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Abstract

Comprehensive research on electronic and spintronic properties of graphene and MoS2 has

been the focus of scientific attention for several years and still is. An important issue,

however, is the presence of defects that can influence these. In the case of MoS2, experiments

have demonstrated that edges (1D defect) can host local magnetic moments. However the

computational cost of the ab-initio DFT calculations for experimentally relevant system size

is a downside.

In this work, we first apply tight-binding numerical simulations to reproduce the band-

structure of monolayer, bilayer, trilayer and bulk MoS2 2H and 3R and of monomolecular

zigzag asymmetric MoS2 nanoribbons whose edge terminated by Mo atoms is passivated with

sulfur dimers. The tight-binding Hamiltonian proposed by E. Cappelluti and al [Physical Re-

view B 88, 075409 2013] is used for the planar structures. We have shown that sulfur vacancies

in monolayer MoS2 induce gap states in the electronic band structures. We have investigated

theoretically the magnetic properties for several nanometers long MoS2 nanoribbons with

zigzag edges using fine-tuned parameters in a tight-binding (TB)-Hubbard Hamiltonian. We

could successfully reproduce the metallic state induced by the edges, compute large-scale

nanoribbons and predict the spin domain-wall energy as well as study the effect of edge dis-

orders on the magnetic properties. Besides the full TB parametrization of the nanoribbon, we

also described the bands crossing the Fermi level with a one-dimensional linear chain model,

allowing us to easily compare ferromagnetic and anti-ferromagnetic configurations and giv-

ing us a useful tool to study the energy cost for switching spins on various spots and scales.

This model can be useful to study the stability and the properties of real size nanoribbons

presenting spin defects and their applications.
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Science isn’t about why, it’s about why not.

- Cave Johnson (Portal)
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Chapter 1

Introduction

The groundbreaking synthesis of graphene, the first single-atom thick material, in 2004 by

Novoselov and Geim [1,2] has ignited a surge in research on atomically thin two-dimensional

(2D) materials, raising the interest in their fundamental properties and potential applications.

Distinguished by their inherent flexibility, strength, and extreme thinness, 2D materials ex-

hibit phenomena vastly different from their bulk counterparts. Their unique composition,

being entirely made up of their surface, makes them susceptible to alterations in properties

due to the interface between the surface and the substrate, as well as the presence of adatoms

and defects. The advancement of 2D materials is anticipated to revolutionize current device

technology and offer new prospects for spintronic devices and quantum computing [3,4,5].

Extensive research on graphene and other two-dimensional atomic crystals has yielded di-

verse methods for synthesis, transfer, detection, characterization, and manipulation of their

properties [3,6]. Although the electronic mobility of graphene at room temperature has

boosted proposals for graphene-based electronic devices [7], a challenge lies in the absence of

a gap in pristine monolayer samples and the difficulty in opening a gap in multilayer systems

without compromising mobility. An alternative path involves reassembling isolated atomic

planes into precisely sequenced heterostructures layer by layer, known as ’van der Waals’ het-

erostructures, showcasing unique properties and phenomena [3]. The ability to manipulate

and reassemble single atomic layers, forming heterostructures in a precise sequence, presents

vast possibilities for applications [3,8,9,10].

Researchers are also increasingly directing their attention towards other 2D atomic

crystals, including isolated monolayers and few-layer crystals. However, many theoretically

stable 2D crystals face challenges in real-world applications due to issues such as corro-

sion, decomposition, segregation, contamination, and oxidation. Notable exceptions, such as

semiconducting dichalcogenides, stand out as promising compounds since they can be easily
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exfoliated and maintain a suitable small gap in both bulk and single-layer forms. Addi-

tionally, layers of hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and other

dichalcogenides have demonstrated stability under ambient conditions [3].

In 2D dichalcogenides systems, monolayers of molybdenum disulfide (MoS2) have re-

cently gained attention for their ability to mix an electron mobility comparable to that of

graphene devices with a finite energy gap [11]. Monolayer MoS2 has a direct gap unlike its

bulk form which is an indirect semiconductor, undergoing a transition from an indirect band

gap of 1.3 eV in its bulk structure to a direct band gap of 1.8 eV in the monolayer configu-

ration. [3,11]. This direct band gap, with the valence band maximum and conduction band

minimum localised at the K point of the Brillouin zone, falls within the visible frequency

range, making it particularly favorable for optoelectronic applications [11].

Recently, 2D atomic crystals have emerged as a promising alternative to bulk semi-

conductors for modulating optical properties in photonic applications [12,13]. In the case of

graphene, changes in optical absorption exceeding 100% induced by the electric field effect

have been harnessed to showcase nanoscale electro-optical modulators in the infrared range

[14]. However, the lack of a band gap in pristine graphene makes it unpractical for appli-

cation at visible frequencies. In the case of monolayer dichalcogenides like MoS2, electrical

control of photoluminescence quantum yield and absorption coefficient in the visible range

has been demonstrated [15]. The importance of many-body interactions in monolayer MoS2

is crucial. In particular, the optical properties are dominated by excitonic transitions [16].

Furthermore, these 2D materials exhibit intriguing thermal and thermoelectrical prop-

erties. Due to the absence of interlayer phonon scattering, the anticipated thermal conductiv-

ity in ideal conditions is expected to surpass the values observed in bulk. Another noteworthy

characteristic is the high sensitivity of their electronic properties to external factors such as

pressure [17], strain [18,19,20], and temperature [21]. These external influences not only

impact the energy gap but, under specific conditions, can also trigger an insulator-to-metal

transition. Moreover, the absence of lattice inversion symmetry, coupled with spin-orbit

coupling (SOC), results in intertwined spin and valley physics within monolayers of MoS2

and other group-VI dichalcogenides [13]. This unique combination enables the manipulation

and control of spin and valley properties in these materials [9,22]. MoS2 monolayers have

been suggested for a wide variety of nanoelectronics applications due to their distinctive

band structures, such as valleytronics, spintronics, optoelectronics and room temperature

transistor [8,9,23].

The interest in the electronic and mechanical properties of graphene and other 2D mate-

rials has also triggered an intense investigation and production efforts focusing on nanowires
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and nanoribbons. As in graphene, the presence of edges modifies the band structure of

monolayer TMDs. The necessity of a simple framework to study the electronic properties

of nanoribbons of MoS2 arises from these observation and motivated us to create the model

used in this thesis.

While much of the theoretical work on graphene has employed tight-binding-like ap-

proaches, the exploration of the electronic properties of single-layer, few-layer, and nanorib-

bon dichalcogenides has primarily been based on ab initio calculations, based on Density

Functional Theory (DFT) [22,18]. Although these methods give valuable insights of the elec-

tronic properties of pristine dichalcogenide crystals, their computational demands become

prohibitive when dealing with disordered systems comprising a large number of atoms. A

simpler model is then used to be able to tackle larger system. One of the commonly used,

and the one used in this thesis, is the tight-binding approximation. From a computational

standpoint, tight-binding models exhibit high scalability, rendering them well-suited for the

analysis of large structures, both ordered and disordered. Moreover, the tight-binding model

finds application not only in single-layer MoS2 but also in similar transition metal dichalco-

genides.

In recent years, several tight-binding models have been put forth for MoS2 monolayers

[24,25,26,27,28]. We chose one that is a good compromise in the choice of the number of

parameters between accuracy and lightness of calculation. We use the tight-binding model

shown in ref [27,28] to replicate the band structures of MoS2 andWS2 layers obtained by DFT.

Then we expand the TB parameters and use a local Coulomb interaction to systematically

study the electronic and magnetic properties of MoS2 zigzag nanoribbons. Our calculations

reproduce qualitatively the band structure of nanoribbons obtained by DFT. We show the

necessity to take into account the different environment of the edge atoms to reproduce the

DFT calculations. Both DFT and Hubbard (TB+U) methods reveal that one band crossing

the Fermi level is more strongly influenced by spin polarization than any other bands. The

dispersion of this band, originating from states localized on the sulfur edge of the nanoribbon,

closely resembles the one of the energy branch obtained in a linear chain of atoms with first-

neighbour interaction. We propose a toy model to study the energetics of different spin

configurations of the nanoribbon edge.

The development of a concise and efficient representation of band structures, combined

with a simplified model facilitating the analysis of energetics in various spin configurations

of nanoribbons, sets the stage for advanced calculations. These calculations can incorporate

external factors like mechanical stresses and defects. The observed alteration of spin texture

induced by a Gaussian perturbation can replicate effects produced by an STM tip, suggest-
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ing potential applications in spintronics, among other fields. The promising results obtained

for sulfur vacancies indicate a positive outlook for exploring other defects or adatoms. Fur-

thermore, recent advancements in machine learning have opened the door to an enhanced

parametrization of TB, offering the possibility of even more accurate quantitative reproduc-

tion of MoS2 band structures [29].

This thesis is structured as follow:

Chapter 2 describes the crystal and the physical properties of transition metal dichalco-

genides (TMDs). A description of the structures of the studied materials as well as a review

of the main electronic, magnetic and optical properties is presented.

Chapter 3 presents the computational methods used in this work : DFT, TB theory and

Hubbard model. The description is developed in the case of TMDs. For TB, we review the

models found in literature and motivate our choice. The DFT band structure calculations

shown in this work have been performed by Péter Vancsó from the Institute of Technical

Physics and Materials Science in Budapest.

Chapter 4 presents the tight-binding parametrization used for sheets of MoS2 and WS2

as well as for zigzag MoS2 nanoribbons with sulfur dimer passivation of the Mo edge. The

band structures obtained from these parametrization are shown and discussed as well as the

impact of spin polarization.

Chapter 5 discusses the impact of defects and disorder on MoS2. More precisely, we

predict the domain wall in nanoribbons, compare it with graphene nanoribbons and study the

effect of edge disorder on the magnetic properties. An ongoing work about atomic vacancies

in nanosheets is also shown.

Chapter 6 contains a one-dimensional atomic chain model for the magnetic order in

MoS2 nanoribbons. Indeed, the band strongly affected by spin-polarization crossing the

Fermi level has a dispersion close to the one from a linear chain of atoms. The magnetic con-

figurations and energetics of the atomic chain is studied. We computed the formation energy

of a Bloch wall and focused on smaller Bloch domains (that can appear as the consequence

of a local perturbations of the on-site energies) to estimate the excitation energies of different

arrangements of the magnetic moments.

12



Chapter 2

Physical properties of TMD-based 2D

materials

2.1 Introduction

For over a decade, graphene has been the most coveted two-dimensional material due to its

notable features including high charge mobility and unique properties (such as the presence

of a linear energy dispersion relation with respect to the momentum at the Dirac points,

similar to photons) [30,31]. However, a major drawback for several applications of graphene

on nanoelectronics is its lack of a band gap for a monolayer. It is therefore challenging to

introduce one in a doped monolayer or in a multilayer system without impacting the electron

mobility [32]. Nevertheless, graphene nanoribbons show a band gap, a discovery that has

fuelled research into this type of structure.

On the other hand, transition metal dichalcogenides (TMDs) have a band gap, making

them a significant focus of research efforts for semiconductor and optical applications. Group-

VI TMDs exhibit a direct bandgap in monolayers and an indirect, relatively smaller bandgap

in multilayers [31]. Consequently, numerous laboratories have been exploring TMDs for

various applications, including the development of transistors [4]. It is essential to have a

material with a band gap of at least 0.4 eV, enabling the production of field-effect transistors

with an ON and OFF current ratio of between 104 and 107 [5,23]. Furthermore, TMDs in

nanoribbon form have other very interesting properties (such as being a metallic material in

the case of zigzag MoS2 nanoribbons), making it a material that can be used in spintronics

or in the advancement of battery technology for example.

In this section, we will conduct a comprehensive review of the current state of the art,
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aiming to understand the interest in these two-dimensional materials, particularly focusing

on MoS2.

2.2 TMDs

2.2.1 Planar structures

Molybdenum disulfide (MoS2) is a semiconducting, diamagnetic crystal. It crystallizes nat-

urally in two polytypes: 2H (H for hexagonal), from P63/mmc group space, and 3R (R for

rhombohedral), from R3m group space.

Figure 2.1: Crystal structure of a monolayer of MoS2 [33] and STM pictures of MoS2, courtesy
of Mr. Colomer

In its most stable 2H structure, MoS2 is hexagonal as shown in figure 2.2. A monolayer

of MoS2 is essentially a remarkably thin layer comprising three atoms in height. This structure

consists of a molybdenum atom plane enclosed between two sulfur atom planes, as depicted

in figure 2.1. In the 2H configuration, the initial monolayer is overlaid by a second layer

within the same unit cell. This subsequent layer has the same structure and is offset so that

molybdenum atoms of the first layer are aligned with the sulfur atoms of the second. The

layers are bound together by weak Van der Waals forces.

Figure 2.2: Crystal structure of MoS2 2H and first Brillouin zone [34]
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For the 3R structure, the unit cell contains three main layers, all with the same structure

as the main layers of the 2H polytype. The difference lies in the way they are arranged :

each main layer is translated by 1.82 Å in the plane of the layers, as shown in figure 2.3.

Figure 2.3: Crystal structure of MoS2 3R [35]

The distances separating the atoms are as follows [27,28]:

S-S or Mo-Mo first neighbors a = 3.16 Å

Mo-S first neighbors b = 2.41 Å

between Mo plane and S plane z = 1.586 Å

between S planes of different nearest layers w = 2.968 Å

between Mo planes of different layers c’ = 6.14 Å

2H unit cell height c = 12.28 Å

3R unit cell height c = 18.42 Å

The unit cell for a monolayer is thus defined with the directional vectors a⃗1 and a⃗2 as

well as with the atomic position shown in table 2.1. The 2H and 3R configurations of MoS2

can be effectively described by incorporating one or two additional layers of MoS2, each layer

being offset at specific atomic positions to achieve the desired configuration.
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x (Å) y (Å) z (Å)

a⃗1 a/2 a
√
3/2 0.0

a⃗2 a 0.0 0.0

Mo/W 0.0 -1.82 3.07

S 0.0 0.0 1.50

S 0.0 0.0 4.64

Table 2.1: Definition of directional vectors for an hexagonal lattice and atomic positions for
a monolayer MoS2 or WS2 unit cell

WS2 will only be studied in its 2H structure as the 3R structure is unstable and far

less common [36]. The only difference with MoS2, apart from the fact that the molybdenum

atoms are replaced by tungsten atoms, is in the distances between the atoms. In this case,

we find the following distances [28]:

S-S or W-W first neighbors a = 3.153 Å

W-S first neighbors b = 2.408 Å

between W plane and S plane z = 1.571 Å

between S planes of different nearest layers w = 2.990 Å

between W planes of different layers c’ = 6.162 Å

2H unit cell height c = 12.32 Å

The path taken in the reciprocal space to draw the band structures of planar structures

is the ΓMKΓ path as defined in figure 2.2. For three-dimensional crystals, dispersion relations

have also been drawn in a direction perpendicular to the ΓMKΓ path, called ∆ and visible

on the figure as the straight line passing from Γ to A.

2.2.2 Electronic properties

Single-layer transition metal dichalcogenides (TMDs) are semiconductors with a direct bandgap

at the K point of the Brillouin zone. The main orbital contribution characterizing the top

of the valence band is a combination of the dx2−y2 and dxy orbitals of metal M (in our case

molybdenum or tungsten), hybridize with the px and py orbitals of chalcogen X (in our case

sulfur). The bottom of the conduction band is mainly formed by the d3z2−r2 orbital of M
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(a) (b)

Figure 2.4: TB band structures for MoS2 2H (a) monolayer and (b) bulk.

and a smaller contribution from the px and py orbitals of X. In the case of MoS2, the orbitals

involved are the dxy, dyz, dzx, dx2−y2 , d3z2−r2 orbitals for Mo-4d5 and the px, py, pz orbitals for

S-3p4 which sum up to the 93% of the total weight of the four conduction bands and seven

valence bands [27].

Band structures of monolayer MoS2 are very sensitive to external mechanical stress

(and to the type of stress applied), much more so than graphene. The TB band structure

for monolayer MoS2 2H is shown in figure 2.4a for illustration. Mechanical stress will shift

the bandgap from direct to indirect [19,37], and can even confer metallic properties on the

monolayer, predicted for a tensile strain of about 8% or a compressive strain of about 15%

[38].

Figure 2.5: First Brillouin zone used for layered MoS2 and WS2.[27]

In the case of multilayers, TMDs are indirect bandgap semiconductors. The TB band

structure for bulk MoS2 2H is shown in figure 2.4b for illustration. The top of the valence

band is located at the Γ point and is formed mainly by the d3z2−r2 orbitals of the M atom

and pz orbitals of the X atoms. The bottom of the conduction band is located at the Q point

in the Brillouin zone visible on figure 2.5. This Q point lies between the Γ point and the K

point, but its exact position varies according to the number of layers. The orbitals mainly

contributing at the Q point are the dxy, dx2−y2 and d3z2−r2 orbitals of metal M and the px,
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py and pz orbitals of chalcogen X.

The rich orbital structure of the valence and conduction bands of TMDs complicates

the development of a tight-binding model valid throughout the Brillouin zone. Moreover, we

must also take into account the strong spin-orbit coupling present in TMDs, which creates a

large separation between the last occupied valence bands and the first unoccupied conduction

bands at the K point and at the minimum of the Q point. This separation is greater for

TMDs containing tungsten than for those containing molybdenum, as the W is heavier. In

our work, this coupling is not taken into account.

2.2.3 Optical properties

The absorption spectrum of bulk MoS2 shows two distinct low-energy peaks at 1.88 eV

(related to the exciton called A) and 2.03 eV (related to the exciton called B) [39] which

have been attributed to direct transitions between the conduction band and a spin-orbit

splitting of the valence band at the K point. The MoS2 monolayer shows two exciton peaks

at around 1.9 eV and 2.1 eV [40]. These values are really close to those of the bulk which is

consistent with the observation that MoS2 has a slight red-shift in its exciton peaks as the

layer thickness increases.

Figure 2.6: Simplified band structure of MoS2 in bulk. The black band is the lowest conduc-
tion band and the two orange bands are the highest valence bands. The two arrows represent
direct exciton transitions, A for the red arrow and B for the blue arrow. [41]

The high luminescence of MoS2 monolayers can be explained by the fact that the

high binding energy of exciton A reduces the probability of excited electrons falling into

the conduction band before recombination [39]. Indeed, theoretical predictions attribute to

MoS2 monolayers binding energy between 526 meV [42] and 1 eV [43,44]. Experimental

data are lower, but still high (220 meV, obtained by STM [45], or 440 meV, obtained by

PL spectroscopy [46], sometimes even 570 meV [40]). The value of this binding energy

is important for applications. For example, to use MoS2 as a photodetector or in solar

18



cells, we need to dissociate excitons (and therefore have a low binding energy) to create a

current. On the other hand, a high binding energy value would make it a useful material

for applications involving trions (quasiparticles composed of two electrons and one hole),

exciton-polariton creation and, more practically, in the field of polariton lasers [44]. The

direct bandgap nature of monolayer MoS2 enhances the likelihood of radiative emission. The

optical bandgap, measured by PL spectroscopy, is the exciton energy which determines the

onset of vertical interband transitions. The exciton binding energy is the difference between

the electronic bandgap value and the optical bandgap.

2.2.4 Magnetism and spintronic

In its pristine form, MoS2 is considered a diamagnetic semiconductor, implying that it lacks

a spontaneous magnetic moment. However, its magnetic behavior can be altered signifi-

cantly by introducing defects, edges, or dopants, resulting in various magnetic phenomena

[47,48,49]. Edge states contribute to the emergence of edge magnetism, a phenomenon that

has attracted particular interest due to its potential implications for nanoscale magnetic de-

vices and spin-based electronics [50,51,52,53]. Furthermore, through controlled doping or the

incorporation of transition metal impurities within the MoS2 lattice, the material can exhibit

modified magnetic behavior [48,54,55]. The introduction of these impurities results in the

localization of magnetic moments, leading to the manifestation of ferromagnetic or antifer-

romagnetic characteristics depending on the specific atomic configuration and distribution

[54,56]. Such tunable magnetic properties offer promising opportunities for the development

of next-generation spintronic devices, magnetic sensors, and data storage applications. For

example, MoS2 and other TMDs have been studied for their applications as nonlocal spin

valves, magnetic tunnel junctions (MTJs, a device that could be used to store a bit informa-

tion in a nanomagnet), tunnel barriers or spin transistors for example [57].

Following these observations, it seemed appropriate to focus our research on controlled

nanoribbon structures as it allowed to study quite easily the influence of different species

of edges. Furthermore, these kind of structures could be useful to study the influence of

defects or potential manipulations on the edges showing ferromagnetic or antiferromagnetic

behavior.
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2.3 Nanoribbons of TMDs

2.3.1 Structure

Figure 2.7: Unit cell for a MoS2 nanoribbon and example of (a) an armchair MoS2 nanoribbon,
(b) a zigzag MoS2 nanoribbon.

To define nanoribbons, the unit cell used is radically different than for layers. We first define a

rectangle as seen in figure 2.7 where cZZ = 3.16 Å and cAM = 5.46 Å are respectively the width

and length of the rectangular cell. There are two main types of nanoribbon, distinguished

by the shape of the edges : zigzag and armchair. The unit cell of a zigzag nanoribbon is

generated by duplicating the rectangular cell a specific number of times horizontally along the

x-direction to achieve the desired nanoribbon width. Conversely, for an armchair nanoribbon,

the rectangular cell is duplicated a certain number of times vertically along the y-direction

to attain the desired width of the nanoribbon and to create the unit cell. Hence, the width

of a zigzag ribbon is defined by WZZ = ncAM and the width of an armchair ribbon by

WAM = ncZZ , where n is an integer or semi-integer. In the case where n is an integer, we

find what we call an asymmetrical nanoribbon (see figure 2.8 (a), (d), (f) and (h)) as the

two edges are made of different atoms (one will be a sulfur edge while the other will be a

molybdenum edge). In the case of a semi-integer n, the ribbon is symmetrical (see figure 2.8

(b), (c) and (g)), which will generally make it more stable [50]. A nanoribbon is classified as

symmetrical or asymmetrical based on its overall structure here, irrespective of the endings.
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Figure 2.8: The different types of MoS2 nanoribbons (the width of the ribbon is vertical in the
diagram): (a) asymmetrical armchair nanoribbon, (b) symmetrical armchair nanoribbon, (c)
symmetrical zigzag nanoribbon, (d) asymmetrical zigzag nanoribbon, (e) symmetrical zigzag
nanoribbon with molybdenum endings, (f) asymmetrical zigzag nanoribbon with molybde-
num endings, (g) symmetrical zigzag nanoribbon with sulfur endings, (h) asymmetrical zigzag
nanoribbon with sulfur endings. [50]

Numerous studies have demonstrated that MoS2 nanoribbons are more stable when

passivated with sulfur on the Mo edge [58,59]. In the case of armchair nanoribbons, even

greater stability can be achieved with hydrogen terminations [50]. These stability findings

are verified whether or not spin polarization is taken into account in the calculations.

Experimental observation using scanning tunneling microscopy (STM) (figure 2.9) of

the growth of triangular structure facilitated the discovery of the aforementioned conclusions.
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Figure 2.9: STM images and corresponding models of seven triangular MoS2 nanoclusters
ranging in size from 4 to 12 Mo atoms at the edges. Mo atoms are shown in grey and S
atoms in yellow. [58]

STM images of these triangular MoS2 nanocrystals show a brighter edge on the line

of atoms preceding the edge (for an edge with more than 6 atoms). This is due to the

electronic structure of MoS2, which is strongly modified at the edges. DFT calculations

indicate that this is due to fully sulfur-dimer passivated Mo edges, presenting two edge states

making them metallic [58,60]. In the case of smaller, triangular nanocrystals, S edges are

preferred. We could therefore extrapolate that Mo edges passivated by sulfur dimers are

the most stable. This conclusion seems correct irrespective of the substrate on which the

structure was created as long as there is no strong interaction between the substrate and the

nanoclusters [50,60]. Other configurations (such as hydrogen passivation) are theoretically

stable. In reality, however, the nanoribbons observed are zigzag nanoribbons passivated with

sulfur dimers, even when the growth environment is modified [60], thus characterizing a

more stable structure. When hydrogen is abundant, it has a tendency to attach itself to the

edges. In this scenario, the most stable configuration is a zigzag nanoribbon with sulfur dimer

passivation, accompanied by hydrogen fixation along the edges [59]. Nevertheless, comparing
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this new structure with the previous zigzag passivated nanoribbon with the clean S dimer

configuration show that the number of metallic bands remains constant and the influence of

hydrogen is simply to induce a small shift in energy of the two metallic bands at the Mo

edge.

In the following, we decided to focus on a zigzag nanoribbon (for its metallic property,

not found in an armchair nanoribbon) passivated with sulfur dimers (i.e. a ribbon similar

to the one shown in figure 2.8 (g) or (h)) in order to study a stable, experimentally feasible

structure. According to DFT, atomic distances are the same as for the planar MoS2 except

for the sulfur dimers, which are placed slightly further apart and separated in z by 1.9 Å

(instead of 3.13 Å for the sulfur atoms present in the nanoribbon and in the planar structures)

and for the atoms close to the edges. These modifications were made following data obtained

by Péter Vancsó after relaxation of the structure by DFT [61].

In the case of nanoribbons, band structures are drawn following the path ΓX where X

= π
cZZ

in the case of zigzag ribbon creation or π
cAM

in the case of armchair ribbon. Directional

vectors are now perpendicular, thanks to the use of a rectangular mesh in direct space.

2.3.2 Properties

One-dimensional nanostructures such as nanotubes, nanosticks, nanowires and nanoribbons

have been actively studied for two decades now, thanks to their special electronic and phys-

ical properties associated with their small size. Nanoribbons have been predicted to display

high electrical and thermal conductivity and high breakdown current density which triggered

the interest of scientists [62]. The stability of MoS2 nanoribbons, combined with the intrinsic

properties of the material itself (which is resistant to oxidation1 and is a good catalyst), sug-

gests possible applications in a wide range of fields, including nanoelectronics, nanotribology

(the science that studies the phenomena that can occur between two material systems in

contact driven by relative motion, such as wear, friction, etc.) and catalysis. Very quickly,

scientists wanted to develop theories to explain the origins of these observed electrical, op-

tical, mechanical and magnetic properties, and to guide the development of new devices

incorporating these nanostructures.

A typical example of such nanostructures is the graphene nanoribbon. It has been

shown by calculations that graphene nanoribbons with a hydrogen edge in the armchair

configuration are metallic if the width parameter is equal to 3n-1 (where n is an integer)

1To a certain extent, as it is a material that still oxidize within a few months. Oxidation can be avoided
to a certain extent by encapsulating the layer or nanoribbon for example with a polymer layer [63,64].
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Figure 2.10: AFM images of MoS2 nanoribbons produced by CVD [78]

and are otherwise semiconducting [50,65,66]. On the other hand, graphene nanoribbons in

zigzag configuration have been predicted metallic and independent of their width parameter.

Further studies have shown that, in reality, both types of nanoribbon exhibit a bandgap,

and that increasing the ribbon width decreases the energy of this bandgap [67]. The half-

metallicity under a high transverse electric field of graphene nanoribbons has opened up new

opportunities in the field of spintronics [68,69]. By using TB parameters and local Coulomb

interaction (the so-called Hubbard U) the magnetic properties of graphene nanoribbons have

been studied in large scale systems. It was found that the magnetism of the edge states is

robust against disorder and potential fluctuations [70,71,72,73].

These discoveries also led scientists to investigate the electronic and magnetic proper-

ties of MoS2 nanoribbons. For example, MoS2 armchair nanoribbons have a non-magnetic

ground state (with or without hydrogen saturation), whereas MoS2 zigzag nanoribbons have a

ferromagnetic ground state, regardless of edge configuration (the reasoning behind the justifi-

cation of the ferromagnetic character differs, but the conclusion remains the same) [74,75,76].

It is also possible to stabilize the magnetic states of MoS2 zigzag nanoribbons by applying

mechanical stress to the structure. This has the effect of increasing the energy difference

between the magnetic and non-magnetic states [39]. In addition, magnetic measurements

on large scale epitaxial growth of zigzag MoS2 nanoribbons show prominent ferromagnetic

behavior [77]. The ferromagnetic nature of zigzag MoS2 nanoribbons makes them more in-

teresting for spintronics applications than fully ferromagnetic graphene nanoribbons, as the

latter can only be obtained by applying an external electromagnetic field.

MoS2 nanoribbons can be obtained experimentally from several technique. The choice

of method depends on factors like scalability, purity, control over dimensions, and the specific

application requirements. Researchers often choose a combination of the following techniques

to achieve the desired properties in MoS2 nanoribbons.

• Chemical Vapor Deposition (CVD) is a widely used method consisting on growing MoS2
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nanoribbons on substrate by introducing molybdenum precursor and sulfur precursor

in a reaction chamber where they react and deposit on a substrate in a controlled

manner. By choosing the growth conditions (temperature, pressure, concentration etc)

influences the dimensions and properties of nanoribbons. In usual CVD conditions, the

Mo edge of the nanoribbon is passivated by sulfur dimers, but it is difficult to have

clean and long edges. Using additional chemical etching gives better results [79,78].

• Lithography and etching techniques are another technique allowing to produce MoS2

nanoribbons by using an electron beam lithography or photolithography for example

to pattern MoS2 films followed by an etching process to remove the unwanted material.

Some really cleaned long zigzag edge nanoribbons have been produced by laser-induced

unzipping of nanotubes or by milling with a focus ion beam [80].

• MoS2 nanoribbons can also be produced by liquid phase expfoliation of bulk MoS2. The

latest is dispersed in a solvent and nanoribbons are obtained by inducing exfoliation

by sonication or other mechanical means.

• Hydrothermal or solvothermal synthesis is also used by dissolving precursors in a

solvant. The reaction takes place under elevated temperature and pressure, leading

to the formation of nanoribbons.

• By using a template, such as porous membrane or nanotubes, it is possible to grow

MoS2 nanoribbons using these guides. The template is coated with MoS2 precursors

and then removed after the growing process, leaving nanoribbons.

• Top-Down Mechanical Exfoliation is, as its name suggest, a mechanical exfoliation

method used to obtain MoS2 nanoribbons from bulk crystals. This is one of the oldest

method, as it is also with this method than graphene nanoribbons have been isolated

for the first time. By mechanically cleaving a bulk crystal, it is possible to produce

thin layers and further processing is done to obtain nanoribbons.

Due to the recent experimental results [81,82,83], theoretical understanding of the edge

magnetism in MoS2 nanoribbons is important, especially in larger, realistic systems including

disorder.

The energy difference between spin-polarized and non-spin-polarized states, as well

as the total magnetic moment, increases with increasing ribbon length. The MoS2 zigzag

nanoribbons all appear to be metallic, irrespective of their width, whereas the MoS2 armchair

nanoribbons are semiconducting. For example, the 10-atom-wide MoS2 armchair nanoribbon
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has a direct bandgap of 0.52 eV [51]. The width of the bandgap depends little on the width

of the nanoribbon, and converges rapidly to the value of 0.56 eV (particularly from a width

of around 15 atoms). This value is significantly smaller than that of monolayer MoS2 (which

was 1.69 eV), as the atoms at the edges of the nanoribbons induce new flat energy levels

above the valence band and below the conduction band, which reduce the size of the band

gap. In general, zigzag MoS2 nanoribbons are more stable than armchairs, and both are more

stable than experimentally created MoS2 nanoclusters.

DFT-based calculations can predict these properties very accurately and provide guid-

ance for the creation of updated technology, and have indeed been widely used, but they

can be quite time-consuming and cumbersome. In order to study systems involving a large

number of atoms, the tight-binding (TB) approach is a more suitable alternative, which can

also provide a simple starting point for the further inclusion of many-body electron-electron

effects.
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Chapter 3

Computational methods

Throughout this study, we consistently compare our tight-binding findings against density

functional theory (DFT) results. Indeed, since we are using a Slater-Koster approach of tight-

binding, hopping terms and on-site energies are parameters that have to be set by comparison

with another method. Similarly, this applies to the determination of interaction terms within

the Hubbard model, which serves to study the magnetic properties of nanoribbons. This

chapter is dedicated to detail the computational methods employed in our investigation.

3.1 Density Functional Theory

To correctly set the tight-binding parameters and crystal structures as well as ensure correct

orbital dependency, we compared the band structures obtained by tight-binding with the

ones derived from density functional theory (DFT) calculations.

DFT is a quantum mechanical framework widely employed in condensed matter physics

and quantum chemistry. By using functionals of the spatially dependent electron density, it

allows to study the properties of a many-electron system from first-principles. Built upon the

Hohenberg-Kohn theorems, DFT asserts that the electron density is the crucial determinant

for the external potential throughout a system. It introduces a universal functional of the

electron density, such that minimizing the energy provides the ground-state energy of the

system. The practical implementation involves the Kohn-Sham equations, treating electrons

as if they were independant and submitted to an effective potential. This potential includes

the unknown exchange-correlation functional, which captures the intricate interactions be-

tween electrons that are difficult to model. Since, instead of the many-body wave function,

the one-body density is used as the fundamental variable, DFT has to tackle a function of
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only three spatial coordinates rather than the 3N coordinates of the wave function. Com-

putational costs are then relatively low when compared to wavefunction quantum chemistry

methods, such as exchange only Hartree–Fock theory and its descendants that include many-

body electron correlation but it is still a computational costly method to study big structures

[84]. A more detailed presentation of DFT can be found in Ref. [85,86,87,88].

The DFT calculations presented in this work have been performed by Péter Vancsó.

They are computed in the Vienna ab initio simulation package (VASP) [89] using the projec-

tor augmented wave (PAW) method [90]. The exchange-correlation functional chosen is the

Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBE) [91]. Band struc-

ture calculations utilize a plane wave cutoff set at 500 eV and the Brillouin zone is sampled

on a (12 × 2 × 1) Monkhorst-Pack mesh of k points [92]. The convergence criterion for forces

is set to 0.01 eV/Å during geometry optimization.

3.2 Tight-binding theory

The computational framework used for the calculation of MoS2 band structures, additionally

to DFT, is based upon the utilisation of the tight-binding (TB) formalism. This method

is similar to the LCAO (linear combination of atomic orbitals) frequently used in quantum

chemistry.

In essence, the tight-binding model is the opposite of the ”almost free” electron approach

as electrons are considered tightly bound (as the name suggests) to the atom to which they

belong. The main assumption of this model is that the orbitals ukλ(r⃗ − R⃗k) are rapidly

decreasing function of the distance |r⃗− R⃗k| (where k is the index of an atomic site positioned

at R⃗k and λ designates the orbital). As a result, orbitals at different atomic sites show

minimal or null spatial overlap.

The Schrödinger’s equation has to be solved :

Hψ(r⃗) = Eψ(r⃗), (3.1)

where the Hamiltonian is one of an electron in an independent electron approach and is

written as

H =
p2

2m
+ V (r⃗),

where V (r⃗) include the ionic potentials and the self-consistent electrostatic interaction due

to the other valence electrons. It is assumed that the potential V (r⃗) can be written as the
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sum on localized atomic potential

V (r⃗) =
∑
k

ϕk(r⃗ − R⃗k). (3.2)

The wave function is developed using LCAO

ψ(r⃗) =
∑
j,µ

cjµujµ(r⃗ − R⃗j),

where ujµ are angular dependant and are the wave functions solution of the atomic Schrödinger

equation

[
p2

2m
+ ϕj(r⃗ − R⃗j)]ujµ(r⃗ − R⃗j) = ϵjµujµ(r⃗ − R⃗j). (3.3)

The eigenenergies ϵλµi are named on-site energy and µ stands for quantum numbers of the

atomic wavefunctions {n,l,m} when ϕj is a potential of spherical symmetry. Thanks to

the assumption that the orbitals of different atomic sites do not overlap, we can write an

orthogonality rule ∫
u∗iλ(r⃗ − R⃗i)ujµ(r⃗ − R⃗j)d

3r = δijδλµ.

Following these developments, we can project the initial Schrödinger equation onto the uiλ

orbital ∑
jµ

∫
u∗iλ(r⃗ − R⃗i) [

p2

2m
+ V (r⃗)] ujµ(r⃗ − R⃗j) d

3r cjµ = E
∑
jµ

cjµδijδλµ.

The Kronecker deltas in the right hand side result from the orthogonality relation.

Using the expression of V (r⃗) from (3.2) and separating the cases k = j and k ̸= j, we obtain

ϵiλ ciλ +
∑
jµ

∫
u∗iλ(r⃗ − R⃗i)

∑
k ̸=j

ϕk(r⃗ − R⃗k) ujµ(r⃗ − R⃗j) d
3r cjµ = Eciλ,

which can be rewritten by separating the case j = i from the case j ̸= i as

ϵiλ ciλ +
∑
µ

αλµ
i ciµ +

∑
j ̸=i

∑
µ

βλµ
ij cjµ = Eciλ,
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where

αλµ
i =

∫
u∗iλ(r⃗ − R⃗i)

∑
k ̸=i

ϕk(r⃗ − R⃗k) uiµ(r⃗ − R⃗i) d
3r

=

∫
u∗iλ(r⃗)

∑
k ̸=i

ϕk[r⃗ − (R⃗k − R⃗i)] uiµ(r⃗) d
3r

βλµ
ij =

∫
u∗iλ(r⃗ − R⃗i)

∑
k ̸=j

ϕk(r⃗ − R⃗k) ujµ(r⃗ − R⃗j) d
3r, j ̸= i

(3.4)

αλµ
i is called the crystal field integral and βλµ

ij the hopping integral. It is generally assumed

that three-center integrals like those which occur for k ̸= i and k ̸= j for the βλµ
ij equation

are small with respect to the two-center integral corresponding to k = i ̸= j. βλµ
ij is then

written as

βλµ
ij =

∫
u∗iλ(r⃗ − R⃗i) ϕi(r⃗ − R⃗i) ujµ(r⃗ − R⃗j) d

3r

=

∫
u∗iλ(r⃗) ϕi(r⃗) ujµ[r⃗ − (R⃗k − R⃗i)] d

3r, j ̸= i.

(3.5)

The energies solution of the Schrödinger equation (3.1) are then the eigenvalues of the matrix

whose elements are

Hiλ,jµ = (ϵiλδλµ + αλµ
i )δij + βλµ

ij .

Due to the unknown nature of the orbitals, the tight-binding parameters are also unknown.

This study is based on the Slater and Koster approach, treating the tight-binding model

parameters as adjustable variables to achieve accurate band structures. This method is

applicable in cases where Bloch’s theorem is not valid, as DFT, and computationally efficient.

We can go a step further by looking at the atomic potential ϕk. This potential is made

up of two parts: the ionic potential (denoted ϕ0
k) and electron-electron interactions. Intra-

atomic electron Coulombic repulsions are assumed to be the main contributor to Coulombic

electron-electron interactions (consistent with the assumption that orbitals from different

atomic sites have limited overlap). Thanks to this assumption, the ukλ orbitals can be

calculated using the Hartree-Fock approximation where the electron exchange is accounted

for

[
p2

2m
+ ϕ0

k(r⃗)]ψkλσ(ξ) +
∑
µ,σ′

nkµσ′

∫
u∗kµ(r⃗

′)ukµ(r⃗′)
e2

|r⃗ − r⃗′|
d3r ψkλσ(ξ)

−
∑
µ

nkµσ

∫
u∗kµ(r⃗

′)ukλ(r⃗′)
e2

|r⃗ − r⃗′|
d3r′ψkµσ(ξ) = ϵkλψkλσ(ξ), (3.6)
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where σ is the spin projection quantum number, ξ is for {r⃗, s} where s = ±1/2 is the spin

projection variable, nkµσ is the average value of the spin-orbit occupancy number and ψkλσ(ξ)

is a spin-orbital defined by

ψkλσ(ξ) = ukλ(r⃗)δσs.

We have set 1
4πϵ0

= 1 to simplify the expression. Assuming a paramagnetic state (i.e. nkµσ =

nkµ−σ), the equation (3.6) can be rewritten as follows

[
p2

2m
+ ϕ0

k(r⃗)]ukλ(r⃗) +
∑
µ

nkµσ [2

∫
u∗kµ(r⃗

′)ukµ(r⃗′)
e2

|r⃗ − r⃗′|
d3r ukλ(r⃗)

−
∫
u∗kµ(r⃗

′)ukλ(r⃗′)
e2

|r⃗ − r⃗′|
d3r′ ukµ(r⃗)] = ϵkλukλ(r⃗). (3.7)

We assume u0kλ(r⃗) as the solution of the Schrödinger equation with the electron correlation

neglected

[
p2

2m
+ ϕ0

k(r⃗)]u
0
kλ(r⃗) = ϵ0kλu

0
kλ(r⃗).

We can then use a first-order perturbation for the Coulomb and exchange terms to rewrite

(3.7) as

ϵkλ = ϵ0kλ +
∑
µ

[2

∫ ∫
|u0kµ(r⃗′)|2

e2

|r⃗ − r⃗′|
|u0kλ(r⃗)|2 d3r′d3r

−
∫ ∫

u0∗kµ(r⃗
′)u0kλ(r⃗

′)
e2

|r⃗ − r⃗′|
u0∗kµ(r⃗)u

0
kµ(r⃗) d

3r′d3r ]nkµσ. (3.8)

Subsequent to this, a sequence of simplifications can be implemented. In the case of transition

metals, we restrict the orbitals to the 3d, 4d and 5d orbitals. It is also assumed that the

intra-atomic coulombic interaction and exchange integrals are independent of the indices λ

and µ (which specify a particular d-orbital). Finally, we assume that the occupancy number

nkµσ does not vary between different spin-orbitals. We can then simplify (3.8) by

ϵkλ = ϵ0kλ + (9 Uk − 4 Jk)
Nk

10
= ϵ0kλ + U eff

k Nk.

Uk is the average of the coulombic interactions and Jk is the average of the exchange inter-

actions at atomic site k. Nk is the total number of occupancies of the 10 spin-orbitals of site

k (Nk =
∑

µ,σ nkµσ). This form of the Hamiltonian, known as ”Hubbard-Tight-binding”, is

important for magnetic ribbons only. In order to further develop the integrals, we choose an

31



expression for the five d orbitals located at atomic site i

uiλ(r⃗) = fi(r)Y
d
λ (θ, ϕ),

where fi(r) is a radial function and Y d
λ (θ, ϕ) denotes a real spherical harmonics corresponding

to l = 2. The real spherical harmonics are linear combination of the usual spherical harmonics

Ylm(θ, ϕ) (see Appendix A for more details). Here, λ ranges from 1 to 5, the Y d
λ representing

the angular variation of functions behaving respectively as xy, yz, zx, x2 − y2 and 3z2 − r2.

For convenience, the origin of the coordinates has been shifted on the site i. We can rewrite

the αλµ
i of (3.4) as the sum over k of integrals

Aλµ
ik =

∫
u∗iλ(r⃗) uiµ(r⃗) ϕk(r⃗ − R⃗k) d

3r

=

∫
|fi(r)|2 ϕk(|r⃗ − R⃗k|) Y d

λ (θ, ϕ)Y
d
µ (θ, ϕ)d

3r,

where R⃗k is the vector stretching from the atomic site i to the atomic site k. The transition

from one equality to the other is possible by considering ϕk as a spherical potential. We then

rotate the coordinate axes from Oxyz to OXYZ, in which OZ is aligned with the vector R⃗.

Defining Θ and Φ as the polar angles formed by the vector r⃗ with the new coordinate system,

we can write

Y l
λ(θ, ϕ) =

+l∑
m=−l

Ql
λmYlm(Θ,Φ).

In this equation, Ylm(Θ,Φ) are the usual spherical harmonics with respect to the axes OXYZ

and Ql
λm is a matrix (2l+1)×(2l+1) that depends on the direction cosine of R⃗ (see Appendix

A for the expressions of Ql
λm). Thanks to these developments, we can rewrite Aλµ

ik for the d

orbitals as

Aλµ
ik = Qd

λ0Q
d
µ0(ddσ)

′ − (Qd
λ1Q

d
µ,−1 +Qd

λ,−1Q
d
µ1)(ddπ)

′ + (Qd
λ2Q

d
µ,−2 +Qd

λ,−2Q
d
µ2)(ddδ)

′,

where

(ddσ)′ =
2l + 1

2

∫ ∞

0

dr r2|fi(r)|2
∫ +1

−1

dU ϕk(
√
r2 − 2rR cosΘ +R2)[P 0

l (cosΘ)]2

(ddπ)′ = −2l + 1

2

(l − 1)!

(l + 1)!
×

∫ ∞

0

dr r2|fi(r)|2
∫ +1

−1

dU ϕk(
√
r2 − 2rR cosΘ +R2)[P 1

l (cosΘ)]2

(ddδ)′ =
2l + 1

2

(l − 2)!

(l + 2)!
×

∫ ∞

0

dr r2|fi(r)|2
∫ +1

−1

dU ϕk(
√
r2 − 2rR cosΘ +R2)[P 2

l (cosΘ)]2

(3.9)
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where l must be set to 2. σ, π et δ correspond in fact to |m| = 0, 1 and 2 of the angular

momentum.

The calculation of hopping integrals βλµ
ij is similar. We can rewrite the equation (3.5)

with three hopping parameters (ddσ), (ddπ) and (ddδ). We also find the director cosines of

the R⃗j−R⃗i vector oriented along the OZ direction. The λ, µ elements of the hopping integrals

are listed in tables[93,94]. Finally, βλµ
ij can be written as

βλµ
ij =



(ddδ)

(ddπ)

(ddπ)

(ddδ)

(ddσ)


when OZ coincides with Oz. The same treatment applies to the s and p orbitals, where the

parameters are ssσ, ppσ and ppπ. Similarly, s − d and p − d interactions involve hopping

parameters noted sdσ, pdσ and pdπ.

3.3 Tight-binding models for TMDs

In the last years, a number of tight binding models have been proposed to reproduce DFT

band structure calculations of TMDs [27,24,26,25].

An all orbital model can be used, including non-orthogonal sp3d5 orbitals [24]. When

using a non-orthogonal tight-binding, basis functions are not constrained to be orthogonal

and the overlap between them can be nonzero. This model considers only nearest-neighbor

hopping matrix elements, and includes spin orbit coupling. Featuring 96 fitting parameters,

the model shows good agreement with DFT band structures (shown in figure 3.1a) but it has

a high computational cost and its complexity makes it impractical for studying ribbons (due

to the presence of edges), disorder and realistic large system.

An alternative model is a three-orbitals model [25]. In contrast to the all orbital model,

the three-orbital model considers only a superposition of dz2 , dxy and dx2−y2 orbitals as an

orthogonal basis. The motivation behind this choice is to accurately capture the behavior

near the K point, where the direct bandgap is located. While this three-orbital model exhibits

good agreement with DFT (visible on figure 3.1b) in the vicinity of the K point, it falls short

of accurately representing features such as the local band minimum at the Q point. The
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model’s accuracy can be enhanced by increasing the number of fitting parameters from 8 to

19, which includes up to the third-nearest neighbor hoppings. However, the computational

cost increases with the complexity of the model. Additionally, the orbital composition of

the bands is restricted to Mo orbitals, limiting the model’s capability to correctly describe

phenomena like S vacancies and reproduce the orbital composition around the Γ point.

Rostami et al.[26] introduced an intermediate model: a seven-orbitals tight-binding

model. This model employs a non-orthogonal basis and neglects the s and pz orbitals of the

S atoms as well as the s, dyz and dxz orbitals of the Mo atom. Similar to the three-orbitals

model, the seven-orbitals model successfully reproduces the essential features around the K

points but falls short of reproducing the minimum at the Q point. The band structure is

visible on figure 3.1c.The main downside of this model for our specific investigation is that

this model decouples the pz orbital of S atom from other orbitals. In MoS2 however, the pz

orbital of the S atom is not decoupled and plays a significant role in the transition from a

direct to an indirect bandgap.

Lastly, Cappelluti et al.[27] described an eleven-orbitals model, combining the relatively

lightness of the three-orbitals and seven-orbitals model but taking into account the pz orbital

of the S atom. The band structure is visible on figure 3.1d. This model reproduces the

DFT calculation for all k-points and is less computational costly than the all-orbital model.

This is the model we decided to base our work upon. For MoS2, the model considers an

orthogonal basis made of all the 4d Mo orbitals (4dxy, 4dyz, 4dxz, 4dx2−y2 and 4d3z2−r2) and

the 3p S orbitals (3px, 3py and 3pz). The omission of the 5s orbitals of Mo can be considered

a robust approximation, given that the primary contributors to the composition of the four

conduction bands and seven valence bands near the Fermi level are predominantly the five 4d

orbitals of Mo and the six 3p orbitals of S. Together, these orbitals make up approximately

93% of the total orbital weight of these bands. It is important to note that the Cappelluti

model doesn’t reproduce correctly the orbital composition of some bands and fail to describe

accurately the band structure of a nanoribbon as the edges are not taken into account. Both

these problems are going to be addressed in this work.

3.4 Hubbard model

Given our intention to investigate the magnetic properties of MoS2 zigzag nanoribbons later

in this study, we use a Hubbard-TB (Hubbard tight-binding) approach within the grand-

canonical ensemble. The Hubbard tight-binding model is a theoretical framework used to

study the behavior of electrons in strongly correlated materials. It assumes that electrons
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(a) (b)

(c) (d)

Figure 3.1: Band structures for monolayer MoS2 (a) from Zahid et al.[24], (b) from Liu et
al.[25], (c) from Rostami et al.[26] and (d) from Cappelluti et al.[27]. TB is in red and DFT
is in blue or black.
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are localized on specific sites in a lattice and incorporates the strong Coulomb repulsion be-

tween electrons on the same site, known as the on-site Coulomb interaction. The model is

described by the Hubbard Hamiltonian, which includes terms for the hopping of electrons,

on-site Coulomb interactions, and on-site energies. The Hamiltonian can be written in sec-

ond quantization formalism in the case of MoS2 with the interaction terms UMo and US

corresponding to the five Mo and three S orbitals :

H =
∑
⟨ij⟩σ

tij ĉ
†
iσ ĉjσ + UMo

∑
i∈Mo

n̂i↑n̂i↓ + US

∑
i∈S

n̂i↑n̂i↓ +
∑
iσ

(ϵi − µ)n̂iσ (3.10)

where tij is the hopping parameters, ciσ annihilates a fermion at site i with spin σ

(and c†iσ creates one), ϵi is the on-site energy parameters, niσ the particle-number operator

and µ the chemical potential. The orbital index is ignored here for simplicity although the

calculations were executed considering five orbitals for each Mo atom and three orbitals for

S atoms. Given our focus on extensive systems, specifically nanoribbons, in this study, we

implement the conventional mean-field decoupling of the Hubbard terms n̂i↑n̂i↓ ≈ ni↑n̂i↓ +

ni↓n̂i↑−ni↑ni↓, which yields an effective single-particle Hamiltonian that can be diagonalized

either in k- or real space. For a comprehensive exploration of the mean-field approximation,

refer to the in-depth discussion in Ref. [95]. The average occupation number ni,s = ⟨n̂i,s⟩
have to be adjusted self-consistently. In summary, we operates as follows: an initial value

is assigned to the average occupation numbers, and subsequently, the mean-field version of

the Hamiltonian 3.10 is diagonalized. The local densities of states ρi,s(E) are then computed

for both spins across all atoms and orbitals. The total density of states follows by ρ(E) =∑
i,s ρi,s(E) with the sum over i encompassing all orbitals of all atoms. The Fermi energy ϵF

and the occupation numbers are then calculated by the equations

Ne =

∫ ϵF

−∞
ρ(E)dE, (3.11a)

ni,s =

∫ ϵF

−∞
ρi,s(E)dE (3.11b)

where Ne is the total number of electrons in the system. Once ϵF has been set through 3.11b,

new values are obtained for the ni,s set from 3.11a. The initial values are corrected and the

process is repeated until the ni,s values differ from the ones of the previous iteration by less

than a given tolerance.

The Coulomb interactions associated with S and Mo atoms in 3.10 were tuned to

optimally match the spin-polarized DFT band structure of the nanoribbon with a thickness

of six unit cells. The resulting Hubbard parameters are determined to be US = 1.7 eV and
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UMo = 0.6 eV.

The TB+U approach offers a significant computational advantage compared to the

DFT method due to its substantially lower computational burden. The Hamiltonian matrix

size is 11 times the number of MoS2 units. In contrast to DFT, the diagonalization of the

Hamiltonian for nanoribbons comprising several hundred MoS2 units can be accomplished

within a reasonable computational timeframe, even considering the self-consistent iteration

over the occupation numbers on the S and Mo orbitals.
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Chapter 4

Tight-binding parametrization from

DFT calculations

In this chapter, we begin by reproducing, with TB, the DFT band structures of MoS2 2H,

MoS2 3R, and WS2 2H in monolayer, bilayer, trilayer, and bulk configurations. Once we

establish well-defined parameters, our focus shifts to detailing zigzag MoS2 nanoribbons with

sulfur dimer passivation at the Mo edge. We chose this structure as it is the most stable

experimentally. As we discuss in this section, describing the details of the nanoribbon band

structure required us to create a new set of parameters to make sure we describe it accurately.

4.1 Sheets of MoS2 and WS2

When using the hopping parameters and on-site energies for tight-binding determined by

Cappelluti et al. in [27] and [28] for Mo-4d5 orbitals (dxy, dyz, dzx, dx2−y2 , d3z2−r2) and S-3p4

orbitals (px, py, pz), as outlined in Tables 4.1 and 4.2, we successfully reproduce the DFT

band structures of MoS2 monolayer, bilayer and bulk forms in its 2H and 3R phases as well

as those of WS2 in its 2H phase as illustrated on Table 4.3.

The band structures show the same bandgap values as those obtained by Cappelluti

et al. [27,28]. We also find the expected trend that by decreasing the number of layers, the

bandgap size increases, as visible in the Table 4.4.

The bandgap values obtained from our simulations for MoS2 2H, as presented in Ta-

ble 4.4, demonstrate excellent agreement with corresponding experimental optical bandgap

values found in the literature (Table 4.5). The accuracy of these bandgap values is a re-

sult of fortuitous error cancellation during the fitting process. Unfortunately, the limited
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availability of data for MoS2 3R hinders a more comprehensive validation of our results be-

yond the consistency with other numerical findings as DFT [96]. Regarding WS2 2H, our

computed bandgap values appear to slightly underestimate the experimental gap by approxi-

mately 0.1-0.2 eV. This discrepancy arises from distinct physical characteristics, for example

the stronger spin-orbit coupling in WS2 results in less effective error cancellation compared

to MoS2, leading to a more pronounced difference compared to the optical bandgap values.

Despite this minor deviation, the observed difference remains within an acceptable range for

the scope of our study. Importantly, this minor deviation does not alter the transition from

a direct gap to an indirect gap, the position of the gap or the stacking-induced effects.

Mo ϵxy = -3.025 ϵyz = 0.419 ϵzx = 0.419 ϵx2−y2 = -3.025 ϵ3z2−r2 = -1.512

W ϵxy = -3.090 ϵyz = 0.851 ϵzx = 0.851 ϵx2−y2 = -3.090 ϵ3z2−r2 = -1.550

S (for MoS2) ϵx = -1.276 ϵy = -1.276 ϵz = -8.236

S (for WS2) ϵx = -1.176 ϵy = -1.176 ϵz = -7.836

Table 4.1: On-site energies (eV) computed by Cappelluti et al in [27] and [28]

S - Mo Vpdσ = -2.619

Vpdπ = -1.396

Mo - Mo Vddσ = -0.933

Vddπ = -0.478

Vddδ = -0.442

S - S Vppσ = 0.696 (intralayer); -0.774 (interlayer)

Vppπ = 0.278 (intralayer); 0.123 (interlayer)

Table 4.2: Hopping parameters (eV) computed by Cappelluti et al in [27] and [28]
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Monolayer Bilayer Trilayer Bulk

MoS2 2H 1.859 eV 1.605 eV 1.460 eV 1.271 eV

MoS2 3R 1.859 eV 1.594 eV 1.431 eV 1.307 eV

WS2 2H 1.871 eV 1.463 eV 1.320 eV 1.152 eV

Table 4.4: Bandgap values measured on the band structures obtained by TB

Monolayer Bilayer Trilayer Bulk

MoS2 2H 1.8-1.9 eV [11] 1.6 eV [97] / 1.29 eV [11]

MoS2 3R 1.8-1.9 eV [11] / / /

WS2 2H 2.0 eV [98] / / 1.3 eV [99]

Table 4.5: Optical bandgap values obtained experimentally from PL measurements
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For all three TMDs, we notice a change from a direct bandgap at K point in monolayers

to an indirect ΓQ one in bilayers and beyond, as visible in Table 4.6. The bandgap consistently

maintains a high value, exceeding 0.4 eV which is the usual threshold for envisioning transistor

applications. In the literature, a MoS2 monolayer transistor exhibits an ON and OFF current

ratio of 108 at room temperature, coupled with minimal leakage current [39,100]. This shift

from a direct bandgap in monolayers to an indirect one in the bulk is well described by

Cappelluti et al. [28]. They attribute this transition to the separation of energy levels in

sulfur’s pz−pz orbitals, responsible for interlayer coupling. It is noteworthy that the px/y−px/y
and pz − px/y orbitals exert marginal influence on this separation. Therefore, at point C and

D in figure 4.1 the interlayer interactions have a strong effect (splitting the bands and thus

pushing down the D minimum and lifting the C maximum) while it is insignificant at points

A and B. This discrepancy causes the shift from a direct A-B bandgap to an indirect C-D

bandgap. The stacking of layers eliminates degeneracy at the Γ point and along the KΓ line,

resulting in a consistent shift and reduction in the bandgap. This distinctive characteristic

holds significant potential for a wide range of electronic applications.
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(a)

(b)

Figure 4.1: DFT band structure and orbital character of (a) single-layer MoS2 and (b)
bulk MoS2. For each system, the top left panel shows the full band structure while, in the
other panels, the thickness of the bands represents the orbital weight, where the d-character
(d2 = dx2−y2 , dxy, d1 = dxz, dyz, d0 = d3z2−r2) refers to the Mo atom 4d orbitals, while the
p-character (pxy = px, py) refers to 2p orbitals of sulfur [27]

45



4.2 Zigzag MoS2 nanoribbons with sulfur dimer passi-

vation of the Mo edge

Since the parameters we used (from [27,28]) where deduced to describe infinite slabs of

MoS2, they fail to describe accurately the band structure of a nanoribbon as the edges are

not taken into account. The comparison between the DFT band structure and the TB band

structure with those parameters can be find on figure 4.2 (figure a) and c) respectively).

Thus, the first step was to modify the on-site energy parameters of the edge atoms in order

to quantitatively reproduce the DFT band structure calculations. The adjustment of on-site

energies involved a meticulous trial-and-error process, with a strong emphasis on maintaining

the accurate orbital dependencies.

As the goal was to be as close as possible to what could be found experimentally, we

focused on MoS2 nanoribbons with zigzag edges as it is more stable than armchair. One

edge is S-terminated and the other one is Mo-terminated passivated with S dimers since it

is the most stable configuration according to both theoretical predictions and experimental

observations (see chapter two for more details).

To reproduce the shape of the band structure and the mid-gap states calculated by

DFT, it was necessary to describe individually the atoms on the edges as well as the S

dimer (outlined on figure 4.3) using the fine-tuned parameters shown in Table 4.7. For our

parametrization, we set the nanoribbon width (measured by the count of zigzag lines across

it) to a value of 6 which corresponds to 30.97 Å. This choice is the minimal value effectively

preventing electronic interaction between the two edges, therefore our parametrization is valid

to describe wider nanoribbons. From the DFT calculations, we can say that the mid-gap

states shown in blue (♢) and green (□) colors on figure 4.2 correspond to the S edge while

red (△) and yellow (⃝) colors correspond to the Mo edge as represented on figure 4.3. Three

of them cross the Fermi level, implying the existence of metallic states in agreement with

previous results [59,101]. From the charge density plot from DFT around the Fermi level

visible on figure 4.4, the S dimers in the Mo-edge have px orbital character in contrast to

the S-edge where the pz orbitals of the S atoms dominate, forming one-dimensional metallic

states strongly localised along the edges. With our parametrization, the orbital dependency

of each mid-gap states is correctly reproduced. The three mid-gap states crossing the Fermi

level have a shape that is similar to the DFT predicted ones whereas the last one has a lower

dispersion. This discrepancy is not of prime importance as it concerns a band that does not

cross the Fermi level and is thus not responsible of the metallic behaviour.

This first step done, we now take into account the magnetic properties of the zigzag
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- Mo atom S atom S dimer

Mo edge -2.03, 1.42, 1.42, -4.03, 0.51 0.28, -8.28, -12.24 -0.55, -5.28, -8.24

S edge -2.03, 4.30, -0.80, -12.03, -2.60 -1.90, 0.18, -6.50 -

Table 4.7: Modified tight-binding on-site energy parameters for the edge atoms in units of
eV. Values corresponds to the five orbitals (4dxy, 4dyz, 4dxz, 4dx2−y2 , 4d3z2−r2) for Mo atoms
and three orbitals (3px, 3py, 3pz) for S atoms.

Figure 4.2: Non spin-polarized band structure calculations of the zigzag MoS2 nanoribbon
with sulfur dimer passivation (n = 6). (a) DFT calculation, (b) TB calculation using the
modified TB parameters (Table 4.7) for the edge atoms, (c) TB calculation without the
edge parametrization. Midgap states originated from the edge atoms are marked by different
colors according to figure 4.3. States with blue (♢) and green (□) colors correspond to the S
edge, while red (△) and yellow (⃝) colors correspond to the Mo edge.

Figure 4.3: Top-view of a zigzag MoS2 nanoribbon with sulfur dimer passivation. Purple
and yellow spheres represent molybdenum and sulfur atoms. Coloured rectangles represent
atoms that needed other on-site energies parameters (see Table 4.7) than MoS2 layers.
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Figure 4.4: Charge density plot around the Fermi level calculated by DFT. The isovalue was
set to be 2× 10−3 e/Å3

nanoribbon. In order to do this, we switched to a Hubbard-TB approach using a grand-

canonical ensemble and interaction terms UMo and US corresponding to the five Mo and

three S orbitals. The average occupation numbers ni,s = ⟨n̂i,s⟩ have to be adjusted self-

consistently as described in Chapter 3. The Hubbard interactions terms related to the S

and Mo atoms were adjusted so as to best fit the spin-polarized DFT band structure of the

nanoribbon.The obtained values of the Hubbard parameters are US = 1.7 eV and UMo = 0.6

eV.

As depicted in figure 4.5, the impact of spin-polarization is mainly noticeable on the

band originating from the S atoms at the S edge, depicted in blue in Figure 4.2 and referred

to as the ”magnetic band” here below. The partially filled spin-up band undergoes a slight

upward shift to higher energy levels, resulting in decreased occupancy. Meanwhile, the spin-

down band descends significantly below the Fermi level, leading to complete filling of this

band. Notably, there is almost no magnetic moment on the Mo edge due to the dimer

passivation of the Mo atoms. Following the notation in [102], the magnetic ground state

corresponds to the FM phase, indicating ferromagnetic ordering of the spins on the S edge of

the nanoribbon.

The exclusion of spin-orbit coupling (SOC) from our work is justified for the following

reason. In monolayer TMDs, the absence of inversion symmetry leads to SOC lifting the spin

degeneracy of electronic bands[103]. The extent of spin splitting depends on the dominant

orbitals characterizing the bands. It is important where the dxy and dx2−y2 orbitals of the

transition metal dominate the character of a band. By contrast, the splitting is very small for

the bands that involve mainly the d3z2−r2 orbital of the transition metal and/or the pz orbital

of the chalgonenides [104]. To investigate the impact of SOC, we conducted spin-polarized
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Figure 4.5: Spin-polarized band structure calculations of the (n = 6) zigzag MoS2 nanoribbon
(a) by using DFT and (b) derived from a Hubbard model with US = 1.7 eV and UMo = 0.6
eV parameters. Red and black curves correspond to the up and down spins respectively.

DFT calculations for a MoS2 nanoribbon1, visible on figure 4.5. The results indicate that

SOC has a negligible effect on the magnetic band discussed here above, given its dominant 3pz

character. Along the ΓX line in the ribbon’s band structure, the splitting remains consistent,

with or without SOC, exhibiting variations within 5 meV. This observation underscores that

the magnetic band’s splitting is attributed to electron-electron interactions rather than spin-

orbit coupling. In essence, SOC does not alter the spin polarization plot. This is advantageous

as integrating SOC into a TB+U Hamiltonian would introduce new empirical parameters in

the form of SOC constants [105], necessitating validation for the nanoribbon geometry.

The dispersion of the magnetic band has a cosine-like function shape similar to what

is obtained in calculating the band structure of a linear chain of atoms containing a single

orbital on every site. Thus, this band seems to be suitable for a one-dimensional chain model

which will allow us to have a interesting toy model to study, in a more systematic way, the

effect of spin reversal across different scales and sites. While this approach simplifies the

problem, we believe that it captures an essential aspect of the physics involved. The reason

is that the magnetic band (blue curve in figure 4.2) we focus all our attention on is weakly

interacting with neighboring bands. Indeed, the black curves are bulk states having little

weight at the edge atoms. The green branch originates from the same S edge as the blue one

but remains unoccupied, thereby not influencing the system’s properties at 0 K. Additionally,

1P. Vancsó, work in progress (2023)
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Figure 4.6: Non spin-polarized band structure calculations of the zigzag MoS2 nanoribbon
with sulfur dimer passivation (n = 12). (a) DFT calculation, (b) TB calculation using the
modified TB parameters (Table 4.7) for the edge atoms

the red and yellow branches arise from electronic states localized on the opposite edges of

the nanoribbon. When the width of the nanoribbon is doubled, nothing changes in the

relative position and shape of the mid-gap bands as visible on figure 4.6 [61]. This implies

that even with a thickness of only six units cells, the edges of a zigzag nanoribbon operate

independently. Consequently, it is a reasonable approximation to treat the magnetic band

as decoupled from the other bands.
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Chapter 5

Defects and disorder

As illustrated in the previous section, using a suitable tight-binding (TB) parametrization at

the edges enables the derivation of both electronic and magnetic characteristics of a zigzag

nanoribbon. In this section, we discuss the domain wall in MoS2 nanoribbons and investigate

the impact of local perturbations on these nanoribbons. Furthermore, we initiate a discussion

on preliminary findings regarding sulfur vacancies in nanosheets.

5.1 Domain wall in nanoribbons

Using the parameters of the unit-cell calculations, we scale up the system size to scrutinize

the magnetic properties of a 40-unit-cell-long (using periodic boundary conditions in the x

direction and Lx = 12.8 nm) nanoribbon within the framework of the Hubbard model.

First, we investigate collinear domain walls at the S edge by rotating manually half of

the spins in the supercell geometry and then letting the system relax. Figure 5.1 provides

a visual representation of the spin density distribution for both the ferromagnetic ground

state (figure 5.1a) and the excited state featuring collinear domain walls (figure 5.1b). The

spin densities of the S atoms at the S edge, encompassing both the upper and bottom layers,

reveal the effective localization of the domain wall within just one unit cell (equivalent to 0.3

nm). Additionally, the magnetization exhibits weak oscillations around the transition zone

(figure 5.1c).

Remarkably, we make the surprising observation that the energy required for creating a

collinear domain wall is merely Edw = +6.5 meV, calculated from TB+U. This value is more

than one order of magnitude lower compared to the case of zigzag graphene nanoribbons,

where Edw = +114 meV according to DFT [106].
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The pronounced localization and the low energy associated with the domain wall col-

lectively suggest a weak magnetic coupling along the S edge. To estimate this magnetic

coupling, we assess the quadratic energy-wave vector dispersion relation

E(q) = Dq2 (5.1)

where D represents the spin wave exchange stiffness constant. Indeed, the quadratic energy-

vector dispersion provides a theoretical foundation for describing the behavior of magnetic

moments of materials and is commonly used in similar system, making it an useful tool

to compare with other structures. Those calculations were computed by P. Vancsó and I.

Hagymási. From the different q vector calculations, we determine the spin stiffness constant

to be D = 161 meV Å
2
, which is approximately half the value observed in zigzag graphene

nanoribbons (D = 320 meV Å
2
) [106].

The observed weaker coupling in our system, compared to zigzag graphene nanoribbons,

can be attributed to the different geometries and electronic properties of the two materials.

Regarding geometry, the distance between zigzag S edge atoms is 3.18 Å, larger than the

distance between C atoms in graphene nanoribbons (2.46 Å). This larger separation in MoS2

can diminish the interaction between the edge atoms. Additionally, the nearest-neighbor

atoms that can mediate magnetic coupling between the edge atoms differ between the two

materials (C atoms in graphene and Mo atoms in MoS2). The magnetic coupling through the

middle-layer Mo atom may differ from the coupling through the in-plane C atom in graphene.

In addition to disparities in edge geometries, notable distinctions exist in electronic

properties. Unlike MoS2, where the S atom bands exhibit a small yet finite energy dispersion

(figure 4.2), the edge states in zigzag graphene nanoribbons manifest almost flat bands. The

nearly flat bands in graphene nanoribbons contribute to a higher density of states, poten-

tially intensifying electron-electron interaction effects and, consequently, enhancing magnetic

coupling.

We corroborated the observed weak coupling by conducting DFT calculations in a

double unit-cell geometry of a zigzag MoS2 nanoribbon. The states featuring ferromagnetic

(↑↑) and antiferromagnetic (↑↓) spin ordering at the edges display a mere 14 meV difference

in energy according to DFT which is indeed a one-order difference compared to the 114

meV predicted by DFT for graphene. Notably, similar small energy differences between

ferromagnetic and antiferromagnetic states were reported in zigzag WS2 nanoribbons [107],

emphasizing parallel magnetic mechanisms in layered structures of MoS2 and WS2.
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(a)

(b)

(c)

Figure 5.1: Spin density plots of the zigzag MoS2 nanoribbon. (a) Top view of the ferromag-
netic ground state and (b) the collinear domain-wall excitation at the S edge. Blue and red
circles correspond to spin-up and spin-down electrons, respectively. (c) Magnetic moments at
the edge on the S atoms in the presence of the domain wall. For comparison the red dashed
line shows the ground-state magnetic values.

5.2 Local perturbations in nanoribbons

Defects and disorder can significantly modify the intrinsic properties of the materials. In

the context of zigzag MoS2 nanoribbons, transport calculations have revealed a significant

suppression of conductance when confronted with edge disorder [108,109,110].

Motivated by the noted weak magnetic coupling at the S edge, we investigate the

robustness of the magnetization against both short- and long-range disorder. To simulate

disorder within the system, we incorporate the superposition of N Gaussian potentials to to

the on-site energy parameter in the Hamiltonian (equation 3.10):
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Vi =
N∑
k=1

V0e
−|r⃗i−r⃗k|2/2σ2

(5.2)

where r⃗k is the position of the kth Gaussian center, r⃗i is the position of the atomic

site i, and V0 and σ are Gaussian parameters corresponding to the strength and the range

of the disorder, respectively. In the case of specific defects, like vacancies or adatoms, are

present, modifications to the on-site and hopping parameters of the TB model become nec-

essary to accurately characterize the defect properties. However, in our case, by using the

combination of our edge parametrization and Gaussian potentials, we can investigate both

short- and long-range disorder in the system without the need for additional modifications

to the TB parameters. This disorder potential can also be regarded as an inhomogeneous

charge distribution across the substrate [111].

For our analysis, we use eight randomly distributed Gaussian potentials in the system

(N = 8), including disorder along the edges as well as the inner part of the nanoribbon.

These Gaussian potentials are indicated by the centers of the black circles in figure 5.2. We

consider both repulsive and attractive potentials with V0 values of ±100 meV, along with

σ values of 1, 3, and 5 in angstroms, corresponding to disorder localized from one atom to

extended defects exceeding nanometer dimensions.

Figure 5.2 illustrates the calculated magnetic ground states of the system in the case

of a positive disorder potential (V0 = +100 meV). In figure 5.2a, we can recognize the

ferromagnetic ground state at the S edge for strongly localized perturbation potentials (σ =

1 Å). We observed that disorder localized in the middle of the nanoribbon does not impact

its magnetic properties. However, disorder introduced on the S atoms at the S edge causes

a slight increase in magnetic moments, shifting from the defect-free value of M = 0.35 µB

to M = 0.41 µB. The enhanced magnetic moments of the S atoms, where the potentials are

centered, can be explained by examining figure 5.2b, where σ = 3 Å. The positive potential

induces a positive energy shift in the mid-gap bands, leading to a decrease in occupancy of

the partially filled spin-up band of the S atoms at the edge (see figure 5.3 for a graphical

representation). Meanwhile, the spin-down band remains significantly below the Fermi level,

maintaining full occupancy in the presence of the potential. Consequently, this results in

higher magnetic moments for the S atoms.
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(a)

(b)

(c)

Figure 5.2: Spin density plots in the presence of disorder. (a)–(c) Top view of the magnetic
ground states of the zigzag nanoribbons by using Gaussian potentials with V0 = +100 meV
and different width parameters σ = 1, 3, and 5 in angstroms. Black circles denote the
positions of the randomly distributed potentials. The radii of the circles correspond to the
sizes of the potentials. Blue and red circles correspond to spin-up and spin-down electrons,
respectively.

In contrast to the previous result with σ = 1 Å potentials with the σ = 3 Å parameter,

extending over three-atom distances, induce substantial changes in the magnetic ground

state (visible on figure 5.2b). Most notably, in regions where the potentials are applied, the

orientation of magnetic moments undergoes alteration (M = -0.47 µB). The lower energy

of the observed state compared to the ferromagnetic state suggests that potentials act in a

more intricate manner than in the previous σ = 1 Å case. The potentials modify both Mo

and S atom bands in the potential region, leading to the formation of domain walls along

the edges. Similar changes in magnetic moments are observed at the Mo edge, where the S

dimers exhibit significantly smaller magnetic moments (M = ±0.05 µB).

Further increasing the radius of individual Gaussian potentials (σ = 5 Å) results in

overlapping regions at the edges (visible on figure 5.2c). Magnetic calculations reveal that in
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the case of the overlapping region, the ferromagnetic ground state is restored at the S edge.

In contrast, non-overlapping regions at the S edge give rise to domain walls. The correlation

between the potential and the magnetic texture is visible on figure 5.4. This outcome suggests

that, besides the width, the profile of the potential also plays a crucial role in determining

the magnetic ground state of the system.

Due to the absence of electron-hole symmetry in the system, the introduction of a nega-

tive disorder potential (V0 = -100 meV) leads to distinct magnetic properties. The attractive

potential induces a negative shift in the energy bands, resulting in reduced magnetic moments

for the S atoms at the S edge (see figure 5.3 for a graphical representation). Specifically, for

strongly localized potentials (σ = 1 Å), the magnetic moments decrease to M = 0.23 µB on

the S atoms where the negative potentials are applied. Consequently, it can be inferred that

band shifting of the S atoms with positive potentials leads to increased magnetic moments at

the edge whereas with negative potentials, it leads to decreased magnetic moments compared

to the defect-free system. Further investigation of the negative potential with extended de-

fects (σ = 3 and 5 Å) reveals that, in both cases, a ferromagnetic ground state occurs at

the S edge, contrary to the positive potential case where the formation of domain walls is

predicted.

Figure 5.3: Graphical representation of the spin-polarized magnetic band for (a) V0 = 0 meV,
(b) V0 > 0 and (c) V0 < 0

Summarizing the magnetic calculations in the presence of disorder, significant alter-

ations in the magnetic ground state are observed in the case of a positive potential, which

is relevant to frequently encountered n-doped MoS2 samples [112,113]. Despite changes in

the values of magnetic moments for short-range disorder, the ferromagnetic arrangement is

consistently preserved at the S edge.

Expanding the range of disorder not only modifies the values of magnetic moments but

also influences their direction, resulting in the formation of spin domain walls, which are

also sensitive to the profile of the potential. The energy differences of the ground states and
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Figure 5.4: Potential profile and magnetic moments along the S edge. Black and blue curves
correspond to the potential (σ = 5Å) and magnetic values of the S atoms at the S edge. The
magnetic moments are following the potential profile. Ferromagnetic orientation of the spins
occurs where the Gaussian potentials have an overlapping region, while domain walls appear
in the non-overlapping region.

excited states in the different disorders are on the order of tens of meV in the system. This

behavior finds a qualitative analogy when considering the edge magnetic moments within

a one-dimensional Ising model, as demonstrated in the case of graphene with zigzag edges

[106].

In this context, the effects of disorder parallel the impact of random fields in the Ising

model, where the formation of domain walls has been predicted [114,115,116]. In such sys-

tems, the creation of domain walls arises from the interplay between the domain wall energy

and the properties of the applied field. In our case, the properties of the positive disorder

potential seem to play a comparable role. This ability to modify the spin texture through

potential disorder holds promise for spintronic applications. By applying periodic or non-

periodic potentials at the edge, magnetic moments can be finely tuned, realizing diverse

magnetic ground states. Furthermore, dynamic control of the edge magnetic moments can

be achieved using local probe techniques (e.g., a conducting AFM tip), where the tip-induced

potential flips the edge moments at the tip’s location. By moving the tip along the edge, one

could manipulate the induced reversed magnetic domain.
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5.3 Atomic vacancies in nanosheets (ongoing)

Sulfur vacancies in a monolayer of MoS2 have emerged as a pivotal research focus in the

field of two-dimensional materials, garnering significant attention due to their profound in-

fluence on the electronic and optical properties of the material [117,118,119]. These vacancies,

characterized by the absence of sulfur atoms within the crystalline lattice, introduce local-

ized states within the bandgap, thereby affecting charge carrier mobility and recombination

dynamics. Understanding the formation, migration, and passivation of sulfur vacancies is es-

sential for tailoring the optoelectronic characteristics of MoS2 monolayers, offering potential

applications in next-generation transistors, photodetectors, and optoelectronic devices.

Using a tight-binding approach instead of DFT for the band structure calculations rep-

resents a crucial methodological choice as one of the main downside of DFT is the limitation

on the size and complexity of systems due to computational constraints. On the other side,

TB models provide a more computationally efficient means of exploring larger configura-

tions. The TB band structure calculations also unlocks the capacity to explore supercell

configurations and allows for realistic emulation of a random distribution of defects, without

inter-defect interactions due to the periodicity of the system or excessive computation time.

In order to simulate the presence of a sulfur vacancy, the required adjustments were

minimal. Specifically, we removed a sulfur atom by modifying the atomic position file, and

we altered the on-site energy (ϵ3z2−r2) of the neighboring molybdenum atoms surrounding

the vacancy from its original value of −1.512 to −0.15 eV to fit the DFT figure 5.7. With

this minor modifications, we obtained the band structures visible on figure 5.5. All the sulfur

vacancies presented in this section have been generated in the upper sulfur layer.

The first step for these calculations was to verify which supercell size allowed us to avoid

the periodicity effect. The comparison between 3x3, 4x4 and 5x5 supercells shown in figure

5.5 with a single sulfur vacancy shows that there still is some interactions as the mid-gap

states induced by the defect changes according to the supercell size. Notably, the difference

between the 4x4 and 5x5 configurations was considerably smaller than between 3x3 and 4x4

supercells, suggesting that a slightly larger supercell size would be adequately suited.
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Figure 5.5: Band structure calculations for a single sulfur vacancy for 3x3, 4x4, 5x5 and
10x10 supercell of Mos2 monolayer

Considering both computational efficiency and the need for reliability, we decided to

use a 10x10 supercell for our upcoming calculations. Several sulfur vacancies concentrations

were picked : 1013/cm2, 5 ∗ 1013/cm2 and 1014/cm2 as visible on figure 5.6.

(a) 1013/cm2 (b) 5 ∗ 1013/cm2 (c) 1014/cm2

Figure 5.6: Representation of the sulfur vacancies (red dots) for different concentrations of
defects on 10x10 MoS2 supercells.

The band structure for these different concentrations of defaults are visible on figure

5.8. These band structures are in agreement with what can be found in the literature by

DFT and experimentally [117,118]. Figure 5.7 shows for example good agreement between

the DFT band structure and the TB band structure for a 4x4 supercell of MoS2 monolayer.

We find the expected defect states appearing in the band gap, increasing with the number of

vacancies as visible in figures 5.8a and 5.8b. The distinctive isolated defect states depicted

in figure 5.8c originate from the presence of a sulfur di-vacancy induced by our random

distribution.

This is corroborated by our simulations, wherein we exclusively introduced a sulfur

di-vacancy, as illustrated in figure 5.9. The existence of four states originating from this

di-vacancy is supported by DFT calculations (DOS visible on figure 5.10), which also predict
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Figure 5.7: Band structures for a 4x4 supercell of monolayer MoS2 with a single sulfur
vacancy. Left is DFT-LDA, right is tight-binding.

their presence. However, the position of these states in our calculations is not accurate,

necessitating further adjustments to the on-site energies to align with DFT calculations.

(a) Single defect (b) Four defects (c) Eight defects

Figure 5.8: Band structures for sulfur vacancies on a monolayer of MoS2 for a 10x10 supercell.
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Figure 5.9: Geometry and band structure for a sulfur di-vacancy in a 10x10 MoS2 supercell.

These results are promising for the use of tight-binding in the study of defects, since

all that is needed to obtain correct band structures close to the DFT and experiments is

to modify slightly the on-site energies of the atoms near the vacancy. Moreover, using TB

allows us to study large supercells (necessary to study ’real’ random distributions and different

concentrations of defects) in an extremely short computation time compared with DFT.

Figure 5.10: Density-of-states for a sulfur di-vacancy, the occupied states are shown by blue
and the empty states by red color [120]
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Chapter 6

Magnetic order in MoS2 nanoribbons

In the previous chapters, we examined edge magnetism in zigzag nanoribbons of monolayer

MoS2 using both density functional theory and a tight-binding plus Hubbard U Hamiltonian.

Both approaches indicated that a particular band near the Fermi level is significantly affected

by spin polarization compared to others. This specific band originates from localized states

along the sulfur edge of the nanoribbon and exhibits a dispersion pattern similar to the

energy branch found in a linear chain of atoms with first-neighbor interaction. Leveraging this

similarity, we have constructed a simplified model to explore the energy variations associated

with different spin configurations at the nanoribbon’s edge.

6.1 One-dimensional atomic chain model

In comparison to unpolarized calculations, spin polarization primarily impacts a single elec-

tronic band, denoted as the ”magnetic band”, within the nanoribbon as visible on figure 4.5.

This specific band is associated with states localized along the S edge, crossing the Fermi

level with a positive slope. Its dispersion can be succinctly represented by the equation

ϵ(k) = ϵ+ 2β cos(ka), (6.1)

where a denotes the one-dimensional period. This dispersion pattern mirrors what is

observed in a one-dimensional atomic chain containing a single orbital on each site. Careful

analysis of the DFT nanoribbon wavefunctions reveals that this orbital involves the mixing

of the 3py and 3pz orbitals of the two symmetric sulfur atoms of the S edge. The contribution

of other orbitals, including those from the Mo atoms, is very small. The mixed 3py – 3pz
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Figure 6.1: Ball-and-stick model of the linear chain described by the Hamiltonian 6.2. β is
the hopping parameter and ϵi,σ the on-site element for the orbital at the site i with the spin
s.

orbital (∼40 % - ∼60 % in proportion) is perpendicular to the edge direction, denoted as

x. Accordingly, the small dispersion of the magnetic band observed in figure 4.2 can be

attributed to a weak π interaction between the mixed p orbitals on successive sulfur pairs.

This π interaction can be modeled by the hopping parameter β indicated in figure 6.1.

The density of states ρ(ϵF ) at the Fermi energy in the nanoribbon is substantial, pri-

marily attributable to the limited dispersion of the magnetic band. Considering the Hubbard

interaction US, one could anticipate that the Stoner criterion USρ(ϵF ) > 1 holds. As a con-

sequence, the magnetic band is unstable with respect to spin splitting. When examining the

spin-polarized band structure, we observe the lifting of spin degeneracy, with the ↓ spin band

shifting downward while the ↑ spin band maintains its crossing with the Fermi level as visible

on figure 4.5. Consequently, this illustrates the ferromagnetic nature of the S edge in the

MoS2 nanoribbon.

In this chapter, our attention is directed towards this specific band as we analyze its

behavior within the context of the Hubbard model. Our toy model incorporates parameters

ϵ and β for the dispersion law 6.1, as well as the number of electrons per spin n0 contained

within the band. The parameters, which have been adjusted to match the results of the

ab-initio and full TB+U calculations, are outlined in table 6.1. Here, β is one-quarter of the

band dispersion between the Γ and X points of the first Brillouin zone, while ϵ corresponds

to the average energy of the band. The U parameter was determined by dividing the 0.52

eV splitting between the spin ↑ and spin ↓ bands in the full TB+U calculations (visible on

figure 4.5) by 2(1−n0) = 0.7. Indeed, in a chain model for the ferromagnetic case, the bands

are separated by U(n2 − n1) (see figure B.1) and we know from the TB+U calculations that

n2 = 1 and n1 = 0.3, giving 2n0 = 1.3.

The one-dimensional model offers a significant advantage in terms of simplicity. In

contrast to the comprehensive TB+U calculations, there is no requirement for a supercell

approach with periodic boundary conditions. The calculation of local densities of states in
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Table 6.1: TB+U Hamiltonian parameters of the atomic chain that reproduces the dispersion
of electronic states localized on the zigzag S edge of MoS2 nanoribbons. The energy reference
is the same as for the on-site energies of table 4.7

ϵ (eV) β (eV) n0 U (eV) ϵ0 = ϵ− Un0 (eV)

-0.8397 -0.04595 0.65 0.7428 -1.3225

a chain with several thousand sites can be carried out efficiently, enabling the exploration of

various types of disorder within the magnetic structure.

As in the previous chapter, we have used the mean-field approximation, although the

one-dimensional Hubbard model can be solved analytically [121,122,123]. There are three

main reasons for keeping with this approximation. Firstly, we aimed to maintain a close

alignment with the comprehensive nanoribbon TB+U calculations performed at the Hartree-

Fock level. Secondly, predicting the properties of the one-dimensional Hubbard model based

on its analytical solution is intricate, involving challenges such as calculating its ground state

energy. Thirdly, our primary focus centers on non-periodic magnetic configurations that

involve a substantial number of sites, rendering the exact diagonalization of the Hubbard

Hamiltonian impossible. Indeed, the complexity of the Hubbard problem increases exponen-

tially with the number of sites in the chain, when it is finite, or with the number of sites

contained in a supercell when it is reproduced periodically. Various levels of approximation

exist to tackle this issue, with the mean-field approximation being the simplest [124]. At this

level, the problem becomes more manageable, especially in cases of perfect ferromagnetic

or antiferromagnetic order. A more unique aspect of our study involves the examination of

disordered magnetic configurations within the infinite chain, constituting the primary con-

tribution of this chapter.

6.2 Magnetic configurations and energetics of the atomic

chain

The on-site components of the TB+U Hamiltonian, considering one orbital per site, can be

expressed as

ϵi,s = ϵi + Uni,−s,
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where s represents spin ↑ or ↓, and −s denotes the opposite spin direction. Here, ϵi can

be further decomposed as ϵi = ϵ0 + Vi, where ϵ0 originates from the individual atoms, and

Vi encompasses the crystal field contribution along with any potential local perturbations in

the on-site elements induced by an external probe.

In the latter case, the spatial inhomogeneity of the one-dimensional Hubbard chain

introduces an additional layer of complexity [125]. In this notation, the Hamiltonian is

expressed as

H =
∑
i,s

(
ϵi,s|i, s⟩⟨i, s|+ β|i, s⟩⟨i+ 1, s| − 1

2
Uni,sni,−s

)
(6.2)

In equation 6.2, ni,s corresponds to the occupation of the local density of states (DOS)

ρi,s(E) on site i by an electron of spin s. The cohesive energy is determined as the difference

between the total energy of the condensed phase and the total energy of the same number of

isolated atoms. Its expression is as follows:

Ec =
∑
i

(∫ ϵF

−∞
[ρi,↓(E)(E − ϵi,↓) + ρi,↑(E)(E − ϵi,↑)] dE + Vi(ni,↓ + ni,↑)

)
+ U

∑
i

(ni,↓ni,↑ − n2
0) + Vr. (6.3)

Here, n0 represents the number of electrons per spin in the isolated atoms, and Vr

signifies the overall contribution from the repulsive potential between pairs of atoms within

the condensed phase. The specific form of the expression for Vr is not critical, as long as

we are comparing the energies of the same structure with different magnetic configurations.

Similarly, the term involving Vi vanishes when subtracting the energies of two condensed

phases that involve the same set of elements Vi.

Equation 6.3 holds true with the implicit assumption that each site, on average, con-

tributes n0 electrons per spin. This condition determines the Fermi energy ϵF and requires

that Vi remains a constant crystal field term, uniform across all the considered condensed

phases. We adopted the following postulate: if a local perturbation is introduced to the on-

site energy, or if there is local disorder, such as the presence of a Bloch wall or a small domain

with a reversed magnetic moment, the Fermi level ϵF remains unchanged from that of the

unperturbed system. In such cases, the number of electrons is not conserved (which means

electrons can come from other bands), and the energy modification is calculated within the

grand canonical framework:
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∆E = ∆Ec + (ϵ0 − ϵF )∆N (6.4)

where ∆N represents the change in the total number of electrons. This change can arise

from an external perturbation, if present, or it can be compensated by the other bands that

intersect the Fermi level within the actual MoS2 nanoribbon. The term ϵ0∆N in equation 6.4

reflects the alteration in the number of electrons compared to the collection of individual

atoms.

With the parameters detailed in table 6.1, the Stoner criterion for magnetic instability,

Uρ(ϵF ) > 1 as established by Stoner [126], is satisfied. This signifies that the paramagnetic

chain (a chain without a spontaneous magnetic order) is unstable when compared to the

magnetic chain (a chain with a spontaneous magnetic order). Here, ρ(ϵF ) = 2/[πW sin(πn0)]

represents the density of states per atom and per spin at the Fermi energy of the non-magnetic

chain, assuming n0 electrons per spin per atom1. In this context, W denotes the bandwidth

and equals 4|β|. We have considered both ferromagnetic and antiferromagnetic structures by

flipping manually the adequate spins, and self-consistent calculations have been conducted for

the occupation numbers of the spin-polarized densities of states within the one-dimensional

Hubbard model under the mean-field approximation. The outcomes are visualised in figure

6.2, and the energy gain per atom has been computed for both structures utilising equa-

tion 6.3, with the results compiled in table 6.2. Among the three structures studied, the

ferromagnetic configuration is found to be the most stable. These calculations have been

conducted for a band occupation of n0 = 0.65, which corresponds to the value obtained from

the full electronic band structure of the MoS2 nanoribbon. The antiferromagnetic structure

is 10 meV higher in energy, in full agreement with the comprehensive TB+U calculations

(see chapter 5).

In the antiferromagnetic chain, it’s worth noting that the width of both the spin ↑ and

spin ↓ bands is relatively narrow compared with the bandwidth 4β = 0.18 eV of the non-

magnetic chain. The narrowest bandwidth occurs when n0 = 0.5, approaching approximately

4β2/U = 0.011eV . If the system is half-filled, the antiferromagnetic structure is the most

stable configuration, resulting in ∆Ec = -0.138eV per atom, provided that all other parame-

ters remain constant. This is in accordance with the typical behavior of the Hubbard model

for systems with half-filled bands, where the chain would be an antiferromagnetic insulator

[102].

1The development linked to this relation can be found in Appendix B
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Figure 6.2: Density of states per atom and per spin of the atomic chain for three periodic
structures: (a) non magnetic, (b) ferromagnetic, (c) and (d) antiferromagnetic. Spin ↓ and
spin ↑ are represented on the left and right sides of the energy axis, respectively. In the
antiferromagnetic case, (c) and (d) display the local DOS on two successive sites i and i+ 1
along the chain. For clarity, the width of the spin ↑ and spin ↓ bands for the antiferromagnetic
ordering has been enlarged by a factor of 3.

Table 6.2: Stabilisation energy for ferromagnetic and antiferromagnetic structures of the
linear chain compared to the non-magnetic case. The Hamiltonian parameters are those of
table 6.1

Structure non-magnetic ferromagnetic antiferromagnetic

∆Ec (meV/atom) 0 -62 -47

n↓ − n↑ 0.00 0.70 ±0.67

ϵF (eV) -0.7980 -0.6337 -0.5874

68



6.3 Bloch wall and small Bloch domains

The formation energy of a Bloch wall was computed by reversing the spin orientations in half

of the atomic chain. Specifically, the occupation numbers ni,↓ and ni,↑ were set to 1 and 0.3,

respectively, in one half, and to 0.3 and 1, respectively, in the other half. The occupation

numbers of 20 sites on both sides of the Bloch wall were treated as variables. Starting from

the initial values of 0.3 and 1, the occupation numbers were adjusted self-consistently based

on the local integrated densities of states calculated using equation 3.11b on these sites. The

Fermi energy was held constant at the value corresponding to the ferromagnetic order. Upon

convergence of the self-consistent loop described earlier, the formation energy of the Bloch

wall was computed according to equation 6.4. The summation over i in Equation 6.3 runs over

60 sites, with 30 on both sides of the interface. This encompassed the 2 × 20 sites surrounding

the interface, whose occupation numbers were self-consistently adjusted, along with 10 more-

distant sites with fixed bulk occupancies. The result is ∆E = 5.8 meV, demonstrating good

agreement with calculations performed for the complete MoS2 nanoribbon where we obtained

a domain wall of 6.5 meV (see figure 5.1) [61].

Figure 6.3: Variation of the local magnetic moment calculated along the atomic chain when
reversed spins are imposed on both terminal ends of the chain

Figure 6.3 illustrates the fluctuation in the local magnetic moment, calculated as the

difference ni,↓−ni,↑. The bulk value is 0.7. Small damped oscillations are observable in both

domains. The maximum moment occurs at the interface, reaching 0.84, while the minimum

value follows immediately after, measuring 0.66. There is a slight deficit of electrons, ∆N =

-0.21, compared to the perfect crystal.
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The Bloch domain wall being correctly reproduced and the ground state of the one-

dimensional model being ferromagnetic as predicted by the full TB+U calculations, we are

focusing on smaller Bloch domains to estimate the excitation energies of different arrange-

ments of the magnetic moments, such as reversed-spin domains of various sizes that are not

accessible to full calculations. Small magnetic domains with opposite moments were gener-

ated in a manner akin to the Bloch wall. Throughout the chain, the occupation numbers ni,↓

and ni,↑ were set to 1 and 0.3, respectively, except for a chosen set of adjacent sites where

their values were interchanged. The occupation numbers for 20 sites on both sides of the do-

main center were self-consistently calculated, maintaining the Fermi energy at its bulk value.

The total energy cost of the defects was computed according to equation 6.4. The results,

detailed in table 6.3, show that depending on the domain size, the formation energy ranges

between 7.5 and 14.9 meV. For domains with four or more sites, ∆E is close to, but not

exactly equal to, two times the energy of a single Bloch wall, indicating a residual interaction

between the walls. Figure 6.4 illustrates the local variations in the magnetic moment for

both a single spin flip and a domain with four reversed spins. On either side of the domain,

oscillations similar to those in figure 6.3 occur. The highest moment values are realized at

the two walls, primarily because the site occupation for spin ↑ is reduced there compared to

the bulk value of 0.3, while the occupation of the majority spin remains close to one. The

moment at the single-site domain is -0.98.

A defect in a one-dimensional chain gives rise to localized states above or below the elec-

tron band. This is exemplified in the case of small magnetic domains. Appendix C contains

a qualitative description of the electronic structure of a single spin flip in the ferromagnetic

system. Our premise assumes that the ferromagnetic order results in the formation of two

distinct bands. The first band is completely filled, hosting nb1 = 1 (b denoting bulk) electron

with a spin ↓ per site. Meanwhile, the second band extends up to the Fermi energy ϵF and

contains nb2 = 0.3 electrons with a spin ↑ per site. We suppose that it is possible to reverse

the spin on a single site d (d like defect) for instance by applying a local external perturbation

V that shifts the on-site energy on this site. We simplify the problem by considering that

the electron occupancies on the neighboring sites of the defect all keep their bulk values.

For the lowest band (spin ↓), ϵb = ϵ0 + Unb2 and ϵd = V + ϵ0 + Und2. The parameter ϵ0 is

defined in table 6.1. Given the assumptions made earlier, ϵd > ϵb, even in the case of a zero

or slightly negative perturbation V . Consequently, the spin defect pushes a localized state

above the bulk band, as illustrated in figure C.1. The local density of states on site d becomes

ρd(E) = Aδ(E− ϵu) where E = ϵu corresponds to the pole of the right-hand side of equation

C.3. The localized state shifts up and its weight A increases when the difference ϵd − ϵb

increases, as for instance by increasing V . When ϵu crosses the Fermi energy, the occupation
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Table 6.3: Total energy cost from equation 6.4 and total charge variation for small domains
with reversed magnetic moment in the ferromagnetic chain. The size is the number of sites
in the domain

size 1 2 3 4 5 6

∆E (meV) 7.5 14.9 11.6 9.8 11.9 12.9

∆N -0.46 -0.75 -0.09 -0.42 -0.72 -0.01

nd1 of the local DOS ρd(E) for spin ↓ abruptly falls from 1 down to 1 − A. Similarly, for

spin ↑ the spin defect induces the downward shifting of a localized state below the upper

band (see figure C.1) at the energy E = ϵl corresponding to the pole of the right-hand side

of equation C.1. Here, ϵb − ϵd = U(nb1 − nd1) − V . When V is not too large, the localized

state ϵl can host a significant fraction of the spin ↑ electron on site d. Hence, nd2 ≈ 1 and

nd1 ≪ 1 are achieved under the condition ϵu > ϵF . Treating V as a tuning parameter, this

last condition demands V > −0.06 eV with the parameters of table 6.1. The conditions for a

single spin flip are met even in the absence of local perturbation. For V = 0, the results yield

nd1 = 0.016 and nd2 = 0.993. By comparison, full self-consistent calculations for a single

reversed spin (figure 6.4(a)) give nd1 = 0.013 and nd2 = 0.993. It’s important to note that

this doesn’t imply spontaneous spin flip, as the formation of this defect for V = 0 comes

with an energy cost outlined in table 6.3 for size 1. Nevertheless, calculations indicate that

applying a positive V on one site will facilitate the formation of the defect.

The local density of states on the site where the spin is reversed is predominantly

composed of two peaks, each corresponding to a distinct spin state, accounting for 99% of

the distribution. The remaining 1% is dispersed within the continuous bands. The lower-

energy peak, drawn down from the upper band, is occupied by an electron with the minority

spin, while the other peak remains unoccupied. In the scenario where the domain consists of

two sites, four localized states emerge. The lowest (effectively two closely degenerate peaks)

can accommodate nearly two electrons with the minority spin.

As discussed in previous chapters, small magnetic domains on the sulfur edge of a MoS2

nanoribbon appear as the consequence of a local perturbations of the on-site energy. Due to

its simplicity, the atomic chain model allows us to investigate this effect in a more systematic

way. We applied a Gaussian perturbation of the on-site energy as represented on figure 6.5.

The inter-atomic distance was taken as the length unit in such a way that atom i is located

at abscissa xi = i along the chain. Then, the Gaussian perturbation of ϵi is
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(a)                                                         (b) 

Figure 6.4: Variation in the local magnetic moment calculated along the atomic chain with
(a) a single spin flip and (b) a 4-site domain of reversed spin in the ferromagnetic system.

Vi = V0e
−(i−i0)2/2σ2

(6.5)

where σ is a dimensionless parameter. We set i0 as either an integer number (repre-

senting the maximum of the Gaussian on the atomic site i0, as illustrated in figure 6.5a) or

as a semi-integer number (indicating the maximum of the Gaussian located halfway between

two consecutive sites, as depicted in figure 6.5b). The energy of the perturbed chain was

first calculated with the perfect ferromagnetic order. Subsequently, the energy was recalcu-

lated with the same Gaussian perturbation while reversing the spin on 1, 3, or 5 sites (for

integer i0) and 2, 4, or 6 sites (for semi-integer i0). These initial configurations generated a

magnetic domain with a reversed moment on 1 to 6 adjacent sites. In all cases, the initial

spin configuration maintained symmetry with respect to the maximum of the Gaussian. The

energy difference between configurations with a reversed-moment domain and the configura-

tion without the domain was then calculated. The results, influenced significantly by both

V0 and σ, are presented in table 6.4. Even with a small amplitude V0, the perturbation sta-

bilizes small domains with reversed moments, underscoring the pronounced impact of both

parameters on the domain energetics.
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Figure 6.5: Illustration of the results listed in the first row of Table 5. The applied Gaussian
perturbation (equation 6.5) is represented by a continuous green line. Its maximum is located
either on top of a site (a,c) or at the center of a bond (b). The total energy of domains with
reversed moments on (a) 1, (b) 2, and (c) 3 sites is indicated on the left-hand side. Negative
values mean more stable configurations than the ferromagnetic chain subjected to the same
Gaussian perturbation. Spins down and spins up are represented by blue and red arrows,
respectively

By increasing the amplitude V0 while keeping the width constant (σ = 1.5), larger

domains with reversed spins become energetically favorable compared to the ferromagnetic

solution. For instance, at V0 = 0.025 eV, only domains with reversed spins up to three sites

remain stable (with ∆E = -0.4 meV). However, for V0 = 0.075 eV, the stable domain size

extends up to five sites. Similar trends can be observed by increasing the σ parameter at

a fixed potential value. Throughout the explored parameter space, the single-site reversed

domain consistently appears as the most stable configuration. Nevertheless, the last entry

in table 6.4 reveals that domains with two or three reversed moments become competitive

when the full width of the perturbation surpasses six bond lengths (σ > 2.5).

Consistent with our previous calculations, a Gaussian perturbation centered on an atom

of the chain (representing an edge site of the MoS2 nanoribbon) can reverse the spin on that

particular atom. In addition to the full TB+U calculations, our systematic study with the

one-dimensional model further elucidates the relationship between magnetic domains and
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Table 6.4: Formation energy (equation 6.4) in meV for small domains with reversed mag-
netic moment in the ferromagnetic chain in the presence of a Gaussian perturbation with
parameters V0 and σ. The size is the number of sites in the domain and σ is given in units
of the bond length.

size 1 2 3 4 5 6

V0 = 0.025 meV

σ = 1.5 ∆E (meV) -7.8 -0.6 -0.4 +8.8 +12.4 +11.0

V0 = 0.05 meV

σ = 1.5 ∆E (meV) -11.1 -8.3 -7.4 -2.4 +1.0 +8.3

V0 = 0.075 meV

σ = 1.5 ∆E (meV) -11.3 -10.4 -9.4 -6.5 -3.0 +2.7

V0 = 0.05 meV

σ = 2.0 ∆E (meV) -11.3 -9.7 -9.3 -6.4 -4.2 +0.6

V0 = 0.05 meV

σ = 2.5 ∆E (meV) -11.4 -10.4 -10.2 -8.4 -7.1 -4.0

the applied perturbation potential in a broader parameter space. If one envisions that the

Gaussian perturbation mimics that produced by an STM tip, it becomes conceivable to

locally alter the low-temperature magnetic texture of the S edge of the nanoribbon.
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Chapter 7

Conclusion

In conclusion, this thesis first successfully reproduced the band structures of various TMD

crystals using the tight-binding model. Specifically, the band structures of MoS2 2H, 3R, and

WS2 2H in monolayer, bilayer, trilayer, and bulk, along with the one of an asymmetric zigzag

MoS2 nanoribbon passivated with sulfur dimers (considered as the most experimentally stable

structure), were accurately reproduced. The accuracy of these band structures was confirmed

through comparison with Density Functional Theory (DFT) results, and the observed trends,

such as the transition from a direct to an indirect band gap and the variation in the band

gap size with the number of layers in planar structures. These outcomes substantiate the

reliability of the parameter values presented by Cappelluti et al.[27,28] for planar structures,

enabling the development of a parameter set suitable for describing the band structure of

the nanoribbon on which we have focused, with precise orbital dependencies, particularly

concerning the electronic states induced by the ribbon’s edges.

Establishing accurate orbital dependencies is crucial for a precise interpretation of the

metallic properties exhibited by the nanoribbon. This precision is essential to observe the

effects of mechanical stress on the nanoribbon and to understand the associated magnetic

phenomena. The successful determination of these dependencies represents a compelling

and noteworthy outcome. Leveraging these refined parameters, further calculations on these

structures become possible by integrating these values into a Hubbard model. Based on

our finely tuned tight-binding (TB) parameters and on Hubbard interaction terms, we in-

vestigated a several-nanometer-long ribbon and we calculated the spin domain-wall energy.

The observed low domain-wall energy suggests a weak magnetic coupling between the sulfur

atoms at the edge, contrasting with zigzag graphene nanoribbons. Additionally, through the

introduction of randomly distributed Gaussian potentials, we unveiled the impact of disorder

on the magnetic properties. Our findings demonstrate that the magnetic ground states are
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highly dependent on potential perturbations, with even slight disorder spanning a few atomic

distances altering the orientation of the edge spins. While underscoring the importance of

minimizing disorder in MoS2 nanoribbons, for instance through encapsulation with hexago-

nal boron nitride, we also highlight the potential for manipulating the spin texture via an

applied potential field.

Results from both DFT and TB+U methodologies consistently revealed a significant

spin-polarization effect on an electron band crossing the Fermi level, emanating from the

S atoms at the edge, compared to other bands. This specific band is recognized as the

primary contributor to the magnetic polarization. Remarkably, its dispersion closely mirrors

the energy dispersion observed in a linear chain of atoms interconnected through nearest-

neighbor interactions. Leveraging this resemblance, we conceptualized a simplified model

based on an isolated atomic chain, under the assumption that it captures the primary trends

of the physics in the actual system. Through band-structure calculations, we established

a one-to-one correspondence between the linear chain of the model and the two-terminal S

atoms at the S edge of the nanoribbon. Each pair of S atoms at the edge exhibits a mixing

of 3py and 3pz orbitals, imposed by the ribbon geometry and weakly bound by π interactions

along the edge.

The linear-chain model was designed to facilitate exploration of the energy landscape

for various spin configurations at the nanoribbon edge. With a band occupation of 2n0 = 1.3

electrons in the paramagnetic state, this model validated that the most stable magnetic con-

figuration is indeed the ferromagnetic one, consistent with predictions from comprehensive

calculations. Furthermore, the model accurately reproduced the energy required to create a

single Bloch wall between two domains with opposite spins, closely aligning with the calcu-

lations for the complete MoS2 nanoribbon (5.8 meV versus 6.5 meV). For smaller domains,

we investigated how the formation energy changed with domain size. The simplicity of the

atomic chain model enabled a systematic exploration of the effects of local changes in the

on-site energy. By introducing Gaussian perturbations and reversing spins in a small segment

of the chain centered at the maximum of the Gaussian profile, we calculated and compared

energy differences for various configurations. Notably, we observed a reduction in the total

energy of the chain perturbed by a Gaussian potential when the spin is reversed in a confined

region. The size of the reversed-spin domain and the energy gain were found to be depen-

dent on the Gaussian parameters. This discovery aligns with a similar conclusion drawn

from full TB+U calculations, indicating that a local Gaussian perturbation may generate

a small domain with reversed spins along the S edge without disrupting the ferromagnetic

order over long distances. Anticipating broader applications, we propose that the same one-

dimensional model could be employed to examine the magnetic structure of other transition
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metal dichalcogenide (TMD) nanoribbons, such as WS2, MoSe2, and MoTe2.

The depiction of the electronic and magnetic properties of transition metal dichalco-

genides, specifically MoS2 or WS2, aligns directly with contemporary research. Ongoing

investigations explore their potential in micro and nanoelectronics, such as the creation of

field-effect transistors [23,39], as well as in spintronics [57], the development of innovative bat-

teries (including hydrogen-based designs) [127,128], and the advancement of photodetectors

[129]. A comprehensive understanding of the magnetic and electronic attributes of TMDs

is imperative for in-depth material exploration. While studies on TMD layers have been

ongoing for years, there is an interest in achieving a precise tight-binding representation of

TMD nanoribbons. The proposed one-chain model in this study holds potential significance,

particularly in the exploration of spintronic applications as it becomes conceivable to locally

alter the low-temperature magnetic texture of the S edge of the nanoribbon.

Therefore, a concise and efficient depiction of band structures is extremely interesting,

especially if coupled with a toy model facilitating the examination of the energetics of various

spin configurations in nanoribbons. This approach paves the way for advanced calculations

that can consider external factors such as mechanical stresses (known to significantly influence

MoS2 properties), defects, the influence of AFM tips and more. By doing so, we improve the

understanding of these unique materials, laying the foundation for the development of devices

that harness their remarkable properties. Ultimately, this avenue of research promises not

only a deeper understanding of these materials but also the practical realization of devices

capitalizing on their exceptional characteristics.
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Appendix A

Spherical harmonics and matrix

elements

For s-, p- and d- orbitals, the real spherical harmonics are defined as :

s-orbital

Y s
1 (θ, ϕ) =

√
1

4π

p-orbitals

Y p
1 (θ, ϕ) =

√
3

4π
sin θ cosϕ, like x/r

Y p
2 (θ, ϕ) =

√
3

4π
sin θ sinϕ, like y/r

Y p
3 (θ, ϕ) =

√
3

4π
cos θ, like z/r
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d-orbitals

Y d
1 (θ, ϕ) =

√
15

16π
sin2 θ sin 2ϕ, like xy/r2

Y d
2 (θ, ϕ) =

√
15

4π
sin θ cos θ sinϕ, like yz/r2

Y d
3 (θ, ϕ) =

√
15

4π
sin θ cos θ cosϕ, like zx/r2

Y d
4 (θ, ϕ) =

√
15

16π
sin2 θ cos 2ϕ, like (x2 − y2)/r2

Y d
5 (θ, ϕ) =

√
15

16π
(3 cos2 θ − 1), like (3z2 − r2)/r2

When we rotate the coordinates axes from oxyz to OXYZ, the spherical harmonics

Ylm(θ, ϕ) transform in a linear combination of the spherical harmonics Ylm′(Θ,Φ) (m′ =

−l,−l + 1, ..., l − 1, l) with respect to the new set of axes, where Θ and Φ denote the polar

angles of the vector r⃗ in the new coordinates system. From this, it is easy to compute the

matrix elements Ql
λm which connect a real spherical harmonics Y l

λ(θ, ϕ), with respect to the

old set of axes, in terms of the usual spherical harmonics Ylm(Θ,Φ), with respect to the new

set,

Y l
λ =

+l∑
m=−l

Ql
λmYlm(Θ,Φ).

We assume here that OZ has a specified direction with respect to oxyz and we denote

by l,m and n (l2 +m2 + n2 = 1) the direction cosines of the OZ direction. Furthemore, we

choose the OY direction in the plane (xOy); in these conditions the matrix elements Ql
λm are

functions of the direction cosines of the OZ direction only.

For s-orbital, it is obvious that : Qs = 1

For p-orbitals, one obtains :

Qp =


ln−im√

2(l2+m2)1/2
l −ln−im√

2(l2+m2)1/2

mn+il√
2(l2+m2)1/2

m −mn+il√
2(l2+m2)1/2

−(l2+m2)1/2√
2

n (l2+m2)1/2√
2


In this last expression, the lines of the matrix are ordered by increasing values of λ and

the rows are ordered from m = −1 to m = +1. Similarly, we have for d-orbitals :
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Q
d
=

                          lm
(1
+
n
2
)+

in
(l
2
−
m

2
)

√
2
(l
2
+
m

2
)

2
lm

n
+
i(
l2
−
m

2
)

√
2
(l
2
+
m

2
)1

/
2

√
3l
m

−
2
lm

n
+
i(
l2
−
m

2
)

√
2
(l
2
+
m

2
)1

/
2

lm
(1
+
n
2
)−

in
(l
2
−
m

2
)

√
2
(l
2
+
m

2
)

−
m
n
−
il

√
2

m
(2
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2
−
1
)+

il
n

√
2
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+
m
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/
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m
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2
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1
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il
n

√
2
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2
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m

2
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/
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−
m
n
+
il

√
2

−
ln
+
im

√
2

l(
2
n
2
−
1
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im
n

√
2
(l
2
+
m

2
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/
2

√
3n
l

−
l(
2
n
2
−
1
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im
n

√
2
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2
+
m
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/
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−
ln
−
im

√
2
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−
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+
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il
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√
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√
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+
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2
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4
il
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√
2
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+
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√
6 4
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2
+
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√
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+
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−
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√
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+
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/
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√
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Appendix B

Linear chain in mean field

approximation

H =
∑
i,s

[(ϵ0 + Uni,−s) |i, s⟩ ⟨i, s|+ β |i, s⟩ ⟨i+ 1, s|+ β |i, s⟩ ⟨i− 1, s|]

where i denotes the site and s the spin of the orbital.

|ψs⟩ =
∑
j,σ

Cj,σ |j, σ⟩

where ⟨i, s|j, σ⟩ = δi,jδs,σ

H |ψs⟩ =
∑
i,s

[(ϵ0 + Uni,−s)Ci,s |i, s⟩+ β(Ci+1,s + Ci−1,s) |i, s⟩] = Es |ψs⟩

(ϵ0 + Uni,−s)Ci,s + β(Ci+1,s + Ci−1,s) = EsCi,s

1) Non polarised case ni,s = ni,−s = n0

(ϵ0 + Un0)Ci,s + β(Ci+1,s + Ci−1,s) = EsCi,s

By Bloch’s theorem

Ci+1,s = Ci,s e
+ika

Ci−1,s = Ci,s e
−ika
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where a is the periodicity.

(ϵ0 + Un0 + 2β cos(ka))Ci,s = EsCi,s ∀ i and s

⇒ Es = ϵ+ 2β cos(ka) ϵ = ϵ0 + Un0

Given ρ(E) = 1
π

∫ π/a

0
δ(E − E(k))dk = 1

π

∫ E+Emax

E−Emin
δ(E − E(k)) dE(k)

|E′(k)| :

ρ(E) =
1

π

1

|E ′(k)|E(k)=E

=
1

π

1

2|β|a
1

sin(ka)

Given that the density of states per atom is given by

ρ0(E) =
a

π

∣∣∣∣ dkdE
∣∣∣∣ = 1

π

1

2|β|
1√

1− (E−ϵ
2|β| )

2
ϵ− 2|β| < E < ϵ+ 2|β|,

the Fermi level can be determined by calculating

Z0(E) =

∫ E

ϵ2−2|β|
ρ0(E)dE =

1

2
+

1

π
arcsin

E − ϵ2
2|β|

.

We can invert the relation to obtain E − E(Z0). We find

E − ϵ2
2|β|

= sin
π

2
(2Z0 − 1) = − cos(πZ0),

thus E = ϵ2 − 2|β| cos(πZ0). Replacing Z0 by n0, we obtain

EF = ϵ2 − 2|β|cos(πn0)

2) Ferromagnetic case ni,s = n1, ni,−s = n2, n1 + n2 = 2n0

(ϵ0 + Un1)Ci,s + β(Ci+1,s + Ci−1,s) = EsCi,s

(ϵ0 + Un2)Ci,−s + β(Ci+1,−s + Ci−1,−s) = E−sCi,−s

Same periodicity, written a, for both spins.

ϵ0 + Un1 + 2β cos(ka) = Es

ϵ0 + Un2 + 2β cos(ka) = E−s
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Figure B.1: Representation of the two bands described by a linear chain in mean field ap-
proximation for the ferromagnetic case where ni,s = n1 and ni,−s = n2, n2 > n1.

We find two bands of the same shape, shifted along the E axis as represented on figure B.1.

We can safely presume that n2 is greater than n1 without sacrificing generality. Let’s

take the case n0 > 0.5, implying n1 + n2 > 1. In the specific case n2 = 1 and n1 = 2n0 − 1,

the E−s band is totally filled. The bottom of the Es band is higher than the top of the E−s

band. We can then deduce :

ϵ2 − 2|β| > ϵ1 + 2|β|,

where ϵ1 = ϵ0 + Un1 and ϵ2 = ϵ0 + Un2,implying

U
1− n0

2|β|
> 1

which is a modified version of the Stoner criterion, a valid expression for the case n0 > 0.5.

In these conditions, the Fermi level is given by

EF + µ = ϵ2 − 2β cos(πn1)

= ϵ0 + Un2 − 2|β| cos(πn1)

= ϵ+ U(n2 − n0)− 2|β| cos(π(2n0 − 1))

= ϵ− U(n0 − 1) + 2|β| cos(2πn0)

where µ is the shift of the Fermi level compared to the non-polarised case :

µ = 2|β|[cos(2πn0) + cos(πn0)] + U(1− n0)
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3) Anti-ferromagnetic case

ni,s = n1;ni+1,s = n2 = ni−1,s

ni,−s = n2;ni+1,−s = n1 = ni−1,−s



(ϵ0 + Un2)Ci,s + β(Ci+1,s + Ci−1,s) = EsCi,s

(ϵ0 + Un1)Ci,−s + β(Ci+1,−s + Ci−1,−s) = E−sCi,−s

(ϵ0 + Un1)Ci+1,s + β(Ci+2,s + Ci,s) = EsCi+1,s

(ϵ0 + Un2)Ci+1,−s + β(Ci+2,−s + Ci,−s) = E−sCi+1,−s

(B.1a)

(B.1b)

(B.1c)

(B.1d)

Thanks to Bloch’s theorem, we can take

Ci−1,±s = Ci+1,±s e
−2ika

and

Ci+2,±s = Ci,±s e
+2ika

The four equations (B.2) then become



(ϵ0 + Un2)Ci,s + β(1 + e−2ika)Ci+1,s = EsCi,s

(ϵ0 + Un1)Ci,−s + β(1 + e−2ika)Ci+1,−s = E−sCi,−s

(ϵ0 + Un1)Ci+1,s + β(e2ika+1)Ci,s = EsCi+1,s

(ϵ0 + Un2)Ci+1,−s + β(e2ika+1)Ci,−s = E−sCi+1,−s

(B.2a)

(B.2b)

(B.2c)

(B.2d)

From (B.2a) and (B.2c) equations (ϵ0 + Un2 − Es)Ci,s + β(1 + e−2ika)Ci+1,s = 0

β(1 + e2ika)Ci,s + (ϵ0 + Un1 − Es)Ci+1,s = 0

From (B.2b) and (B.2d) equations (ϵ0 + Un2 − E−s)Ci+1,−s + β(1 + e2ika)Ci,−s = 0

β(1 + e−2ika)Ci+1,−s + (ϵ0 + Un1 − E−s)Ci+1,−s = 0

In both cases, we find
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(ϵ0 + Un1 − E±s)(ϵ0 + Un1 − E±s) = 2β2(1 + cos(2ka))

and, by taking the conjugated complex of these last 2 equations :

C∗
i,−s = Ci+1,s;C

∗
i+1,−s = Ci,s

To calculate the coefficient Ci,s, Ci+1,s, given B.2a, we can deduce

Ci+1,s =
E − ϵ2

β(1 + e−21ka)
Ci, s.

By normalising, we obtain

|Ci,s|2 =
E − ϵ1

2(E − ϵ1+ϵ2
2

)

|Ci+1,s|2 =
E − ϵ2

2(E − ϵ1+ϵ2
2

)

We have two eigenvalues E± = ϵ1+ϵ2
2

±
√
( ϵ2−ϵ1

2
)2 + 4β2 cos2(ka). Knowing that the minimum

of E− and the maximum of E+ happen at k = 0 and that the maximum of E− and the

minimum of E+ happen at k = π
2a
, we can deduce the bandwidth√

(
ϵ2 − ϵ1

2
)2 + 4β2 − ϵ1 forE−√

(
ϵ2 − ϵ1

2
)2 + 4β2 − ϵ2 forE+

The density of states per atom and per spin is given by

ρs(E) =
1

π

−
∣∣E − ϵ1+ϵ2

2

∣∣√
−(E − E1)(E − E2)(E − ϵ1)(E − ϵ2)

forE1 < E < ϵ1

ρs(E) =
1

π

∣∣E − ϵ1+ϵ2
2

∣∣√
−(E − E1)(E − E2)(E − ϵ1)(E − ϵ2)

forE2 < E < ϵ2

where E1 =
ϵ1+ϵ2

2
−

√
( ϵ2−ϵ1

2
)2 + 4β2 and E2 =

ϵ1+ϵ2
2

+
√

( ϵ2−ϵ1
2

)2 + 4β2.
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Appendix C

Spin flip in a ferromagnetic linear

chain

We aim to establish a necessary condition for inducing a reversal in the magnetic moment on

a single site within an otherwise flawless ferromagnetic linear chain. Our premise assumes

that the ferromagnetic order results in the formation of two distinct bands. The first band is

completely filled, hosting nb1 = 1 (b denoting bulk) electron with a spin ↓ per site. Meanwhile,

the second band extends up to the Fermi energy ϵF and contains nb2 = 0.3 electrons with

a spin ↑ per site. The Hubbard model is used in the mean-field approximation. The first-

neighbor interaction parameter is β all along the infinite chain.

We suppose that it is possible to reverse the spin on a single site d (d like defect)

for instance by applying a local external perturbation V that shifts the on-site energy on

this site. In other words, our objective is to establish conditions such that nd1 ≪ nb1 and

nd2 ≈ 1 > nb2. We simplify the problem by considering that the electron occupancies on the

neighboring sites of the defect all keep their bulk values. Under these conditions, the local

density of states on site d can be obtained analytically:

ρd(E) = − 1

π
Im

1

ϵb − ϵd −
√

(E + i0− ϵb)2 − 4β
E < ϵb − 2|β|2 (C.1)

=
1

π

√
4β2 − (E − ϵb)2

(ϵb − ϵd)2 + 4β2 − (E − ϵb)2
ϵb − 2β < E < ϵb + 2|β| (C.2)

= − 1

π
Im

1

ϵb − ϵd +
√

(E + i0− ϵb)2 − 4β
2 E > ϵb + 2|β| (C.3)

Due to the Hubbard term, the on-site energies ϵd at the defect site and ϵb at all the other

89



Figure C.1: The local density of states on the spin-flip defect (top part) is compared to the
density of states of the ferromagnetic atomic chain far from the defect (bottom part). Blue
and red colors correspond to spin ↓ and spin ↑ states, respectively. A, B correspond to defect
states, where the minority spin is occupied (B) and the majority spin is not occupied (A).

sites are spin-dependent. For the lowest band (spin ↓), ϵb = ϵ0+Unb2 and ϵd = V +ϵ0+Und2.

The parameter ϵ0 is defined in table 6.1. Given the assumptions made earlier, ϵd > ϵb, even in

the case of a zero or slightly negative perturbation V . Consequently, the spin defect pushes

a localized state above the bulk band, as illustrated in figure C.1. Equation C.3 becomes

ρd(E) = Aδ(E− ϵu) where E = ϵu corresponds to the pole of the right-hand side of equation

C.3. The weight (residue) of the localized state is readily obtained as

A =
|ϵb − ϵd|√

(ϵb − ϵd)2 + 4β2
(C.4)

The localized state shifts up and its weight increases when the difference ϵd−ϵb increases,
as for instance by increasing V . When ϵu crosses the Fermi energy, the occupation nd1 of the

local DOS ρd(E) for spin ↓ abruptly falls from 1 down to 1 − A. This value can indeed be

small as soon as ϵd − ϵb exceeds the bandwidth 4|β|.

Similarly, for spin ↑ the spin defect induces the downward shifting of a localized state

below the upper band (see figure C.1) at the energy E = ϵl corresponding to the pole of the

right-hand side of equation C.1. The weight B of this state is given by the same expression

as in equation C.4. Here, ϵb − ϵd = U(nb1 − nd1)− V . When V is not too large, the localized

state ϵl can host a significant fraction of the spin ↑ electron on site d. Hence, nd2 ≈ 1 and

nd1 ≪ 1 are achieved under the condition ϵu > ϵF . Treating V as a tuning parameter, this

last condition demands V > −0.06 eV with the parameters of table 6.1. The conditions for a
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single spin flip are met even in the absence of local perturbation. For V = 0, the results yield

nd1 = 0.016 and nd2 = 0.993. By comparison, full self-consistent calculations for a single

reversed spin (figure 6.4(a)) give nd1 = 0.013 and nd2 = 0.993. It’s important to note that

this doesn’t imply spontaneous spin flip, as the formation of this defect for V = 0 comes

with an energy cost outlined in table 6.3 for size 1. Additionally, the calculations developed

in this Appendix are simplified and, therefore, qualitative. Nevertheless, they indicate that

applying a positive V on one site will facilitate the formation of the defect.

Figure C.1 illustrates the impact of a single-site spin flip on the local density of states.

With the parameters relevant for the present study, the majority of states are localized on

two distinct peaks: one at ϵl, fully occupied by spin ↑ electrons and the other at ϵu, totally

empty. An electron with spin ↑ is trapped below the bulk bands, which reverses the magnetic

moment on the defect site. The continuous distributions (equation C.2) contribute for about

1 % of the total spin ↓ and spin ↑ states. Due to this small but non-zero population, there

is a weak probability for an electron at the Fermi energy to tunnel across the defect.
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[70] H.U. Özdemir, A. Altıntaş, and A.D. Güçlü. “Magnetic phases of graphene nanorib-

bons under potential fluctuations”. In: Phys. Rev. B 93 (2016), p. 014415. doi: 10.

1103/PhysRevB.93.014415.

98



[71] J.P.C. Baldwin and Y. Hancock. “Effect of random edge-vacancy disorder in zigzag

graphene nanoribbons”. In: Phys. Rev. B 94 (2016), p. 165126. doi: 10 . 1103 /

PhysRevB.94.165126.
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[90] P.E. Blöchl. “Projector augmentend-wave method”. In: Phys. Rev. B 50 (1994), p. 17953.

doi: 10.1103/PhysRevB.50.17953.

[91] J.P. Perdew, K. Burke, and M. Ernzerhof. “Generalized gradient approximation made

simple”. In: Phys. Rev. Lett. 77 (1997), p. 3865. doi: 10.1103/PhysRevLett.77.3865.

[92] H.J. Monkhorst and J.D. Pack. “Special points for Brillouin-zone integrations”. In:

Phys. Rev. B 13 (1976), p. 5188. doi: 10.1103/PhysRevB.13.5188.

[93] J.C. Slater and G.F. Koster. “Simplified LCAO Method for the Periodic Potential

Problem”. In: Phys. Rev. 94 (1954), p. 1498. doi: 10.1103/PhysRev.94.1498.

[94] K. Takegahara, Y. Aoki, and A. Yanase. “Slater-Koster tables for f electrons”. In: J.

Phys. C: Solid State Phys. 13 (1980), p. 583. doi: 10.1088/0022-3719/13/4/0168.

[95] A. Honet L. Henrard and V. Meunier. “Mean-field approximation of the Fermi–Hubbard

model expressed in a many-body basis”. In: AIP Advances 13 (2023), p. 075210. doi:

10.1063/5.0153076.

[96] X. Fan et al. “Modulation of electronic properties from stacking orders and spin-

orbit coupling for 3R-type MoS2”. In: Scientific Reports 6 (2016), p. 24140. doi:

10.1038/srep24140.

100



[97] Tawinan Cheiwchanchamnangij and Walter R. L. Lambrecht. “Quasiparticle band

structure calculation of monolayer, bilayer, and bulk MoS2”. In: Phys. Rev. B 85

(2012), p. 205302. doi: 10.1103/PhysRevB.85.205302.

[98] Weijie Zhao et al. “Evolution of Electronic Structure in Atomically Thin Sheets of

WS2 and WSe2”. In: ACS Nano 7, 1 (2013), pp. 791–797. doi: 10.1021/nn305275h.

[99] Daniele Braga et al. “Quantitative Determination of the Band Gap of WS2 with

Ambipolar Ionic Liquid-Gated Transistors”. In: Nano Lett. 12 (10) (2012), pp. 5218–

5223. doi: 10.1021/nl302389d.

[100] H. Kwon et al. “Monolayer MoS2 field-effect transistors patterned by photolithography

for active matrix pixels in organic light-emitting diodes”. In: npj 2D Materials and

Applications 3 (2019), p. 9. doi: 10.1038/s41699-019-0091-9.

[101] K. Andersen, K.W. Jacobsen, and K.S. Thygesen. “Plasmons on the edge of MoS2

nanostructures”. In: Phys. Rev. B 90 (2014), p. 161410. doi: 10.1103/PhysRevB.90.

161410.

[102] F.M.O Brito et al. “Edge-magnetism in Transition-metal Dichalcogenide Nanoribbons:

Mean Field Theory and Determinant Quantum Monte Carlo”. In: Phys. Rev. B 105

(2022), p. 195130. doi: 10.1103/PhysRevB.105.195130.
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