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A B S T R A C T

Age-related heterogeneity in a host population, whether due to how individuals mix and contact each other,
the nature of host–pathogen interactions defining epidemiological parameters, or demographics, is crucial in
studying infectious disease dynamics. Compartmental models represent a popular approach to address the
problem, dividing the population of interest into a discrete and finite number of states depending on, for
example, individuals’ age and stage of infection. We study the corresponding linearised system whose operator,
in the context of a discrete-time model, equates to a square matrix known as the next generation matrix.
Performing formal perturbation analysis of the entries of the aforementioned matrix, we derive indices to
quantify the age-specific variation of its dominant eigenvalue (i.e., the reproduction number) and explore
the relevant epidemiological information we can derive from the eigenstructure of the matrix. The resulting
method enables the assessment of the impact of age-related population heterogeneity on virus transmission. In
particular, starting from an age-structured SEIR model, we demonstrate the use of this approach for COVID-19
dynamics in Belgium. We analyse the early stages of the SARS-CoV-2 spread, with particular attention to the
pre-pandemic framework and the lockdown lifting phase initiated as of May 2020. Our results, influenced by
our assumption on age-specific susceptibility and infectiousness, support the hypothesis that transmission was
only influenced to a small extent by children in the age group [0, 18) and adults over 60 years of age during
the early phases of the pandemic and up to the end of July 2020.

1. Introduction

In epidemiological studies, unravelling how population heterogene-
ity influences disease spread is typically critical. Structured compart-
mental models tackle this problem by dividing the population into a
finite number of discrete groups, referred to as population state vari-
ables (Metz and Diekmann, 2014). The underlying rationale consists
in identifying the individual with the subpopulation to which he or
she belongs, defined by the individual state variable - typically age,
gender, occupation or nationality. Assuming that all individuals are
embedded in the same epidemiological context and that individuals in
the same states equally participate in transmission, the corresponding
population state variables characterise the distribution of the number of

∗ Corresponding author at: Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Hasselt University, Hasselt, Belgium.
E-mail address: leonardo.angeli@uhasselt.be (L. Angeli).

individuals in each compartment, i.e. the population distribution. Metz
and Diekmann (2014); see Appendix B.1.

In this study, we use a multistate model as the reference model,
as individuals composing the observed population are identified with
a bi-dimensional state (age, progression of the disease). The cor-
responding system of differential equations and the domain of the
parameter functions modelling transmission processes and transition
across epidemiological states can be of high dimension. However, under
suitable assumptions, compartmental models of arbitrary complexity
are effectively linked with a discrete, linear dynamical system matrix
while maintaining a consistent epidemiological interpretation (Diek-
mann et al., 2010). This matrix is the next generation matrix, which
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models the discrete-time evolution of the subpopulation of newly
infected individuals, projecting them towards the next generation,
following a demographic analogy that considers new infections as
newborns (referred to as the next generation approach). Arguably, the
main advantage of such an approach lies in the fact that we can
mathematically characterise the basic reproduction number 𝑅0 as the
spectral radius of the next generation matrix (Diekmann et al., 1990).
The next generation approach concentrates solely on the infection
states immediately after infection, resulting in an operator of relatively
manageable size that sheds light on how the transmission potential of
the pathogen under study is linked to the interplay of the different
ingredients of the model (as quantified by its 𝑅0). Whenever a careful
study of a disease’s evolution is required, one must account for the
impact of demographic heterogeneity. In particular, in the case of
COVID-19, a large number of studies worldwide have found a marked
age-dependence of epidemiological parameters (e.g., Liu et al., 2020;
Davies et al., 2020; Franco et al., 2022), which underlines the impor-
tance of including age as a state variable to map the individuals of the
host population, resulting in an age-structured model.

In our work, we explore the potential of a formal sensitivity analysis
on the next generation operator. In Section 2, we describe how to apply
the methodology to the deterministic version of the discrete-time age-
structured compartmental model that was developed for modelling the
SARS-CoV-2 dynamics in Belgium (Abrams et al., 2021). The proposed
approach exploits the functional dependence between the generic en-
tries of the next generation matrix (𝐊) to derive age-specific indices of
sensitivity (Caswell, 2000). We discuss the epidemiological significance
of the derived quantities, defining the strengths and limitations of this
approach in the study of infectious diseases. Next, we briefly introduce
the data used to inform the epidemiological parameters of our model,
and then, in Section 3, we focus on interpreting the sensitivity analysis
results at different time points during the COVID-19 pandemic in
Belgium. Our results, revealing that from April to July 2020, children
under 18 years and adults over 60 years played only a marginal role
in transmission, are consistent with other studies examining the role of
age structure in virus spread. (e.g. Davies et al., 2020; Monod et al.,
2021; Lovell-Read et al., 2022).

Finally, in Section 4, we discuss the prospects of this approach as
a tool to study infectious disease spread, even in real-time, during
future pandemics. The ability of the proposed approach to produce
robust results depends on the accuracy of the estimated epidemio-
logical parameters and, thus, on the availability of relevant data. A
particular challenge we encountered pertains to accurately estimating
the susceptible portion of the population across different age groups.
This issue is especially pronounced in Belgium, where the absence of
comprehensive serological studies during the pandemic has led to a
lack of accurate estimates. In general, there is also difficulty in linking
serological data to the actual susceptibility of specific age groups.
Owing to these limitations, our study relied on a simulation approach,
as elaborated in Appendix E. Although valuable, this approach brings
forth inherent constraints that necessitate caution, particularly when
considering extending our study to different contexts and timeframes.
As such, the age-specific conclusions drawn in this article should be
interpreted with caution.

2. Materials and methods

2.1. Notation and terminology

The next generation matrix (NGM or 𝐊) is a fundamental tool in
epidemiological models. It projects one generation of infected indi-
viduals to the subsequent generation, as its entries 𝑘𝑖𝑗 quantify the
expected number of secondary infections in group 𝑖 produced by a
single infected individual in group 𝑗 during their infectious period. In
general, the groups are determined by the possible states of a newly
infected individual: in our case, these are the 𝑛 age intervals that we

consider to stratify the population. Appendix B.1 provides an intuitive
way of deriving 𝐊, based on the epidemiological significance of the
components of an SIR model (Susceptibles–Infected–Recovered). How-
ever, for more complex ordinary differential equations (ODE) systems,
a more rigorous derivation is necessary (Diekmann et al., 2010, 2012).

This section presents the methodology for an SIR model with a
discrete age structure of 𝑛 age classes and introduces the required
notation and terminology. In the first step, we restrict the analy-
sis to the groups of infected individuals (infected states), and model
the transmission process analogous to a demographic growth process
by considering newly infected individuals as the offspring of infec-
tious individuals and replacing the age-specific fertility rates by the
parameters modelling virus transmission (see Sections 2.4 and 2.5).
We assume that the population is fully susceptible and that the age
distribution of susceptible individuals reflects the demographic age
distribution. Mathematically, this assumption corresponds to a lineari-
sation around the infection-free equilibrium of the original system of ODE
(see Eq. (B.1) in Appendix B.1), selecting only the differential equations
that describe the dynamics of the infected subpopulation. The resulting
infected subsystem, composed of 𝑛×𝑚 equations (where 𝑚 is the number
of compartments of infected individuals), yields the NGM with large
domain (Diekmann et al., 2010) given by

𝐊𝐋 ∶= −𝐓𝜮−1. (1)

𝐊𝐋 satisfies the following equality

𝜌(𝐊𝐋) = 𝜌(𝐊),

where 𝜌(⋅) is the spectral radius of a matrix (see (3)), and 𝐊 is the NGM
introduced earlier.

Eq. (1) defines the transmission matrix 𝐓 = (𝑡𝑖𝑗 ) as the matrix of
transmission rates (i.e., new case rates) for each of the states that an
individual can be in immediately after infection(states-at-infection). The
transition matrix 𝜮 = (𝜎𝑖𝑗 ) contains the transition rates of infected
individuals through the epidemiological classes. It can be shown that
the arbitrary entry in the matrix −𝜮−1 reflects the expected time that
an individual who is currently in infected state 𝑗 will spend in infected
state 𝑖 (Diekmann et al., 2012). In the case of a SIR, the infected states
coincide with the potential states-at-infection, so 𝐊𝐋 ≡ 𝐊. This is not
true in general, yet it is always possible to define a transformation 𝜋(⋅)
such that 𝜋(𝐊𝐋) = 𝐊 (see Eq. (B.12) in Appendix B.2.2).

We examine the growth of the newly infected subpopulation over
successive generational steps. This approach enables us to focus on the
states-at-infection and to disregard information on transmissions from
transient infected states. Hence, 𝐊 contains all the required information
for our purposes and is the core subject of our analysis. For a detailed
derivation of the mathematical operators that support this claim, we
refer to Appendix B.2.

The linearisation performed to derive the infected subsystem (and
the NGM) breaks down when the basic reproduction number 𝑅0 = 𝜌(𝐊) >
1 (see, e.g., Diekmann et al., 2010). Concurrently, 𝜌(𝐊) governs the
stability around the origin of the discrete dynamical system described
by 𝐊, enabling the demographic analogy. Denoting each generational
step by 𝑡𝑚, and starting at time 𝑡0 from a population of infected 𝐈(𝑡0),
we have:

𝐈(𝑡1) = 𝐊𝐈(𝑡0) and 𝐈(𝑡𝑚+1) = 𝐊𝐈(𝑡𝑚) ⟹ 𝐈(𝑡𝑚+1) = 𝐊𝑚𝐈(𝑡0). (2)

After 𝑚 generations, the size of the infected population can be approxi-
mated by ‖𝐊𝑚𝐈(𝑡0)‖, that is the average per-generation growth factor is
‖𝐊𝑚

‖

1
𝑚 , and on the long run

lim
𝑚→∞

‖𝐊𝑚
‖

1
𝑚 = 𝜌(𝐊) = max

𝑖=1,…,𝑛
{|𝜆𝑖|}, (3)

where 𝜌(𝐊) is the spectral radius, i.e. the maximum of the absolute
values of 𝐊’s eigenvalues. The equality in (3) holds for any bounded
linear operator, and any finite-dimensional real-valued matrix defines
such an operator. When 𝜌(𝐊) > 1 the infected population is expected to
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undergo an unbounded geometrical growth. When 𝜌(𝐊) < 1, the origin
of the discrete system is asymptotically stable (Caswell, 2000), meaning
that the number of infected individuals will rapidly decay, thereby
preventing a disease outbreak. This is consistent with the definition of
𝑅0 as the expected number of secondary infections caused by a typical
infected individual in a fully susceptible population (Diekmann et al.,
1990).

2.2. Mathematical model and NGM

In the present work, we focus on the SARS-CoV-2 pandemic initi-
ated at the end of 2019 in Wuhan, China, and officially declared as
a pandemic on the 11th of March 2020 (WHO, 2020). The disease
dynamics are described by the deterministic formulation of the SEIR
compartmental model developed by Abrams et al. (2021), which is
summarised below. We assume that an individual can be in either of the
epidemiological states (Susceptible, Exposed, Infectious and Recovered).
For the infectious compartment, we further distinguish between pre-
symptomatic, asymptomatic and symptomatic individuals; the latter are
further classified into mildly symptomatic and severely symptomatic. The
resulting system of ODEs is displayed below in (4), along with the
corresponding compartmental diagram (Fig. 1).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝐒(𝑡)
𝑑𝑡 = −𝜶(𝑡)𝐒(𝑡),

𝑑𝐄(𝑡)
𝑑𝑡 = 𝜶(𝑡)𝐒(𝑡) − 𝛾𝐄(𝑡),

𝑑𝐈𝑝𝑟𝑒(𝑡)
𝑑𝑡 = 𝛾𝐄(𝑡) − 𝜃𝐈𝑝𝑟𝑒(𝑡),

𝑑𝐈𝑎𝑠𝑦𝑚(𝑡)
𝑑𝑡 = 𝜃𝐩𝐈𝑝𝑟𝑒(𝑡) − 𝛿1𝐈𝑎𝑠𝑦𝑚(𝑡),

𝑑𝐈𝑚𝑖𝑙𝑑 (𝑡)
𝑑𝑡 = 𝜃(𝟏 − 𝐩)𝐈𝑝𝑟𝑒(𝑡) − (𝝍 + 𝜹2)𝐈𝑚𝑖𝑙𝑑 (𝑡),

𝑑𝐈𝑠𝑒𝑣(𝑡)
𝑑𝑡 = 𝝍𝐈𝑚𝑖𝑙𝑑 (𝑡) − 𝝎𝐈𝑠𝑒𝑣(𝑡),

𝑑𝐑(𝑡)
𝑑𝑡 = 𝛿1𝐈𝑎𝑠𝑦𝑚(𝑡) + 𝜹2𝐈𝑚𝑖𝑙𝑑 (𝑡) + 𝝎𝐈𝑠𝑒𝑣(𝑡).

(4)

Our study focuses on analysing the transmission dynamics through
the NGM. Hence, its formulation solely depends on the compartments
of infected individuals explicitly included in the infection process under
study. For this reason, we let the recovered class 𝐑(𝑡) absorb individuals
who were hospitalised (including those who died after hospitalisa-
tion), assuming they cannot interplay with the population causing new
infections. Consequently, we do not account for the phenomenon of
nosocomial infections observed during the pandemic (e.g., Du et al.,
2021). In the above system, the parameters 𝛾, 𝜃, 𝛿1, 𝜹2,𝝍 and 𝝎 indicate
the transition rates between compartments of the model, while 𝐩 cor-
responds to the probability of being asymptomatic upon SARS-CoV-2
infection.

We refer to Table 1 for an overview of the model’s parameters, and
the respective values that we assumed in our analysis. The boldface
notation refers to age-specific vectors, and any products (or ratio)
of two vectors should be interpreted as a component-wise Hadamard
product, e.g., 𝝍𝐈𝑚𝑖𝑙𝑑 (𝑡) = (𝜓1𝐼𝑚𝑖𝑙𝑑,1(𝑡),… , 𝜓𝑛𝐼𝑚𝑖𝑙𝑑,𝑛(𝑡)). Hence, every
differential equation corresponds to an 𝑛-dimensional subsystem de-
scribing the time evolution of the included epidemiological classes for
each age group. The vector-valued function 𝜶(𝑡) is the force of infection,
whose 𝑖th component reflects the per capita rate at which a susceptible
subject of age 𝑖 becomes infected (see Section 2.4 for more details).
Consequently, it reflects our modelling choices with respect to how the
virus is transmitted between different epidemiological compartments.
More specifically, the analytical formulation of the NGM depends on
how individual characteristics (age group, severity of symptoms) are
assumed to influence the probability of virus transmission upon con-
tact. We discuss these assumptions in more detail in the following two
sections.

Fig. 1. Model diagram.

2.3. Social contact rates

The fundamental assumption allowing us to define the change in the
number of infected hosts due to virus transmission (transmission term)
is the so-called social contact hypothesis (Wallinga et al., 2006), i.e., in-
fected individuals are assumed to generate a number of secondary
infections proportional to their social contacts. The proportionality con-
stant (denoted by 𝑞) and the type of social contacts relevant to disease
spread depend on the pathogen of interest. In our case, the relevant
contacts are face-to-face conversations of at least a few words or skin
contact (as defined in the large-scale longitudinal survey providing
Belgian data on conversational contacts Coletti et al., 2020; Verelst
et al., 2021). Self-reported social contact information is cleaned and
processed, and social contact rates are estimated by age group using the
open-source tool SOCRATES (Willem et al., 2020). More specifically,
we estimated the per capita daily contact rate (i.e., the average number
of daily contacts) between an individual of age group 𝑖 and individuals
of age group 𝑗, for all age groups 𝑖 and 𝑗:

𝑚𝑖𝑗 = 𝑐𝑖𝑗𝑁𝑗 , with 𝑖, 𝑗 = 1,… , 𝑛 (5)

In this expression, 𝑛 is the number of age intervals, and 𝑁𝑗 is the
number of individuals of age 𝑗 in the Belgian population as given
by demographic data for Belgium (StatBel, 2020). In Eq. (5), the
contact rates 𝑐𝑖𝑗 refine the model by capturing the inherent correlation
between the age of the host and the age distribution of new infections.
This goes beyond the simplistic assumption of separable mixing, which
posits that the age of interacting individuals influences transmission
independently.

The proportionality constant 𝑞 may incorporate various effects,
including behavioural aspects such as hand sanitation, physical distanc-
ing, susceptibility and infectiousness upon infection, as well as contact
type, duration or location. Following Wallinga et al. (2010) and Franco
et al. (2022), we further refine 𝑞 into age-specific quantities, denoted
by 𝑞𝑖𝑗 , for each combination of age groups 𝑖 and 𝑗:

𝑞𝑖𝑗 = 𝑞𝑎𝑖ℎ𝑗 , with 𝑖, 𝑗 = 1,… , 𝑛.

Here 𝐚 = (𝑎𝑖)𝑖=1,…,𝑛 is the vector containing the age-specific probabil-
ities of acquiring the infection given a contact (susceptible side). In
contrast, 𝐡 = (ℎ𝑖)𝑖=1,…,𝑛 is the vector of age-specific probabilities of
transmitting infection given a contact (infected side). These may reflect
the age-related variability in clinical susceptibility and infectiousness,
as well as other behavioural or biological aspects, such as compliance
to imposed control measures or viral load of infectious individuals.
To avoid confusion with standard definitions of susceptibility and
infectiousness, the vectors 𝐚 and 𝐡 will be referred to as q-susceptibility
and q-infectiousness, respectively, following the terminology suggested
by Franco et al. (2022). The factor 𝑞 accounts for any residual effect,
and is consistent across all age groups.
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Based on the adopted theoretical definition of contact rates, the
total number of contacts between two age groups should be uniquely
determined (reciprocal contacts), meaning that the following conditions
should hold

𝑁𝑖𝑚𝑖𝑗 = 𝑁𝑗𝑚𝑗𝑖 for all 𝑖, 𝑗 (6)

where 𝑁𝑖 and 𝑁𝑗 represent the individuals in age groups 𝑖 and 𝑗. If
the contact rate matrix 𝐂 = (𝑐𝑖𝑗 ) is symmetric, then the social contact
matrix 𝐌 = (𝑚𝑖𝑗 ) is also symmetric and (6) holds. The inferred contact
matrix is not always symmetric, however, due to sampling variation
and reporting biases. Therefore, we will use a modified social contact
matrix 𝐌̃ with general entries

𝑚̃𝑖𝑗 =
𝑚𝑖𝑗𝑁𝑖 + 𝑚𝑗𝑖𝑁𝑗

2𝑁𝑖
for all 𝑖, 𝑗,

satisfying the reciprocity condition above.

2.4. Force of infection

To define the force of infection 𝜶, we need to specify which in-
fected states are also infectious. We opt for a frequency-dependent
transmission as in Begon et al. (2002), where the likelihood of a
susceptible person becoming infected is proportional to the disease
incidence. We assume heterogeneous contact patterns but constant
contact rates within each age group. We do not consider the effect
of variations in population density or mixing patterns across differ-
ent settings. To distinguish between symptomatic (𝐈𝑚𝑖𝑙𝑑 and 𝐈𝑠𝑒𝑣) and
asymptomatic (𝐈𝑎𝑠𝑦𝑚 and 𝐈𝑝𝑟𝑒) cases, we account for a difference in
contact rates and infectiousness for the two groups. Estimation of
the relative infectiousness between symptomatic and asymptomatic
individuals is not trivial though (McEvoy et al., 2021). Several studies
suggest that interactions with symptomatic individuals are more likely
to lead to transmission than those involving asymptomatic individu-
als (Li et al., 2020b; Nabi, 2020). Following Abrams et al. (2021),
we accommodate such differences by assuming a homogeneous ratio
of 𝜏𝑖𝑛𝑓 = 0.51, which is the ratio of the q-infectiousness of cases not
displaying symptoms to those with mild to severe symptoms. We will
refer to 𝜏𝑖𝑛𝑓 as the infectivity ratio. Behavioural changes due to the
onset of symptoms can be modelled by estimating the location-specific
proportional change in contacts of symptomatic cases, indicated here
by 𝝃 = (𝜉ℎ𝑜𝑚𝑒, 𝜉𝑤𝑜𝑟𝑘, 𝜉𝑠𝑐ℎ𝑜𝑜𝑙 , 𝜉𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝜉𝑙𝑒𝑖𝑠𝑢𝑟𝑒, 𝜉𝑜𝑡ℎ𝑒𝑟). We obtain the matrices
of symptomatic interaction rates by weighting the location-specific
matrices (available from the CoMix survey, see Coletti et al., 2020),
namely

𝐂𝑎𝑠𝑦𝑚 = 𝐂ℎ𝑜𝑚𝑒 + 𝐂𝑤𝑜𝑟𝑘 + 𝐂𝑠𝑐ℎ𝑜𝑜𝑙 + 𝐂𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐂𝑙𝑒𝑖𝑠𝑢𝑟𝑒 + 𝐂𝑜𝑡ℎ𝑒𝑟
𝐂𝑠𝑦𝑚 = 𝜉ℎ𝑜𝑚𝑒𝐂ℎ𝑜𝑚𝑒 + 𝜉𝑤𝑜𝑟𝑘 ⋅ 𝐂𝑤𝑜𝑟𝑘 + 𝜉𝑠𝑐ℎ𝑜𝑜𝑙 ⋅ 𝐂𝑠𝑐ℎ𝑜𝑜𝑙 +…

⋯ + 𝜉𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ⋅ 𝐂𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝜉𝑙𝑒𝑖𝑠𝑢𝑟𝑒 ⋅ 𝐂𝑙𝑒𝑖𝑠𝑢𝑟𝑒 + 𝜉𝑜𝑡ℎ𝑒𝑟 ⋅ 𝐂𝑜𝑡ℎ𝑒𝑟

(7)

The corresponding component of the force of infection, for each age
group 𝑖 of susceptibles, equals

𝛼𝑖 = 𝜏𝑖𝑛𝑓 ⋅𝑞𝑎𝑖
𝑛
∑

𝑗=1
𝑐𝑎𝑠𝑦𝑚𝑖𝑗 ℎ𝑗

(

𝐼𝑝𝑟𝑒𝑗 + 𝐼𝑎𝑠𝑦𝑚𝑗

)

+𝑞𝑎𝑖
𝑛
∑

𝑗=1
𝑐𝑠𝑦𝑚𝑖𝑗 ℎ𝑗

(

𝐼𝑚𝑖𝑙𝑑𝑗 + 𝐼𝑠𝑒𝑣𝑗

)

. (8)

Due to the lack of studies on this topic at the beginning of our
work, we will assume that the change in contact rates due to symp-
tom onset is the same as observed during the 2009 A/H1N1 pan-
demic influenza in England (Van Kerckhove et al., 2013), namely 𝝃 =
(1, 0.09, 0.09, 0.13, 0.06, 0.25). In our previous assumptions, we did not
consider the impact of symptom severity on the contact structure or the
chance of transmitting the disease during contact. Therefore, we do not
distinguish between pre-symptomatic and asymptomatic nor between
mildly symptomatic and severely symptomatic individuals in how we
model transmission during a contact. For simplicity in our sensitivity
analysis, we will refer to these groups as asymptomatic or symptomatic,
denoted by the superscripts 𝑎𝑠𝑦𝑚 and 𝑠𝑦𝑚, respectively.

2.5. Next generation matrix and reproduction numbers

Appendix B.2 presents a detailed derivation of the next generation
operators associated with our system (4). However, we stress that for
studies focussing on the analysis of the average per-generation impulse
to transmission, as quantified by the basic reproduction number, it is
sufficient to focus on the classical next generation operator (Diekmann
et al., 1990). The mathematical reason is that we define 𝑅0 relying
on the asymptotic convergence of the finite difference equation so-
lution (2) to a quantity proportional to 𝑅𝑚0 𝐰, where 𝐰 is 𝐊’s right
eigenvector corresponding to 𝑅0. The vector 𝐰 has positive components
and can be rescaled such that ∑

𝑤𝑖 = 1, that is, its components
𝑤𝑖 can be thought of as the asymptotic incidence of the infection
in the states-at-infection included in the model. Such convergence is
guaranteed in the case of a primitive matrix, which is not necessarily
the case for the large domain operator (1) in the context of infectious
disease modelling. On the other hand, if we assume that all states-at-
infection are potentially contributing to transmission, the matrix 𝐊 is
positive and thus primitive. We devoted Appendix C.1 to explain the
theory supporting the above claims. Hence, to derive our sensitivity
measures, we focus on the components of the left and right eigenvectors
corresponding to 𝑅0 = 𝜌(𝐊). A generic entry 𝑘𝑖𝑗 of the matrix 𝐊 is
defined as:

𝑘𝑖𝑗 = 𝑘𝑎𝑠𝑦𝑚𝑖𝑗 + 𝑘𝑠𝑦𝑚𝑖𝑗

= 𝜏inf𝑁𝑖𝑞𝑎𝑖𝑐
𝑎𝑠𝑦𝑚
𝑖𝑗 ℎ𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Transmission term

Transition term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
( 𝛿1 + 𝜃𝑝𝑗

𝛿1𝜃

)

+ 𝑁𝑖𝑞𝑎𝑖𝑐
𝑠𝑦𝑚
𝑖𝑗 ℎ𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Transmission term

Transition term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝛹𝑗 + 𝜔𝑗 )(1 − 𝑝𝑗 )
𝜔𝑗 (𝛹𝑗 + 𝛿2𝑗 )

,

(9)

for all 𝑖, 𝑗 = 1,… , 𝑛. The equation for 𝑘𝑖𝑗 can be interpreted as a
weighted sum of two main contributions to viral transmission. The first
contribution, denoted 𝑘𝑎𝑠𝑦𝑚𝑖𝑗 , comes from interactions involving infec-
tious individuals who are pre-symptomatic or asymptomatic. The sec-
ond contribution, 𝑘𝑠𝑦𝑚𝑖𝑗 , arises from interactions with infectious individ-
uals who show symptoms (mild or severe). The weights are represented
by what we call the transition term. This term includes parameters
that model disease progression in infected individuals, and the average
time of individuals in different compartments. It also incorporates
the parameters related to how the virus spreads during contact and
accounts for the number of susceptible individuals in each group. This
aligns with the force of infection as defined in Eq. (8).

While the interpretation of the spectral radius of 𝐊 as a basic repro-
duction number is sufficiently supported by theory, the perspective of
the next generation approach entails a risk of underestimating the effect
of the decrease in the susceptible population in stages that are far from
the initial stage. Yet, the big advantage of the method is that it exploits
the available data to reflect the impact of population heterogeneity on
infection routes. In our case, the availability of age-specific estimates of
epidemiological parameters (Franco et al., 2022; Abrams et al., 2021)
and the evolution of the structure of contacts (Coletti et al., 2020) al-
lows us to update the NGM progressively. Moreover, to analyse specific
moments of the SARS-CoV-2 pandemic (Section 2.6), we account for the
depletion of susceptibles in each age group using numerical estimates
provided by the corresponding stochastic model developed by Abrams
et al. (2021), and calibrated on hospital admission data by age (and
on serial serological survey data collected during the initial phase of
the Belgian pandemic). We then assume 𝜌(𝑑𝑖𝑎𝑔(𝐒)𝐊) approximates the
effective reproduction number 𝑅𝑡. Here 𝐒, representing the proportion
of susceptible individuals in each of the 𝑛 age groups, forms the main
diagonal of the diagonal matrix 𝑑𝑖𝑎𝑔(𝐒). We will refer to the updated
NGM as 𝐊𝐒 ∶= 𝑑𝑖𝑎𝑔(𝐒)𝐊.
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Table 1
Parameters used in the model, with their epidemiological interpretation. The components of parameter vectors align with the age brackets:
[0, 6), [6, 12), [12, 18), [18, 30), [30, 40), [40, 50), [50, 60), [60, 70), [70,∞). The table presents the parameter values used in our analysis and the sources from which these values
are obtained.

Notation Description Value Context Source

𝜏𝑖𝑛𝑓 Infectivity ratio 0.51 COVID-19 - China 2020 Li et al. (2020a)
p Age-specific probability of an

asymptomatic COVID-19 case
(0.94, 0.92, 0.90, 0.84, 0.61, 0.49, 0.21, 0.02, 0.02) COVID-19 - USA 2020 Chin et al. (2021)

a Age-specific q-susceptibility (0.4, 0.39, 0.38, 0.79, 0.86, 0.8, 0.82, 0.88, 0.74) COVID-19 - Multiple Countries 2020 Davies et al. (2020)
h Age-specific q-infectiousness (0.54, 0.55, 0.56, 0.59, 0.7, 0.76, 0.9, 0.99, 0.99) COVID-19 - Belgium 2020 Franco et al. (2022)
𝑐𝑖𝑗 Age-specific daily reported contact rate – COVID-19 - Belgium 2020 Coletti et al. (2020)
𝛾 Exposed removal rate 0.729 COVID-19 - Belgium 2020 Abrams et al. (2021)
𝜃 Pre-symptomatic removal rate 0.475 COVID-19 - Belgium 2020 Abrams et al. (2021)
𝛿1 Asymptomatic recovery rate 0.240 COVID-19 - Belgium 2020 Abrams et al. (2021)
𝜹2 Age-specific recovery rate of mildly

symptomatic cases
(0.73, 0.74, 0.75, 0.74, 0.75, 0.74, 0.73, 0.72, 0.70) COVID-19 - Belgium 2020 Abrams et al. (2021)

𝝍 Age-specific rate of transition from mild
to severe symptoms

(0.021, 0.014, 0.006, 0.012, 0.010, 0.017, 0.022, 0.032, 0.050) COVID-19 - Belgium 2020 Abrams et al. (2021)

𝝎 Age-specific removal rate of severe
symptoms cases

(0.167, 0.131, 0.095, 0.099, 0.162, 0.338, 0.275, 0.343, 0.338) COVID-19 - Belgium 2020 Abrams et al. (2021)

𝝃 Location-specific behavioural changes
upon symptoms

(1, 0.09, 0.09, 0.13, 0.06, 0.25) H1N1 - England 2009 Van Kerckhove et al. (2013)

2.6. Sensitivity measures and epidemiology

We now illustrate the usefulness of differential sensitivity analysis
within epidemiological contexts. Namely, by performing a perturbation
analysis on the next generation matrix, we introduce new indices high-
lighting the age-specific impact on virus transmission. In the following,
𝐯 and 𝐰 indicate the dominant left and right eigenvectors associated
with 𝑅𝑡 ≈ 𝜌(𝐊𝐒), satisfying the conditions ⟨𝐯,𝐰⟩ = 1 and ∑

𝑖𝑤𝑖 = 1.
This choice simplifies notation and aids in the clear interpretation of
the various sensitivity indices.

By definition, adding the entries of the 𝑗th column of the next gen-
eration matrix 𝐊 results in the expected number of secondary infections
produced by a primary infectious individual in age group 𝑗 during their
infectious period. Any perturbation in the parameters that constitute
the matrix entries 𝑘𝑖𝑗 (for all 𝑖 = 1,… , 𝑛) will influence this number.
In turn, this leads to variations in the effective reproduction number
𝑅𝑡, affecting the overall transmission dynamics. Using derivation tech-
niques, we can quantify this age-specific perturbation as the gradient
of 𝑅𝑡 with respect to the vectors 𝐤𝐣, which represent the columns of 𝐊𝐒.
This forms the basis for the measures outlined below.

Cumulative sensitivities:

𝑠̃𝑗 ∶=
‖

‖

‖

‖

‖

𝜕𝑅𝑡
𝜕𝐤𝐣

‖

‖

‖

‖

‖1
=

𝑛
∑

𝑖=1

|

|

|

|

|

𝜕𝑅𝑡
𝜕𝑘𝑖𝑗

|

|

|

|

|

=
𝑛
∑

𝑖=1

𝑣𝑖𝑤𝑗
⟨𝐯,𝐰⟩

=
𝑛
∑

𝑖=1
𝑣𝑖𝑤𝑗 =

𝑛
∑

𝑖=1
𝑠𝑖𝑗 (10)

By adding the classical sensitivities (Caswell, 2019), denoted as 𝑠𝑖𝑗
and formally derived in Appendix A.1, we obtain an aggregate measure
of the 𝑅𝑡 rate of change corresponding to a relatively small perturbation
of the expected number of infections initiated by an infected individual
of age 𝑗. Referring to Eq. (9), 𝑠̃𝑗 reflects the 𝑅𝑡 rate of change resulting
from (possibly concurrent) shifts in the contact behaviour (𝑐𝑖𝑗), the
q-infectiousness (ℎ) or modifications in any of the parameters govern-
ing the length of stay of an individual of age 𝑗 in an infected state
(transition term).

Cumulative elasticities:

𝑒𝑗 ∶=
‖

‖

‖

‖

‖

𝐤𝐣
𝑅𝑡

◦
𝜕𝑅𝑡
𝜕𝐤𝐣

‖

‖

‖

‖

‖1
=

𝑛
∑

𝑖=1

𝑘𝑖𝑗
𝑅𝑡

𝜕𝑅𝑡
𝜕𝑘𝑖𝑗

=
𝑛
∑

𝑖=1

𝑘𝑖𝑗
𝑅𝑡
𝑠𝑖𝑗 =

𝑛
∑

𝑖=1
𝑒𝑖𝑗 . (11)

In the above equation, we define the proportional response of 𝑅𝑡 to a
proportional change in a specific column of 𝐊𝐒 (where ◦ denotes the
element-wise product). Given the property that 𝑅𝑡—when treated as a
function of the entries of 𝐊𝐒—is homogeneous of degree 1 (Diekmann
et al., 2012), it follows that ∑𝑛

𝑗=1 𝑒𝑗 = 1. Each of these perturbation
measures can be interpreted as the local proportional contribution to 𝑅𝑡

of age group 𝑗. This is not an independent age-specific contribution to
the reproduction number, as it depends on all values in the NGM. The
above expressions lead to the following key insights:

• For each age group 𝑗, the sensitivities (as given in (10)) operate
as scaling factors. These translate the absolute variation in the
age-specific transmission potential (following an explicit age 𝑗
parameter perturbation) into the absolute change in the overall
transmission potential.1 Mathematically, this is expressed as:

Let 𝐊̃ = 𝐊𝐒 + 𝛥𝐊𝐒 ⟹ 𝜌(𝐊̃) ≈ 𝜌(𝐊𝐒) +
∑

𝑖,𝑗
𝑠𝑖𝑗𝛥𝑘𝑖𝑗 , (12)

where 𝛥𝑘𝑖𝑗 is the expected change in the number of secondary
infections in age group 𝑗 generated by a single infected individual
of age 𝑗. This can be calculated from (9), for instance, when con-
sidering reopening primary schools (expected to imply a certain
𝛥𝑚𝑖𝑗), or the emergence of a new virus strain with modified trans-
missibility (expected to yield a specific 𝛥ℎ𝑗). Eq. (12) provides an
approximation of the effect on 𝑅𝑡 (See Fig. D.6(c) in Appendix).

• The elasticities in (11) rescale the sensitivities, directly account-
ing for the number of infections each group is expected to gener-
ate, giving a measure of 𝑅𝑡 proportional variation corresponding
to a proportional perturbation in the entries of a specific NGM
column (e.g. 𝐊𝑗). Such elasticities identify the overall age-specific
differences in participation to transmission at a specific point in
time. When several measures are in place to counteract over-
all virus transmission – such as social distancing, quarantine,
mandatory mask-wearing, school closure, or teleworking – the
optimal strategy is to configure a set of measures that leads to
the highest proportional reduction in secondary infections caused
by individuals in age groups with the highest elasticity index 𝑒𝑗 .
Based on (12), and considering a relatively small proportional
change 𝜂𝑖𝑗 in 𝑘𝑖𝑗 , we have:
𝛥𝑅𝑡
𝑅𝑡

≈
∑

𝑖,𝑗
𝑒𝑖𝑗𝜂𝑖𝑗 . (13)

1 The epidemiological interpretation of these expressions is based on the
ergodic properties of our problem. The assumption underlying the analysis
is that the vector 𝐰 aptly approximates the infection’s age distribution. The
sensitivities 𝑠𝑖𝑗 reveal that the impact of interactions between age groups 𝑖 and
𝑗 on transmission is proportional to the expected disease incidence in group
𝑗 (𝑤𝑗) and the potential contribution (𝑣𝑖) of a single infected individual in
age group 𝑖 to the asymptotic number infections. See Appendix C.1 for more
details.
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We emphasise that the perturbations to the metrics discussed above
should remain ‘‘relatively small’’ for the second-order errors in Eqs. (12)
and (13) to be marginal. Yet, in Appendix D (refer to Fig. D.6), we show
that the performance of the linear approximation of 𝛥𝑅𝑡 is robust to
significant variations in the column elements of the NGM.

Lower-level epidemiological parameters:
The chain rule enables us to examine variations in 𝑅𝑡 at a finer

level, by differentiating it with respect to the epidemiological rates
constituting 𝑘𝑖𝑗 (9). Typically, these are termed lower-level parameters,
denoted here as 𝑙. The corresponding sensitivities are then defined as:

𝑠𝑙 =
𝜕𝑅𝑡
𝜕𝑙

=
∑

𝑖,𝑗
𝑠𝑖𝑗
𝜕𝑘𝑖𝑗
𝜕𝑙

; (14)

These sensitivities are particularly relevant when analysing the impact
of changes in specific epidemiological parameters. Sensitivities associ-
ated with different parameters can be validly compared as long as these
parameters are on the same scale, e.g. 𝑎𝑖 and ℎ𝑗 . Appendix A.2 provides
an overview of the cumulative sensitivity measures for each parameter
in our model. These aggregated measures are obtained by adding the
indices from Eq. (14) across all age groups, allowing for a prelimi-
nary parameter comparison. Lower-level sensitivities permit a direct
evaluation of the basic reproduction number perturbation when an epi-
demiological parameter is perturbed. Mathematically, this is expressed
via the reformulated Eq. (12), given by 𝜌(𝐊̃) ≈ 𝜌(𝐊𝐒) +

∑

𝑖,𝑗 𝑠𝑖𝑗𝑠𝑙𝛥𝑙.
The modelling choices for the transmission term in Eq. (9), which
represents the product of independent contributions from interacting
individuals and their social contact rate, constrain the insights we can
gain from perturbation analysis. Consequently, we exclude lower-level
elasticities tied to individual transmission parameters. These would
not provide additional insights, as they would align with the general
elasticities outlined in (11). However, the term 𝑘𝑖𝑗 in (9) is derived
from a combination of two weighted contributions tied to the symptoms
exhibited by the infectious individuals. Assuming that some contain-
ment strategies independently affect infected individuals depending
on whether they show symptoms or not (e.g., the use of masks will
be effective in reducing q-susceptibility and q-infectiousness primarily
in contacts of asymptomatic and pre-symptomatic individuals, given
the reduced interaction of individuals with symptoms), we can define
symptom-specific measures as follows:

𝑒∗𝑙 =
𝑙∗

𝑅𝑡

𝜕𝑅𝑡
𝜕𝑙∗

=
∑

𝑖,𝑗
𝑠𝑖𝑗
𝑘∗𝑖𝑗
𝑅𝑡
, (15)

with ∗= 𝑎𝑠𝑦𝑚, 𝑠𝑦𝑚 (we refer to Section 2.4, Eq. (9) for the notation).
Using these expressions, we can evaluate the proportional response
of 𝑅𝑡 to variations in one or many transmission parameters, contin-
gent upon the infectious individuals’ symptomatic (mild and severe)
or asymptomatic (and pre-symptomatic) status. For instance, asymp-
tomatic individuals, who may be unaware of their infectious status,
are likely to have different adherence levels to preventative measures
like hand sanitation and mask usage compared to symptomatic in-
dividuals. Thus, we can assess the distinct impact of variations in
q-infectiousness(𝑙∗ = ℎ𝑗) through 𝑒∗𝑙 . Following Caswell (2000), mean-
ingful elasticities of 𝑅𝑡 to lower-level parameters that govern transitions
through infected states can be derived. These parameters are com-
ponents of the transition terms in Eq. (9). Details are provided in
Appendix A.2, Table A.4.

Sensitivity ratios:

𝑟𝑖𝑗 =
𝑠𝑖𝑘
𝑠𝑗𝑘

=
𝑣𝑖
𝑣𝑗

(16)

As detailed in Appendix C.1, the primitivity of 𝐊𝐒 ensures that the
distribution of infected individuals converges to the right dominant
eigenvector 𝐰. This vector is often referred to as stable age distribution
of new infections and, when normalised, can be interpreted as the
relative disease incidence across age groups (Caswell, 2000; Held et al.,
2019). In Appendix C.2, we show that this convergence is relatively

fast for the next generation matrices analysed. Consequently, 𝐊𝐒’s left
eigenvector 𝐯, corresponding to 𝑅𝑡 can be regarded as infective values
vector. Each component 𝑣𝑖 measures age group 𝑖’s relative contribution
to the asymptotic size of the infected population (see Appendix C.1).
Both 𝐰 and 𝐯 are relative quantities defined up to a constant. Therefore,
evaluating the ratios 𝑟𝑖𝑗 makes sense to quantify the relative impact
that new infections in the different age groups have on the overall
number of infections. A value of 𝑟𝑖𝑗 close to one indicates that age
groups 𝑖 and 𝑗 have a comparable per capita impact on the number
of infections. In contrast, a value greater (less) than one implies that
infected individuals in age group 𝑖 (𝑗) have a higher per capita impact
on transmission. Sensitivity ratios pinpoint the susceptible age group
that, if infected, would most amplify virus transmission, irrespective of
the infectee’s age.

The interpretation of the introduced metrics hinges on the assump-
tion that variations in each 𝑘𝑖𝑗 (for all 𝑖) are independent. In other
words 𝜕𝑘𝑖𝑗

𝜕𝑘𝑚𝑗
= 0 for any 𝑖 ≠ 𝑚 in 1,… , 𝑛. This is not necessarily true,

however: for instance, it is plausible that an individual’s daily contact
time is finite, leading to a saturating contact rate (Heesterbeek and
Metz, 1993) and a potentially negative correlation between contacts
across different age groups.

2.7. Assumptions

This subsection lists the assumptions for our sensitivity analysis.

• Age intervals: we consider the following age groups (with ages
in years):

𝛺 = {[0, 6), [6, 12), [12, 18), [18, 30), [30, 40), [40, 50), [50, 60), [60, 70), [70,∞)}.

The age structure mimics the Belgian school system for individu-
als under 18 years of age. The notation 𝛺 thus denotes the set of
age intervals.

• Contact rates: for each survey wave, we consider the sample
mean of the reported number of contacts as a proxy for the per
capita number of contacts per day, denoted as 𝑚𝑖𝑗 , as defined
in Eq. (5). The considered waves of the CoMIx social contact
survey, lack data on contacts made by children under 18 years
of age. Following (Van Hoang et al., 2021), we estimated these
contact rates using pre-pandemic social contact data from Flan-
ders, Belgium, and adjusted them based on the observed relative
changes in reported contact rates in other age groups (available
from the CoMix study). No social contact survey data were col-
lected between the beginning of September and the beginning of
November 2020.

• Epidemiological parameters estimates: we assume the 𝑞-
susceptibility to be age-specific, following (Davies et al., 2020),
namely

𝐚 = (𝑎𝑖)𝑖=1,…,𝑛 = (0.4, 0.39, 0.38, 0.79, 0.86, 0.8, 0.82, 0.88, 0.74). (17)

Assessing the age-dependence of q-infectiousness is not triv-
ial (Lau et al., 2020; Franco et al., 2022). Following (Franco et al.,
2022), we infer that the average infectiousness of individuals in
each age group is proportional to the probability for an infected
individual to remain asymptomatic 𝐩, with 𝟏 − 𝐩 being the
probability of developing symptoms. For any age group 𝑗, we
impose that ℎ𝑗 = 𝜏𝑖𝑛𝑓 𝑝𝑗 + 1(1 − 𝑝𝑗 ). The resulting age-specific
q-infectiousness profile is:

𝐡 = (ℎ𝑖)𝑖=1,…,𝑛 = (0.54, 0.55, 0.56, 0.59, 0.7, 0.76, 0.9, 0.99, 0.99). (18)

• We choose to set 𝑅0 = 3.4 (95% C.I. (3.36, 3.44)) for SARS-CoV-
2 spread in Belgium, in agreement with Coletti et al. (2021),
Willem et al. (2021), Abrams et al. (2021). This corresponds, in
our model, to a proportionality factor of 𝑞 = 0.137, which will
then be rescaled for the dominant eigenvalue of 𝐊𝐒 to coincide
with the 𝑅𝑡 estimated from positive PCR tests (Sciensano, 2021).
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3. Results and discussion

In our analysis, we assess how age-related heterogeneity (poten-
tially) affects virus transmission at different points in time.2 In this
section, we present and discuss the main results.

3.1. Initial phase

This phase focuses on the epidemiological setting before the start
of the pandemic in March 2020 (pre-pandemic scenario). Fig. 2(a)
graphically depicts the importance of interactions between individuals
in the age interval [18, 60). The percentage composition of 𝑅0, corre-
sponding to the per age-group cumulative elasticities 𝑒𝑖 (see Fig. 2(d)),
discloses more in-depth knowledge about age-specific engagement in
transmission, identifying the age groups in the range [18, 50) as primary
contributors to 𝑅0. We briefly explore the effect of the variability in
social contact rates, based on the CoMix survey data, by evaluating the
sensitivity measures on 1000 bootstrap samples. The bootstrap-based
95% percentile confidence interval (CI) for the highest elasticity indices
𝑒[18,30), 𝑒[30,40) and 𝑒[40,50), are (0.18, 0.26), (0.23, 0.30) and (0.22, 0.29), re-
spectively and do not allow to observe significant differences between
these groups. Despite taking part in around 35% (CI (32%, 37%)) of the
contacts, children under 18 years contribute to a small extent to 𝑅𝑡
composition, i.e. 6.6% (CI (4.3%, 9.7%)); see Fig. 2(d). The sensitivity
indices provide indications in line with the above observations (see
Fig. F.8 in the Appendix). In Fig. 2(b), we focus on the sensitivity
ratios 𝑟𝑖𝑗 , as defined in (16), thereby adding information about the
susceptibles contacted by an infectious person. In particular, the age
group [40, 50) shows the highest reproductive value, indicating that a
new COVID-19 case in this group would contribute to the asymptotic
number of infections approximately 2.9 times more than a new case
in the age group [60, 70), and 3.8 times more than a new case in age
group [70,∞). We obtain ratios close to one when comparing the age
intervals in [18, 50), namely min 𝑟𝑖𝑗 = 0.87 and max 𝑟𝑖𝑗 = 1.15 with 𝑖, 𝑗
in {[18, 30), [30, 40), [40, 50)}, indicating a comparable impact of these
age groups on the long term number of infections. New infections in
age groups [12, 18) and [50, 60) have comparable infective values, which
seems to contradict the conclusions from the elasticity measures. This is
mainly explained by the different 𝑞-susceptibility (𝑎[12,18)∕𝑎[50,60) = 0.46)
and 𝑞-infectiousness (ℎ[12,18)∕ℎ[50,60) = 0.62) values in the two groups,
which counterbalance other epidemiological differences in demogra-
phy, contact recovery rates, the probability of developing symptoms,
etc. The result is that the contribution to 𝑅𝑡 from the group [50, 60)
is higher than that of the group [12, 18), underlining that elasticities
efficiently account for all the epidemiological parameters and should
be preferred over sensitivities to analyse the overall transmission pat-
tern. The assumption expressed by (7) implies that pre-symptomatic
individuals will change their contact behaviour immediately after the
onset of symptoms. While this may seem unrealistic, especially in the
early phases of the virus spread, the assumption helps to emphasise
the weight of asymptomatic and pre-symptomatic infections in SARS-
CoV-2 transmission. Calculating ∑

𝑗 𝑒
∗
𝑙 for ∗=asym,sym, with 𝑒∗𝑙 as

defined in (15), we obtain an overall value of 0.90 (CI: (0.85, 0.96))
and 0.073 (CI: (0.069, 0.078)), respectively, revealing the predominant

2 More precisely, we describe the average age-specific transmission pat-
tern over a few projections of the NGM, from the moment we update the
NGM structure. Assuming an approximately steady (no major perturbations)
epidemiological framework, our analysis has the highest possible accuracy
when the age-specific incidence of the disease is close to convergence to 𝐰.
In Appendix C.2 we explain how this is related to the ratio between the
largest 𝜌(𝐊𝐒) and the second largest eigenvalue of the NGM, the damping ratio.
As evident from Fig. B.5 and Table C.5, three iterations (three generation
intervals, approximately corresponding to 15 days Ganyani et al., 2020) of
the next generation matrix are sufficient in the early phases of the pandemic
to achieve a satisfactory convergence (≈1% error).

role of pre-symptomatic and asymptomatic cases in spreading the virus.
The age-dependent relative index 𝑒𝑎𝑠𝑦𝑚ℎ𝑗

∕𝑒𝑠𝑦𝑚ℎ𝑗 for all 𝑗 ∈ 𝛺, as shown in
Fig. F.9 in the Appendix, highlights a big difference between individuals
under 30 and over 30 years old, regardless of the distribution of
contacts between age groups and the change in contact behaviour at
symptoms onset. The above index is exceptionally high in the age
band [0, 18) with an average value of 70.5, which means that, among
children, the variation in epidemiological aspects related to the in-
fectiousness (q-infectiousness) of pre-symptomatic and asymptomatic
cases impacts 𝑅𝑡 variation 70.5 times more than the same proportional
variation in symptomatic cases. Despite their limited contribution to
transmission (𝑒𝑗), we interpret this last result as a clear indication that
efficient testing policies to detect and trace infections among children
under the age of 18 (in particular, those in primary and secondary
school) should have been implemented. Given the static assumptions
on behavioural changes at symptoms onset, this insight remains valid
throughout the observation period (April–July 2020). The symptom-
specific elasticity index will follow the contact structure variation (see
Fig. F.10 in the Appendix). However, aspects such as risk perception,
social and physical distancing recommendations, contact tracing and
quarantine of close contacts of a confirmed case would undoubtedly
impact the above index.

3.2. Sensitivity analysis

We focus on the period corresponding to the start of the decon-
finement strategy, which took place in Belgium as of the 4th of May
2020 (Government(BE), 2020). The data from the corresponding CoMix
survey waves are used to account for changes in social contact be-
haviour (Coletti et al., 2020). Figs. 3 and F.13 in Appendix, show that
both sensitivities and elasticities are highest for individuals between
18 and 50 years of age, thereby identifying them as the main actors of
virus transmission. During April–July 2020, the cumulative elasticities
are dominated by the group [18, 30), with an average 𝑒𝑗 of 24.4%
(determined as the arithmetic mean of the indices corresponding to
CoMix survey waves 1 to 8, April–July 2020). In particular, Fig. 3(b)
elucidates how the age groups in the interval [18, 50), from April
to May 2020, are sustaining transmission, as they consistently show
the highest elasticity values and highest number of daily contacts
(this is also confirmed by Fig. F.13(b) Appendix F). This observation
gains significance in connection with the age-specific increase in daily
contacts detected at the end of May, corresponding to the reopening
of industries, business-to-business, healthcare-related businesses and a
relaunch of public transport (Government(BE), 2020) (see Table 2 and
Fig. B.5 in the Appendix). Abrams et al. (2021) thoroughly explored
the effect of different exit strategies, showing how similar percentage
increases in daily per capita contact rates result in a resurgence of
COVID-19 infections.

The elasticity measures suggest that children under 18 years and
adults over 60 years had a marginal role in transmission. The sensitivity
measures for adults over 60 are, however, 2.35 times higher on average
than those for individuals under 18 years old.

From this perspective, the gradual resumption of school activities
(starting on May 18) has likely had a limited impact on COVID-19
transmission. This finding is supported by several studies, which es-
timated that school closure policies reduce transmission by 5.6% (95%
CI 4.1–6.9) (Viner et al., 2020) and would have had a minor impact
on the chances of an outbreak as compared to interventions aimed at
reducing contacts in the work environments or in other context (Lovell-
Read et al., 2022). Other studies highlighted the low proportion of
paediatric cases originating from the school environment (Rajmil, 2020;
Zhu et al., 2021). On the other hand, the relatively high sensitivity
values for individuals older than 60, mainly determined by relatively
high susceptibility and infectiousness, would have called for caution in
implementing deconfinement strategies, especially in light of the high
number of deaths and hospitalisations in these age groups (Abrams
et al., 2021).
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Fig. 2. Results corresponding to pre-pandemic social contacts data (Van Hoang et al., 2021). In panel (a), we display the next generation matrix and in panel (b) the sensitivity
ratio matrix (𝑟𝑖𝑗 )𝑖,𝑗 = (𝑣𝑖∕𝑣𝑗 )𝑖,𝑗 . In panel (c), the elasticity measures 𝑒𝑖 show the percentage contribution of each group to 𝑅0 ’s absolute value; the percentage of the overall daily
contacts reported on average by an individual in each age group is presented in panel (d). The bar’s length corresponds to the mean of the reported social contacts, while the
error bars indicate the 95% percentile interval obtained from 1000 bootstrap samples of the contact matrix.

Table 2
Age-specific percentage increase in daily contacts (𝛥𝑖% =

∑

𝑗 𝑚
𝑤𝑎𝑣𝑒3
𝑖𝑗 −

∑

𝑗 𝑚
𝑤𝑎𝑣𝑒2
𝑖𝑗

∑

𝑗 𝑚
𝑤𝑎𝑣𝑒2
𝑖𝑗

) as reported by CoMix survey participants during wave 3 (May 22, 2020), as compared to the average
number of contacts reported during survey wave 2 (May 5, 2020). We indicate the difference between the sample means and the correspondent 95% percentile interval obtained
from 1000 bootstrap samples (in brackets).

Age [0, 6) [6, 12) [12, 18) [18, 30) [30, 40) [40, 50) [50, 60) [60, 70) 70+

𝛥𝑖% 53% (30, 80) 48% (27, 72) 40% (20, 62) 34% (13, 59) 47% (26, 70) 42% (22, 64) 39% (16, 64) 80% (43, 122) 192% (77, 330)

3.3. Sensitivity ratios

The above sensitivity measures help summarise the epidemiological
framework and quantify the overall contribution of specific age groups
to transmission. With the term contribution, we summarise the ability to
infect (infected side) and the chances to get infected (susceptible side)
of an individual, as well as the number and the pattern of interactions
in the population (social contacts). We can disentangle this information
on both sides of transmission by separately looking at the components
of the right and left dominant eigenvectors of 𝐊𝐒, 𝐰 and 𝐯 respectively.
While 𝐰 can be used to estimate the relative incidence (Held et al.,
2019), we focus on the susceptible side, exploring the patterns returned
by the sensitivity ratios 𝑟𝑖𝑗 (16). These give a relative measure of the
age-specific infective value, i.e., the relative impact of a single infection
in a specific age group, on the asymptotic size of the infected population
Appendix C.1.

By collecting the various 𝑟𝑖𝑗 in a matrix 𝐑(𝑡𝑘) ∈ R𝑛×𝑛, for a specific
observation time 𝑡𝑘 corresponding to survey wave 𝑘, we obtain a
snapshot of the infective value of a single new infection in age group

𝑖 compared to that of a newly infected person of age 𝑗 (Fig. 4). Con-
sistently high values (red) on the columns (resp. rows) identify groups
having the lower (resp. higher) impact on the size of the infection at
convergence. During the lockdown, low infective values are recorded
for age groups [0, 6) and 70+, while the remarkable increase in contacts
observed in late May 2020 ( Table 2) progressively causes the new
infections in age band [18, 50) to have the biggest influence on the
asymptotic size of the infection.

Sensitivity ratios tell us which susceptible individual group would
increase virus transmission the most when infected, regardless of the
age of the infectee. One can thus use the 𝐑(𝑡𝑘) matrices to identify
desirable targets for susceptibility reduction interventions, such as the
use of personal protective equipment and, of course, vaccination, in
view of diminishing the overall number of infections. Further insights
can be obtained by considering the sensitivity ratios alongside the
contact structure returned by the CoMix surveys, Fig. F.11 in Appendix.
For example, a hypothetical increase in infections among children aged
under 18, would be less concerning given the low infective value, the
prevalent intra-specific contact patterns (meaning individuals mostly
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Fig. 3. Age-specific sensitivity and elasticity evolution over the period April–June 2020. Panel (a) represents the evolution of the cumulative indices 𝑠̃𝑗 and 𝑒𝑗 for all 𝑖, 𝑗 = 1,… , 𝑛.
The error bars reflect the 95% percentile interval obtained from 1000 bootstrap samples of the social contact matrices. Panel (b) consists of consecutive plots comparing cumulative
contacts (𝑥-axis) and cumulative elasticities (𝑦-axis). The age groups in the top-right portion of the graphs contribute the most to transmission at the observation time. This
corresponds to different CoMix survey waves (Coletti et al., 2020), for which we indicate the calendar time and the 𝑅𝑡 obtained from Sciensano (2021).

Fig. 4. Sensitivity ratio matrices 𝐑𝑡𝑘 . The figure displays how the matrix of sensitivity ratios changes after each data collection interval (or survey wave). The associated calendar
dates are indicated, as well as the effective reproduction number shown above each matrix.

interact within their own age group) and the high rate of asymptomatic
cases in this age range. However, this could represent an issue if contact
patterns shifted to be more inter-specific (increased interactions across
different age groups) perhaps due to a relaxation in control measures.

4. Conclusions

This paper presents the mathematical foundations to analyse the
relationship between a sophisticated compartmental model and its
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corresponding next generation operator. We accomplish this through
formal perturbation analysis, aiming at exploring the inherent com-
plexities of temporal disease dynamics. Our work is inspired by the
theory developed by Caswell (2000) and Keyfitz and Caswell (2005) in
demography and biology. However, coupling formal sensitivity analysis
with the next generation approach in epidemiology is relatively novel
and holds significant unexplored potential. To our knowledge, the
sensitivity and elasticity indices we introduce here are new in their epi-
demiological interpretation, offering further insights into age-specific
impacts on disease transmission. In the case of COVID-19 in Belgium,
these sensitivity measures serve as a powerful lens to summarise the
intricate relationships among age subgroups and their influence on
SARS-CoV-2 transmission. Our approach is versatile enough to assim-
ilate a large volume of data and offers a weighing mechanism for
age-specific contributions to viral spread. We focus on the estimated
impacts on the reproduction number, 𝑅𝑡, and, more broadly, on the
eigenstructure of the Next Generation Matrix (NGM).

We developed different sensitivity indices that shed light on age-
specific participation in the early spread of COVID-19. The cumulative
sensitivities defined in (10) combine the expected incidence of the
disease in a specific group 𝑗 (𝑤𝑗) and the impulse to the long-term
size of the infection exerted by a single infected individual from each
other age group 𝑖 (𝑣𝑖). This results in an index that gauges the effect
of behavioural, epidemiological, and environmental changes on the
reproduction number. Such indices can assist in quantifying the effect
of precise changes in the behaviour of a specific group, e.g. a targeted
school closure. The elasticities 𝑒𝑗 rescale the sensitivities, directly fac-
toring in the number of infections each group is expected to generate,
giving the proportional variation of 𝑅𝑡. Elasticities allow comparing the
age-specific contribution to transmission at the observation time and
in the subsequent generation intervals. In designing a strategy to lower
overall virus transmission, the focus should be on the age groups with
the highest elasticity indices, as these are most effective in converting
the imposed changes into significant 𝑅𝑡 reductions.

By combining the above indices with the available information on
the number and structure of contacts, we observed that from April
to the end of July 2020, the main contribution to the spread of
the virus came from the 18–50 age group. The age group [18, 30)
marks a significant contribution to transmission at the start of the
three-phase deconfinement strategy implementation in May 2020, con-
sistently reporting higher values of both elasticity and cumulative
contacts. Furthermore, using lower-level derivatives (as defined in
(15)) emphasises the significant importance of infections generated by
pre-symptomatic and asymptomatic cases, with the recovery rate of
asymptomatic infections (𝛿1) being the one with the highest overall
sensitivity index in modulus (and negative), see Appendix A.2. This
underscores the significance of an effective screening and contact trac-
ing campaign at this stage. Finally, sensitivity ratios still point to the
age group [18, 50) as the desirable target for interventions to reduce
susceptibility to the virus (e.g., through vaccination) to control the total
number of infections.

Our method evidently has limitations. Two successive linearisations
reduce the accuracy of the resulting measures. The first linearisation
occurs when deriving the NGM and assuming that the entire popu-
lation is susceptible to the virus, i.e., that the number of infections
is negligible across all the age classes considered. The second one
occurs when approximating the linear response of 𝑅𝑡 with respect
to the perturbation of a group of NGM entries (𝑘𝑖𝑗), assuming that
they vary independently from each other, i.e., the 𝑅𝑡 is considered
as a multilinear function of the NGM entries. The first linearisation
becomes invalid when the reduction in susceptibles causes a significant
change in age-specific transmission rates, causing differences in disease
incidence among various age groups compared with the early stages of
infection. Nonetheless, in the present study, we dealt with the problem,
considering the variation of susceptible subjects due to the natural
course of the pandemic through numerical simulations (Abrams et al.,

2021). The susceptibility profile remains relatively stable throughout
the observation period, even if several aspects undermine the accuracy
of our simulations. We refer to Appendix E and Fig. E.7 of Appendix.
The second linearisation becomes invalid when the perturbations are
large, and when the change in the NGM entries affects its eigenstruc-
ture. In such cases, the second-order terms might cause severe changes
in the relative contributions of the different age groups to transmission,
as defined by the linear analysis. This limits the relevance of our
derivations to the moment of the observation, assuming that no major
perturbations of the epidemiological parameters occur. Furthermore, as
pointed out at the end of Section 2.6, the assumption of independent
perturbations of the NGM’s entries may not always hold true. For
example, a policy aimed at reducing social contacts could simultane-
ously affect contact frequencies across different age groups, leading to
correlated changes.

In addition, the sensitivity analysis yields more accurate results
when the distribution of the infected in the different age classes is
closer to that described by the dominant right eigenvector of the NGM.
As explained in Appendix C.2, this depends on the convergence speed
related to the absolute value of the second largest eigenvalue of 𝐊𝐒. In
our case, we observe a satisfactory convergence after three generation
intervals (about 15 days). Moreover, the NGM of a compartmental
system may be non-normal; that is, perturbations in the direction of the
subdominant eigenvalues could produce significant oscillation while
converging to the stable age distribution of the infected population, and
slow down convergence.

Another limitation of our model is its dependence on the quality
of data informing the next generation matrix, particularly regard-
ing age-specific susceptibility. As detailed in Appendix E, accurately
estimating age-specific susceptibility, especially for children, poses sig-
nificant challenges. The initial susceptibility estimates in our model,
derived from the stochastic model by Abrams et al. (2021), were
based on early serological data. This data had limited representation
of younger ages, leading to considerable uncertainty in these esti-
mates. Further calibrations of the model were based on the number
of hospitalisations and deaths, with minimal involvement of children
in these metrics, making it challenging to capture their susceptibility
accurately. Moreover, correlating seroprevalence directly with infection
susceptibility adds complexity to the analysis. These factors highlight
the necessity for comprehensive, longitudinal serological data to en-
hance the reliability and applicability of epidemiological models like
the one we employed. Notwithstanding the robustness of the results,
we advise caution in interpreting the age-specific findings of this study,
particularly concerning younger age groups.

In conclusion, combining the next generation approach and sensitiv-
ity analysis provides valuable insights into the dynamics of infectious
diseases. Its ability to generate interpretable results and accommo-
date a large amount of heterogeneity makes it a valuable instrument
for decision-making processes. We encourage further exploration of
its capabilities using more complex compartmental models, such as
those that include vaccinated and hospitalised compartments or re-
gional variations. Additionally, sensitivity analysis can be used to study
the response of other epidemiological quantities to perturbations in
transmission patterns. For example, we could examine the impact of
perturbations on the long-term incidence of infection and the speed
at which the infected subpopulation converges to the stable age dis-
tribution (𝐰). Overall, this tool has great potential to enhance our
understanding of infectious disease dynamics and to inform public
health policies.
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Appendix A. Sensitivity indices: further details

A.1. General sensitivity measures

In Section 2.6, we discuss the aggregated sensitivity measures (10).
These measures are founded on the established result that, any eigen-
value 𝜆 of a matrix 𝐊 is associated with left and right eigenvectors.
Denoted here as 𝐯 and 𝐰 respectively, these vectors are essential in
understanding the existing relationship between 𝐊 and 𝜆. These vectors
solve the following equations:

𝐊𝐰 = 𝜆𝐰 (A.1a)

𝐯̄𝐊 = 𝜆𝐯̄ (A.1b)

where 𝐯̄ indicates the complex conjugate of 𝐯. In Appendix C.1, we
explain that for a matrix whose entries are strictly positive, like our

NGM (𝐊 or 𝐊𝐒), the dominant eigenvalue (𝑅𝑡) is real, positive, al-
gebraically simple and admits eigenvectors 𝐰 and 𝐯 with strictly real
and positive components. Indicating 𝜆 = 𝑅𝑡 and following Keyfitz and
Caswell (2005), we differentiate Eq. (A.1a) to derive

𝐊(𝑑𝐰) + (𝑑𝐊)𝐰 = 𝑅𝑡𝑑𝐰 + (𝑑𝑅𝑡)𝐰.

From the scalar product ⟨, ⟩ of both sides of the above equation with
the eigenvector 𝐯, using Eq. (A.1b), one obtains

𝑑𝑅𝑡 =
⟨(𝑑𝐊)𝐰, 𝐯⟩

⟨𝐰, 𝐯⟩
= 𝐯𝑑𝐊𝐰

⟨𝐰, 𝐯⟩
. (A.2)

The matrix 𝑑𝐊 contains elements 𝑑𝑘𝑖𝑗 . Hence, assuming only 𝑘𝑖𝑗 is
perturbed, the matrix 𝑑𝐊 consists of all zeros except for the entry (𝑖, 𝑗).
This simplifies Eq. (A.2) to:

𝑑𝑅𝑡 =
𝑣𝑖𝑤𝑗𝑑𝑘𝑖𝑗
⟨𝐰, 𝐯⟩

,

leading to the sensitivity metric 𝑠𝑖𝑗 after dividing both sides by 𝑑𝑘𝑖𝑗 :

𝑠𝑖𝑗 ∶=
𝜕𝑅𝑡
𝜕𝑘𝑖𝑗

=
𝑣𝑖𝑤𝑗
⟨𝐰, 𝐯⟩

. (A.3)

A.2. Lower level parameters

In Table A.3, we present aggregated sensitivity measures, which
are sums of the indices discussed in Section 2.6. These measures are
derived by differentiating 𝑅0 with respect to all NGM entries and
epidemiological parameters in the model (4). Calculations are based
on pre-pandemic social contact data (Hoang et al., 2021), assuming a
stable parameter space. The table includes summed sensitivities across
age groups (column ‘‘Sum’’), the perturbed parameter(s), the Frobenius
norm of the sensitivity matrix for each parameter, and the mean
value of each perturbed parameter for comparative purposes. Follow-
ing Caswell (2000), we derived the elasticity indices for the transition
parameters appearing in Eq. (9) of the main text and reported them in
Table A.4. The formula employed is

𝑒𝑙 =
𝑙
𝑅0

𝜕𝑅0
𝜕𝑙

= 𝑙
𝑅0

∑

𝑖,𝑗
𝑠𝑖𝑗
𝜕𝑘𝑖𝑗
𝜕𝑙

. (A.4)

Sensitivities are notably high for 𝛿1, 𝐚, and 𝐡, highlighting the poten-
tial effectiveness of identifying and isolating asymptomatic cases and
interventions targeting individual susceptibility and infectiousness in
lowering 𝑅𝑡. Elasticities, derived from formula (A.4), further illustrate
the influence of variations in the duration individuals spend in the
asymptomatic and pre-symptomatic states on virus transmission. This
pattern does not incur significant variations during the observation
period.

Appendix B. NEXT generation OPERATORS

B.1. The SIR case

We present the theory and the assumptions required to derive the
next generation matrix (in the following referred to in short as NGM
or 𝐊) in the case of a simple 𝑆𝐼𝑅 model, with the host population
subdivided into 𝑛 age intervals. Drawing from state theory developed
by Metz and Diekmann (1986) in population ecology, the epidemi-
ological life of an individual is described by a bi-dimensional state
variable recording the progress of the infection in the host (disease
state, or d-state), in this case, susceptibles, infected and recovered, and
the correspondent age-interval (heterogeneity state, or h-state). Each
individual will be fully described by the couple (𝑑, ℎ) ∈ 𝛥×𝛺, where 𝛥
and 𝛺 are the d-state space and h-state space, respectively. The h-state
space dimension can easily increase when including population traits
such as gender, home region, or occupation.

https://github.com/LeoAngeliTR/WAIFW_Angeli2023/tree/main
https://zenodo.org/record/7788684
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Table A.3
Parameter-specific summed 𝑅0 sensitivity. The column ‘‘Norm’’ contains the Frobenius norm value of each sensitivity matrix. The
‘‘Value’’ indicates the value we set for the model parameter, corresponding to the posterior mean of the estimates obtained in Abrams
et al. (2021).
Symbol Sum Norm Index Age-specific Value Perturbed parameter

𝑠̃𝑗 7.31 1.07 Sensitivity TRUE 0.32 NGM entries
a 4.46 0.91 Sensitivity TRUE 0.67 q-susceptibility
h 4.81 1.06 Sensitivity TRUE 0.73 q-infectiousness
𝑚𝑖𝑗 1.46 0.23 Sensitivity TRUE 1.45 Reported daily contacts
𝑚𝑎𝑠𝑦𝑚𝑖𝑗 1.08 0.17 Sensitivity TRUE 1.94 ‘‘’’ (asym)
𝑚𝑠𝑦𝑚𝑖𝑗 0.39 0.07 Sensitivity TRUE 0.57 ‘‘’’ (sym)
𝜃 −3.28 0.7 Sensitivity FALSE 0.475 Pre-symptomatic removal rate
𝛿1 −6.61 1.57 Sensitivity FALSE 0.24 Asymptomatic recovery rate
𝜓𝑗 0.64 0.13 Sensitivity TRUE 0.02 Severe birth rate
𝛿𝑗2 −0.34 0.07 Sensitivity TRUE 0.74 Mildly symp. recovery rate
𝜔 −0.08 0.02 Sensitivity TRUE 0.22 Severe symp. removal rate
p 2.57 0.57 Sensitivity TRUE 0.55 Probability remaining asymptomatic

Table A.4
Parameter-specific indices of 𝑅0 elasticity.
Symbol Sum Norm Index Age-specific Perturbed parameter

𝑒𝑗 1 0.22 Elasticity TRUE NGM entries
𝑒𝑎𝑠𝑦𝑚𝑙 0.92 0.21 Elasticity TRUE 𝑘𝑎𝑠𝑦𝑚𝑖𝑗 (9)
𝑒𝑠𝑦𝑚𝑙 0.08 0.02 Elasticity TRUE 𝑘𝑠𝑦𝑚𝑖𝑗 (9)
𝜃 −0.46 0.1 Elasticity FALSE Pre-symptomatic removal rate
𝛿1 −0.47 0.11 Elasticity FALSE Asymptomatic recovery rate
𝜓𝑗 0.003 0.001 Elasticity TRUE Severe birth rate
𝛿𝑗2 −0.07 0.01 Elasticity TRUE Mildly symp. recovery rate
𝜔 −0.01 0.001 Elasticity TRUE Severe symp. removal rate
p 0.39 0.1 Elasticity TRUE Probability remaining asymptomatic

The evolution in time of the correspondent population states, i.e. the
vectors of the number of individuals in each d-state, is then described
by the following system of nonlinear differential equations:
𝑑𝑆𝑖
𝑑𝑡

= −𝛼𝑖(𝑡)𝑆𝑖(𝑡) ;
𝑑𝐼𝑖
𝑑𝑡

= 𝛼𝑖(𝑡)𝑆𝑖(𝑡) − 𝛾𝐼𝑖(𝑡) ;
𝑑𝑅𝑖
𝑑𝑡

= 𝛾𝐼𝑖(𝑡) , (B.1)

with 𝑖 varying in {1,… , 𝑛} and 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) indicate the number
of susceptible, infected and removed individuals at time 𝑡. The term
𝛼𝑖(𝑡) is the (age-specific) rate at which susceptible individuals of age 𝑖
are converted to infected ones and is referred to as force of infection,
see Section 2.4. It models transmission and determines the formulation
of the next generation matrix. For instance, we consider the following
formulation

𝜶(𝑡) = [𝐐◦𝐂]𝐈(𝑡) that is 𝛼𝑖(𝑡) =
𝑛
∑

𝑗=1
𝑞𝑖𝑗𝑐𝑖𝑗𝐼𝑗 (𝑡) for all 𝑖 ∈ {1,… , 𝑛}, (B.2)

where 𝐐 = (𝑞𝑖𝑗 ) and 𝐂 = (𝑐𝑖𝑗 ) are 𝑛 × 𝑛 matrices in (0, 1)𝑛 × (0, 1)𝑛, and
the symbol ◦ indicates the element-wise product between to matrices
(or Hadamard product). The underlying assumption is that transmission
events between two individuals in age 𝑖 and 𝑗 are proportional to
their contact rate 𝑐𝑖𝑗 through a constant 𝑞𝑖𝑗 (see Section 2.3). In this
case, the epidemiological definition of the next generation matrix 𝐊, as
provided by Diekmann et al. (1990), is sufficient to obtain its analytical
formulation. Namely, for all 𝑖, 𝑗 ∈ {1,… , 𝑛}, the general entry of 𝐊 is
defined as the expected number of newly infected individuals of age 𝑖
caused by an infectious individual of age 𝑗, during its infectious period
(of length 1

𝛾 ) in a fully susceptible population. In the case of system
(B.1), this number is given by:
[

𝑑𝑖𝑎𝑔(𝐒(𝑡))[𝐐◦𝐂]
𝛾

]

𝑖𝑗
= 𝑆𝑖(𝑡)𝑞𝑖𝑗

𝑐𝑖𝑗
𝛾
. (B.3)

If our observation happens at a time 𝑡 such that we can assume
𝑆𝑖(𝑡) ≈ 𝑁𝑖 (with 𝑁𝑖 the overall number of individuals in age-interval
𝑖), then Eq. (B.3) defines the NGM corresponding to system (B.1). More
precisely,

𝐊 =
𝑑𝑖𝑎𝑔(𝐍)[𝐐◦𝐂]

𝛾
, (B.4)

where 𝑑𝑖𝑎𝑔(𝐍) indicates the diagonal matrix whose principal diagonal
elements are 𝑁𝑖.

B.2. Model operators

The methodology presented in Section 2.1, developed by Diekmann
et al. (2010), allows us to derive the NGM for the system described
by Eq. (4). We consider only the infected states in the system, cor-
responding to the five different compartments of infected individuals
included in the model.

The system is linearised around the infection-free equilibrium, rep-
resented by 𝐏(𝑡) = (𝑆1(𝑡),… , 𝑆𝑛(𝑡), 𝐼1(𝑡),… , 𝐼𝑛(𝑡)) = (𝑁1,… , 𝑁𝑛, 0,… , 0),
where 𝑆𝑖(𝑡) and 𝐼𝑖(𝑡) denote the number of susceptible and infected
individuals, respectively, in age group 𝑖 at time 𝑡. This equilibrium
corresponds to the beginning of the virus spread when the incidence
of infection is uniformly negligible across all age groups. We get to the
following subsystem:

𝑑𝐄(𝑡)
𝑑𝑡 = 𝜶(𝑡)𝐍 − 𝛾𝐄(𝑡)

𝑑𝐈𝑝𝑟𝑒(𝑡)
𝑑𝑡 = 𝛾𝐄(𝑡) − 𝜃𝐈𝑝𝑟𝑒(𝑡)

𝑑𝐈𝑎𝑠𝑦(𝑡)
𝑑𝑡 = 𝜃𝐩𝐈𝑝𝑟𝑒(𝑡) − 𝛿1𝐈𝑎𝑠𝑦(𝑡)

𝑑𝐈𝑚𝑖𝑙𝑑 (𝑡)
𝑑𝑡 = 𝜃(𝟏 − 𝐩)𝐈𝑝𝑟𝑒(𝑡) − (𝝍 + 𝜹2)𝐈𝑚𝑖𝑙𝑑 (𝑡)

𝑑𝐈𝑠𝑒𝑣(𝑡)
𝑑𝑡 = 𝝍𝐈𝑚𝑖𝑙𝑑 (𝑡) − 𝝎𝐈𝑠𝑒𝑣(𝑡)

(B.5)

We decompose the Jacobi matrix of the system (B.5) into the sum of a
transmission matrix 𝐓 = (𝑡𝑖𝑗 ), including the rates of emerging new cases
in the exposed classes in 𝐄, caused by each individual in the infectious
states at time 𝑡, and a transition matrix 𝜮 = (𝜎𝑖𝑗 ) describing the transition
of infected individuals through the epidemiological classes. The next
generation matrix with large domain is defined as 𝐊𝐋 = −𝐓𝜮−1 and
has the following important property

𝑅0 = 𝜌(𝐊) = 𝜌(−𝐓𝜮−1). (B.6)

Below, we derive the two matrices 𝐓 and 𝜮 and ultimately the next
generation matrix 𝐊.



Journal of Theoretical Biology 581 (2024) 111721

13

L. Angeli et al.

Table C.5
Convergence test: for several survey waves, we report the speed of convergence to the stable distribution. Each column corresponds to the mean distance to the
stable distribution 𝐸𝑟𝑟(𝑖) after 𝑖 iteration of the NGM. These are evaluated considering 1000 different random initial conditions (𝑖 = 0).
Wave 𝑑𝑟 Err0 Err1 Err2 Err3 Err4 Err5 Err6 Err7 Err8

0 3.27 0.32 0.06 0.016 3.6 ∗ 10−3 1.0 ∗ 10−3 3.8 ∗ 10−4 8.9 ∗ 10−5 2.5 ∗ 10−5 7.2 ∗ 10−6

1 2.61 0.32 0.08 0.023 7.7 ∗ 10−3 2.6 ∗ 10−3 9.2 ∗ 10−4 3.3 ∗ 10−4 1.2 ∗ 10−4 4.6 ∗ 10−5

2 3.11 0.33 0.08 0.023 7.2 ∗ 10−3 2.2 ∗ 10−3 6.7 ∗ 10−4 2.1 ∗ 10−4 6.5 ∗ 10−5 2.0 ∗ 10−5

3 3.09 0.32 0.08 0.024 8.1 ∗ 10−3 2.4 ∗ 10−3 7.8 ∗ 10−4 2.5 ∗ 10−4 8.1 ∗ 10−5 2.6 ∗ 10−5

4 3.45 0.27 0.05 0.013 3.8 ∗ 10−3 1.0 ∗ 10−3 2.9 ∗ 10−4 8.3 ∗ 10−5 2.4 ∗ 10−5 6.8 ∗ 10−6

5 2.96 0.29 0.07 0.018 5.5 ∗ 10−3 1.8 ∗ 10−3 5.9 ∗ 10−4 2.0 ∗ 10−4 6.8 ∗ 10−5 2.3 ∗ 10−5

6 3.11 0.27 0.07 0.022 6.8 ∗ 10−3 2.1 ∗ 10−3 6.8 ∗ 10−4 2.1 ∗ 10−4 6.9 ∗ 10−5 2.2 ∗ 10−5

7 3.22 0.29 0.07 0.021 6.3 ∗ 10−3 1.9 ∗ 10−3 6.1 ∗ 10−4 1.9 ∗ 10−4 5.8 ∗ 10−5 1.8 ∗ 10−5

8 3.23 0.26 0.06 0.017 5.4 ∗ 10−3 1.6 ∗ 10−3 5.0 ∗ 10−4 1.5 ∗ 10−4 4.7 ∗ 10−5 1.4 ∗ 10−5

B.2.1. Transmission and transition matrices
We identify a single epidemiological stage 𝐄 describing the possible

states-at-infection, as many states as the number of chosen age classes
(𝑛). These are all the possible states of epidemiological newborns.
The sub-populations included in the model corresponding to states-of-
infectiousness are four, 𝐼𝑝𝑟𝑒, 𝐼𝑎𝑠𝑦𝑚, 𝐼𝑚𝑖𝑙𝑑 , 𝐼𝑠𝑒𝑣, defining 4 ⋅ 𝑛 states. These
states describe the evolution of the infection within an infected host,
limited to those stages in which the infected can produce epidemiolog-
ical offspring. From the viewpoint of transmission, we will expect that
just the first 𝑛 rows are nonnull, corresponding to the 𝑛 different age
stages in which exposed individuals can be, once infected. The resulting
transmission matrix 𝑇 is indeed a 5 × 5 block matrix where each block
is a 𝑛-dimensional square matrix, whose components are all identically
zero except for the blocks composing the first 𝑛 rows, i.e.

𝐓[1 ∶ 𝑛, ] =
[

𝟎 𝐓𝑠𝑦𝑚 𝐓𝑠𝑦𝑚 𝐓𝑎𝑠𝑦𝑚 𝐓𝑎𝑠𝑦𝑚
]

(B.7)

where the used notation [1 ∶ 𝑛, ] indicates the first 𝑛 rows of 𝐓. Here 𝟎
is a 𝑛× 𝑛 matrix with entries all equal to zero, and the other blocks are
defined as

𝐓𝑠𝑦𝑚 = 𝑑𝑖𝑎𝑔(𝐍)
⎡

⎢

⎢

⎣

𝛽1,1 ⋯ 𝛽1,𝑛
⋮ ⋱ ⋮
𝛽𝑛,1 ⋯ 𝛽𝑛,𝑛

⎤

⎥

⎥

⎦𝑠𝑦𝑚

and 𝐓𝑎𝑠𝑦𝑚 = 𝑑𝑖𝑎𝑔(𝐍)
⎡

⎢

⎢

⎣

𝛽1,1 ⋯ 𝛽1,𝑛
⋮ ⋱ ⋮
𝛽𝑛,1 ⋯ 𝛽𝑛,𝑛

⎤

⎥

⎥

⎦𝑎𝑠𝑦𝑚

(B.8)

being the generic transmission term defined by 𝛽𝛾𝑖,𝑗 = 𝑞𝛾𝑎𝑖𝑐
𝛾
𝑖𝑗ℎ𝑗 , with

𝛾 = 𝑎𝑠𝑦𝑚, 𝑠𝑦𝑚. To derive the formulation of the transition matrix 𝜮 is a
straightforward step following the definition, and it reads:

𝜮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝛾I 𝟎 𝟎 𝟎 𝟎
𝛾I −𝜃I 𝟎 𝟎 𝟎
𝟎 𝜃 𝑑𝑖𝑎𝑔(𝐩) −𝛿1I 𝟎 𝟎
𝟎 𝜃 𝑑𝑖𝑎𝑔(𝟏 − 𝐩) 𝟎 𝑑𝑖𝑎𝑔(𝜳 + 𝜹𝟐) 𝟎
𝟎 𝟎 𝟎 𝑑𝑖𝑎𝑔(𝜳 ) −𝑑𝑖𝑎𝑔(𝝎)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (B.9)

where each block is a 𝑛 × 𝑛 matrix, I is the identity matrix and 𝟏 is
a 𝑛-dimensional vector whose components are all equal 1. The vector
𝟏−𝐩 embeds the age-specific probability for a pre-symptomatic infected
to develop symptoms, while all the other epidemiological parameters
describe the transition rates between infected states and are presented
in Table 1 of the main text. Using properties of block matrices, we can
invert 𝜮 and get

𝜮−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝛾−1I 𝟎 𝟎 𝟎 𝟎
−𝜃−1I −𝜃−1I 𝟎 𝟎 𝟎

−𝛿−11 𝑑𝑖𝑎𝑔(𝐩) −𝛿−11 𝑑𝑖𝑎𝑔(𝐩) −𝛿−11 I 𝟎 𝟎
−𝑑𝑖𝑎𝑔( 𝟏−𝐩

𝜳+𝜹𝟐
) −𝑑𝑖𝑎𝑔( 𝟏−𝐩

𝜳+𝜹𝟐
) 𝟎 −𝑑𝑖𝑎𝑔( 𝟏

𝜳+𝜹𝟐
) 𝟎

−𝑑𝑖𝑎𝑔( 𝜳 (𝟏−𝐩)
𝝎(𝜳+𝜹𝟐 )

) −𝑑𝑖𝑎𝑔( 𝜳 (𝟏−𝐩)
𝝎(𝜳+𝜹𝟐 )

) 𝟎 −𝑑𝑖𝑎𝑔( 𝜳
𝝎(𝜳+𝜹𝟐 )

) −𝑑𝑖𝑎𝑔(𝝎−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(B.10)

Please note that multiplications and fractions of the n-dimensional
vectors, in bold, are to be intended in the sense of Hadamard, i.e.
element-wise.

B.2.2. Matrices 𝐊𝐋 and 𝐊
The next generation matrix with large domains will result in a

square matrix with null elements except for the first 𝑛 rows. We can
further divide the non-zero rows into five n-dimensional block matrices
𝐊𝐢

𝐋, with 𝑖 = 1,… , 5. We indicate the relevant rows as follows:

𝐊𝐋[1 ∶ 𝑛, ] =
[

𝐊𝟏
𝐋 𝐊𝟐

𝐋 𝐊𝟑
𝐋 𝐊𝟒

𝐋 𝐊𝟓
𝐋
]

. (B.11)

The eigenstructure of the operator is fully determined by the block 𝐊𝟏
𝐋,

which coincides with the classical next generation matrix, 𝐊. This can
also be seen by verifying that

𝐊 = 𝐔𝑇𝐊𝐋𝐔 = 𝐊𝟏
𝐋, (B.12)

being U the matrix whose columns are the vectors of the canonical basis
of R5𝑛, corresponding to the rows of 𝐊𝐋 which are not identically zero,
i.e.

𝐔𝑇 = [I 𝟎 𝟎 𝟎 𝟎] .

Finally, the next generation operator suffices for our purposes and
reads:

𝐊 = 𝐊𝟏
𝐋 = 𝐓𝑎𝑠𝑦𝑚 𝑑𝑖𝑎𝑔

[

𝛿1 + 𝜃𝐩
𝛿1𝜃

]

+ 𝐓𝑠𝑦𝑚 𝑑𝑖𝑎𝑔
[

(𝜳 + 𝝎)(𝟏 − 𝐩)
𝝎(𝜳 + 𝜹𝟐)

]

. (B.13)

Appendix C. Convergence analysis & interpretation

C.1. Age-specific infective values

The 𝑛×𝑛 next generation matrix 𝐊 linked to our system (4) is strictly
positive and thus primitive, plus its formal derivation eliminates the
redundant information rendering the assumption of a singular matrix as
a natural one. Hence, via the Perron–Frobenius theorem, 𝐊’s dominant
eigenvalue 𝜆1 is real, algebraically simple and is a maximum for its
spectrum, i.e. it coincides with its spectral radius 𝜌(𝐊). Furthermore,
the magnitude of the remaining eigenvalues is strictly less than 𝜆1,
and the corresponding right (w) and left (v) eigenvectors are real and
strictly positive. Suppose we indicate the age-specific number of newly
infected individuals at time 𝑡 by 𝐈(𝑡) and assume that our matrix is
diagonalisable. In that case, the set of its right eigenvectors {𝐰1,… ,𝐰𝑛}
constitutes a basis for R𝑛. Thus we can express the initial condition 𝐈(0),
corresponding to the number of new infections at the beginning of our
observation, as:

𝐈(0) =
𝑛
∑

𝑖=1
𝑐𝑖𝐰𝑖, (C.1)

for some coefficients 𝑐𝑖. Now, applying iteratively that 𝐊𝐰𝑖 = 𝜆𝑖𝐰𝑖, we
see that 𝐈(1) = 𝐊𝐈(0) =

∑𝑛
𝑖=1 𝑐𝑖𝐊𝐰𝑖 =

∑𝑛
𝑖=1 𝑐𝑖𝜆𝑖𝐰𝑖 and thus

𝐈(𝑡) =
𝑛
∑

𝑖=1
𝑐𝑖𝜆

𝑡
𝑖𝐰𝑖. (C.2)

The above arguments are sufficient to apply the strong ergodic theo-
rem (Cohen et al., 1979), namely:

lim
𝑡→∞

𝐈(𝑡)
𝜆𝑡1

= 𝑐1𝐰𝟏. (C.3)
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Fig. B.5. Qualitative convergence of the age-specific relative incidence to the distribution offered by the dominant eigenvalue 𝐰 of the observed next generation matrix. We
compare the beginning of the pandemic – Panel (a) – and the NGM deriving from the reported social contact structure in April 2020 – Panel (b) – during the first lockdown. The
latter corresponds to Wave 1 of the CoMix survey in Belgium, with the lowest damping ratio.

In the following we indicate 𝐰𝟏 and 𝐯𝟏 as 𝐰 and 𝐯 to simplify the
notation. The dominant right eigenvector 𝐰 expresses the stable age
structure of the infected population or simply stable age distribution —
the term stable to be intended as asymptotic incidence in the different
age classes, whenever convergence is guaranteed. Eigenvectors are
uniquely defined up to a constant and rescaling 𝐰 such that ∑

𝑤𝑖 = 1
enables interpreting its components 𝑤𝑖 as the age-specific incidence of
the disease. However, due to the arbitrariness of the rescaling, the most
appropriate way to translate 𝐰’s components is considering the relative
quantities 𝑤𝑖∕𝑤𝑗 as relative incidence, as done in Franco et al. (2022).

Moreover, from (C.3), we see how the datum on initially observed
infections does not play a role in defining the infected age distribution
(𝐰). In contrast, it does affect the size of the infected population. In fact,
the constant 𝑐1 in (C.3) is obtained as 𝑐1 = ⟨𝐯, 𝐈(0)⟩, with ⟨⋅, ⋅⟩ indicating
the standard scalar product and 𝐯 the left dominant eigenvector (proof

by Keyfitz and Caswell, 2005). The size of the infected population ‖𝐈(𝑡)‖,
where ‖ ⋅ ‖ is the Manhattan norm, after a sufficient number (say 𝑡) of
𝐊 iterations, can be expressed as 𝑐1𝜆𝑡1⟨𝐯, 𝐈(0)⟩‖𝐰‖. If we consider the
perturbed initial condition 𝐈(0) + 𝐞𝑗 , where 𝐞𝑗 is the 𝑗th vector of the
canonical basis of R𝑛, after 𝑚 steps we will have

‖𝐈(𝑡)‖ ≈ 𝜆𝑡1(𝑐1‖𝐰‖ + 𝑣𝑗‖𝐰‖).

That is, adding a single infection in age class 𝑗 (at the initial obser-
vation time) produces an increase in the asymptotic infected population
equal to 𝜆𝑡1𝑣𝑗‖𝐰‖. The above considerations support the interpretation
of 𝐯 as the vector of the age-specific infective values. Again we stress that
𝐯 must be interpreted as relative quantity, as it can be scaled by any
nonzero constant. In Section 3.3, we study the relative infective value
to measure the relative impact on 𝑅𝑡 of individuals belonging to two
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Fig. D.6. First order approximation of the 𝑅𝑡 variation using sensitivity measures, illustrated for age group [18, 30). Panel (a) shows the 𝑅𝑡 evolution for a uniform increase in
NGM column values: blue for approximated 𝑅𝑡 and red for the NGM-derived value. Panel (b) presents the proportional increase of these column elements and the approximated
value using elasticities. Panel (c) explores the impact of increased q-infectiousness and daily contacts within the age group [18, 30), with the associated relative error displayed in
panel (d).

Fig. E.7. Age-specific mean proportion of susceptible individuals for the period April–July 2020, corresponding to the first 8 survey waves of CoMix (Coletti et al., 2021). The
mean values are obtained using numerical estimates provided by the stochastic model developed by Abrams et al. (2021).

different age groups when we assume they are equally exposed to the
risk of infection.

C.2. Convergence to the stable distribution 𝐰

We base our arguments on the ergodic properties of the solution
to the problem (C.2). In analysing specific moments of the pandemic,
one may ask after how many iterations of the next generation matrix
the expected incidence of the disease in the various age groups will
converge to the eigenvector 𝐰 (rescaled so that ∑

𝑖𝑤𝑖 = 1). That

defines a time window over which our considerations are more robust.
Provided the NGM (𝐊) is diagonalisable and that the epidemiological
pattern does not undergo significant perturbations, the answer to the
above question is related to the accuracy of the limit in (C.3). Since by
hypothesis, the set of 𝐊 right eigenvector form a basis for the space of
solutions R𝑛, a popular measure of such accuracy is represented by:

𝑑𝑟 =
𝜆1
|𝜆2|

. (C.4)

The ratio 𝑑𝑟 has been defined as damping ratio (Caswell, 2000). The
name refers to the speed at which the possible oscillations of the
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Fig. F.8. Panel(a): age-specific cumulative sensitivities 𝑠̃𝑖. Panel(b): infective value of a single infection in each age group. We show the 95% percentile interval obtained with
1000 bootstraps of the social contact data sample.

Fig. F.9. Panel(a): the age-specific ratio between elasticity of the basic reproduction number to the transmission term components, respectively corresponding to pre-symptomatic
and asymptomatic and symptomatic interactions. Panel(b): the age-specific ratio between the expected number of daily contacts made by pre-symptomatic and asymptomatic
individuals and those made by symptomatic ones (panel b). We show the 95% percentile interval obtained with 1000 bootstraps of the social contact data sample.

Fig. F.10. Age-specific ratio between elasticity of the effective reproduction number to transmission term components variation (𝑒∗𝑙 defined in Eq. (15), Section 2.6), corresponding
to pre-symptomatic and asymptomatic and symptomatic interactions, respectively. Period April–July 2020.

solution are damped while converging to 𝐰. The magnitude of such
oscillations depends mainly on the eigenvalue with the second largest
modulus in (𝜆2). Neglecting the contribution of the full spectrum of 𝐊,

from (C.2) we have

lim
𝑡→∞

(

𝐈(𝑡)
𝜆𝑡1

− 𝑐1𝐰 − 𝑐2𝐰𝟐𝑑
−𝑡
𝑟

)

, (C.5)
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Fig. F.11. Social contact matrices: CoMix survey waves 1 to 8 (Belgium April–July 2020).

implying there exists a positive constant 𝑀 such that

‖

𝐈(𝑡)
𝜆𝑡1

− 𝑐1𝐰‖ ≤𝑀𝑑−𝑡𝑟 =𝑀𝑒−𝑡 𝑙𝑜𝑔(𝑑𝑟). (C.6)

This means that the demographic distribution of the infected popula-
tion converges to 𝐰 with an error exponentially decaying at least as
fast as 𝑒−𝑡 𝑙𝑜𝑔(𝑑𝑟). After 𝑡 iteration of 𝐊, the contribution of 𝜆1 to the
solution will be 𝑥 time that of 𝜆2, namely
(

𝜆1
|𝜆2|

)𝑡
= 𝑥 or equivalently 𝑡 =

𝑙𝑜𝑔𝑥
𝑙𝑜𝑔𝑑𝑟

. (C.7)

A damping ratio of 2 means that it is sufficient just one iteration for the
contribution to the asymptotic population of infected in the direction
of 𝐰 to double that in the direction of 𝐰2.

In Fig. B.5 we plotted the evolution of the proportion of infections
𝐼 𝑡𝑖

‖𝐈(𝑡)‖
(‖ ⋅ ‖ being the Manhattan norm) in the different age groups

as obtained by iteratively applying the NGM to a hundred randomly
generated initial conditions 𝐈(0). We can appreciate how, within ten
iterations, corresponding in our case to ten days, the magnitude of
the damping ratio 𝑑𝑟 affects the convergence speed to the stable age
distribution 𝐰. In Table C.5, we provide quantitative information about
the impact of the damping ratio on convergence. We report the distance
between the normalised vector ̃𝐈(𝑡) =

𝐈(𝑡)
‖𝐈(𝑡)‖

and 𝐰 (also normalised such
that ∑

𝑖𝑤𝑖 = 1) for the first eight iterations including the initial con-
dition, i.e. 𝑡 = 0, 1,… , 8. The employed distance is a scaled Manhattan
distance

𝑑( ̃𝐈(𝑡),𝐰) ∶= 𝐸𝑟𝑟𝑡 =
1
2

𝑛
∑

𝑖=1
|

̃𝐼 𝑖(𝑡) −𝑤𝑖| (C.8)

which assumes values in [0, 1].
Considering the NGMs at different points in time, the convergence

speed difference is neglectable with a decreasing 𝑑𝑟. After three it-
erations, the distance from the stable distribution is of the order of
10−3. 𝐰

Appendix D. 𝑹𝒕 first-order approximation

We analyse the performance of sensitivity measures in approxi-
mating 𝑅𝑡 variations according to the formulas (12) and (13). The
sensitivity measure is derived from the NGM corresponding to social
contact data from wave 3 of the CoMix survey (5 May 2022).

Panel (a) focuses on the age group [18, 30), which exhibited peak
sensitivity 𝑠̃𝑗 . We imposed a steady and uniform increase in the as-
sociated NGM column, reflecting a uniform growth in infections from
this age group. The blue line indicates the approximated 𝑅𝑡; the red
shows the 𝑅𝑡 derived directly from the updated 𝐊. Each 𝑘𝑖𝑗 element
(with 𝑗 = [18, 30)) recursively increases by 𝑚𝛿 (with 𝛿 = 0.005 and 𝑚
the number of the iteration) until the perturbed 𝐊’s Frobenius norm
is twice its original value. For panel (b), we applied a consistent
proportional increase of 2.5% to the same 𝐊 column, doubling its
values. The resultant increase in the Frobenius norm of the perturbed
matrix is shown in the top 𝑥-axis. In panel (c), we combined in-
creased q-infectiousness (e.g. simulating increasing transmissibility due
to emerging virus variants) and daily contacts number (e.g. reflect-
ing deconfinement strategies) for the [18, 30) age group. Panel (d)
compares the approximated and updated 𝑅𝑡, plotting the associated
relative error against an increased q-infectiousness (ℎ[18,30)]) and social
contact number(∑𝑖 𝑚𝑖𝑗). The first-order approximation performs well,
especially for norm increases below 50%. A 100% rise in 𝐊’s column
entries is associated with a 43% increase in its Frobenius norm. The
relative 𝑅𝑡 approximation error in panel (d) suggests errors around 7%
for up to 8 additional daily contacts and q-infectiousness at 1 (meaning
100% chance to transmit the virus during a contact). Concerning ob-
served variations in the NGM (𝐊) and the social contact matrix (𝐌), we
noted the most significant changes during lockdown and deconfinement
phases in Belgium. Specifically, the maximal mean absolute variation of
𝑘𝑖𝑗 was −0.0191 during early May 2020 (lockdown, wave 2) and 0.0189
in early June 2020 (deconfinement, wave 4). These changes correspond
to a maximal proportional variation in 𝐊’s Frobenius norm of 24%
and 26%, respectively. During deconfinement at the end of May 2020
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Fig. F.12. (a) Mean age-specific cumulative reported contacts during CoMix survey waves from 1 (19 April 2020) to 8 (31 July 2020); the dashed red line represents the 𝑅𝑡
evolution as estimated from PCR positive tests by Sciensano (2021). In (b), we display the evolution of the age-specific average daily contacts with the 95% percentile interval
bars obtained with 1000 bootstraps of the social contact data sample for each survey wave.

(wave 3), we recorded the most significant average contact variation in
daily contacts, 1.6. The greatest absolute change in number of contacts
occurred within the [18, 30) age group, which reported an average of
2.9 fewer contacts per day by the end of July 2020 (wave 8). See
also Fig. F.12. These findings suggest that, as long as epidemiological
conditions remain relatively stable, our sensitivity (𝑠̃𝑗) and elasticity
(𝑒𝑗) measures provide valuable insight into the age-specific impacts
on transmission. The above result suggests that the impact of the
underlying nonlinearity of the 𝑅𝑡 as a function of its columns, given
significant parameter perturbations, remains relatively modest. Conse-
quently, as long as the epidemiological framework remains relatively
stable without drastic shifts in the NGM structure, sensitivity (𝑠̃𝑗) and
elasticity (𝑒𝑗) measures offer valuable insights into age-specific impacts
on transmission at the observation time.

Appendix E. Age-specific susceptibility evolution.

Estimating the evolution of age-specific susceptibility, particularly
for the age group [0, 12), poses several challenges. In the present work,
relying on the stochastic reference model developed by Abrams et al.

(2021), we used the mean of 400 values obtained by 10 stochastic
realisations based on 40 different parameters set estimated via Markov
Chain Monte Carlo (MCMC) approach, Fig. E.7. The initial model
calibration relied heavily on early serological data (April 2020, Li
et al., 2020a), where the sample size for children under 12 was notably
limited, contributing to high uncertainty, as highlighted in Abrams
et al. (2021). Consequently, the model initially inferred a significant
initial infection rate among young children below 10 years, many of
whom might not have developed symptomatic disease. This resulted
in a lower starting susceptible proportion of susceptible for group
[0, 12) as compared to other age groups (Fig. E.7). Subsequently, the
model was calibrated mainly on hospitalisation and deaths by age
group (Sciensano, 2021). Given the marginal contribution of children to
hospitalisations and deaths, it is inherently more challenging to capture
the nuances of age groups like the [0, 12) years cohort. We observe
a more marked decline in susceptible proportion for the [0, 12) age
group. This might seem to contradict other studies highlighting a lower
seroprevalence of IgG antibodies in minors compared to adults (Herzog
et al., 2022; Rajmil, 2020). However, seroprevalence does not neces-
sarily equate directly to susceptibility in the longer term, especially
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Fig. F.13. Age-specific sensitivity and elasticity evolution June–July 2020. Panel (a) shows the evolution of the cumulative indices 𝑠̃𝑗 𝑒𝑗 for all 𝑖, 𝑗 = 1,… , 𝑛 reported with the
error bars as evaluated from 1000 bootstrap samples of the social contact matrices. Panel (b) consists of consecutive plots comparing cumulative contacts (𝑥-axis) and cumulative
elasticities (𝑦-axis). The age groups in the top-right portion of the graphs contribute the most to transmission at the observation time. This corresponds to different CoMix survey
waves (Coletti et al., 2020), for which we indicate the calendar time and the 𝑅𝑡 obtained from Sciensano (2021).

Fig. F.14. Age-specific sensitivity and contact variation, April–July 2020. For each survey wave, we plot the contact difference between the observed and the subsequent wave
on the 𝑥-axis and the age-specific sensitivity on the 𝑦-axis. The presence of dots in the top-right region of the plots might identify undesirable contact evolutions, i.e. the most
sensitive groups at time 𝑡 are the ones that increase contacts the most at time 𝑡 + 1.

when considering the nuances of humoural versus cellular immunity.
The exact interplay of these immunities might differ in children, with
possibilities like children having a more predominant cellular immune
response. Future efforts to collect more robust, longitudinal serological
data could significantly enhance our understanding and assessment of
age-specific virus dynamics. Given these complexities, we acknowledge
that our model’s conclusions concerning this age group should be
interpreted with caution.

Appendix F. Additional graphs

F.1. Prepandemic sensitivities & age-specific infective value

See Fig. F.8.

F.2. Age-specific relative impact on 𝑅0 - pre-symptomatic & asymptomatic
vs symptomatic transmission

See Figs. F.9 and F.10.

F.3. Reported contacts evolution: 19/04/2020–31/07/2020

See Figs. F.11 and F.12.

F.4. Further analysis: 18/06/2020–31/07/2020

See Figs. F.13 and F.14.
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