+ f⃗ γ

I ·⃗ i+
(

f γ

Iz− fIz
)] . (8.72)

These weak values appear relatively simple and symmetric, with only a few Bloch vector com-
ponents involved in their numerators. These expressions are helpful to choose appropriate pre-
and post-selected states i⃗ and f⃗ to probe the dissipation dynamics that are revealed through the
contributions of the f⃗ γ

I vectors to the meter shifts.

8.4 Exploiting weak values in dissipative systems
Dissipation has a negative impact on the amplification properties of the weak value. In systems
with non-degenerate energy levels, weak values cannot provide amplification when the dissipation
time is long. In general, the longer the dissipation time, the weaker the amplification of the weak
value. Nevertheless, measuring the weak value at short dissipation times can still provide valuable
information about the evolution of the system. For example, the rate of change of the weak value
could be used to determine the dissipation rate, allowing shorter measurement times than those
required by traditional methods.
It is often interesting to detect non-markovianity in the evolution of a quantum system, which may
not always be straightforward. For certain non-Markovian evolutions, we show it is possible to
differentiate Markovian dissipation from non-Markovian dissipation by analysing the evolution of
the weak value. This result demonstrates the potential of weak measurement theory in identifying
non-Markovian dynamics.

8.4.1 Effective amplification of the dissipation rate
In this section, we show that the dissipation rate can, in principle, be accurately determined from
the evolution of weak values in a short interval of time. To begin with, let us examine the atom
evolution in the dissipative regime in the interaction picture,

˙̂σSI = D (σ̂SI) = γ

[
σ̂−σ̂SIσ̂+−

1
2
(σ̂+σ̂−σ̂SI + σ̂SIσ̂+σ̂−)

]
, (8.73)

where dissipation is assumed to be Markovian.
For this illustration, we will consider a weak measurement of the σ̂x operator, i.e. ÂSI (t/2) = σ̂x
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in the weak value expression Eq. 8.14 and, equivalently, n⃗I = (1,0,0) in Eq. 8.54. We also take a
post-selected state that is constant in the interaction representation, namely σ̂ f I (t + τ) = σ̂ f I0. As
a result, we focus our attention exclusively on measuring the dissipation, without probing the free
Hamiltonian evolution. Since the dissipation time is short, we can expand the weak value of the
spin operator σ̂x in a Taylor series up to the first order in τ ,

σx,w (τ) =
Tr
[
σ̂ f I0 eDτ (σ̂xσ̂i)

]
Tr
[
σ̂ f I0 eDτ (σ̂i)

] (8.74)

≈
Tr
[
σ̂ f I0 σ̂xσ̂i

]
Tr
[
σ̂ f I0 σ̂i

] + τ
d

dτ

(
Tr
[
σ̂ f I0 eDτ (σ̂xσ̂i)

]
Tr
[
σ̂ f I0 eDτ (σ̂i)

] )∣∣∣∣∣
τ=0

,

where the derivative can be computed using Eq. 8.73. Let ε ≪ 1 be a small number, which we
will show is inversely proportional to the amplification of the weak value. When the initial and the
post-selected atomic states are chosen, to first order in ε , as

|ψi⟩ = −sign(ε) |g⟩+ |ε|
2
|e⟩ , (8.75)∣∣ψ f I0

〉
=

1√
2
(ε |g⟩+(1− i) |e⟩) ,

with σ̂ f I0 =
∣∣ψ f I0

〉〈
ψ f I0

∣∣, then the probability of post-selection (i.e. the denominator of Eq. 8.74)
is p = ε2/4 for τ = 0 and the weak value at first order in γτ and ε is given by2

σx,w ≈
τγ

ε
+ i

2− τγ

ε
. (8.76)

We see that for a given time τ , the dissipation rate γ is effectively amplified by the small parameter
ε in the denominator of the real part of the weak value. At τ = 0, the weak value is purely imagi-
nary. However, when dissipation is introduced (τ ̸= 0), the weak value becomes a complex number
that varies linearly with time, τγ . In principle, the dissipation rate can be extracted by measuring
the real part of the weak value at different short times. This approach takes advantage of the weak
value amplification, proportional to 1

ε
, which opens up the possibility of using much shorter dissi-

pation times. This is especially relevant for experiments where it may be difficult to obtain long
dissipation times. In particular, by resorting to amplification, we reduce the measurement duration,
which may be helpful if the meter undergoes some dissipation in practice (contrary to our model
assumptions). We note that it is also possible to extract the dissipation rate by measuring the weak
value for several values of the small parameter ε for a fixed duration τ of the dissipation, if this
proves more convenient.

8.4.2 Revealing non-markovianity
In this section, we show that weak values can provide a valuable tool to distinguish between certain
Markovian and non-Markovian dynamics. More specifically, we consider here a modified experi-
mental setting in which a two-level atom undergoes a weak interaction in a cavity and then enters

2A few technical considerations on the joint series developments are provided in appendix O
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a second leaky cavity. Inside the second cavity, the atom is coupled to a single cavity mode which
is itself coupled to the bosonic bath in vacuum associated with the field outside the cavity. The
dynamics of the atom in this cavity is described by the Jaynes-Cummings model on resonance,
where the Hamiltonian of the atom is proportional to σ̂z, as explained in section 8.3. In this model,
the non-Markovian dissipator is given by [174]

D (σ̂SI) = γ (τ)

[
σ̂−σ̂SIσ̂+−

1
2
(σ̂+σ̂−σ̂SI + σ̂SIσ̂+σ̂−)

]
, (8.77)

with the time-dependent dissipation rate

γ (τ) =
2γ0λ sinh(d τ

2)

d cosh(d τ

2)+λ sinh(d τ

2)
, (8.78)

where d =
√

λ 2−2γ0λ , λ defines the spectral width of the coupling, in other words, the inverse of
the bath correlation time, and γ0 is the typical atomic decay rate in the Markovian limit. The nature
of the parameter d in the Jaynes-Cummings model on resonance varies based on specific condi-
tions [174]. In cases of moderate or weak coupling (λ 2 > 2γ0λ ), d takes on a real value, resulting
in the absence of oscillations in the system dynamics. On the other hand, under strong coupling
conditions (λ 2 < 2γ0λ ), d is imaginary and the characteristic oscillatory behavior emerges. The
dynamics generated by this model is non-Markovian [174], which means that the evolution of the
system at each time step depends on its past evolution, not just its present state. If we select the
pre- and post-selected states as in the previous Markovian case Eq. 8.75, the weak value of σ̂x at
second order in τ and first order in ε is

σx,w (τ)≈
λτ2γ0

2ε
+ i

4−λτ2γ0

2ε
, (8.79)

where the exact analytical solution of the non-Markovian evolution of the weak value as a function
of τ was used and expanded in Taylor series for small values of τ (see appendix P for details). The
above expression is valid if

λτ ≪ 1 and γ0τ ≪ 1. (8.80)

The non-Markovian expression Eq. 8.79 can be recovered from the Markovian case if we replace
γ in Eq. 8.76 by 1

2γ0λτ , which corresponds to the series expansion of γ(τ) to first order in λτ in
Eq. 8.78.
We can see from Eq. 8.79 that the weak value exhibits a quadratic evolution with respect to τ ,
with no linear term in τ . This behavior is characteristic of non-Markovian dynamics described by
the above dissipator, provided that γ (τ = 0) = 0. To consider the transition from non-Markovian
to Markovian dynamics in this system, we highlight that the Jaynes-Cummings model becomes
Markovian as λ approaches infinity, with limλ→∞ γ (τ) = γ0. Consequently, the series expansion
leading to Eq. 8.79 becomes invalid. Hence, the weak value Eq. 8.79 corresponds to the strongly
non-Markovian case.
By comparing the evolution of the weak value as a function of τ at short dissipation times, it
is possible to distinguish between Markovian and non-Markovian dynamics. Identically to the
Markovian case, amplification occurs when ε ≪ 1. However, in strongly non-Markovian systems,
the weak value is proportional to τ2 instead of τ . The real part of the weak value Eq. 8.79 is null
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at τ = 0, making detection of the quadratic dependence easier.
By examining the relationship between Eq. 8.76 and Eq. 8.79, we can obtain valuable information
about λ , especially when γ0 = γ . By incorporating a leaky cavity and comparing the weak value
evolution to its free space counterpart (without the cavity), we can extract information about the
leaky cavity parameters.
In summary, we have shown that the weak value at short times provides valuable information about
dissipation in a system through an amplified decay rate, the effects of which are felt over a shorter
evolution time in practice.

8.5 Conclusions
In this chapter, we outlined a few benefits that weak measurements and, in particular, weak values
bring to the study of open quantum systems. We have shown that dissipation impedes the amplifi-
cation produced by weak values at long times, unless the system’s ground state is degenerate. More
specifically, we have considered a pre-selection, weak interaction, dissipation, and post-selection
scheme. In non-degenerate cases, we have shown that the limit of the weak value at infinite dissi-
pation time is the expectation value of the operator in the initial state, so that dissipation suppresses
the anomalous character associated with weak values and prevents amplification. However, in sys-
tems with a degenerate ground state, amplification can still occur at very long time-scales, as we
have illustrated with a specific system.
Dissipation-induced decay to a degenerate ground state can even increase the anomalous proper-
ties of the weak value until it stabilizes. This is possible because not all quantum properties are
lost through dissipation and the final state reached after long dissipation times can still be a com-
bination of different ground states that retain some coherence. In particular, observing anomalous
weak values at long dissipation time requires that the unperturbed initial state and its perturbation
provoked by the weak interaction evolve differently under dissipation.
In addition, weak values can be used to measure various properties of the evolution of open quan-
tum systems. For example, by choosing appropriate pre- and post-selected states, we can extract
information about the dissipation rate through the weak value at short dissipation times, in the
weak value amplification regime. This is particularly helpful if experimental constraints require a
short measurement duration of each quantum system.
We also explained how it is possible to distinguish between Markovian and non-Markovian evo-
lutions by measuring with our scheme the growth rate of the weak value. For Markovian evolu-
tions, the weak value always increases linearly with time. On the other hand, in the strongly non-
Markovian regime, the weak value at small times increases quadratically with time. Consequently,
a measure of the growth rate of the weak value is sufficient to distinguish the two contrasting cases.
Besides, we observed that using a cavity mode as the meter of a weak measurement of an atom’s
internal degrees of freedom may yield meter measurement results that depend on weak values of
the non-Hermitian raising and lowering operators of the atom. These applications demonstrate the
usefulness of weak values in open quantum systems. We hope that this work will set the stage for
other applications connecting weak values and open quantum systems.





Chapter 9
Exploiting modular values in quantum
algorithms

Moore’s law posits that the number of transistors on a microchip forming a computer doubles every
two years [186]. This prediction has been a reality for the past five decades. However, it appears
that this law may now be reaching a plateau.
The ability to increase our computational capacities is crucial for the continuous development of
society. This progress allows for the creation of better materials and the discovery of more special-
ized drugs. Unfortunately, the plateau in Moore’s law could halt the rapid advances we have seen
in recent years.
To address this issue, scientists have proposed various solutions. Among the most promising is the
quantum computer, which utilizes qubits to replace traditional bits and operates in a state of super-
position. By leveraging this property, quantum computers are expected to provide faster solutions
for specific problems.
In recent years, several quantum algorithms have demonstrated superior performance compared
to their classical counterparts for specific tasks, meaning that the quantum computer needs less
repetitions than the classical one. For instance, the search for a particular item in a database [187]
and integer factorization [188] are examples of such tasks. One of the earliest examples of this
quantum advantage is the Deutsch algorithm [189] and its generalization, the Deutsch-Jozsa al-
gorithm [190]. These algorithms aim to determine whether a function f : {0,1}n−1 → {0,1} is
constant, meaning that all outputs are either uniformly equal to 1 or uniformly equal to 0, or if it is
balanced, where half of the outputs are equal to 1 and the other half are equal to 0. In the quantum
case, this problem can be resolved in a single step, whereas in the classical case, it requires up to
2n−1 repetitions in the worst-case scenario.
This chapter introduces a novel approach to implementing quantum algorithms using modular val-
ues. This method leverages the degrees of freedom and complex properties of modular values. The
modular value, denoted as

Am =

〈
ψ f
∣∣e−ikÂ |ψi⟩〈
ψ f
∣∣ψi
〉 , (9.1)

is similar to the weak value expression but involves a unitary operator instead of an observable. In
some cases, such as when k is small, and the exponential can be expressed using a Taylor series,
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they share the same expression. Nonetheless, modular values are associated with interactions of
any strength; a weak coupling between the system and the ancilla is not necessary. It is important to
note that the method requires a qubit as the ancilla [191]. Although some works have explored the
possibility of developing quantum algorithms using modular values [192], a complete theoretical
framework is still lacking. We anticipate that this approach could reduce the number of gates
required as the quantum algorithm can be executed by simply evaluating the modular value of the
oracle, and, therefore, minimize errors in executing the algorithm. However, it always requires an
additional qubit to read out the result of the quantum modular value, and the probability of post-
selection should always be considered.
In this chapter, we explore the application of modular values in executing quantum algorithms. We
begin by introducing the general method for performing quantum algorithms using modular values.
Next, we dive into the Deutsch-Jozsa problem and demonstrate how it can be solved using this
approach. Furthermore, we delve into the choice of pre- and post-selected states in the Deutsch-
Jozsa problem. To provide further clarity, we also provide an example of how to run this algorithm
on a quantum computer. Moving on, we introduce Grover’s search problem and demonstrate how
modular values can be used to solve it. Subsequently, we introduce the phase estimation problem
and highlight the numerous advantages it offers when addressed using modular values. Particularly,
we emphasize the improvements in precision compared to the conventional approach. We also
discuss the implications and benefits of using modular values in quantum computing. Finally, we
conclude the chapter by providing some future perspectives on the application of modular values
in implementing quantum algorithms.

9.1 General method using modular values
In this section, we provide a detailed procedure for tackling quantum algorithms using modular
values. Our method involves carrying out a measurement with pre- and post-selection to the or-
acle. Oracles play a critical role in constructing algorithms in quantum computers [193, 194].
Essentially, an oracle is a black box that contains unknown operations to the person executing the
experiment. Oracles are implemented using unitary operations and are commonly employed in
quantum algorithms such as the Deutsch-Jozsa algorithm and the Grover’s algorithm [187, 190].
As illustrated in Fig. 9.1, the system used in our algorithm comprises n+1 qubits, with n qubits for
executing the oracle and one for the readout process. The algorithm consists of three main parts:
pre-selection of the oracle input state and preparation of the ancilla’s state, controlled oracle appli-
cation, and post-selection on the system. Finally, the measurement of the modular value unfolds.
To begin, we take the system’s n qubits to the pre-selected state

|ψi⟩= |ψ1⟩⊗ |ψ2⟩⊗ ...⊗|ψn⟩ , (9.2)

using unitary operators. The initial state of the meter, denoted as ρ̂m, is defined as

ρ̂m =
1
2
(
Î +Pmm⃗ · σ⃗

)
, (9.3)

where m⃗ represents the state on the Bloch sphere and Pm quantifies the purity of the meter state.
To obtain this initial state, we employ a unitary operator. Subsequently, we apply the following
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nonlocal unitary operator to the entire system, comprising the probe and the meter:

ÛGATE = Π̂r⊗ Î + Π̂−r⊗ÛO. (9.4)

In this expression, ÛO represents the oracle employed in the experiment, while Π̂r and Π̂−r are
projectors applied to the ancillary space. These projectors can be expressed in terms of the vector
±⃗r on the Bloch sphere as follows:

Π̂±r =
1
2

(
Î± r⃗ · ⃗̂σ

)
. (9.5)

The unitary operator ÛGATE facilitates a controlled evolution of the probe. When the ancillary
projector is Π̂r, the probe undergoes only the identity operation. Conversely, when the ancillary
projector is Π̂−r, the probe experiences the application of the operator ÛO. In the case of an
ancillary state lying between these two scenarios, the superposed effect of both operators is applied
to the probe.
To complete the procedure, we post-select the system qubits to

∣∣ψ f
〉
. Finally, by measuring the

spin operator in the direction q⃗,
σ̂q = Π̂+q− Π̂−q, (9.6)

we extract the information on the modular value.

Figure 9.1: The proposed model consists of n qubits and a qubit meter that together form the full
system. To prepare the system for the experiment, we first apply n unitary operators to the first n
qubits to take them to the pre-selected state |ψi⟩. We also use a unitary operator to set the qubit
meter to its initial state. Next, we apply the controlled oracle to the system. To post-select, we apply
additional unitary operators, and finally, we measure the state of the system in the computational
basis.

After some mathematical development shown in [112], the joint probabilities are computed from,

P±q
joint = Tr

[(∣∣ψ f
〉〈

ψ f
∣∣⊗ Π̂±q

)
ρ̂
]
, (9.7)
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where ρ̂ is the state of the full system. After applying the eraser condition r⃗ · q⃗ = 01, the joint
probabilities take the form

P±q
joint =

1
4
{(1+Pm⃗r · m⃗) |

〈
ψ f
∣∣ψi
〉
|2 (9.8)

+ (1−Pm⃗r · m⃗) |
〈
ψ f
∣∣ÛO |ψi⟩|2

± 2Pm (m⃗ · q⃗)Re
(〈

ψ f
∣∣ÛO |ψi⟩

〈
ψi
∣∣ψ f
〉)

± 2Pm [(⃗r× m⃗) · q⃗] Im
(〈

ψ f
∣∣ÛO |ψi⟩

〈
ψi
∣∣ψ f
〉)
}.

The expected value of the spin operator in the meter is [112],

σ̄
m
q = 2Pm

(m⃗ · q⃗)ReOm +[(⃗r× m⃗) · q⃗] ImOm

(1+Pm⃗r · m⃗)+(1−Pm⃗r · m⃗) |Om|2
=

P+q
joint−P−q

joint

P+q
joint +P−q

joint

, (9.9)

where the modular value is

Om =

〈
ψ f
∣∣ÛO |ψi⟩〈

ψ f
∣∣ψi
〉 . (9.10)

Since we use a qubit as the meter in this experiment, we can take advantage of the modular value
properties to implement various algorithms.
To determine the required number of repetitions of the algorithm to obtain enough statistics to
solve the initial problem, we need to evaluate the probability of post-selection, which is denoted at
first order as

p = |
〈
ψ f
∣∣ψi
〉
|2, (9.11)

and the visibility that measures the contrast between joint probabilities that we measure, and which
is given by

V =
Pmax−Pmin

Pmax +Pmin
. (9.12)

Pmin represents the minimum joint probability between P+q
joint and P−q

joint, while Pmax corresponds to
the maximum joint probability.
In each particular case, the determination of the maximum and minimum joint probabilities is es-
sential and can be achieved by considering the expression provided in Eq. 9.8. When employing
this approach, there exist various degrees of freedom that can be optimized based on specific exper-
imental conditions. These include selecting the pre- and post-selected states, choosing the meter
state, and determining the operator to be measured in the meter. Additionally, alternative experi-
mental approaches can be explored, which may lead to the emergence of modular values and the
development of novel methods for executing quantum algorithms. In the following sections, we
will demonstrate the practical application of this approach by implementing three prominent quan-
tum algorithms: the Deutsch-Jozsa algorithm, Grover’s search algorithm, and the phase estimation
algorithm.

1Selecting two quantum states that are orthogonal on the Bloch sphere, expressed as r⃗ · q⃗ = 0, maximizes the in-
terference between different pathways during the meter measurement. In this configuration, the nonlocal gate action
arises as a superposition of both ÛO and Î, causing a loss of information about the gate action. This particular cir-
cumstance is referred to as the ’quantum eraser’ condition, a term frequently employed in interferometer experiments
to eliminate the knowledge of the particle’s path. For instance, applying a linear polarizer can erase the information
regarding whether the polarization is circular left or right. Linear polarization lies orthogonal on the Poincaré sphere
to circular polarization (both left and right).
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9.2 Deutsch-Jozsa algorithm
The Deutsch-Jozsa algorithm aims to determine whether a given function f (x) : {0,1}n−1→{0,1}
is constant or balanced. A constant function assigns the same value (either 0 or 1) to all the inputs,
whereas a balanced function assigns the value 1 to exactly half of the inputs and the value 0 to
the other half. Table 9.1 shows the different possibilities for the Deutsch-Jozsa algorithm for a
function f (x) with two inputs.

Balanced

f (00) f (01) f (10) f (11)

0 0 1 1
0 1 0 1
0 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1

Constant

f (00) f (01) f (10) f (11)

0 0 0 0
1 1 1 1

Table 9.1: Here are all the possible combinations of two-bit inputs and single-bit outputs that
result in either a constant or a balanced function.

In 1992, Deutsch and Jozsa introduced a groundbreaking quantum circuit that solves this problem
in a single step, providing a significant advantage over the classical counterpart. In the worst-
case scenario, the classical approach requires 2n−1 repetitions, where 2n−1 represents the total
number of inputs for the function. However, by leveraging qubits, we can exploit the fact that 2n−1

corresponds to the dimensionality of the space formed by n− 1 qubits. Thus, we can effectively
employ n−1 qubits to generate the entire set of 2n−1 inputs. In stark contrast, the quantum circuit
designed by Deutsch and Jozsa achieves the same result efficiently. The quantum circuit is depicted
in Fig. 9.2, showcasing its elegance and simplicity. To tackle the problem with 2n−1 inputs, the
algorithm mandates the utilization of n qubits. To address a problem involving a function with all
possible combinations of n−1 qubits as input, it is necessary to utilize a total of n qubits. The first
n−1 qubits are initialized in the state |0⟩, while the remaining qubit is initialized in the state |1⟩.
This initialization results in the following state:

|ψ0⟩= |0⟩⊗n−1 |1⟩ (9.13)

where |0⟩⊗n−1 is a compact notation for the tensor product of n− 1 |0⟩ states, |0⟩⊗ |0⟩ . . .⊗|0⟩,
and the basis has been chosen as

|0⟩=
(

1
0

)
|1⟩=

(
0
1

)
. (9.14)
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Figure 9.2: Deutsch-Jozsa quantum circuit, where U f is the oracle, H is the Hadamard
gate, and the states |ψ0⟩, |ψ1⟩, |ψ2⟩, and |ψ3⟩ are detailed in the text. Modified from
Fran4004, https://commons.wikimedia.org/wiki/File:Deutsch-Jozsa__algorithm__circuit.svg, ac-
cessed on the 17th of August 2023.

The first step consists of applying the Hadamard gate, Ĥ,

Ĥ =
1√
2

(
1 1
1 −1

)
(9.15)

to all n−1 qubits. The state after the transformation is

|ψ1⟩=
1√
2n

(|0⟩+ |1⟩)⊗n−1 (|0⟩− |1⟩) = ∑
x∈{0,1}n−1

1√
2n
|x⟩(|0⟩− |1⟩) , (9.16)

where |x⟩ are all the 2n−1 states of the basis with n−1 qubits.
After applying the Hadamard gates, the oracle is applied to the n qubits. The oracle acts as

Û f |x,y⟩ → |x,y⊕ f (x)⟩ , (9.17)

where ⊕ represents the addition modulo 2, that is 0 if both terms are equal and 1 if both terms are
different

0⊕0 = 0 (9.18)
0⊕1 = 1
1⊕0 = 1
1⊕1 = 0.

The resulting state after the application of the oracle is:

|ψ2⟩= ∑
x∈{0,1}n−1

1√
2n
|x⟩(|0⊕ f (x)⟩− |1⊕ f (x)⟩) = ∑

x∈{0,1}n−1

(−1) f (x)
√

2n
|x⟩(|0⟩− |1⟩) . (9.19)

In Eq. 9.19, we make use of the property that |0⊕ f (x)⟩= | f (x)⟩, while |1⊕ f (x)⟩= |1− f (x)⟩.
Subsequently, the Hadamard gate, denoted as Ĥ⊗n−1, is applied to the first n− 1 qubits. The
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application of n−1 Hadamard gates to an n−1-qubit state can be expressed as:

Ĥ⊗n−1 |x1, . . . ,xn−1⟩=
∑z1,...,zn−1 (−1)x1z1+...+xn−1zn−1 |z1, . . . ,zn−1⟩√

2n−1
, (9.20)

where xi are the components of the state |x⟩, while zi are the ones of the state |z⟩, hence every
component is either a 0 or a 1.
The notation can be simplified as

Ĥ⊗n−1 |x⟩= ∑z (−1)x·z |z⟩√
2n−1

, (9.21)

where x · z is the inner product of x and z, modulo 2. Finally, the state |ψ3⟩ is after applying the
Hadamard gate to the first n−1 qubits,

|ψ3⟩= ∑
z1,...,zn−1

∑
x1,...,zn−1

1√
2n

(−1)x·z+ f (x) |z⟩(|0⟩− |1⟩) (9.22)

Finally, if we measure in the {|0⟩ , |1⟩}n−1 basis the n−1 first qubits, the probability of obtaining
the state |0⟩⊗n−1 would be, ∣∣∣∣∣ 1

2n−1

2n−1−1

∑
x=0

(−1) f (x)

∣∣∣∣∣. (9.23)

Consequently, if the measurement result is |0⟩⊗n−1, the function is constant, whereas if the mea-
surement result is different from |0⟩⊗n−1, the function is balanced. By applying the algorithm
once, we can determine with certainty whether the function is balanced or constant.
Although the Deutsch-Jozsa algorithm does not have any real-world applications, it was one of the
first quantum algorithms to demonstrate a clear advantage over its classical counterpart.

9.3 Deutsch-Jozsa problem using modular values
In the previous section, we discussed the conventional method for solving the Deutsch-Jozsa prob-
lem. In this section, we explore an alternative approach by calculating the modular value of the
oracle operator, denoted as U . When solving the problem with 2n−1 inputs, the oracle is applied
to n qubits. As a result, the pre- and post-selected states become n-qubit states. To extract the
modular value, an additional qubit, known as the ancilla qubit, is required. Therefore, a total of
n+1 qubits are needed for this approach. The application of the oracle can be expressed as

U (|x⟩ |y⟩) = |x⟩ |y⊕ f (x)⟩ . (9.24)

The algorithm can be implemented by calculating the modular value of the oracle in systems of
any dimension. The Deutsch-Jozsa problem for a function of 4 inputs, hence the dimension of two
qubits, employs three qubits, as seen in the previous section. In the modular value approach, we
implement the modular value of the oracle with three qubits and we need an extra qubit to act as
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the ancilla. The chosen pre- and post-selected states are:

|ψi⟩ =
1√
8
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩)⊗ (|0⟩− |1⟩) (9.25)

=
1√
8
(|000⟩+ |010⟩+ |100⟩+ |110⟩− |001⟩− |011⟩− |101⟩− |111⟩)∣∣ψ f

〉
=

1√
11

(−2i |000⟩− i |010⟩+ i |001⟩+ i |011⟩+ |100⟩+ |110⟩− |101⟩− |111⟩) .

The probability of post-selection in this case is given by p = |
〈
ψ f
∣∣ψi
〉
|2 = 41

88 ≈ 0.47, which is
slightly below one-half. Consequently, on average, two attempts are needed to achieve successful
post-selection. When the function f (x) : {0,1}n−1→{0,1} is constant, meaning that f (x) is either
0 or 1 for all x, the numerator of the modular value is equal to the denominator or its opposite.
Thus, the modular value is either 1 or −1, resulting in a purely real value. On the other hand,
when the function f (x) : {0,1}n→ {0,1} is balanced, with half of the terms f (x) equal to 1 and
the other half equal to 0, the modular values possess an imaginary part for all possible balanced
combinations of f (x).

f (00) f (01) f (10) f (11) Uw Re(Uw) Im(Uw)

0 0 1 1 5i−4
5i+4

9
41

40
41

0 1 0 1 i
5i+4

5
41

4
41

0 1 1 0 i
5i+4

5
41

4
41

1 1 0 0 −5i+4
5i+4 − 9

41 −40
41

1 0 1 0 −i
5i+4 − 5

41 − 4
41

1 0 0 1 −i
5i+4 − 5

41 − 4
41

Table 9.2: All the possible combinations to have a balanced function with three qubits and the
corresponding modular values.

In table 9.2, all balanced possibilities using three qubits are presented. All modular values have
an imaginary part, which allows for discrimination between balanced and constant functions by
measuring this part. This process is easily generalized to the algorithm with n+ 1 qubits (the n
qubits of the Deutsch-Jozsa algorithm plus the ancilla). In this case, the pre-selected state is the
natural generalization of the previous case

|ψi⟩=
1√
2n

(|0⟩+ |1⟩)⊗(n−1) (|0⟩− |1⟩) . (9.26)
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The post-selected state is generalized from the three-qubit case,

∣∣ψ f
〉

=
1√

2n +3
(−2i |00...0⟩+ i |00...0...01⟩+(−i

2n−2

∑
j=2

∣∣∣0a2...a(2n−1)

〉
j︸ ︷︷ ︸

(2n−1)/2−1 first terms with n−1
qubits removing |000...0⟩

(9.27)

+
2n−1

∑
k=2n−2+1

∣∣∣1b2...b(2n−1)

〉
k︸ ︷︷ ︸

(2n−1)/2 last terms with n−1 qubits

)× (|0⟩− |1⟩))

The probability of post-selection using the states Eq. 9.26 and Eq. 9.27 is

p =
2n (1+2n−1)+1

2n (3+2n)
, (9.28)

whose limit when n tends to infinity is 1
2 . Therefore, on average, two attempts are required for

successful post-selection. In the case where the function f (x) : {0,1}n−1 → {0,1} is constant,
the numerator and denominator of the modular value take the same value or the opposite value,
resulting in a modular value of either 1 or−1. Conversely, when the function is balanced, the mod-
ular value presents always an imaginary part. Discrimination between a real and complex modular
value can be accomplished by observing whether there is a term proportional to (⃗r× m⃗) · q⃗ in
Eq. 9.9. We can access this term by choosing m⃗ and q⃗ perpendicular, so that m⃗ · q⃗ = 0. Addition-
ally, by selecting different pre- and post-selected states, it is possible to determine in which of the
possible ways the function is balanced.

9.4 Choice of pre- and post-selected states in the Deutsch-Jozsa
problem using modular values

In the previous section, we introduced the pre- and post-selected states for solving the Deutsch-
Jozsa problem using modular values, as described in Eq. 9.27. However, one might question the
rationale behind this particular choice. Our objective is to find two quantum states (pre-selected
and post-selected) that yield a non-zero imaginary part of the weak value of the oracle for all
possible combinations of balanced function f (x), as given in table 9.1. Ideally, we aim to max-
imize this imaginary part while minimizing the real part of the weak value, in order to enhance
the visibility defined in Eq. 9.12. Additionally, we strive to maximize the probability of successful
post-selection. Hence, we are confronted with an optimization problem.
In order to explore the entire quantum space, we conducted a random mapping of the complete
state space for the pre-selected and post-selected states, both consisting of four-level states (two
qubits). The pseudorandom numbers used were integer values drawn from a discrete uniform dis-
tribution. Fig. 9.3 showcases the resulting average visibility of all combinations of the balanced
function, which are further detailed in table 9.1, as a function of the probability of post-selection.
In this particular case, we have chosen to focus on separable states, as they are easier to generate
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using quantum gates, such as those available in the IBM quantum computer. As depicted in the
plot, there is a trade-off that needs to be considered. On one hand, we can achieve a very high
probability of post-selection, but at the cost of lower visibility. On the other hand, we can enhance
the visibility, but with a decrease in the probability of successful post-selection.

Figure 9.3: Average visibility as a function of the probability of post-selection for randomly gener-
ated two-qubit separable pre-selected and post-selected states in the Deutsch-Jozsa problem. Our
criteria for selecting these states were to ensure that the imaginary part of the weak value of the
oracle, corresponding to each balanced function, is greater than 0.1, each individual visibility is
greater than 0.4, and the probability of post-selection is greater than 0.5. By imposing these con-
ditions, we aim to strike a balance between a high post-selection probability, and strong visibility
to ensure the ability to distinguish between constant and balanced functions.

Alternatively, we can explore the space of non-separable states as a potential solution. In Fig. 9.4,
we present a denser plot where we consider both separable and non-separable states. This broader
range of states offers more possibilities for achieving intermediate values of average visibility in
relation to the probability of post-selection. It was expected that including non-separable states
would provide additional options beyond the separable ones. When aiming for low visibility
(around 0.4) and high post-selection probability (around 0.8), the benefit of incorporating non-
separable states is limited. However, when targeting a low probability of post-selection (around
0.5), we observe points on the plot that yield improved average visibility values exceeding 0.8.
Interestingly, we observe the emergence of a distinct trend in the form of a straight line, which
seems to move up when non-separable states are considered. This suggests that there is a clear
boundary beyond which points are not found above the line. It is worth noting that choosing non-
separable states introduces additional complexity in generating such states on a quantum computer.
This typically involves utilizing multi-qubit gates such as the CNOT or the TOFFOLI gates. De-
spite the challenges involved, non-separable states offer potential advantages, as demonstrated by
the improved average visibility and probability of post-selection in certain regions of the plot.
Given the trade-off between selecting separable and non-separable states, we opted for simplicity
in the implementation of the Deutsch-Jozsa problem on the IBM quantum computer in the sub-
sequent section. We specifically chose straightforward pre- and post-selected states that enable
differentiation between only one way to balance the function, and constant. This decision was
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Figure 9.4: Average visibility in terms of the probability of post-selection for randomly generated
two-qubit non-separable pre- and post-selected states in the context of the Deutsch-Jozsa problem.
For this analysis, we have imposed a minimum threshold of 0.1 for the imaginary part of each weak
value of the oracle, considering all balanced functions. Additionally, each individual visibility is
required to exceed 0.4, and the probability of post-selection must be greater than 0.5.

motivated by the difficulty of implementing more complex states using the available gates.

9.5 Implementation of the Deutsch-Jozsa problem using mod-
ular values in the IBM quantum computer

To experimentally implement the Deutsch-Jozsa algorithm, we can follow the scheme shown in
Fig. 9.1. In this approach, we need to select the initial state of the meter, denoted by |m⟩, the
applied Pauli matrix σ̂r, and the final state measured in the meter, denoted by |q⟩. We should
impose r⃗ · q⃗ = 0 to satisfy the eraser condition explained in the previous section. Additionally, we
choose to enforce m⃗ · q⃗ = 0 in order to have direct access to the imaginary part of the weak value.

ρ̂m =
1
2
(
Î + σ̂z

)
, (9.29)

where m⃗ = (0,0,1). The projector controlling the application of the oracle is

Π̂r =
1
2
(
Î + σ̂x

)
, (9.30)

where r⃗ = (1,0,0). The observable to measure in the meter is σ̂y, with q⃗ = (0,1,0).
Applying the selected states, the average measured value of σ̂y in the probe is

σ̄
m
y =

−2Im(U0m)

1+ |U0m|2
. (9.31)

Taking into account the joint probability values in this scenario, the visibility is given by

V =
2|Im(U0m) |

1+ |Im(U0m) |2 + |Re(U0m) |2
. (9.32)
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It is desirable to achieve a high visibility to distinguish in less repetitions of the experiment the
real part from the imaginary one. In particular, the maximum visibility V = 1 is reached for
Im(Am) = ±1 and Re(Am) = 0. The closer the real part to 0, the better; the closer the imaginary
part to 1, the better. This is equivalent to maximizing 2x

x2+y2+1 with respect to x and y. For the case

of the Deutsch-Jozsa problem with two qubits, f (x) : {0,1}2→{0,1} shown in table 9.2, the first
and third possibilities to balance the system have a good visibility, while the others do not. These
values can be optimized at the expense of losing some visibility on the first and third cases. The
number of times the algorithm should be run depends on the level of uncertainty one is willing to
accept.
We ran the modular value algorithm to solve the Deutsch-Jozsa problem on the Quito IBM quantum
computer, using modular values, for one constant and one balanced case. The pre-selected state is
chosen as described in Eq. 9.25, and we simplified the post-selected state by choosing it as∣∣ψ f

〉
=

1√
8
(|000⟩+ |010⟩+ i |100⟩+ i |110⟩− |001⟩− |011⟩− i |101⟩− i |111⟩) . (9.33)

This post-selected state has been chosen for simplicity to obtain the state through gates on the
IBM quantum computer. In this case, only one way of balanced function can be discriminated,
which means only one row of the balanced function can be differentiated from the constant one
in table 9.1. In a next step, it would be desirable to implement the post-selected state expressed
in Eq. 9.25. The probability of post-selection using the state described in Eq. 9.33 is p = 1

2 . The
states |m⟩, |r⟩, and |q⟩ were chosen as described earlier. The circuit applied when the function was
constant is shown in Fig. 9.5, where no gate was used to create the oracle, as the circuit is constant,
mathematically represented by the identity operator, Î. The unitary operators present in that image
are used to post-select.
Basically, we send the post-selected state to the |000⟩, which implies that finding the system in that
state would be equivalent to having post-selected on the state

∣∣ψ f
〉
.

The circuit applied when the function was balanced, with f (00)= f (01)= 0 and f (10)= f (11)=
1, is shown in Fig. 9.6, where the unitary operator is defined as,

Û (θ ,φ ,λ ) =

(
cos θ

2 −e−iλ sin θ

2
eiφ sin θ

2 eφ+λ cos θ

2

)
. (9.34)

The modular value is equal to 1 when the function is constant, with σ̂m
y = 0, and equal to i when

the function is balanced, with σ̂m
y = −1. The visibility was 1 for the balanced case and 0 for the

constant case.
Fig. 9.7 portrays the outcomes attained of the average σ̂y measurements within the framework of
the Deutsch-Jozsa algorithm when executed on the IBM Quito quantum computer. These results
are exhibited as a function of the repetition count. Correspondingly, Fig. 9.8 presents the plotted
post-selection rates for both the balanced and constant cases. It is noteworthy that the theoretical
post-selection probability stands at 1

2 , while the value computed through the IBM quantum simula-
tor reaches 0.51. In the realm of experimentation, the post-selection rate manifests itself between
0.4 and 0.6. The determination of the requisite number of repetitions is contingent upon the de-
sired data quality and the precision of the experimental setup. Remarkably, the distinction between
the two cases—constant and balanced—was successfully accomplished with 32 shots, incorporat-
ing unsuccessful post-selections as well. A pivotal observation is that the IBM Quito system is
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Figure 9.5: Circuit diagram for the Deutsch-Jozsa algorithm with a constant function using 3 qubits
and one ancilla qubit. The circuit applies the unitary operator Û

(
π

2 ,0,0
)

to qubit 0, Û
(

π

2 ,0,π
)

to
qubit 1, Û

(
π

2 ,0,
π

2

)
to qubit 2, and Û

(
π

2 ,0,
π

2

)
to qubit 3. Figure produced with https://quantum-

computing.ibm.com.

Figure 9.6: The circuit diagram illustrates the implementation of the Deutsch-Jozsa algorithm for
the balanced case, using a 3-qubit system and one ancilla qubit. The gates applied to each qubit are
Û (π/2,0,π) to qubit 0, Û (π/2,0,π) to qubit 1, Û (π/2,0,π/2) to qubit 2, and Û (π/2,0,π/2) to
qubit 3. Figure produced with https://quantum-computing.ibm.com.

markedly influenced by substantial noise, as evidenced by a median CNOT error of 6.895e-3 and
a median readout error of 3.920e-2. It is worth emphasizing that this procedure can also be con-
ducted utilizing alternative experimental configurations, such as optical systems.

9.6 Grover’s search algorithm

In this section, we present the quantum circuit for Grover’s search algorithm, which aims to search
for an element in a database of 2n elements. The designed quantum algorithm to solve this problem
requires a number of evaluations of the oracle, followed by the Grover diffusion operator, equal
only to the integer the closest to π

4

√
2n Fig. 9.9, whereas a classical algorithm requires in average

2n+1
2 , and 2n in the worst scenario. The circuit, as shown in Fig. 9.9, starts with all qubits initialized

on the fundamental state, |0⟩. Next, a Hadamard gate is applied to all qubits, Eq. 9.15, resulting in
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Figure 9.7: Mean σ̂y operator measurement outcomes are presented for both the constant and
balanced cases across a range of shots: 8, 16, 32, 64, and 128. The entire procedure has been
iterated a total of 12 times for each distinct run count. Furthermore, to provide a comprehensive
representation, the standard deviation has been incorporated in the form of error bars.

Figure 9.8: Experimental average post-selection rate, p, for varying number of shots: 8, 16, 32, 64,
and 128, encompassing both the constant and balanced scenarios.
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Figure 9.9: The circuit diagram illustrates the implementation of the Grover’s
search algorithm. The state |ω⟩ represents the desired target state, while |s⟩ de-
notes the initial state obtained after applying the Hadamard gate to all the n qubits.
This results in a superposition of all n-level states. Reproduced from Fawly,
https://upload.wikimedia.org/wikipedia/commons/b/b9/Grover’s_algorithm_circuit.svg, ac-
cessed on the 15th of May 2023.

the following state of the system

|s⟩=
(
|0⟩+ |1⟩√

2

)⊗n

=
1√
2n

2n−1

∑
x=0
|x⟩ . (9.35)

After the preliminary step, we apply the oracle unitary operator to the system, which acts as fol-
lows:

Ûω |x⟩= (−1) f (x) |x⟩ , (9.36)

where f (x) equals 0 for all elements except the one we are searching for, denoted by ω . The oracle
Ûω can be expressed in terms of quantum states as

Ûω = Î−2 |ω⟩⟨ω| . (9.37)

This operation is equivalent to a Householder reflection over the state |s′⟩,∣∣s′〉= 1√
n−1 ∑

x ̸=ω

|x⟩ (9.38)

This transformation flips the phase of the target element ω in the computational basis, leaving the
other elements unchanged. The resulting state of the system is

|s2⟩=
1√
2n

(
∑

x ̸=ω

|x⟩− |ω⟩
)
. (9.39)

Then, the Grover diffusion operator ÛS should be applied,

ÛS = 2 |s⟩⟨s|− Î. (9.40)

To execute the Grover algorithm, it is necessary to iterate the oracle and Grover diffusion operator
multiple times, approximately π

4

√
2n times. Since π

4

√
2n is not an integer, we apply this sequence
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of operators for the closest integer value. This represents the minimum number of steps required
for the state to approach the desired target state. The algorithm provides an estimation of the state
and not a precise value.
The operator ÛS is a reflection over the state |s⟩, while Ûω is a reflection over the state |s′⟩. When
we apply ÛSÛω , the state |s⟩ rotates by an angle of θ = 2arcsin 1√

n , as shown in Fig. 9.10.

Figure 9.10: Rotation produced by the application of the oracle and the Grover’s dif-
fusion. The initial state is |s⟩, the searched state is |ω⟩. The operators Ûω ,
and ÛS are detailed on the text as well as the state |s′⟩. Reproduced from Dan-
ski14, https://upload.wikimedia.org/wikipedia/commons/1/16/Grovers_algorithm_geometry.png,
accessed on the 15th of May 2023.

The angle between the states |s⟩ and |ω⟩ is arccos 1√
2n , which means that when we apply the

operator, we should apply it the integer number that is closest to r,

r =
arccos 1√

2n

2arcsin 1√
2n

≈ π

4

√
2n (9.41)

After applying the operator ÛSÛω the integer number of times the closest to r, we read out the
state, which is then the closest it will be to |ω⟩. Further applications of the unitary operator will
move the state away from |ω⟩.
Compared to the Deutsch-Jozsa algorithm, this method is less precise, as the state reached after
the integer the closest to π

4

√
2n is the closest to the searched state |ω⟩, but it is not exactly it.

The algorithm only provides an estimation. Additionally, it requires more iterations to solve the
problem. In contrast to the Deutsch-Jozsa algorithm, the Grover’s algorithm offers greater potential
for improvement and optimization.

9.7 Grover’s algorithm using modular values
Grover’s algorithm is used to search for a specific element in an unstructured list of elements, as
discussed in the previous section [195]. The algorithm employs the oracle, described in Eq. 9.36,
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and Grover’s diffusion operator, described in Eq. 9.40. By using the method outlined in section 9.1,
we can find as many elements of the list as needed without knowing the number of elements
beforehand. This is known as the Grover’s generalized algorithm [195]. To obtain an experimental
setup, we should choose the pre- and post-selected state along with the states |m⟩, |r⟩, and |q⟩. The
pre- and post-selected state in the three-qubit case are chosen as,

|ψi⟩ =
1√
8
(|000⟩+ |010⟩+ |100⟩+ |110⟩+ |001⟩+ |011⟩+ |101⟩+ |111⟩) (9.42)∣∣ψ f

〉
=

1√
21845

(−i |000⟩−2i |010⟩−4i |001⟩−8i |011⟩+16 |100⟩+32 |110⟩+64 |101⟩+128 |111⟩).

By measuring the modular value of the oracle Ûω using the pre- and post-selected states described
in Eq. 9.42, one can effectively distinguish the selected elements. To ensure distinct modular values
for each possible combination of terms, the post-selected state is carefully chosen. This approach
allows for a precise determination of both the number and identity of the selected elements, without
requiring any prior knowledge.
It is noteworthy that it is possible to verify the distinctness of the modular values for all possible
combinations of selected elements. The probability of post-selection in this case is 45

136 . However,
one of the challenges of this procedure is that selecting certain states may result in modular values
that are close to those obtained when selecting other states. Therefore, to gather sufficient statistical
data, the algorithm needs to be repeated multiple times. Additionally, it is necessary to measure
both the real and imaginary parts of the modular values. Consequently, two separate algorithms
need to be executed. Nevertheless, if a higher level of precision is required beyond what the
standard procedure offers, this approach can deliver exact results.
These states can be generalized to n-qubit systems,

|ψi⟩ =
1√
2n

(|0⟩+ |1⟩)⊗n (9.43)

∣∣ψ f
〉

=
1√

∑
2n−1
k=0 22k

(
2n−1

∑
j=1
−i2 j−1

∣∣∣0a2...a(2n−1)

〉
j︸ ︷︷ ︸

2n−1 first terms with n qubits

+(
2n

∑
j=2n−1+1

2 j−1
∣∣∣1b2...b(2n−1)

〉
j︸ ︷︷ ︸

2n−1 last terms with n qubits

.

By utilizing these states, we can ensure that every possible combination of elements produces a
distinct modular value, allowing us to identify both the number and identity of selected elements
without any prior knowledge. This property holds true for any number of qubits. The probability
of post-selection is,

p =
22n+1−23·2n−1

+2

∑
n
k=1 22n+1−2

. (9.44)

As the value of n increases, the probability of achieving successful post-selection diminishes
rapidly towards zero. The visibility should be evaluated based on the experimental scheme that
should be chosen. In this particular scheme, both the real and imaginary parts play a crucial role
in the calculations. It is important to emphasize that in this particular scheme, the Grover diffusion
operator is unnecessary. This leads to a potential reduction in the number of gates required, which
can help mitigate noise in the system as each gate introduces an error in the range of 10−3 to 10−2.
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Furthermore, this approach enables precise determination of the states. However, it is important to
note that a larger number of shots is likely necessary compared to the standard procedure in order
to gather sufficient statistical data.

9.8 Quantum phase estimation algorithm

Quantum phase estimation is a captivating problem within the field of quantum computing, es-
sential for implementing various algorithms like Shor’s algorithm [188, 196]. The goal is to
measure the phase θ that a unitary transformation Û imparts onto a quantum state, given by
Û |ψ⟩= ei2πθ |ψ⟩, where 0≤ θ ≤ 1, and |ψ⟩ is an eigenstate of the unitary operator.

Figure 9.11: The phase estimation circuit begins by preparing an eigenstate of the unitary operator
on n qubits, denoted as |ψ⟩, along with m qubits initialized to |0⟩ for readout. H represents a
Hadamard gate, while each unitary operator U2 j represents a controlled unitary operation. Addi-
tionally, the inverse quantum Fourier transform (QFT −1

2m ) is applied to the first m qubits. Repro-
duced from Omrika, https://commons.wikimedia.org/wiki/File:PhaseCircuit.svg, accessed on the
21th of May 2023.

The quantum phase estimation problem is a fundamental task that involves determining the eigen-
value of a specific Hamiltonian and serves as a crucial component in a variety of algorithms. To
kickstart the algorithm, we consider an initial state |ψ⟩ consisting of n qubits, along with additional
m qubits dedicated to measurement. The precision and accuracy of our results improve as we in-
crease the number of measurement qubits, denoted by m. The initial state can be mathematically
represented as follows:

|ψ0⟩= |0⟩⊗m |ψ⟩ . (9.45)

Subsequently, the first m qubits undergo the application of the Hadamard gate, resulting in the
following state:

|ψ1⟩=
1√
2m

(|0⟩+ |1⟩)⊗m =
1√
2m

2m−1

∑
k=0
|k⟩ |ψ⟩ . (9.46)
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Next, a controlled unitary operation is implemented between the state |ψ⟩ and each of the m qubits,
as shown in Fig. 9.11. The state after this transformation is

|ψ2⟩=
1√
2m

2m−1

∑
j=0

e2iπ jθ | j⟩ |ψ⟩ . (9.47)

The next step in the process entails applying the inverse quantum Fourier transform to the m mea-
suring qubits, resulting in the following state:

|ψ3⟩=
1

2m

(
2m−1

∑
x=0

2m−1

∑
k=0

e−
2πik
2m (x−2mθ) |x⟩

)
|ψ⟩ . (9.48)

By performing measurements on the m measuring qubits in the computational basis, the probability
to obtain each of the state |x⟩ is

P =

∣∣∣∣∣ 1
2m

2m−1

∑
k=0

e−
2πik
2m (x−2mθ)

∣∣∣∣∣
2

. (9.49)

We can reframe the probability expression by introducing a new notation: 2mθ = a+2mδ , where
a represents the nearest integer to 2mθ , and 0≤ |2mδ | ≤ 1

2 . Subsequently, we proceed to measure
the probability of obtaining the specific output a in the computational basis.

P(a) =

∣∣∣∣∣ 1
2m

2m−1

∑
k=0

e−
2πik
2m (x−a)e2πiδk

∣∣∣∣∣
2

. (9.50)

Consequently, the probability P(a) equals 1 if 2mθ = a. Otherwise, the algorithm delivers the
correct result with a probability of at least P(a) ≥ 4

π2 ≈ 0.405. In most cases, after executing
the algorithm multiple times, the outcome lie between two values, specifically the two outputs
with the highest probabilities. Increasing the value of m amplifies the likelihood of obtaining an
intermediate output that satisfies the condition 2mθ = a.

9.9 Quantum phase estimation using modular values
The quantum phase estimation problem can be effectively addressed by employing the modular
value-based procedure outlined before. In contrast to the standard approach, utilizing modular
values allows theoretically for precise attainment of the phase. Moreover, it enables setting the
probability of post-selection to unity while significantly reducing the number of required qubits.
However, it should be noted that considering both the real and imaginary parts is crucial, neces-
sitating the implementation of two separate algorithms to calculate the argument of the modular
value.
Now, let us delve into a comprehensive examination of the proposed scheme. The problem can be
directly resolved by leveraging the argument of the modular value associated with the operator Û
as

Um =

〈
ψ f
∣∣Û |ψi⟩〈

ψ f
∣∣ψi
〉 = ei2πθ = isin2πθ + cos2πθ . (9.51)
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By measuring the argument of the modular value, we gain direct access to the phase that needs to
be measured. The argument of the modular value is

arg(Um) = atan2
(

sin2πθ

cos2πθ

)
= arg

(
ei2πθ

)
= 2πθ , (9.52)

where atan2 is the 2-argument arctangent.
As one can observe, in this particular case, the post-selected states become irrelevant since the
scalar products cancel out both in the numerator and denominator. Consequently, we have the
flexibility to choose the same pre- and post-selected states, leading to a post-selection probability
of unity at the first order. Thus, the pre- and post-selected state would be as follows:

|ψi⟩=
∣∣ψ f
〉
= |ψ⟩ , (9.53)

with |ψ⟩ the considered eigenstate of the unitary operator.
Two different routines should be run. A first one to obtain the value of the imaginary part of the
modular value, by setting m⃗ · q⃗ = 0 from Eq. 9.9, and a second one setting m⃗× q⃗ = 0 to obtain the
real part. Once both parts have been accessed, the phase can be easily calculated by obtaining the
argument of the modular value as in Eq. 9.52.
In this scenario, the probability of post-selection is not a concern since the pre- and post-selected
states are identical. However, to extract the real and imaginary parts of the modular value, we
rely on averaging, which necessitates multiple measurements to gain sufficient confidence in the
result. Nevertheless, this is also the case with the conventional quantum algorithm. The significant
advantage of utilizing modular values is the substantial reduction in the number of required qubits.
Only n+1 qubits are necessary, in contrast to the common algorithm that demands n+m qubits.
Furthermore, this modular value-based algorithm could deliver an accurate result for the phase.

9.10 Conclusions and perspectives
We have introduced a novel approach for executing quantum algorithms using modular values.
This technique is applicable to various quantum algorithms that involve an oracle. An additional
qubit is needed to read out the modular value result. The number of shots required depends on the
post-selection probability and visibility. This procedure can be applied to different experimental
setups such as quantum computers or optical systems.
This chapter presents a method for implementing algorithms using modular values in quantum
computers. Despite the considerable noise in the Quito IBM quantum computer, with errors on the
order of 10−3 for quantum gates and 10−2 for measuring, we have achieved initial results for the
Deutsch-Jozsa problem using modular values. No advantages were observed in that particular case.
It requires a significantly larger number of shots compared to the standard algorithm, where only
one shot is typically sufficient. While there are various ways to potentially improve the algorithm,
such as selecting appropriate pre- and post-selected states, it is unlikely to yield any significant
advantages in this scenario. The probability of post-selection consistently hinders the efficiency of
the modular value-based algorithm in reaching the correct result expeditiously.
In specific cases, the modular value approach has the potential to reduce the overall number of
gates required, and, thus, to potentially mitigate noise, considering that each applied gate intro-
duces a certain level of error to the final result. For instance, in the context of Grover’s problem,
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the Grover diffusion operator becomes unnecessary when modular values are employed. However,
it is important to take into account the gates involved in creating the pre- and post-selected states
when assessing the gate count. Moreover, the utilization of modular values in quantum algorithms
potentially allows for the precise determination of the desired state, whereas conventional Grover’s
algorithm only provide estimations. This could represent a notable advancement, particularly in
cases where exact results are required. The application of modular values is not limited to a spe-
cific algorithm and can be extended to other estimation algorithms as well, offering the potential
for enhanced accuracy and precision in quantum computations.
However, it is essential to acknowledge that the modular value approach may necessitate a larger
number of measurement shots compared to the standard quantum algorithm. This is primarily due
to factors such as the post-selection probability and the visibility. To differentiate between dis-
tinct modular values effectively, it is crucial that they are as far apart from each other as possible.
Furthermore, the practical implementation of the modular value-based Grover’s algorithm using
quantum gates still requires further development and refinement. In particular, the challenge lies
in creating a non-separable post-selected state, which adds considerable complexity to the circuit
design. As a result, calculating the circuit’s exact configuration becomes significantly more chal-
lenging.
Nonetheless, the most promising application of modular-based algorithms resides in the estimation
of the quantum phase. In this particular scenario, the probability of post-selection does not pose
a problem since it is feasible to choose identical pre- and post-selected states, thereby increasing
the probability of post-selection to unity at first order. Additionally, the number of qubits needed
is reduced, as the original algorithm necessitates n+m qubits while the modular-based procedure
only requires n+ 1 qubits. Moreover, it provides the exact value of the phase, whereas the con-
ventional algorithm only provides an estimate. The main drawback is the need to run two separate
algorithms, one to measure the real part and one to measure the imaginary part. However, overall,
this modular-based approach appears to be a highly promising alternative to the commonly used
procedures.
The next step involves developing the concrete algorithm for execution on a quantum computer.
A comparison between the standard approach and this new approach is necessary to validate its
advantages.
In general, the modular value-based approach demonstrates significant potential as a more precise
alternative for various algorithms and could facilitate the development of new ones. However, this
potential has to be confirmed quantitatively.
In general, we have not yet found any experimental computational advantage over conventional
quantum algorithm. Several questions need to be addressed to explore this approach further. First,
we need to study all the information provided by the measurements in the computational basis to
reduce the number of shots required. Post-selection in the different states of the computational
basis simultaneously could be a possible approach, as we directly obtain the information when
running an algorithm on a quantum computer. Additionally, we need to investigate the selection
of pre- and post-selected states to increase the algorithm’s efficiency, specifically by examining
the states’ separability. As we have seen, non-separable states provide a larger parameter space.
However, these sates are much more complicated to create using the common quantum gates. Sep-
arable states can be created using an individual unitary transformation in each qubit. This approach
is not possible for non-separable states. From a computational perspective, we need to improve
our ability to create non-separable states using standard gates.
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Finally, modular values are expected to yield good results in algorithms that search for small quan-
tities due to their amplification capability. For example, we could differentiate between two almost
identical gates. Even though, in that case the probability of post-selection would be very small,
the precision that one can reach using a modular value-based approach could be better than using
other standard approaches, at least in the presence of technical limitations. In the counterpart, the
required number of repetitions of the algorithm could be very large.
In summary, the global phase estimation problem presents several notable advantages. It is imper-
ative to continue further research in this direction, as it holds the potential for significant progress
and may pave the way for discovering other problems where the modular value-based approach
can offer advantages in different aspects. Exploring the applicability of modular values in various
contexts could yield valuable insights and advancements in the field of quantum computing.



Chapter 10
Conclusions and perspectives

In this thesis, we undertook a comprehensive analysis of the geometrical and mathematical prop-
erties of post-selected measurements, as well as their applications such as weak values in open
quantum systems and the use of modular values in quantum computing. Our research focused on
the geometrical properties of the argument of weak values and their non-normal properties, as well
as the relationship of non-normality with the modulus of the weak value. By re-analysing weak
values as the expectation value of the observable in a Krein space, we were able to establish a
link between weak values and a paraconsistent and paracomplete logic. Furthermore, we investi-
gated the impact of dissipation between the weak interaction and post-selection on weak values,
and discovered an approach to obtain anomalous weak values, which fall outside the range of the
observable’s spectrum, at infinite dissipation time. Lastly, we presented a novel approach for im-
plementing algorithms using modular values. Overall, our study offers valuable insights into the
fundamental properties of post-selected measurements and their applications in quantum systems.
In the first part of the thesis, we delved into the geometrical properties of weak values. Rather
than the conventional approach of examining the real and imaginary parts, we concentrated on the
polar description of these quantities. Specifically, we explored the argument of the weak value of
an N-level projector, which reveals a geometric phase linked to the symplectic area of the triangle
formed by the geodesics connecting the three-vectors representing the initial state, the projector
state, and the post-selected state in the complex projective space CPN−1. When reducing the anal-
ysis to the two-level case, the symplectic area and the common Riemannian area are equal. Since
CPN−1 can be bijectively mapped to the surface of a unit sphere, the Bloch sphere, the symplectic
area translates into the solid angle subtended by the triangle spanned by the three quantum states
on the sphere. We also established that the weak value of any discrete N-level observable is pro-
portional to that of a specific projector linked to the state resulting from the normalized application
of the observable to the pre-selected state. This discovery enabled us to associate the weak value
of any N-level observable with a geometric phase and express it in terms of the symplectic area of
the triangle formed by the geodesics connecting the initial state, the state arising from the normal-
ized application of the observable to the pre-selected state, and the post-selected state. Although it
is generally not easy to interpret the new vector arising from the application of the observable to
the initial state, the two-level case provides an insightful illustration. Here, the vector lies on the
geodesic (or great circle) connecting the pre-selected state and its mirror image over the projector
state.
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As we showed, it is possible to provide a full geometrical description of the argument of weak
values in the complex projective space. Nonetheless, this description is not easily visualizable. To
address this, we can use the Majorana description to map the problem onto the Bloch sphere. By
doing this, we can express the argument of weak values of any N-level observable as the sum of
N− 1 arguments of weak values of qubit projectors. Each of these arguments is associated with
the solid angle on the Bloch sphere of the triangle formed by the pre-selected state, the projector,
and the post-selected state. A remarkable property of weak values is that they remain invariant
under the application of unitary operators. This allows us to reduce the weak value of any N-level
observable to a three-level problem. By leveraging this property, we can express the argument of
weak values of any N-level observable in terms of two solid angles on the Bloch sphere.
We have successfully developed a comprehensive geometric framework for understanding the ar-
gument of weak values of discrete observables. Moving forward, there are two main areas of
inquiry to explore. Firstly, the current study has exclusively focused on pure pre- and post-selected
states. Generalizing this geometrical description to mixed states would be highly desirable. How-
ever, as we can no longer work with complex projective spaces, this requires a new approach.
Secondly, investigating weak values in continuous space would be an intriguing avenue to pursue.
This approach would enable us to study observables related to essential properties such as position
or momentum. Additionally, studying the geometrical properties of the argument of weak values
in the quantum phase space could offer new insights into the topic.
In the second part of our analysis, we leveraged various properties of weak values by re-expressing
them in terms of expectation values. Firstly, we demonstrated that the weak value of any observ-
able can be expressed as the expectation value of a non-normal operator. While all non-normal
operators are non-Hermitian, some non-Hermitian operators can still be normal. Therefore, non-
normality is a more stringent condition than non-Hermiticity. We established that in order to obtain
a weak value that differs from an eigenvalue of the original observable, the corresponding oper-
ator must necessarily be non-normal. This implies that post-selecting changes the expectation
value of a Hermitian operator to that of a non-Hermitian one. Non-Hermitian Hamiltonians de-
scribe the evolution of systems that undergo energy exchanges. This highlights the relevance of
post-selection, which can also lead to energy exchanges in the system. To gain further insight,
we compared the modulus of the weak value with the Henrici departure from normality, a quantity
that measures the deviation of a matrix from normality. Our analysis revealed a striking correlation
between these two parameters, which held across various pure pre- and post-selected states in the
strong amplification regime. We extended our investigation to a family of observables and found
that the modulus of the weak value exhibited an intermediate behavior with respect to the Henrici
departure from normality of the two possible definitions of the non-normal operator. We also de-
termined that the maximum modulus of the weak value in the anomalous regime was achieved
at the arithmetic average of the point of the maximum Henrici departure from normality of both
operators. Furthermore, we observed that the maximum value was reached when both matrices
shared the same nilpotent point parameter value. This implies that all eigenvalues become zero at
the same values of the angles associated with the observable.
The presence of non-normality has been observed to be closely linked with phase transitions across
various domains of physics. Moving forward, our research aims to investigate weak measurements
in diverse settings and identify phase transitions in the properties of the ancilla. An initial ap-
proach, stemming from the collaborative effort that initiated this study, could involve examining
weak measurements within quantum networks.
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Looking at weak values from another angle, we can express them as the expectation values of ob-
servables, but employing a pseudo-projector instead of the usual projector. This pseudo-projector
is idempotent, but not Hermitian; it is actually η-Hermitian, which means Hermitian with respect
to the η metric. Representing the weak value this way allows us to obtain a metric that charac-
terizes an indefinite inner product space, also known as Krein space. In this newly defined Krein
space, the weak value corresponds to the expectation value of the observable in the pre-selected
state. Notably, this space may contain subspaces whose intersection with their η-orthogonal com-
plements is not simply the zero vector. In non-classical logics, the orthogonal complement can be
connected to negation. As a result, the logic of this space naturally incorporates paraconsistency.
In classical logics, the intersection of a proposition and its negation is always false, the probability
that a bridge exists and does not exist simultaneously is zero. However, in the context of quantum
physics, such situations can seem more natural. Schrödinger’s cat, for instance, can be both dead
and alive simultaneously. Similarly, in Krein spaces, subspaces can exist whose disjunction with
their orthogonal complements does not cover the entire space. This property defies our intuition;
in classical logic, the probability that a bridge exists or does not exist should be one, not some-
thing different. The non-classical logic is paracomplete. These findings represent a significant
breakthrough in our understanding of the fundamental principles of quantum physics. Typically,
the logic underlying the behavior of quantum systems is analyzed using either paraconsistent or
paracomplete logic frameworks. In this study, we merge both approaches by leveraging the unique
features of the Krein space. Moreover, we apply our combined approach to the investigation of
the three-box paradox with pre- and post-selection, resulting in the identification of a logic with
inherent contradictions from its definition. Our analysis provides valuable insights and opens up
new avenues for future research in this field.
Our findings highlight the significant implications of the paraconsistent and paracomplete logic
that arises from weak values. Moving forward, it is essential to explore the connections between
this logic and other non-classical properties of weak values, such as contextuality, in more detail.
Additionally, we need to extend our investigation to post-selected measurements beyond the realm
of weak measurements, taking a consistent and rigorous approach. This will help us gain deeper
insights into the underlying principles of quantum mechanics and provide novel perspectives on
various interpretations of quantum physics, including the hidden variable and Bohmian interpreta-
tions. By pursuing these avenues of research, we can enhance our understanding of the foundations
of quantum physics and pave the way for future advancements in this exciting field.
Quantum systems are never fully isolated and always interact with their surrounding environment,
including during the weak measurement process. In our research, we examined weak measure-
ments under dissipation, focusing specifically on weak measurements with dissipation between
the weak interaction and the post-selection. This moment of dissipation is the most critical as it
can have the greatest impact. If dissipation occurs before the weak interaction, it only affects the
initial state, and with enough information, we can still obtain amplifying weak values by choos-
ing an appropriate post-selected state, unless the state after the dissipation process is completely
mixed. Nevertheless, if dissipation occurs after the weak interaction, the weak value at infinite
dissipation time tends to converge to the expectation value of the observable on the pre-selected
state, regardless of the post-selected state. As a result, these two types of dissipation should be
treated separately.
In our study of degenerate ground states, we discovered that amplifying weak values can still occur
even at infinite dissipation time. This surprising result can be explained by the fact that a degener-
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ate ground state can still exhibit coherences, which are essential for obtaining weak values.
Conversely, at very short dissipation times, we can exploit the amplifying properties of weak values
to extract information on the dissipative evolution of the system. For instance, we can determine
the dissipation rate and distinguish between Markovian and non-Markovian evolutions. This can
be particularly useful for experimentalists working with systems where the available dissipation
path is limited.
Exploring weak values under dissipation in various specific systems could yield intriguing insights
and reveal additional properties of the system. Another avenue for investigation would be to ex-
amine the geometrical interpretation of the argument in this case and observe how it is affected.
However, to undertake this, it is necessary to extend previous geometrical work to mixed quantum
states. Additionally, from a technical standpoint, it would be valuable to experimentally implement
our proposal and compare its effectiveness to that of more conventional approaches.
After exploring weak values, we turned our attention to the use of modular values in implementing
quantum algorithms. Our proposed method involves employing modular values to perform a direct
evaluation of the oracle, and exploiting the amplifying and complex properties of modular values
to execute the algorithm. By utilizing pre- and post-selection, numerous degrees of freedom are
introduced, which can be employed to improve the efficiency of the algorithm. We then applied
this method to three well-known algorithms: the Deutsh-Jozsa algorithm, the Grover’s algorithm,
and the quantum phase estimation protocol. In the first one, we utilized the complex behavior of
modular values to distinguish between constant and balanced oracles, enabling the algorithm to be
implemented on any platform, including an optics laboratory. We tested this approach on the IBM
quantum computer for two qubits, but the results were not superior to those obtained through con-
ventional quantum algorithms. However, there is still much potential for improving the method,
such as by considering post-selection across all the computational bases simultaneously.
We also theoretically applied our method to the Grover’s algorithm, which involves finding a spe-
cific object in a list. We achieved this by carefully selecting the pre- and post-measurement states,
which enabled us to identify the desired object based on the result of the modular value of the
oracle. Notably, this approach obviates the need for the Grover’s diffusion operator, potentially
offering an advantage by reducing the number of gates required and, consequently, the noise intro-
duced.
Lastly, we devised a protocol for estimating the quantum global phase using modular values. No-
tably, our protocol requires fewer qubits compared to the standard algorithm, while maintaining
a post-selection probability of unity. Moreover, it has the potential to yield precise phase values,
unlike the conventional algorithm, which can only provide estimations. It is worth mentioning
that our protocol necessitates running two subroutines for measuring both the real and imaginary
components of the modular value. Given these advantages, it is highly promising and warrants
implementation on the IBM quantum computer to validate its advantages.
While our approach did not prove experimentally advantageous over conventional quantum meth-
ods, we introduced a novel method for addressing quantum algorithms that can be applied broadly.
There are numerous opportunities to improve the method’s efficiency, such as by exploiting the
amplifying properties of modular values. To that end, we could explore differentiating between
quantum gates that are nearly identical.
This thesis has explored a variety of theoretical properties of post-selected measurements and their
applications. Moving forward, numerous additional fundamental properties, particularly related to
quantum foundations, could be explored. As more and more applications arise each year for quan-
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tum weak measurements, particularly due to their amplifying nature, we believe that our work has
paved the way for new applications and fundamental studies in the field.





Appendix A
Density operator

A density operator, denoted as ρ̂ , characterizes a classical mixture of quantum states and should
not be confused with a quantum superposition of states. Mixed states arise from the interaction
between a quantum system and its environment, through decoherence and measurement.
In contrast to a quantum superposition, which is expressed as a linear combination of quantum
states, a mixed state is mathematically described as a linear combination of projectors, as shown
in Eq. A.1,

ρ̂ =
N

∑
i=1

αiΠ̂i, (A.1)

where αi corresponds to the probability of having the pure state projector Π̂i in the mixture,
∑

N
i=1 αi = 1, and αi > 0. Each quantum pure projector, Π̂i, satisfies the condition Π̂2

i = Π̂i, in-
dicating a pure state. However, a density operator does not fulfill this condition since it represents
a mixed state.
The purity of a density operator, denoted as p, can be computed as the trace of the squared density
operator, as shown in Eq. A.2,

p = Tr
[
ρ̂

2] . (A.2)

The purity value, ranging between 1 (representing a pure state) and 1
n (representing a completely

mixed state), provides a quantification of the purity of the system. A completely mixed state can
be represented by the normalized identity matrix, 1

n Î.
For two-level systems, a mixed state can be visualized in the Bloch ball, considering the volume
inside the sphere surface (Bloch sphere). The closer the state is to the surface, the purer it is, while
a state closer to the center indicates greater mixing. The radius of the state on the Bloch sphere
also serves as a measure of purity.
Considering an observable Ô, the expectation value of the observable on a mixed state can be
calculated following the formula:

⟨O⟩= Tr
[
ρ̂Ô
]
= Tr

[
N

∑
i=1

αiΠ̂iÔ

]
=

N

∑
i=1

αiTr
[
|ψi⟩⟨ψi| Ô

]
=

N

∑
i=1

αi ⟨ψi| Ô |ψi⟩ , (A.3)

where the expression of the pure projector Π̂i = |ψi⟩⟨ψi| has been employed. Eq. A.3 lucidly
illustrates the classical mixture of expectation values of the different quantum pure states that
composed the mixed state, ρ̂ .
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Appendix B
Gell-Mann matrices

The order of the Gell-Mann matrices used in this thesis is,

λ̂1 =

0 1 0
1 0 0
0 0 0

 λ̂2 =

0 −i 0
i 0 0
0 0 0

 λ̂3 =

1 0 0
0 −1 0
0 0 0

 (B.1)

λ̂4 =

0 0 1
0 0 0
1 0 0

 λ̂5 =

0 0 −i
0 0 0
i 0 0

 λ̂6 =

0 0 0
0 0 1
0 1 0


λ̂7 =

0 0 0
0 0 −i
0 i 0

 λ̂8 =
1√
3

1 0 0
0 1 0
0 0 −2
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Appendix C
Conventions for star product and projectors

From the symmetric constants dabc of SU(N), we can construct a symmetric product called the star
product. Given two (N2− 1)-dimensional vectors, the ⋆ product produces a vector with com-
ponents (⃗α ⋆ β⃗ )c = cs ∑ab dabcαaβb, where cs is a proportionality constant. It would be con-
venient to simply set cs = 1 (as done for the definition of the anti-symmetric wedge product
(⃗α ∧ β⃗ )c = ∑ab fabcαaβb, which is built on the structure constants). However, the original defi-
nition of the star product in the literature [84, 85] used another convention: the star product identi-
fied a proper quantum state from CP2 on the S7 sphere. In the following, we explain thus how we
generalized the star product from SU(3) to SU(N), based on this earlier choice. We also explain
our normalization convention for projectors, as they are related.
A general projector P̂ in CN ×CN acting on states in CN is defined by the relation P̂2 = P̂. In
addition, its trace is an integer number that is lower or equal to the dimension N: Tr P̂ = k, with
1≤ k ≤ N representing the dimension of the projector subspace (essentially the degeneracy of the
eigenvalue 1). We pose P̂ = k

N ÎN + cp β⃗ · ˆ⃗L to meet the trace condition. The positive constant

cp =

√
k(N− k)

2N
(C.1)

ensures that β⃗ is always a normalized vector (β⃗ · β⃗ = 1) on the SN2−2 unit sphere. Its value origi-
nates from the projector condition

P̂2 = (
k2

N2 +
2
N

c2
p)ÎN +

2k
N

cp β⃗ · ˆ⃗L+ c2
p ∑

abc
dabcβaβbL̂c =

k
N

ÎN + cp β⃗ · ˆ⃗L, (C.2)

where we used Eq. G.2 to expand the SU(N) generator square (⃗n · ˆ⃗L)2. Additionaly, Eq. C.2 con-
straints the vector β⃗ through the star product

1
cs
(β⃗ ⋆ β⃗ )c = ∑

ab
dabcβaβb = (1− 2k

N
)

1
cp

βc, (C.3)

In the literature [84, 85], the star product was defined in SU(3) by imposing that this condition
becomes β⃗ ⋆ β⃗ = β⃗ for projectors on pure states (case k = 1). Therefore, imposing β⃗ ⋆ β⃗ = β⃗ for
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pure states, we find the value of the constant cs in SU(N):

cs =
Ncp

N−2
=

1
N−2

√
N(N−1)

2
, (C.4)

which thus defines the star product in SU(N) [90]. As a result, an arbitrary projector takes the form

P̂ =
k
N

ÎN +

√
k(N− k)

2N
β⃗ · ˆ⃗L, (C.5)

with the accompanying star product constraint resulting from Eq. C.3:

β⃗ ⋆ β⃗ =
N−2k
N−2

√
N−1

k(N− k)
β⃗ . (C.6)

Note that, only when k = 1, does this projector correspond to a quantum state from CPN−1. For
example, a projector on an (N−1)-dimensional subspace obeys β⃗ ⋆ β⃗ =−β⃗ ; it is the opposite of
the vector associated with the projection on the complementary 1-dimensional subspace (this one
is a quantum state).
In summary, our convention sets the constant cp defining an arbitrary projector so that we always

work with vectors belonging to hyperspheres of unit radius when using the operators ˆ⃗L as gen-
erators of SU(N) [84, 85, 87, 88, 90]. Then, in order to define the star product, we follow the
literature convention that the set of vectors representing pure quantum states is equivalent to the
vectors invariant under the star product (in the sense of r⃗⋆ r⃗ = r⃗) [84, 85, 87, 88, 90]. We note that,
when working with generalized Bloch spheres, some authors prefer to set cp = 1 and deal with
unnormalized vectors [197, 198]. This would be inconvenient for us, as many expressions linked
to weak values are invariant under permutations of the related vectors, some of which would be
normalized and others not. Managing the vector normalization status complicates geometric de-
scriptions as well. On the other hand, if the star product were defined initially with the constant
cs = 1, the constant cs would not appear when the product of two generators is expressed in terms
of the star product, such as in the weak value formula Eq. F.13. Were it the case, the projector
condition for pure state would have been r⃗ ⋆ r⃗ = 1

cs
r⃗. A few authors working with unnormalized

vectors chose to redefine to the star product with cs = 1 [89, 91].



Appendix D
Properties of states on SN2−2 and the ⋆ and ∧
products

In this section, we review a few properties of the state representation on the generalized Bloch
sphere, in connection to the ⋆ and ∧ products of SU(N), as we believe this formalism is still un-
familiar to many. Our goal is to provide a glimpse on key aspects of the geometry and highlight
information relevant to interpreting the various contributions to weak value formulas.
First of all, we consider the conditions defining an orthonormal basis of CPN−1: the projector or-
thogonality relationship ˆ⃗

Πi
ˆ⃗
Π j = δi j

ˆ⃗
Πi, as well as the resolution of the identity ∑

N
i=1 Π̂i = ÎN . For

orthogonal states, the former impose that the angles between the vectors are given by n⃗i · n⃗ j =− 1
N−1

Eq. F.9. In addition, the later results in ∑i n⃗i = 0. Thus, the vectors are all placed very symmetri-
cally. For SU(2), these conditions show that vectors associated with orthogonal states are opposite,
a well-known property of the standard Bloch sphere. For SU(3), the three vectors arising from a
state basis all lie in a plane, with angles of 120° between them: their extremities form an equilateral
triangle. For SU(4), the vectors build a tetrahedron. In larger dimensions, for SU(N), the arrange-
ments remain extremely symmetric in a similar fashion, with the N vectors residing in a subspace
of N− 1 dimensions. We see thus that orthogonal states do not correspond to orthogonal vectors
in the Euclidean sense. Actually, an orthogonal vector r⃗ verifying r⃗ · n⃗i = 0 for all states of a given
basis, obeys Tr(Π̂rΠ̂i) =

1
N Eq. F.9. It corresponds to a state with maximal relative uncertainty

with respect to the measurement basis (such as between states belonging to two different mutually
unbiased bases). Orthogonal quantum states verify the following two additional relationships for
their associated vectors: their wedge product is nul m⃗∧ n⃗ = 0 and their star product is located on
the angle bissector of the two vectors m⃗ ⋆ n⃗ = − 1

N−2(m⃗+ n⃗). In the particular case of SU(3), the
later results in the third basis vector being given by the star product of the other two (⃗n1 ⋆ n⃗2 = n⃗3).
The symmetric star product is not associative. The star product of an arbitrary normalized vector
α⃗ does not generally produce a normalized vector (∥α⃗ ⋆ α⃗∥ ≠ 1), with the exception of SU(3),
where α⃗ ⋆ α⃗ always remains on S7. Of course, all vectors associated with pure states also remain
on SN2−2 in this manner, following the choice set by the definition of the ⋆ product. As the star
product defines the condition for a vector to represent a state (⃗r ⋆ r⃗ = r⃗), we consider the particular
case of the star product between two vectors associated with states. In that particular case, we have
(⃗q⋆ r⃗ ) · q⃗= (⃗q⋆ r⃗ ) ·⃗r = q⃗ ·⃗r (thanks to the fully symmetric nature of the product). Therefore, the star
product of two projectors lies in the median hyperplane lying between q⃗ and r⃗, which is orthogonal
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to q⃗− r⃗, as could be expected from the symmetric properties of the product. In general, the star
product of two vectors q⃗, r⃗ does not remain in the plane spanned by the two vectors (contrary to
what we observed for two orthogonal states). Neither does it represent a state in general. We note
that, operationally, an observable involving the vector α⃗ ⋆ α⃗ can be constructed from the square
of an operator (⃗α · ˆ⃗L)2 = 2

N ÎN + 1
cs
[(⃗α ⋆ α⃗) · ˆ⃗L] Eq. F.6, so that this vector contributes to quantum

fluctuations (see section 4.8).
The anti-symmetric wedge product is not associative. It produces a vector orthogonal to the initial
ones: α⃗ ∧ α⃗ = 0 and, therefore, α⃗ ∧ β⃗ · α⃗ = α⃗ ∧ β⃗ · β⃗ = 0. However, due to the large number
of dimensions involved, the wedge product selects an orthogonal direction amongst many avail-
able (contrary to the cross-product in three dimensions, for which the orthogonal direction to two
non-parallel vectors is unique). The wedge product is intimately associated with the commutator
Eq. F.7. From the Baker-Campbell-Hausdorff formula, the wedge product gives the unitary op-
erator associated with the non-commutativity of consecutive unitary transformations, such as the

generators of rotations: e−igβ⃗ · ˆ⃗Le−igα⃗· ˆ⃗Leigβ⃗ · ˆ⃗Leigα⃗· ˆ⃗L≈ eig2(⃗α∧β⃗ )· ˆ⃗L. From a practical point of view, this
allows to construct an observable linked to the wedge product. This product gives thus also the di-
rection of the effective transformation of an observable undergoing a small unitary transformation
(from Eq. F.7) as eigÂB̂e−igÂ ≈ B̂+ ig[Â, B̂]).
The wedge and star products between two vectors representing states are orthogonal in the follow-
ing sense: (⃗q⋆ r⃗) · (⃗q∧ r⃗) = 0 (actually, we also checked up to SU(6) using brute force calculation
with a computer algebra system that this is true for any two vectors). Other relationships con-
nect the star and wedge products in the case of pure states. By imposing that a projector Π̂r

remains a projector after a unitary transformation with generator α⃗ · ˆ⃗L, to first order, we obtain
α⃗ ∧ r⃗ = 2⃗r ⋆ (⃗α ∧ r⃗) (and more complex relationships can be deduced from second-order contribu-
tions).



Appendix E
CP2 representation on S7

Considering an arbitrary state |ψ⟩, the coordinates on the corresponding hypersphere are obtained
by TrΠ̂ψ

ˆ⃗L. On S7, the state |ψ⟩=
(
n1eiχ1,n2eiχ2,n3eiχ3

)T would thus become the gauge-invariant
vector

[n1n2 cos(χ1−χ2),−n1n2 sin(χ1−χ2),
1
2
(n2

1−n2
2),n1n3 cos(χ1−χ3),

−n1n3 sin(χ1−χ3),n2n3 cos(χ2−χ3),−n2n3 sin(χ2−χ3),

1
2
√

3
(n2

1 +n2
2−2n2

3)]
T . (E.1)

A closed geodesic (0,sins,coss)T (s ∈ [0,π]) appears therefore as a tilted circle of radius
√

3/2 on
S7 (it is not a great-circle):

[0,0,−
√

3
4

(1− cos2s),0,0,

√
3

2
sin2s,0,−1

4
(1+3cos2s)]T . (E.2)
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Appendix F
Computation of the weak value and Bargmann
invariant

Computing weak values involves the traces of products of two and three operators. Considering
three arbitrary generators α⃗ · ˆ⃗L, β⃗ · ˆ⃗L and γ⃗ · ˆ⃗L, using Eq. G.2, we find the products and traces

(⃗α · ˆ⃗L)(β⃗ · ˆ⃗L) =
2
N

α⃗ · β⃗ ÎN +
1
cs
(⃗α ⋆ β⃗ ) · ˆ⃗L+ i (⃗α ∧ β⃗ ) · ˆ⃗L, (F.1)

Tr
[
(⃗α · ˆ⃗L)(β⃗ · ˆ⃗L)

]
= 2 α⃗ · β⃗ , (F.2)

where cs is defined in Eq. C.4. For three generators, we have

(⃗α · ˆ⃗L)(β⃗ · ˆ⃗L)(⃗γ · ˆ⃗L) = 2
N

[
1
cs
(⃗α ⋆ β⃗ ) · γ⃗ + i(⃗α ∧ β⃗ ) · γ⃗

]
ÎN

+
2
N

α⃗ · β⃗ (⃗γ · ˆ⃗L)+ 1
c2

s
[(⃗α ⋆ β⃗ )⋆ γ⃗] · ˆ⃗L− [(⃗α ∧ β⃗ )∧ γ⃗] · ˆ⃗L

+i
1
cs

{
[(⃗α ∧ β⃗ )⋆ γ⃗] · ˆ⃗L+[(⃗α ⋆ β⃗ )∧ γ⃗] · ˆ⃗L

}
, (F.3)

Tr
[
(⃗α · ˆ⃗L)(β⃗ · ˆ⃗L)(⃗γ · ˆ⃗L)

]
=

2
cs
(⃗α ⋆ β⃗ ) · γ⃗ +2i (⃗α ∧ β⃗ ) · γ⃗. (F.4)

As the trace is invariant under unitary transformations, we see that the two quantities (⃗α ⋆ β⃗ ) · γ⃗ and
(⃗α ∧ β⃗ ) · γ⃗ present in Eq. F.4 are also invariant under unitary transformations. From the properties
of the dabc and fabc constants of SU(N), the former is fully symmetric under permutations, while
the latter is antisymmetric and changes sign under permutation of two vectors.
Now we define two projectors on pure states Π̂i =

1
N ÎN + cp i⃗ · ˆ⃗L and Π̂ f =

1
N ÎN + cp f⃗ · ˆ⃗L (with cp

given by Eq. C.1 with k = 1), as well as two arbitrary Hermitian operators Â = aI ÎN +aL α⃗ · ˆ⃗L and
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B̂ = bI ÎN +bL β⃗ · ˆ⃗L. Following Eq. F.1, the product of the operators Â and B̂ becomes

ÂB̂ = aIbI ÎN +aLbI α⃗ · ˆ⃗L+aIbL β⃗ · ˆ⃗L+aLbL(⃗α · ˆ⃗L)(β⃗ · ˆ⃗L)

= (aIbI +
2
N

aLbL α⃗ · β⃗ )ÎN +aLbI α⃗ · ˆ⃗L+aIbL β⃗ · ˆ⃗L

+ aLbL
1
cs

(⃗α ⋆ β⃗ ) · ˆ⃗L+ iaLbL (⃗α ∧ β⃗ ) · ˆ⃗L. (F.5)

When Â = B̂, the latter simplifies to

Â2 = (a2
I +

2
N

a2
L)ÎN +2aIaL α⃗ · ˆ⃗L+a2

L
1
cs

(⃗α ⋆ α⃗) · ˆ⃗L. (F.6)

These expressions also allow us to compute the commutator and anti-commutator

[Â, B̂] = 2iaLbL (⃗α ∧ β⃗ ) · ˆ⃗L (F.7)

{Â, B̂} = 2(aIbI +
2
N

aLbL α⃗ · β⃗ )ÎN +2aLbI α⃗ · ˆ⃗L+2aIbL β⃗ · ˆ⃗L

+ 2aLbL
1
cs

(⃗α ⋆ β⃗ ) · ˆ⃗L (F.8)

The latter were used in section 4.8 to compute the variance and covariance of operators. Formula
Eq. F.5 gives the product Π̂ f Π̂i of the two projectors, by simply setting aI = bI =

1
N and aL = bL =

cp, so that the trace of two projectors is

Tr(Π̂ f Π̂i) =
1
N
+2c2

p f⃗ ·⃗ i = 1
N
[1+(N−1) f⃗ ·⃗ i ]. (F.9)

This is the denominator of the weak value Eq. 2.29. To obtain its numerator, we evaluate

Π̂ f ÂΠ̂i =
aI

N2 ÎN +
aI

N
cp i⃗ · ˆ⃗L+

aL

N2 α⃗ · ˆ⃗L+
aL

N
cp(⃗α · ˆ⃗L)(⃗i · ˆ⃗L) (F.10)

+
aI

N
cp f⃗ · ˆ⃗L+aIc2

p( f⃗ · ˆ⃗L)(⃗i · ˆ⃗L)+ aL

N
cp( f⃗ · ˆ⃗L)(⃗α · ˆ⃗L)

+ aLc2
p( f⃗ · ˆ⃗L)(⃗α · ˆ⃗L)(⃗i · ˆ⃗L).

Then, the trace formulas Eq. F.2 and Eq. F.4 yield

Tr(Π̂ f ÂΠ̂i) =
aI

N
+2

aL

N
cp α⃗ ·⃗ i+2aIc2

p f⃗ ·⃗ i+2
aL

N
cp f⃗ · α⃗ (F.11)

+ 2aLc2
p

[
1
cs
( f⃗ ⋆ α⃗) ·⃗ i+ i ( f⃗ ∧ α⃗) ·⃗ i

]
.

The Bargmann invariant ensues from considering that Â = Π̂r (aI =
1
N and aL = cp),

Tr(Π̂ f Π̂rΠ̂i) =
1

N2 +
2
N

c2
p(⃗r ·⃗ i+ f⃗ ·⃗ i+ f⃗ · r⃗) (F.12)

+ 2c3
p

[
1
cs
( f⃗ ⋆ r⃗) ·⃗ i+ i ( f⃗ ∧ r⃗) ·⃗ i

]
,
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while the weak value is simply given by the ratio of Eq. F.11 with Eq. F.9. The real and imaginary
part of the weak value are thus

ReAw =

aI
N + 2aL

N cp(⃗α ·⃗ i+ f⃗ · α⃗)+2aIc2
p f⃗ ·⃗ i+2aLc2

p
1
cs
( f⃗ ⋆ α⃗) ·⃗ i

1
N +2c2

p f⃗ ·⃗ i
, (F.13)

ImAw =
2iaLc2

p ( f⃗ ∧ α⃗) ·⃗ i
1
N +2c2

p f⃗ ·⃗ i
. (F.14)

The argument of the weak value is determined by arctan(ImAw/ReAw) while simultaneously tak-
ing the signs of Eq. F.13 and Eq. F.14 into account to recover the appropriate quadrant. The latter
expressions allow for an easy conversion between possibly different conventions for the cp and cs
constants, as discussed in appendix C.





Appendix G
Conventions for generators of SU(N)

In this thesis, as a convention, we have chosen to use the N2− 1 traceless Hermitian generators
of SU(N) that arise from the generalization of the Pauli and Gell-Mann matrices, thereafter noted
ˆ⃗L. From a strictly formal point of view, these operators would probably be best seen as twice the
proper generators of SU(N), typically noted ˆ⃗T . However, we think this choice is natural in order
to express quantum states on the Bloch sphere and generalized Bloch spheres in terms of standard
operators. The generators usually defined by ˆ⃗T follow the properties

[
T̂a, T̂b

]
= i∑

c
fabcT̂c, (G.1)

{T̂a, T̂b} =
1
N

δabÎN +∑
c

dabcL̂c,

Tr T̂aT̂b =
1
2

δab,

T̂aT̂b =
1

2N
δabÎN +

1
2 ∑

c
(dabc + i fabc) T̂c.

Even though these generators are mathematically convenient, quantum physics makes extensive

use of the Pauli matrices ˆ⃗σ . Their SU(3) counterparts are the well-known Gell-Mann matrices ˆ⃗
λ .

They share the following properties with their SU(N) generalization ˆ⃗L:

[
L̂a, L̂b

]
= 2i∑

c
fabcL̂c, (G.2)

{L̂a, L̂b} =
4
N

δabÎN +2∑
c

dabcL̂c,

Tr L̂aL̂b = 2δab,

L̂aL̂b =
2
N

δabÎN +∑
c
(dabc + i fabc) L̂c.
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The anti-symmetric structure constants and the symmetric constants of SU(N) are connected to the
generators using

fabc = −1
4

iTr
(
L̂a[L̂b, L̂c]

)
=−2iTr

(
T̂a[T̂b, T̂c]

)
, (G.3)

dabc =
1
4

Tr
(
L̂a{L̂b, L̂c}

)
= 2Tr

(
L̂a{L̂b, L̂c}

)
, (G.4)

so that ˆ⃗L = 2 ˆ⃗T . This simple proportionality relationship provides the conversion rule between the
two conventions, should anyone wish to use expressions with the ˆ⃗T generators. In this document,
we will exclusively work with the ˆ⃗L generators.



Appendix H
Calculation of the expression of the Henrici
departure from normality

Let us consider the non-normal operator Â defined in Eq. 6.3. The square of this operator is

Â2 =
1

Tr
[
Π̂ f Π̂i

]2 Ô |ψi⟩⟨ψi| Ô |ψi⟩⟨ψi|=
⟨ψi| Ô |ψi⟩
|
〈
ψ f
∣∣ψi
〉
|2

Â, (H.1)

which implies that the Nth power of the operator Â is

ÂN =
⟨ψi| Ô |ψi⟩N−1

|
〈
ψ f
∣∣ψi
〉
|2(N−1)

Â. (H.2)

The matrix Â is almost idempotent, as Â2 = αÂ. Consequently, we can redefine a matrix ˜̂A that is
idempotent, i.e. ˜̂A2 = ˜̂A,

˜̂A =
ÔΠ̂i|

〈
ψ f
∣∣ψi
〉
|2

⟨ψi| Ô |ψi⟩
. (H.3)

The eigenvalues of an idempotent matrix are either 0 or 1. As the trace of the matrix ˜̂A is 1, one
eigenvalue should be 1 and the rest 0. Consequently, one eigenvalue of the matrix Â is ⟨ψi|Ô|ψi⟩

⟨ψ f |ψi⟩2
and

the rest are 0. Obviously, when the expectation value of the observable in the initial state is 0, all
eigenvalues are 0.
The Frobenious norm of the matrix Â is

||Â||2F =
1

|
〈
ψ f
∣∣ψi
〉
|4

Tr
[(

ÔΠ̂i
)(

ÔΠ̂i
)†
]
=

1
|
〈
ψ f
∣∣ψi
〉
|4

Tr
[
ÔΠ̂iΠ̂iÔ

]
(H.4)

=
1

|
〈
ψ f
∣∣ψi
〉
|4

Tr
[
ÔΠ̂iÔ

]
=
⟨ψi| Ô2 |ψi⟩
|
〈
ψ f
∣∣ψi
〉
|4
.

The Henrici departure from normality of the matrix Â is

d f
(
Â
)
=

√
⟨ψi| Ô2 |ψi⟩
|
〈
ψ f
∣∣ψi
〉
|4
− ⟨ψi| Ô |ψi⟩2

|
〈
ψ f
∣∣ψi
〉
|4

=
∆iÔ

|
〈
ψ f
∣∣ψi
〉
|2
, (H.5)

175



Appendix H. Calculation of the expression of the Henrici departure from normality 176

which is proportional to the uncertainty of the operator Ô in the initial state |ψi⟩.
Following the same procedure, one can obtain the Henrici departure from normality of the operator
Â′,

d f
(
Â′
)
=

√√√√〈ψ f
∣∣ Ô2

∣∣ψ f
〉

|
〈
ψ f
∣∣ψi
〉
|4
−
〈
ψ f
∣∣ Ô ∣∣ψ f

〉2

|
〈
ψ f
∣∣ψi
〉
|4

=
∆ f Ô

|
〈
ψ f
∣∣ψi
〉
|2
, (H.6)

which is proportional to the uncertainty of the operator Ô in the final state
∣∣ψ f
〉
.



Appendix I
Some analytical formulas for σ̂x

The aim of this appendix is to present the analytical expressions relating Ow and d f for the cases
numerically studied in the main text.
Let us assume the pre- and post-selected states to be given in the general form

|ψa⟩=
(

cosθa

eiξa sinθa,

)
(I.1)

where for a ∈ {i, f} we assume 0 ≤ θa ≤ π

2 and 0 ≤ ξa ≤ 2π . For sake of definitiveness, let us
consider the case of the x-Pauli matrix. Because σ̂2

x = 1 and the normalization of the initial state,
we get from Eq. H.5

d f
(
Âx
)
=

√
1− sin2(2θi)cos2 ξi

|
〈
ψ f
∣∣ψi
〉
|2

, (I.2)

where

|
〈
ψ f
∣∣ψi
〉
|2 = cos2

θ f cos2
θi + sin2

θ f sin2
θi +2cos

(
ξi−ξ f

)
cosθ f cosθi sinθ f sinθi . (I.3)

To compute the weak value we use the very first definition Eq. 6.1 to obtain

|σx,w|2 =
sin2

θ f cos2 θi + cos2 θ f sin2
θi +2cos

(
ξi +ξ f

)
cosθ f cosθi sinθ f sinθi

|
〈
ψ f
∣∣ψi
〉
|2

. (I.4)

Both d f
(
Âx
)

and |σx,w|2 depend on the angles, θ f and θi, and the phases ξi and ξ f . In the following,
we will assume the last three quantities as fixed parameters and thus consider X = d f

(
Âx
)

and
Y = |σx,w|2 to represent a curve parametrized by θ f in the plane (X ,Y ).
In Fig. I.1, we report three typical behaviors of such a curve. In the left panel, we assume ξi = ξ f =
0 and one clearly observes a positive correlation between d f (Âx) and |σ̂x,w|2, they both increases
as θ f varies from θ̃ f , i.e., the values at which |σ̂x,w|2 = 1 to θ f = 0, corresponding here to the
maximum of both d f (Âx) and |σ̂x,w|2. The results shown in the middle panel have been obtained
by setting ξi = π/5 and still ξ f = 0 and we can observe the same behavior of the one presented in
the left panel. A similar behavior persists once we increase ξi up to a point at which a new behavior
emerges (see right panel) at which the relation between d f (Âx) and |σ̂x,w|2 is no longer monotonic.
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Figure I.1: We show the curves d f (Âx) and |σ̂x,w|2 as function of θ f in the range [0, θ̃ f ], where the
upper bound is determined by the condition |σ̂x,w|2(θ̃ f ) = 1 and it is marked with a red diamond.
The value θ f = 0 is marked with a red square, while the value θ̂ f at which d f attains its maximum
is denoted by a red circle denotes once the latter falls in the domain of anomalous weak value. The
remaining parameters have been fixed to θi = 5π/12, ξi = 0 and ξ f = 0 (left panel), θi = 5π/12,
ξi = π/5 and ξ f = 0 (middle panel), θi = 5π/12, ξi = 4π/5 and ξ f = 0 (right panel).
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In this panel, we can indeed observe the existence of a value θ̂ f at which d f attains its maximum
and this value is in the region of anomalous weak values. The value θ̃ f can be setting Eq. I.4
equal to 1 and solving the resulting relation for tanθ f . A straightforward computation returns if
tan2 θi ̸= 1

tan θ̃ f = tan(2θi)sinξi sinξ f ±
√

tan2(2θi)sin2
ξi sin2

ξ f +1 , (I.5)

and we have to select the angle lying in [0,π/2].
To determine the angle θ̂ f that maximizes d f one can observe that the numerator of Eq. I.2 does
not depend on θ f and thus this is equivalent to minimize the denominator. By doing so, we can
obtain

tan
(
2θ̂ f
)
= tan(2θi)cos

(
ξi−ξ f

)
, (I.6)

if cos(2θi) ̸= 0 and θ̂ f = π/4+ kπ/2 if if cos(2θi) = 0.
Having those two angles, θ̂ f and θ̃i, we can obtain conditions on ξ f , ξi and θi to determine if there
is or not a monotonic dependence between d f (Âx) and |σ̂x,w|2.
To make some analytical progress we can explicitly express the dependence of |σx,w|2 on d f (Âx),
again by removing θ f . To do so, we first express Eq. I.2 in terms of tan2 θ f

d f
(
Âx
)
=

√
1− sin2(2θi)cos2 ξi

(1+ tan2 θi)(1+ tan2 θ f )

1+ tan2 θ f tan2 θi +2cos
(
ξi−ξ f

)
tanθi tanθ f

, (I.7)

and we solve the second degree equation in tanθ f to express the latter as a function of d f and the
remaining variables

tanθ f =
d f cos

(
ξi−ξ f

)
tanθi±

√
d2

f cos2(ξi−ξ f ) tan2 θi− [d f tan2 θi− (1+ tan2 θi)S][d f − (1+ tan2 θi)S]

d f tan2 θi− (1+ tan2 θi)S
,

(I.8)

where S =
√

1− sin2(2θi)cos2 ξi.
Hence we insert the above value of tanθ f into Eq. I.4 that it has also be rewritten in terms of tan2 θ f

|σ̂x,w|2 =
1

1+ tan2 θi

1
1+ tan2 θ f

tan2 θ f + tan2 θi +2cos
(
ξi +ξ f

)
tanθ f tanθi√

1− sin2(2θi)cos2 ξi

d f . (I.9)

We can observe that the curves given parametrically by Eqs. I.2 and I.4 shown in Fig. I.1 correspond
to the branch of tanθ f Eq. I.8 with the positive sign in front of the square root. In Fig. I.3 we
propose a global view of |σx,w| (top panels) and d f (Âx) (bottom panels) as a function of θi and θ f
for three sets of values of (ξi,ξ f ), (0,0) (left panel), (π/5,0) (middle panel) and (4π/5,0) (right
panel). We can observe that as ξi increases so does the region corresponding to strong anomalous
weak value, e.g., larger than 2. On the other hand (see Fig. I.4) increasing ξ f reduces the region of
anomalous weak values.



Appendix I. Some analytical formulas for σ̂x 180

2 4 6 8 10 12
0

2

4

6

8

10

12

14

2 4 6 8 10 12
0

2

4

6

8

10

12

14

10 20 30 40
0

10

20

30

Figure I.2: We show the curve |σ̂x,w|2 as a function of d f (Âx), in the range of anomalous weak
values. The black line corresponds to the root with the positive sign while the blue one to the
negative sign. The red diamond marks the value of d f for which |σ̂x,w|2 = 1. The red square
identifies the value of d f associated to θ f = 0, while red circle determines the largest value of
d f . The remaining parameters have been fixed to θi = 5π/12, ξi = 0 and ξ f = 0 (left panel),
θi = 5π/12, ξi = π/5 and ξ f = 0 (middle panel), θi = 5π/12, ξi = 4π/5 and ξ f = 0 (right panel).
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Figure I.3: We show in the plane (θi,θ f ) the level curves of the functions |σ̂x,w| (top panels) and
d f (Âx) (bottom panels). The remaining parameters have been fixed to (ξi,ξ f ) = (0,0) (left panel),
(ξi,ξ f ) = (π/5,0) (middle panel) and (ξi,ξ f ) = (4π/5,0) (right panel).
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Figure I.4: We show in the plane (θi,θ f ) the level curves of the function |σ̂x,w| for two sets of
parameters (ξi,ξ f ) = (4π/5,π/5) (left panel), (ξi,ξ f ) = (4π/5,3π/5) (right panel).



Appendix J
Analytical calculations considering null phases

Let us consider now the Pauli matrix σ̂y. In this case, the Henrici departure from normality of the
matrix Â is, assuming ξi = ξ f = 0,

d f
(
Ây
)
=

1
cos2

(
θ f −θi

) , (J.1)

while the weak value is
σy,w = i tan

(
θ f −θi

)
. (J.2)

The Henrici departure from normality can be expressed in terms of the weak value as

|σy,w|2 =
1

cos2
(
θ f −θi

) −1 = d f
(
Ây
)
−1. (J.3)

A comparison between Fig. J.1 and Fig. 6.2 reveals a remarkable agreement between the figures
generated from the numerical and analytical studies. Finally, we also studied the Pauli matrix σ̂z,
assuming ξi = ξ f = 0. The Henrici departure from normality is in that case,

d f
(
Âz
)
= sin2 2θi

[
1+ tan2 (

θ f −θi
)]

(J.4)

Figure J.1: Henrici departure from normality of Ây in terms of θi and θ f , weak value of σ̂y in terms
of θi and θ f , and weak value of σ̂y in terms of the Henrici departure in the anomalous regime from
normality for different values of θi from 0 to π

4 .
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Figure J.2: Henrici departure from normality of Âz in terms of θi and θ f , weak value of σ̂z in terms
of θi and θ f , and weak value of σ̂z in terms of the Henrici departure from normality for different
values of θi from 0 to π

4 .

while the weak value is
|σz,w|= |cos2θi− tan

(
θ f −θi

)
sin2θi| (J.5)

The weak value can be expressed in terms of the Henrici departure from normality as,

|σz,w|2 =

∣∣∣∣∣cos2θi± sin2θi

√
−1±

d f
(
Âz
)

sin2θi

∣∣∣∣∣
2

. (J.6)

Fig. J.2 and 6.3 depict the results of the theoretical and numerical calculations, and a striking
similarity between the theoretical and numerical figures is immediately apparent.



Appendix K
Study of the point of maximum weak value and
maximum Henrici departure from normality

In this appendix, we show some analytical results about the value of the observable parameter
(θ ) in which the weak value presents a maximum and the ones in which both matrices (Â and Â′)
present a Henrici departure from normality that is the largest.
Let us consider the specific example of Fig. 6.10. The studied observable is

Ô =

(
cosθ

(1−i)√
2

sinθ

(1+i)√
2

sinθ −cosθ

)
. (K.1)

The pre- and post-selected states are

|ψi⟩=
(

cosθi
sinθi

)
,

∣∣ψ f
〉
=

(
1
0

)
. (K.2)

Both matrices Â and Â′ have an eigenvalue that is equal to 0. The other eigenvalues are

αÂ = cosθ (K.3)

αÂ′ = cosθ cos2θi +
√

2cosθi sinθ sinθi.

The weak value is

|Ow|=
√

cos2 θ +
√

2cosθ sinθ tanθi + sin2
θ tan2 θi, (K.4)

and the normalized Henrici departure from normality is

d fn =

√
1−
(

cosθ cos2θi +
√

2cosθi sinθ sinθi

)2
. (K.5)

At θ = 0, the weak value is equal to 1 independently on the value of the initial polar angle, θi.
When 0 ≤ θ ≤ π

4 , the weak value is only anomalous for a section of values of θ , actually, with

0≤ θ ≤ arctan
√

2tanθi
1−tan2 θi

.
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The Henrici departure from normality is the largest when the eigenvalue α is the smallest. In the
case of αÂ, it always decreases in the range of θ between 0 and π

2 . Consequently, the maximum
value of the Henrici departure from normality in the range of anomalous weak values would be at
θ = arctan

√
2tanθi

1−tan2 θi
.

The eigenvalue of Â′ that is different from zero, αÂ′ increases when increasing θ in the range

0≤ θ ≤ arctan
√

2tanθi
1−tan2 θi

. The point of the largest Henrici departure from normality in the anomalous
regime is at θ = 0, for all values of 0≤ θi ≤ π

4 .
The value of θ for which the weak value is maximum is exactly at the average of both points of
the largest value of Henrici departure from normality, θ = 1

2 arctan
√

2tanθi
1−tan2 θi

.
When moving to π

4 ≤ θi ≤ π

2 , the weak value is anomalous for all values of θ in the range 0≤ θ ≤
π

2 . The largest Henrici departure from normality of Â in the anomalous regime is at θ = π

2 for all
values of θi, where the matrix is nilpotent, both eigenvalues are 0.
The Henrici departure from normality of Â′ reaches its maximum when the matrix is nilpotent, at
θ = arctan

(
−
√

2cot2θi

)
which is in the anomalous regime when π

4 ≤ θi ≤ π

2 .

The anomalous weak value reaches its maximum at θ = 1
2 arctan

(
−
√

2cot2θi

)
.

Here, we have explained in detail how the value of θ in which the weak value is maximum is at the
average between the one in which the Henrici departure from normality of Â and Â′ are maximum
for a specific case. However, this is valid for any two-dimensional quantum system.



Appendix L
Derivative of the normalized Henrici departure
from normality and the numerator of the weak
value

The numerator of the weak value of the operator defined in Eq. 6.17 is, assuming ξi = ξ f = 0,

Ow =

√(
cosθ cos

(
θ f +θi

)
+ cosφ sinθ sin

(
θ f +θi

))2
+ sin2

θ sin2 (
θ f −θi

)
sin2

φ . (L.1)

The derivative with respect to θ is

dOw

dθ
=
−sin2θ (cos [2(θ f −θi)]+3cos [2(θ f +θi)]−2cos2φ sin2θ f sin2θi)+4cos2θ cosφ sin [2(θ f +θi)]

8
√
(cosθ cos(θ f +θi)+ cosφ sinθ sin(θ f +θi))

2 + sin2
θ sin2 (θ f −θi)sin2

φ

.

(L.2)
The Henrici departure of Â is

d fn
(
Â
)
=

1
2

√(
3+2cos4θ f cos2 φ − cos2φ

)
sin2

θ +4cos2 θ sin2 2θ f −2cosφ sin2θ sin4θ f .

(L.3)
The derivative of the normalized Henrici departure from normality of Â is

d fn
(
Â
)

dθ
=

−4cos2θ cosφ sin4θ f + sin2θ
(
cos4θ f (3+ cos2φ)+2sin2

φ
)

4
√(

3+2cos4θ f cos2 φ − cos2φ
)

sin2
θ +4cos2 θ sin2 2θ f −2cosφ sin2θ sin4θ f

.

(L.4)
The Henrici departure of Â′ is

d fn
(
Â′
)
=

1
2

√
(3+2cos4θi cos2 φ − cos2φ)sin2

θ +4cos2 θ sin2 2θi−2cosφ sin2θ sin4θi .

(L.5)
The derivative of the normalized Henrici departure from normality of Â′ is

d fn
(
Â′
)

dθ
=

−4cos2θ cosφ sin4θi + sin2θ
(
cos4θi (3+ cos2φ)+2sin2

φ
)

4
√

(3+2cos4θi cos2 φ − cos2φ)sin2
θ +4cos2 θ sin2 2θi−2cosφ sin2θ sin4θi

.

(L.6)
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Appendix M
Expression of the jump operators for the
degenerate ground state study

The expression of the jump operators L̂q used in Eq. 8.34 are

L̂0 =
√

2
3

∣∣Jg,−1
2

〉〈
Je,−1

2

∣∣+√2
3

∣∣Jg,
1
2

〉〈
Je,

1
2

∣∣ , (M.1)

L̂− =
∣∣Jg,−1

2

〉〈
Je,−3

2

∣∣+ 1√
3

∣∣Jg,
1
2

〉〈
Je,−1

2

∣∣ ,
L̂+ = 1√

3

∣∣Jg,−1
2

〉〈
Je,

1
2

∣∣+ ∣∣Jg,
1
2

〉〈
Je,

3
2

∣∣ .
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Appendix N
Extracting the Weak value from the meter
measurements in the Rabi model

To shorten the formulas, we denote the anti-commutator averages by ACP= ⟨
{

P̂I (t + τ)) , N̂I (t/2)
}
⟩0

and ACQ = ⟨
{

Q̂I (t + τ)) , N̂I (t/2)
}
⟩0; the commutator averages by CP = ⟨

[
P̂I (t + τ)) , N̂I (t/2)

]
⟩0

and CQ = ⟨
[
Q̂I (t + τ)) , N̂I (t/2)

〉
0; the meter operators averages in the initial meter state by

N0 = ⟨N̂I (t/2)⟩0, Q0 = ⟨Q̂I (t + τ)⟩0, and P0 = ⟨P̂I (t + τ)⟩0. Then, the expression of the weak
value in terms of the measurement results, namely the averages ⟨Q̂⟩ f and ⟨P̂⟩ f of the two meter
quadratures, is

ReAS,w =
i

gt
ACQ

(
⟨P̂⟩ f −P0

)
−ACP

(
⟨Q̂⟩ f −Q0

)
+2N0

(
P0 ⟨Q̂⟩ f −⟨P̂⟩ f Q0

)
ACQ CP−ACP CQ+2N0

(
CQ ⟨P̂⟩ f −CP ⟨Q̂⟩ f

) , (N.1)

ImAS,w = − 1
gt

CQ
(
⟨P̂⟩ f −P0

)
−CP

(
⟨Q̂⟩ f −Q0

)
ACQ CP−ACP CQ+2N0

(
CQ ⟨P̂⟩ f −CP ⟨Q̂⟩ f

) , (N.2)

which is valid for an arbitrary initial meter state. These expressions are obtained by inverting
Eq. 8.24 using both quadratures. In order to retrieve the weak value from the quadrature measure-
ments, we see that it is preferable to choose an initial meter state verifying N0 = 0, as well as
P0 = Q0 = 0.
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Appendix O
Series expansion of the weak value
(Markovian case)

We discuss here a few technical issues related to the series expansion of the weak value Eq. 8.76
in section 8.4.1. Let us consider the denominator of the two-level system weak value Eq. 8.54:

1+( fIxix + fIyiy)e−
1
2 γτ + fIz (1+ iz)e−γτ − fIz. (O.1)

Since we would like to exploit amplification, we require that the pre- and post-selected states are
nearly orthogonal

∣∣〈ψ f I
∣∣ψi
〉∣∣2 = ε ′2 for a small parameter ε ′. In terms of Bloch vectors, we have

thus f⃗I · i⃗ = −1+ 2ε ′2. We can then eliminate the x and y components of the Bloch vectors in
Eq. O.1:

1− e−
1
2 γτ +2ε

′2e−
1
2 γτ + fIz

(
e−γτ −1

)
+ fIziz

(
e−γτ − e−

1
2 γτ

)
. (O.2)

Now, a first-order series expansion in γτ yields

2ε
′2 +

1
2

γτ
(
1−2ε

′2−2 fIz− fIziz
)
+O

(
γ

2
τ

2) . (O.3)

This shows that we should be careful when making a series expansion of the full weak value with
respect to γτ , as in Eq. 8.74, because we have to ensure that the first-order term in γτ in the weak
value denominator is smaller than the small term ε ′2 linked to the low post-selection probability.
This would require γτ ≪ ε ′2 in general (for example if choosing fIz = 0), which could be an
inconvenience as this imposes a bound on the amplification yield. However, if we ensure that the
factor multiplying γτ in Eq. O.3 is proportional to ε ′2, then the series expansion in γτ is valid as
long as γτ≪ 1, without constraining the amplification. Indeed, if we take the pre-and post-selected
states with small components along x and y that are of the order of ε ′, then, to second-order in ε ′,
we can write fIz ≈ 1−αε ′2 and iz ≈−1+βε ′2 (exchanging the roles of fIz and iz works as well),
where α and β are unimportant proportionality constants related to the state normalization. This
situation corresponds to pre- and post-selected states that nearly coincide with the basis states |e⟩
and |g⟩, respectively. Then, Eq. O.3 becomes

2ε
′2
[

1− 1
4

γτ
(
2−α +β −αβε

′2)+O
(
γ

2
τ

2)] . (O.4)
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The factorization of ε ′2 does not depend on the series expansion in γτ and occurs also in Eq. O.2.
With this choice of pre- and post-selected states, we obtain an amplification in 1/ε ′, while the
series expansion to first order in γτ is valid.



Appendix P
Computation of the weak value
(non-Markovian case)

With the non-Markovian dynamics specified in section 8.4.2 with the dissipator D defined in
Eq. 8.77 and the time-dependant dissipation rate given in Eq. 8.78, an arbitrary matrix C = cgg |g⟩⟨g|+
cge |g⟩⟨e|+ ceg |e⟩⟨g|+ cee |e⟩⟨e| becomes

eDτ (C) =

(
cee Γ2 ceg Γ

cge Γ cgg + cee
(
1−Γ2)) , (P.1)

where

Γ =

√
λ − γ0− γ0 cosh

[
τ
√

λ (λ −2γ0)
]

√
λ −2γ0

exp

−λτ

2
+ tanh−1

√λ tanh
(

1
2

√
λτ
√

λ −2γ0

)
√

λ −2γ0

 .

(P.2)
This evolution should be compared with the Markovian result Eq. 8.52, which exhibits an expo-
nential decay. Considering the similar structure of the solutions Eq. 8.52 and Eq. P.1, the two-level
weak value in the non-Markovian case is identical to Eq. 8.54 and Eq. 8.58, if we redefine the
attenuated post-selected Bloch vector Eq. 8.55 to

f⃗ γ

I (t + τ) =

 fIx Γ

fIy Γ

fIz Γ2

 . (P.3)
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