
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

A Journey Through Reciprocal Space

from Deep Spectral Learning to Topological Signals

Giambagli, Lorenzo

Award date:
2024

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/97dca199-e192-4514-9a3d-c7079420142e

Contents

1 Introduction 5

2 Introduction to Spectral Learning 9
2.1 Spectral analysis of NN . 9
2.2 Spectral Parametrization of a layer . 10

2.2.1 Adjacency matrix of a Feed Forward Network 10
2.2.2 Spectral Parametrization of A(k) 11
2.2.3 Spectral Convolutional Layer 13

3 Spectral Learning 17
3.1 Training of a Spectral-MLP . 17

3.1.1 Eigenvalues training . 18
3.1.2 Eigenvectors and eigenvalues training 18

3.2 Numerical Experiments . 18
3.2.1 Deep Linear Network . 19
3.2.2 Linear layer in non-linear network 22

4 Filling the gap with direct space 25
4.1 Inter-Layer Transfer Decomposition . 25

4.1.1 Spectral Layer . 26
4.1.2 Spectral SVD . 27

4.2 Spectral QR . 27
4.2.1 S-QR, Sparse R . 28

4.3 Spectral training of sparse networks . 28
4.4 Conclusions . 29

5 Spectral Pruning 35
5.1 Introduction . 35
5.2 Conventional Pruning Techniques . 35
5.3 Methods . 37
5.4 Results . 39

5.4.1 Single hidden layer (ℓ = 3) . 40
5.5 Conclusions . 45

6 Spectral Regularization 49
6.1 Teacher-Student frameweork . 49
6.2 Experimental Framework . 51
6.3 Invariant Core . 52

1

2 CONTENTS

6.4 Other datasets . 54
6.5 Linear Core . 56
6.6 Conclusions . 57

7 Recurrent Spectral Networks 59
7.1 Classification as a dynamical system 59
7.2 The mathematical foundation . 60
7.3 Testing RSN: a simple dataset in R2 62
7.4 Applying RSN to the MNIST dataset 66

7.4.1 Comparison with Recurrent Network 68
7.5 Sequential Learning . 70

7.5.1 Quasi-Orthogonal Φ . 71
7.6 Conclusions . 75
7.7 From low to high order . 76

8 Topological Signals 79
8.1 Why simplicial complexes . 80
8.2 Geometric viewpoint . 81
8.3 Algebraic Topology, an overview . 82

8.3.1 Boundary Operator . 83
8.3.2 Topological Signals . 85
8.3.3 Coboundary operator . 86
8.3.4 Hodge-Laplacians and the Dirac operator 88
8.3.5 Major Spectral properties . 89

9 Pattern formation of topological signals 91
9.1 Onset of diffusion driven instability . 95

9.1.1 Dirac reaction term . 95
9.1.2 Numerical results on a benchmark network 99
9.1.3 Dirac cross-diffusion term . 101

9.2 Conclusions . 102

10 Global Synchronization in Simplicial Complexes 105
10.1 Dynamical Framework . 106
10.2 Construction of eulerian discrete manifolds 108

10.2.1 2-simplicial complex . 108
10.2.2 3-simplicial complex . 109
10.2.3 3-cell complex: 3D-torus . 111

10.3 Master Stability Equation for Topological Signals 113
10.3.1 Simplicial Stuart-Landau model 114

10.4 Conclusions . 116

11 Conclusions and outcomes 119

A Construction of a simplex satisfying Lk u = 0 121
A.1 Introduction . 121
A.2 Graph representation of Boundary operator Bk 121
A.3 Top-down construction of P . 124

CONTENTS 3

A.3.1 B⊤
k+1 . 125

A.4 Construction of eulerian simplicial complex 126
A.4.1 Non-homogeneous vector . 128

A.5 Higher dimension . 128
A.6 Graph formulation of the problem . 129
A.7 Results in deep networks: Sparsity and SVD 130

B Square Lattice with periodic boundary conditions 133

C Analysis of the Stuart-Landau model 137

4 CONTENTS

Chapter 1

Introduction

In the realm of theoretical physics and machine learning, the intertwined world of
network dynamics and computational intelligence opens up new horizons for research.
This dissertation aims to contribute to this flourishing field by tackling two diverse yet
connected aspects: Neural Network Interpretability and Signal Dynamics in Simplicial
Complexes. Both avenues explore the fundamental role played by spectral properties
in shaping the behavior and capabilities of network systems. Remarkably, as we are
about to show in this manuscript, concepts and ideas inherited from network dynamics
and complex systems find fertile ground in the field of mechanistic AI, paving the way
for a stronger understanding of the learning process.
Furthermore the notion of emergence and the relevance of the spectral proprieties
of coupling operators are, however, still at their infancy in the fast growing field of
Topological Signal, justifying out characterization and analysis of synchronization and
pattern formation.

Spectral Parametrization of Deep Neural Networks

We will start with our contribution in the field of Deep Learning whose unprecedented
success in a myriad of applications from natural language processing to image recog-
nition cannot be overstated. Despite this, one of the persistent challenges has been
the difficulty in interpretability and analysis of the weights within a neural network.
Modern neural networks are a huge (even thousands of billions or more) collection of
interacting nodes, whose connections are dictated by the characteristic of the task to
be learned. Using a very large amount of data as training set, the neural network
adjust to approximate the non trivial correlations in the dataset progressively gaining
inference capability. Remarkably, at the end of a well defined training procedure, a
phenomenon emerges: the network is capable of performing well also on data that
were not seen in the training session, determining thus the generalization power of the
method.
This paradigm, where different entities organizes producing a non linear coherent ef-
fect is well established in the realm of complex systems where the emergence of a
coherent behaviour is very often addressed via the analysis of the proprieties of the
coupling between the elements. Starting from this premise we have developed a novel
approach to weight parametrization termed “Spectral Parametrization” that will start
in Chapter 2 and continue in Chapter 3. By employing spectral graph theory, we frame

5

6 CHAPTER 1. INTRODUCTION

the weights within a neural network layer as the elements of the (weighted) adjacency
matrix of a bipartite directed graph. Thus, we leverage the eigenvalues and eigenvec-
tors of this adjacency matrix as novel descriptors for the links within the layer. This
parametrization enables multiple innovations:

A novel formalism 2:Expressing the connections within a neural network through
the spectrum of its adjacency matrix shows that the process commonly referred to as
’feature extraction’—which isolates relevant data characteristics—occurs in each layer
as a modulation of distinct eigenvalue components. Furthermore, the relevance of a
particular feature can be quantified by the magnitude of its corresponding eigenvalue.

Reduction of trainable parameters (Chapter 4): The eigenvalues of the adjacency
matrix exploited as adjustable ’knobs’ capable of changing different weights simultane-
ously. Such effect, in conjunction with the Singular Value or QR Decomposition of the
eigenvectors components, is enough to train on relevant tasks a deep neural network
employing a risible number of free parameters.

Network Slimming Algorithm (Chapter 5 and 6): The magnitude of the eigenval-
ues provides a basis for evaluating the nodes relevance in the network. We propose an
algorithm that capitalizes on this relationship to streamline the network, preserving
its essential functionality while reducing computational overhead.

Spectral Regularization Technique (Chapter 6): Building upon the Spectral Parametriza-
tion, we introduce a regularization method that acts upon the eigenvalues. The result
is an effective compression of the neural network that notably does not compromise its
performance and reveals the emergence of a network size invariant core whose struc-
ture is deeply related to the learned task.

Dynamical Learning (Chapter 7): Leveraging on our understanding of network
dynamics, where the adjacency matrix spectrum drives the asymptotic state of the
whole system, we frame a novel learning process where the inputs are dynamically
steered towards given attractors. Such formulation of a recurrent network is possible
only due to our developed spectral theory.

Topological Signals Dynamics
The second part of the dissertation turns its attention towards complex systems mod-
elled as Simplicial Complexes. The latter generalize the concept of network by allowing
to assign signals, not only to nodes, but also to higher-order structures such as link,
faces and so on. We will delve into the dynamics of Pattern Formation (Chapter 9)
and Synchronization (Chapter 10) of topological signals where a plethora of phenom-
ena is produced intertwining algebraic topology and non linear dynamics.

In this case, the focal point is the Dirac operator - a mathematical entity funda-
mental in several areas in physics allowing signals defined on structures with different
dimension to interact. We uncover that the spectrum of this operator provides indis-
pensable insights into the dynamics of pattern formation and synchronization within
simplicial complexes. In essence, the spectral properties are fundamental tools to un-
derstanding and predicting the complex interaction of topological signals.

7

Interestingly, the two parts, while developed independently, converge on a common
theoretical substrate: the role of spectral properties in understanding and manipulat-
ing networks. Whether in the reparametrization of neural network weights or the
dynamics of simplicial complexes, spectral theory provides a unified framework for
analysis and optimization. Moreover the two parts are continuously merged in the
development of a learning dynamical system (the Recurrent Spectral Network), show-
ing how the interconnection between neural networks and dynamical system can be
profound an prolific.

In sum, this dissertation aims to shed light on how spectral methods can elucidate,
simplify, and optimize the complex realms of neural networks and simplicial complexes.
Through this dual exploration, we embark on a journey aimed at both deepening the
field’s foundational understanding and providing practical tools for future research and
applications.

Published Papers
• L Giambagli, L Buffoni, L Chicchi, D Fanelli, How a student becomes a teacher:

learning and forgetting through Spectral methods, Advances in Neural Informa-
tion Processing Systems (36), 2023 (Chapter 6)

• L Giambagli, D Fanelli, G Risaliti, M Signorini, Non-parametric analysis of the
Hubble Diagram with Neural Networks, Astronomy & Astrophysics, 678, A13

• T Carletti, L Giambagli, G Bianconi, Global topological synchronization on
simplicial and cell complexes, Physical Review Letters, 130, 187401 (Chapter
10)

• L Buffoni, E Civitelli, L Giambagli, L Chicchi, D Fanelli, Spectral pruning of
fully connected layers: ranking the nodes based on the eigenvalues, Scientific
Reports 12 (1), 1-9 (Chapter 5)

• L Giambagli, L Calmon, R Muolo, T Carletti, G Bianconi, Diffusion-driven
instability of topological signals coupled by the Dirac operator, Physical Review
E 106, 064314 (Chapter 9)

• L Chicchi, D Fanelli, L Giambagli, L Buffoni, T Carletti, Recurrent Spectral
Network (RSN): shaping the basin of attraction of a discrete map to reach au-
tomated classification, Chaos, Solitons and Fractals 168, 113128 (Chapter 7)

• L Chicchi, L Giambagli, L Buffoni, T Carletti, M Ciavarella, D Fanelli, Training
of sparse and dense deep neural networks: Fewer parameters, same performance,
Physical Review E 104 (5) (Chapter 4)

• L Giambagli, L Buffoni, T Carletti, W Nocentini, D Fanelli, Machine learning
in spectral domain, Nature Communications 12 (1), 1-9 (Chapter 3)

• L Chicchi, L Giambagli, L Buffoni, D Fanelli, Mobility-based prediction of
SARS-CoV-2 spreading, arXiv:2102.08253

8 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to Spectral Learning

2.1 Spectral analysis of NN

Machine learning (ML) [1]–[3] refers to a broad field of study, with multifaceted ap-
plications of cross-disciplinary breadth. ML is a subset of Artificial Intelligence (AI)
which ultimately aims at developing computer algorithms that improve automatically
through experience. The core idea is that systems can learn from data, so as to identify
distinctive patterns and make consequently decisions, with minimal human interven-
tion. The range of applications of ML methodologies is extremely vast [4]–[7], and
still growing at a steady pace due to the pressing need to cope with the efficiently
handling of big data [8]. Biomimetic approaches to sub-symbolic AI [9] inspired the
design of powerful algorithms. These latter sought to reproduce the unconscious pro-
cess underlying fast perception, the neurological paths for rapid decision making, as
e.g. employed for faces [10] or spoken words [11] recognition.

An early example of a sub-symbolic brain inspired AI was the perceptron [12],
the influential ancestor of deep neural networks (NN) [13], [14]. The perceptron is
indeed an algorithm for supervised learning of binary classifiers. It is a linear classifier,
meaning that its forecasts are based on a linear prediction function which combines
a set of weights with the feature vector. Analogous to neurons, the perceptron adds
up its input: if the resulting sum is above a given threshold the perceptron fires
(returns the output the value 1) otherwise it does not (and the output equals zero).
Modern multilayer perceptrons (MLP), account for multiple hidden layers with non-
linear activation functions. Nowadays we refer to those kind of architectures as Deep
Neural Networks. The learning is achieved via minimizing the classification error.
Single or multilayered perceptrons should be trained by labeled examples [13], [15],
[16]. Supervised learning requires indeed a large set of positive and negative examples,
the training set, labelled with their reference category.

The perceptrons’ acquired ability to perform classification is eventually stored in a
finite collection of numbers, the weights and thresholds that were learned during the
successive epochs of the supervised training. To date, it is not clear how such a huge
collection of numbers (hundred-millions of weights in state of the art ML applications)
are synergistically interlaced for the deep networks to execute the assigned tasks, with
an exceptional degree of robustness and accuracy [17]–[21].

9

10 CHAPTER 2. INTRODUCTION TO SPECTRAL LEARNING

2.2 Spectral Parametrization of a layer
To introduce the formalism we developed, let us start by describing the linear action
of a fully connected layer. Let x(k−1)

j , with j ∈ 1 . . . Nk−1 and k ∈ 1 . . . ℓ, to represent
the activity of the j-th neuron of layer k − 1. The linear action on the neurons of
the layer is expressed as a vector-matrix multiplication: z

(k)
i = ∑

j w
(k)
ij x

(k−1)
j where

the matrix components w(k)
ij set the weight of the connections from node j to i. In

vector notation the latter yields: z(k) = w(k) · x(k−1). We then apply a suitably chosen
element-wise non-linearity to the vector z(k) to obtain x(k) and repeat this operation
for all the layers k ∈ 1 . . . ℓ to build the neural network architecture of our choice.
It is a well known interpretation [22] that this vector-matrix multiplication results in
the projection of x(k−1) along each feature w(k)

i (the i-th row of matrix w(k)), which
corresponds to the linear activation of the corresponding neuron (ignoring the bias
addition). In this framework, one can speculate that the relevance of each feature can
be assessed through a further set of scalar parameters, associated to the destination
node, that are modified by the underlying optimization process. These latter param-
eters, that are denoted λ

(k)
i for reasons that will become clear in the following, get

initialized to one and leverage the projection along each feature w(k)
i . The rescaled

linear transfer of information then becomes:

z
(k)
i = λ

(k)
i

∑
j

w
(k)
ij x

(k−1)
j (2.1)

or equivalently, in vector notation:

z(k) = λ(k) ⊙ (wT (k) · x(k−1)) (2.2)

where ⊙ stands for the Hadamard (or element-wise) product. As we shall prove in
the following, this seemingly simple parametrization holds unexpected capabilities and
profound connections with graph theory.

To this end, we begin by noting layers k − 1 and k can be viewed as a bipartite
graph where connections exist only among nodes of different layers. This graph can
be fully described in terms of an adjacency matrix A(k), which encodes all the relevant
information on existing connections. We shall now be more specific regarding this
point.

2.2.1 Adjacency matrix of a Feed Forward Network
We will give here some more details about the spectral parametrization, with specific
regards to the construction of the underlying adjacency matrices. As already men-
tioned layer k − 1 and k of a feed forward fully connected neural network, can be
viewed as a bipartite directed graph connecting the nodes in layer k − 1 to those in
layer k. This graph can be fully described in terms of an adjacency matrix A(k), which
encodes all the relevant information on the weights of existing connections. A(k) is a
(Nk−1 + Nk) × (Nk−1 + Nk) matrix. If we label the neurons belonging to layer k − 1
from 1 to Nk−1 and those in layer k from Nk−1 + 1 to Nk−1 + Nk, the elements A(k)

lm

exemplify the weighted connection from node m to node l, with l,m ∈ 1 . . . Nk−1 +Nk.

2.2. SPECTRAL PARAMETRIZATION OF A LAYER 11

Due to the directed nature of the graph, the structure of A(k) is lower-block diagonal
and can be represented as:

A(k) =

0 . . . 0 0
...
0 . . . 0 0
w

(k)
11 . . . w

(k)
1Nk−1

... ...
... ...

w
(k)
Nk1 . . . w

(k)
NkNk−1

0 . . . 0

(2.3)

In this framework, the activity of nodes across the graph can be described through
a vector, termed v for clarity, made of Nk−1 + Nk components, where vm points to
the activity of node m. This will refer to a neuron in layer k − 1 if m ≤ Nk−1, or,
conversely, to layer k if Nk−1 + 1 ≤ m ≤ Nk +Nk−1. The structure of such vector for
activities localized on layer k− 1, and before the linear transfer gets applied, is shown
in Eq.(2.4).
The feedforward transfer from layer k − 1 to layer k can be hence described as the
action of the square matrix A(k) on the vector v. The resulting vector components,
which are connected to the transferred activity z(k), will be identically equal to zero
for m ≤ Nk−1. This can be expressed mathematically as:

0
...
0

z
(k−1)
1

...
z

(k−1)
Nk

= A(k)v = A(k)

x
(k−1)
1
...

x
(k−1)
Nk−1

0
...
0

(2.4)

The above graph-oriented way of describing the activity paves the way to a different
parametrization of the linear transfer between layers.

2.2.2 Spectral Parametrization of A(k)

The spectral parametrization builds on the observation that another class of adjacency
matrices can be written, whose action on vector v is equivalent to that illustrated
above. This latter matrix can be assembled starting from two other matrices: a
diagonal eigenvalue matrix and one lower-block triangular eigenvector matrix.
This parametrization is made possible by the fact that the feedforward action is solely
encoded in the lower-block diagonal elements, and will always operate on vectors whose
structure is depicted in Eq.(2.4). Take then two matrices, denoted respectively Φ(k)

and Λ(k), with the following structure:

12 CHAPTER 2. INTRODUCTION TO SPECTRAL LEARNING

Φ(k) =

1 . . . 0
... . . .
0 1 0 0
ϕ

(k)
11 . . . ϕ

(k)
1Nk−1

1 ...
... ... 0 . . . 0

ϕ
(k)
Nk1 . . . ϕ

(k)
NkNk−1

0 . . . 1

(2.5)

Λ(k) =

λ
in (k)
1 0 . . . 0
0 . . .

λ
in (k)
Nk−1

0 0
... λ

out (k)
1

...
0 . . . 0

0 . . . 0 . . . λ
out (k)
Nk

The block structure of matrix Φ(k) is the one responsible for the feedforward ar-

rangement of the resulting adjacency matrix. Specifically, this structure enables activ-
ity localized in the k−1 layer (i.e., vectors whose first Nk−1 components are non-zero)
to be transferred to the k-th layer, resulting in a vector whose last Nk components are
non-zero. Additionally, it is worth mentioning that the inverse of Φ(k) can be computed
analytically and it is equal to (Φ(k))−1 = 2INk−1+Nk

− Φ(k).
Using this property, we can explicitly express the result of the spectral composition
Ã(k) = Φ(k)Λ(k)(Φ(k))−1 as a lower-triangular matrix, shown in Eq.(2.6).

Ã(k) =

λ
in (k)
1 . . . 0

... . . .
0 λ

in (k)
Nk−1

0 0
w̃

(k)
11 . . . w̃

(k)
1Nk−1

λ
out (k)
1

...
... ... 0 . . .

w̃
(k)
Nk1 . . . w̃

(k)
NkNk−1

0 . . . λ
out (k)
Nk

(2.6)

We can the conclude that the action of this matrix on vector v is analogous to that
exemplified in Eq.(2.4) with a matrix that has a structure like (2.3), provided the
weights w̃(k)

ij are parametrized according to a specific recipe that can be easily derived
(see [23] and [24]) and that we shall recall hereafter. Indeed we can write the elements
w̃ij in terms of the off-diagonal elements of the eigenvector matrix Φ(k) and the diagonal
eigenvalue matrix Λ(k):

w̃
(k)
ij = (λ(k)in

j − λ
(k)out
i)ϕ(k)

ij (2.7)

The matrix Ã acts as an equivalent feedforward network, transferring (k − 1)-layer
localized activity to the following layer through a simple vector-matrix multiplication.
By substituting Ã for A in Eq.(2.4), we can express the linear activity of neurons in

2.2. SPECTRAL PARAMETRIZATION OF A LAYER 13

the k-th layer, z(k)
i , in terms of the spectral parameters introduced earlier and the k−1

layer activity x(k−1)
j , namely:

z
(k)
i =

Nk−1∑
j=1

(λ(k)in
j − λ

(k)out
i)ϕ(k)

ij x
(k−1)
j ∀i ∈ 1 . . . Nk (2.8)

or, in vector notation

z(k) = ϕ(k) · (λ(k)in ⊙ x(k−1)) − λ(k)out ⊙ (ϕ(k) · x(k−1)) ∀i ∈ 1 . . . Nk (2.9)

Interestingly the eigenvalues λ(k)in modulate the density at the tail of the directed
link, while λ(k)out appears to regulate the local node’s excitability relative to the net-
work activity in the head of the same link. This is the artificial analogue of the
homeostatic plasticity, the strategy implemented by living neurons to maintain the
synaptic basis for learning, respiration, and locomotion [25].

This simple decomposition allows for an intuitive understanding of the role of
eigenvalues and eigenvectors, keeping the computational cost almost invariant, since
the inverse of the eigenvector matrix Φ(k) is given analytically1. It is now immediate
to see that, by setting λ

(k)in
j = 0 for all j ∈ 1 . . . Nk−1, we recover Eq.(2.1). The

features can now be seen as components of the eigenvectors of the adjacency matrix
describing the sub-network made by layers k and k−1. Their relative weight, instead,
can be interpreted as the magnitude of the eigenvalue λ(k)out

j . Since the feedforward
fully-connected nature of the transfer from layer k− 1 to k is encoded in the structure
of Φ(k), the entries of this latter matrix enable one to resolve the relationship between
different eigenvector structures and dive into the obtained network topology.

2.2.3 Spectral Convolutional Layer
Having encoded the topological structure of the computing network in the underlying
eigenvectors’ matrix for a specific case study, it is now straightforward to generalize
the reasoning to other relevant settings. In particular we shall consider the case of
the so called Convolutional Neural Network (CNN). This latter setting can be con-
ceptualized as a genuine eigenvalue training for a peculiar structure of Φ(k). Here the
eigenvalues gauge the relative importance of the employed convolutional filters.
In order to show that we shall first describe the CNN action as a classical vector matrix
multiplication. Working with CNNs one needs to specify (i) the filter dimensions (ii)
the x, y striding (sx,y), i.e. how much each filter is shifted in each direction during
the convolution, and (iii) the x, y padding (px,y) i.e. how many zeros are added at
each side of the input so that the convolution starts and ends with a given ”offset”.
See Figure 2.1 for a graphical representation of those definitions, where a 3 × 3 fil-
ter is considered. We are aware of the fact that we are showing a simplified case of
the general convolutions,indeed in the latter, different channels are present as well.
However the underling maths is basically the same and, for a matter of clarity, only
this simplified case is presented. The same operation can be framed in terms of a

1Moreover, when implemented in Tensorflow, the additional computational cost with respect to a
conventional vector matrix multiplication results in just a Hadamard product with parameters λin

and λout

14 CHAPTER 2. INTRODUCTION TO SPECTRAL LEARNING

Figure 2.1: Setting the notation for dealing with CNN. In yellow the input rectangular
matrix and in purple the filter structure.

matrix-vector multiplication as soon as every parameter is fixed (similar constructions
can be seen in [26]). To this end fix the padding to 0 and the striding to 1, without
loss of generality. In fact, the non trivial padding and striding can be reframed in a
change on the input vector x(k) 7→ x(k)(px,y, sx,y) and the action of the convolution
considered with zero padding and unitary striding. The convolution of the input x0

with a filter w can be written as the action of a matrix M(w) on the input written with
an equivalent vectorial notation. M(w) is a matrix with a peculiar structure called
Toeplitz matrix. A paradigmatic example is shown for the aforementioned choice of
parameters in Figure 2.2 We point out that this formulation is nothing but the fully

Figure 2.2: The figure shows how a convolution operation of Figure 2.1 can be trans-
lated into a matrix-vector product via an opportune remapping of the filter into a
Toeplitz matrix and a rearrangement of the rectangular image into a column vector.
This is equivalent to represent the single Convolutional layer (with a single filter) as
a Feed-forward fully connected one, the weight of the latter given by M(w).

connected representation of a Convolutional layer. In the following, we will show how,
the above representation opens up the perspective to a spectral interpretation of the
Convolutional layer.

Convolution parameters are eigenvalues

The first thing to point out is that convolutions are already formulated in what we
could call reciprocal space. Let us consider the transformation in Figure 2.2. First of

2.2. SPECTRAL PARAMETRIZATION OF A LAYER 15

all, by a proper duplication of the input components the structure of matrix M(w)
can be simplified into one with only a single non-zero value per column.
By taking the structure of the matrix ϕ as the binarization version of such simplified
Toeplitz matrix, the λin of the notation introduced in (2.7) play the exact same role
of the filters degree of freedom in the CNN layer.
By inspecting equation (2.7) the effect of λ(in) can be interpreted as a column-wise
product whereas the λ(out) as a row-wise one. By setting λ(out) = 0 each λ(in) can be
adjusted to the same value of the convolutional weight that is solely present in a given
column. This operation is graphically presented on the bottom part of Figure 2.3.

Figure 2.3: In the upper part a feedforward layer equivalent to a CNN one is shown.
Input components have been duplicated in order to have a single non zero component
per column. In the bottom part the same weight matrix is rephrased in terms of the
spectral decomposition of (2.7). The equivalence can be achieved setting λ1,2,3... =
w1,2,3...,

16 CHAPTER 2. INTRODUCTION TO SPECTRAL LEARNING

Chapter 3

Spectral Learning

3.1 Training of a Spectral-MLP

We will now discuss how this novel parametrization of the linear transfer of informa-
tion can impact the learning dynamics. More specifically, in this chapter, we will show
how two different learning strategies arise spontaneously. The first is the one involving
only the eigenvalues λ (all or a subset of them); the second is the one involving also
the eigenvectors components.
In a conventional supervised learning scheme the Hypothesis space where functions
will be searched is very often selected via suitable parametrization of certain family of
functions. The parameters describing the chosen space are adjusted via an optimiza-
tion process that aims at minimizing an appositely defined Loss function. In the case
of a feedforward fully connected neural network (FFNN) spectral learning accounts
for the minimization of the following function:

L = Ex,y∼pemp(x,y)L(f(λ1, ϕ1, . . . , λℓ, ϕℓ;x), y) (3.1)

where pemp = ∑|D|
i=1 δ(x− x(i))δ(y − y(i)) is the empirical distribution and L a suitable

loss function like the Categorical Cross Entropy Loss or the Square Loss (the two major
losses we will be dealing with in this thesis). The scope of this function is to quantita-
tively express how much is the model predicting well the labelled data. If the problem
is formalized correctly then L is a good proxy of Ex,y∼p(x,y)L(f(λ1, ϕ1, . . . , λℓ, ϕℓ;x), y),
where this time p(x, y) is the true (almost always unknown) probability distribution
of the data.
In the spectral learning scheme by extending the definition of the conventional MLP,
one can write

f(λ1, ϕ1, . . . , λℓ, ϕℓ;x) = σℓ(w̃ℓ(λℓ, ϕℓ)σℓ−1(. . . σ1(w̃1(λ1, ϕ1)x))) (3.2)

where with σk we intend the non linear function of layer k. The two alternative learning
strategies to which we alluded above can be formalized respectively as minimizing the
Loss function with respect to the eigenvalues λ1...ℓ or with respect to the full set of
parameters λ1...ℓ, ϕ1...ℓ. In the following we will comment on the two aforementioned
strategies, highlighting their respective peculiarities.

17

18 CHAPTER 3. SPECTRAL LEARNING

3.1.1 Eigenvalues training
When the gradient is computed only with respect to the eigenvalues the number of
adjustable parameters drops significantly. More specifically, for a ℓ-deep MLP of re-
spective sizes Ni, i ∈ 1 . . . ℓ, we have a total of Nλ = N1 + ∑ℓ−1

i=2 2Ni + Nℓ eigenvalues
and thus target parameters for the optimization algorithm. Indeed, by excluding the
input and output layer, we have that every neuron on layer j ∈ 2 . . . ℓ−1 can be made
in correspondence with a pair λout

j and λin
j+1.

In principle both eigenvalues can be freely trained. This general setting has been
however poorly explored so far. For this reason we will restrict in the following to a
reduced framework by positing λin = 0 (or alternatively by setting these quantities
to quenched, randomly assigned entries). With this choice one consequently gains a
very clear interpretation of the role of the eigenvalues, as veritable markers of feature
relevance (as already said in the precedent chapter).

We would like to emphasize that learning based solely on eigenvalues can be equated
to a random features model during each instance of information transfer. In this con-
text, the learning process effectively acts as a progressive non linear filter for various
random features. To be more specific, in the k-th layer of the network, the compo-
nents of the eigenvectors, denoted by ϕ

(k)
:,j , serve as the j-th feature. Its strength is

then modulated by the corresponding eigenvalue magnitude λout
j .

Given this understanding, it is not unexpected to observe that learning is possible in
this specific setting where each random feature get either excited or inhibited. More-
over, increasing the number of nodes, which correspond to random features, enhances
the model’s expressivity and consequently improves the fit to the data.

3.1.2 Eigenvectors and eigenvalues training
When also the eigenvectors components are added to the optimization scheme, clearly,
the spectral parametrization is as efficient as the conventional one and we should expect
a similar generalization propriety. However, as we will analyze in following Chapters,
the effect is still far from trivial in terms of the ensuing information localization as
obtained post-training.

3.2 Numerical Experiments
To build and train the aforementioned models we used TensorFlow [27] and created a
custom spectral layer matrix that could be integrated in virtually every TensorFlow or
Keras model. That allowed us to leverage on the automatic differentiation capabilities
and the built-in optimizers of TensorFlow. Recall that we aim at training just a
portion of the diagonal of Λk and a block of Φk. We then trained all our models with
the AdaMax optimizer [28] by using a learning rate of 0.03 for the linear case and 0.01
for the non-linear one. The training proceeded for about 20 epochs and during each
epoch the network was fed with batches of images of size 300. These hyperparameters
have been chosen so as to improve on GPU efficiency, accuracy and stability. However,
we did not perform a systematic study to look for the optimal setting. All our models
have been trained on a virtual machine hosted by Google Colaboratory. Standard
neural networks have been trained on the same machine using identical software and

3.2. NUMERICAL EXPERIMENTS 19

hyperparameters, for a fair comparison. Further details about the implementation, as
well as a notebook to reproduce our results, can be found in the public repository of
this project [29].
We shall start by reporting on the performance of the linear scheme using the renowned
MNIST dataset [30]: a collection of 70,000 grayscale images of handwritten digits
ranging from 0 to 9, each with dimensions of 28x28 pixels. The simplest model setting
we tested is that of a perceptron made of two layers: the input layer with N1 =
28 × 28 = 784 nodes and the output one made of N2 = 10 elements. The perceptron
can be trained in the spectral domain by e.g. tuning the N = N1 + N2 = 794
eigenvalues of A1, the matrix that links the input (x(0)) and output (x(1)) vectors.
The learning restricted to the eigenvalues returns a perceptron which performs the
sought classification task with an accuracy (the fraction of correctly recognized images
in the test-set) of (82 ± 2)% (averaging over 5 independent runs). This figure is to
be confronted with the accuracy of a perceptron trained with standard techniques in
direct space. For a fair comparison, the number of adjustable weights should be limited
to N . To this aim, we randomly select at the beginning of every optimization process
a subset of weights to be trained and carry out the optimization on these latter; the
others are set to the Glorot Uniform initialization [31]. The process is repeated a few
(5 in this case) times and, for each realization, the associated accuracy computed.
Combining the results yields an average performance of (79 ± 3)% , i.e. a slightly
smaller score (although compatible within error precision) than that achieved when
the learning takes place in the spectral domain. When the training extends to all the
N1 × N2 weights (plus N1 + N2 bias), conventional learning yields a final accuracy
of (92.7 ± 0.1)%. This is practically identical to the score obtained in the spectral
domain, specifically (92.5 ± 0.2)%, when the sub-diagonal entries of the eigenvectors
matrix (the components ϕ(1)

ij) are also optimized (for a total of N1 + N2 + N1 × N2
free parameters). The remarkable observation is however that the distribution of the
weights as obtained when the learning is restricted on the eigenvalues (i.e using about
the 10 % of the parameters employed for a full training in direct space) matches quite
closely that retrieved by means of conventional learning schemes, see Fig. 3.1 . This
is not the case when the learning in direct space acts on a subset of N , randomly
selected, weights (data not shown). Based on the above, it can be therefore surmised
that optimizing the eigenvalues constitutes a rather effective pre-training strategy,
which engages a modest computational load.

3.2.1 Deep Linear Network
To further elaborate on the potentiality of the proposed technique, we modify the
simple two-layers perceptron, with the inclusion of supplementary computing layers,
creating a linear MLP or deep linear network. Although it seems like a trivial exercise
(as basically it is a very intricate way of regressing a plane) those networks behaves
in a very interesting manner and have been widely studied and deeply understood in
the last decade [32]. The newly added layers plays an active role during the learning
stage, but can be retracted in inference so as to return a two-layers perceptron. The
weights of this latter bear however an imprint of the training carried out for the
linear network in the expanded configuration. Two alternative strategies will be in
particular contemplated. On the one side, we will consider a sole additional layer,

20 CHAPTER 3. SPECTRAL LEARNING

Figure 3.1: Distribution of the weights of a perceptron. The red line follows the
spectral training limited the N1 +N2 eigenvalues. The black line follows the training
in direct space where N1 × N2 parameters are adjusted in the space of the nodes.
The distribution are very similar, but the spectral learning employs about 10% of the
parameters used in direct space. The distributions obtained when forcing the training
in direct space to operate on a subset of N1+N2 weights are very different from the one
displayed (for every choice of the randomly selected family of weights to be trained).

endowed with N2 nodes, interposed between the input and output layers made of,
respectively, N1 = 784 and Nℓ ≡ N3 = 10 nodes. We will refer to this as to the wide
linear configuration. The performance of the method can be tested by letting N2 to
progressively grow. On the other side, the deep linear configuration is obtained when
interposing a sequence of successive (linear) stacks between the input (N1 = 784) and
the output (Nℓ = 10) layers.

In Fig. 3.2, we report on the performance of the wide learning scheme as a function
of N2 +N3. As we shall clarify, this latter stands for the number of trained parameters
for (i) the spectral learning acted on a subset of the tunable eigenvalues and for (ii)
the conventional learning in direct space restricted to operate on a limited portion of
the weights. The red line in the main panel of Fig. 3.2 refers to the simplified scheme
where a subset of the eigenvalues are solely tuned (while leaving the eigenvectors fixed
at the random realization set by the initial condition). We have in particular chosen
to train the second bunch of N2 eigenvalues of the transfer matrix A1 and the N3 = 10
non trivial eigenvalues of matrix A2, in line with the prescriptions reported in the pre-
ceding Section. The blue line reports on the accuracy of the neural network trained
in direct space: the target of the optimization is a subset of cardinality N2 +N3 of the
N1N2 +N2N3 weights which could be in principle adjusted in the space of the nodes.
The performance of the spectral method proves clearly superior, as it can be readily
appreciated by visual inspection of Fig. 3.2. The black line displays the accuracy of
the linear neural network when the optimization acts on the full set of N1N2 +N2N3
trainable parameters. No improvement is detectable when increasing the size of the
intermediate layer: the displayed accuracy is substantially identical to that obtained
for the basic perceptron trained with N1N2 = 7840 parameters. The spectral learning

3.2. NUMERICAL EXPERIMENTS 21

allows to reach comparable performance already at N2 = 1000 (13% of the parameters
used for the standard two layers perceptron with N1 × N2 parameters, as discussed
above).
Being, de facto, a composition of linear operators, the deep linear network can be col-
lapsed into a zero hidden layer perceptron by simply computing all the matrix product
of the linear operators that, via iterative application, transfer the activity from the
input to the output layer. Of course the same concept can be rephrased in terms of
multiplication of each layers’ adjacency matrix, if needed, thanks to the correspon-
dence between connections and adjacency matrix components set in the precedent
chapter. In the inset of Fig. 3.2, the distribution of the off diagonal entries in matrix
Ac , the equivalent perceptron, is depicted in red for the setting highlighted in the
zoom. The black line refers to the two-layers equivalent of the neural network trained
in direct space, employing the full set of trainable parameters (black dot enclosed in
the top-left dashed rectangle drawn in the main panel of Fig. 3.2). The two distri-
butions look remarkably close, despite the considerable reduction in terms of training
parameters, as implemented in the spectral domain (for the case highlighted, 0.13%
of the parameters employed under the standard training). Similarly to the above, the
distribution obtained when forcing the training in direct space to act on a subset of
N1 +N2 weights are just a modest modulation of the initially assigned profile, owing
to the local nature of the learning in the space of the nodes.

In Fig. 3.3, we report the results of the tests performed when operating under the
deep linear configuration. Symbols are analogous to those employed in Fig. 3.2. In
all inspected cases, the entry layer is made of N1 = 784 elements and the output one
has Nℓ = 10 nodes. The first five points, from left to right, refer to a three layers
(linear) neural network. Hence, ℓ = 3 and the size of the intermediate layer is progres-
sively increased, N2 = 20, 80, 100, 500, 800. The total number of trained eigenvalues
is N2 +N3, and gets therefore larger as the size of the intermediate layer grows. The
successive four points of the collections are obtained by setting ℓ = 4. Here, N2 = 800
while N3 is varied (= 100, 200, 400, 600). The training uses N2 +N3 +N4 parameters.
Finally the last point in each displayed curve is obtained by working with a five layers
deep neural network, ℓ = 5. In particular N2 = 800, N3 = 600 and N4 = 500, for
a total of N2 + N3 + N4 + N5 tunable parameters. Also in this case, the spectral
algorithm performs better than conventional learning schemes constrained to operate
with an identical number of free parameters. Similarly, the distribution of the weights
of an equivalent perceptron trained in reciprocal space matches that obtained when
operating in the space of the nodes and resting on a considerably larger number of
training parameters.

To sum up, eigenvalues are parameters of key importance for neural networks train-
ing, way more strategic than any other set of equivalent cardinality in the space of
the nodes. As such, they allow for a global approach to the learning, with significant
reflexes of fundamental and applied interest. In all cases here considered, the learn-
ing can extend to the eigenvectors: an optimized indentation of the eigendirections
contribute to enhance the overall performance of the trained device.

22 CHAPTER 3. SPECTRAL LEARNING

Figure 3.2: A three layers neural network is considered. The accuracy of the neural
network is plotted as a function of the number of parameters that we chose to train
with the spectral algorithm, N2 + N3. The red line reports on the performance of
the spectral training. The blue line refers to the neural network trained in direct
space: the optimization runs on N2 + N3 parameters, a subset of the total number
of adjustable weights N1N2 + N2N3. The black line stands for the accuracy of the
linear neural network when training the full set of N1N2 + N2N3 parameters. Notice
that the reported accuracy is comparable to that obtained for a standard two layers
perceptron. Inset: the distribution of the entries of the equivalent perceptrons are
plotted. The red curve refer to the spectral learning restricted to operate on the
eigenvalues; the black profile to the neural network trained in direct space, employing
the full set of adjustable parameters. In both cases, the weights refer to the two layers
configuration obtained by retracting the intermediate linear layer employed during the
learning stage.

3.2.2 Linear layer in non-linear network

We now turn to considering a non-linear architecture. More specifically, we will assume
a four layers network with, respectively, N1 = 784, N2, N3 = 120, N4 = 10. The non-
linear ReLU filter acts on the third layer of the collection, while the second is a linear
processing unit. As in the spirit of the wide network configuration evoked above, we set
at testing the performance of the neural network for increasing N2. For every choice
of N2, the linear layer can be retracted yielding a three-layered effective non-linear
configurations. We recall however that training the network in the enlarged space
where the linear unit is present leaves a non trivial imprint in the weights that set the
strength of the links in direct space. In Fig 3.4, we plot the computed accuracy as a
function of N2, the size of the linear layer. In analogy with the above analysis, the
red curve refers to the training restricted to N2 +N3 +N4 eigenvalues; the blue profile
is obtained when the deep neural network is trained in direct space by adjusting an
identical number of inter-nodes weights. As for the case of a fully linear architecture,
by adjusting the eigenvalues yields better classification performances. The black line
shows the accuracy of the neural network when the full set of N1N2 +N2N3 +N3N4 is

3.2. NUMERICAL EXPERIMENTS 23

Figure 3.3: The performance of the spectral algorithm are tested for a multi-layered
linear configuration. Symbols are chosen in analogy to Fig. 3.2. In all cases, the input
layer is made of N1 = 784 elements and the output layer has Nℓ = 10 nodes. The
first five points, from left to right in each of the curves depicted in the main panel,
refer to a three layers (linear) neural network. The size of the intermediate layer is
progressively increased, as N2 = 20, 80, 100, 500, 800. The total number of trained
eigenvalues is N2 + N3. The subsequent four points are obtained by considering a
four layers architecture. In particular, N2 = 800 while N3 takes values in the interval
(100, 200, 400, 600). The training acts on N2 + N3 + N4 eigenvalues. The final point
in each curve is obtained with a four layers deep neural network. Here, N2 = 800,
N3 = 600 and N3 = 500, for a total of N2 + N3 + N4 +N5 tunable parameters in the
spectral setting. Inset: the distribution of the entries of the equivalent perceptrons
are displayed, with the same color code adopted in Fig. 3.2. Also in this case, the
weights refer to the two layers configuration obtained by retracting the intermediate
linear layers employed in the learning stage.

optimized in direct space. The green line refer instead to the spectral learning when
the eigenvalues and eigenvectors are trained simultaneously. The accuracies estimated
for these two latter settings agree within statistical error, even if the spectral scheme
seems more robust to overfitting (the black circles declines slightly when increasing
N2, while the collection of green points appears rather stable).

Summing up,in this Chapter we have presented the effect of a new training proce-
dure, which is bound to the spectral, hence reciprocal, domain. The eigenvalues and
eigenvectors of the adjacency matrices that connects consecutive layers via directed
feed-forward links are trained, instead of adjusting the weights that bridge each pair
of nodes of the collection, as it is customarily done in the framework of conventional
Deep Learning approaches.

The first conclusion of our analysis is that optimizing the eigenvalues, when freezing
the eigenvectors, yields performances which are superior to those attained with con-
ventional methods restricted to a operate with an identical number of free parameters

24 CHAPTER 3. SPECTRAL LEARNING

Figure 3.4: The accuracy of the non-linear deep neural network is tested. We assume
a four layers network with, respectively, N1 = 784, N2, N3 = 120, N4 = 10; N2 is
changed so as to enlarge the set of parameters to be trained. The red line refers to
the spectral training, with N2 + N3 + N4 adjusted eigenvalues. The blue line stands
for a neural network trained in direct space, the target of the optimization being a
subset made of N2 + N3 + N4 weights, randomly selected from the available pool of
N1N2 + N2N3 + N3N4 tunable parameters. The black line reports the accuracy of
the linear neural network when training the full set of N1N2 +N2N3 +N3N4 weights.
The green line refer to the spectral learning when eigenvalues and eigenvectors are
simultaneously trained.

in the direct space. It is therefore surmised that eigenvalues are key target parameters
for neural networks training, in that they allow for a global handling of the learn-
ing. This is at variance with conventional approaches which seek at modulating the
weights of the links among mutually connected nodes. Secondly, the spectral learning
restricted to the eigenvalues yields a distribution of the weights which resembles quite
closely that obtained with conventional algorithms bound to operate in direct space.
Indeed, as we will show in Chapters 5 the proposed method could be used in combi-
nation with existing algorithms for an effective (and computationally advantageous)
pre-training of deep neural networks. We have also shown that linear processing units
inserted in between consecutive, non-linearly activated layers produce an enlargement
of the learning parameters space, with beneficial effects in terms of performance of the
trained device.

In the next Chapter we will expand further the concept of spectral decomposi-
tion and merge it with the Singular Value Decomposition, showing how the accuracy
gap between direct and spectral learning can be filled by employing a minimal num-
ber of free parameters. To substantiate this claim, the techniques will be applied to
conventional multi-layer perceptrons featuring non-linear activations. Furthermore,
the global attribute of this novel learning paradigm, which allows for the simultaneous
modification of multiple network connections through the adjustment of a single eigen-
value, offers considerable advantages for the establishment of a learning procedure that
culminates in a network that is both sparse and computationally efficient.

Chapter 4

Filling the gap with direct space

Reformulating the learning in reciprocal space enables one to shape key collective
modes, the eigenvectors, which are implicated in the process of progressive embedding,
from the input layer to the detection point. Even more interestingly, one can assume
the eigenmodes of the inter-layer transfer operator to align along suitable random
directions and identify the associated eigenvalues as target for the learning scheme.
This results in a dramatic compression of the training parameters space, yielding
accuracies which are superior to those attained with conventional methods restricted to
operate with an identical number of tunable parameters. Nonetheless, neural networks
trained in the space of nodes with no restrictions on the set of adjusted weights, achieve
better classification scores, as compared to their spectral homologues with quenched
eigendirections. In the former case, the number of free parameters grows as the product
of the sizes of adjacent layer pairs, thus quadratically in terms of hosted neurons. In the
latter, the number of free parameters increases linearly with the size of the layers (hence
with the number of neurons), when the eigenvalues are solely allowed to change. Also
training the eigenvectors amounts to dealing with a set of free parameters equivalent
to that employed when the learning is carried out in direct space: in this case, the two
methods yield performances which are therefore comparable.

4.1 Inter-Layer Transfer Decomposition
Starting from this setting, we begin by discussing a straightforward generalisation
of the spectral learning scheme presented in Chapter 2 and in [23], which proves
however effective in securing a significant improvement on the recorded classification
scores, while still optimising a number of parameters which scales linearly with the
size of the network. The proposed generalisation paves the way to a bio-mimetic
interpretation of the spectral training scheme. The eigenvalues can be tuned so as
to magnify/damp the contribution associated to the input nodes. At the same time,
they modulate the excitability of the receiving nodes, as a function of the local field.
Further, in this Chapter, we will show that the residual gap between conventional and
spectral trainings methods can be eventually filled by resorting to apt decompositions
of the non trivial block of the eigenvectors matrix, which place the emphasis on a
limited set of collective variables. Finally, we will prove that working in reciprocal
space turns out to be by far more performant, when aiming at training sparse neural
networks. Because of the improvement in terms of computational load, and due to

25

26 CHAPTER 4. FILLING THE GAP WITH DIRECT SPACE

the advantage of operating with collective target variables as we will make clear in
the following, it is surmised that modified spectral learning of the type here discussed
should be considered as a viable standard for deep neural networks training in artificial
intelligence applications.

To test the effectiveness of the proposed method we will consider classification
tasks operated on three distinct database of images. The first is the celebrated MNIST
database of handwritten digits [30], the second is Fashion-MNIST (F-MNIST) [33], a
dataset of Zalando’s article images, the third is CIFAR-10 [34] a collection of images
from different classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and
trucks). In all considered cases, use can be made of a deep neural network to per-
form the sought classification, namely to automatically assign the image supplied as
an input to the class it belongs to. The neural network is again, customarily trained
via standard backpropagation algorithms to tune the weights that connect consec-
utive stacks of the multi-layered architecture. The assigned weights, target of the
optimisation procedure, bear the information needed to allocate the examined images
to their reference category. The idea of collectively parametrize different weights has
been explored in [35] where the authors show that in modern architectures a subset of
optimized weights is enough to infer the rest of the trainable parameters. Our study
extends this idea using a network based parametrization, the spectral decomposition,
chained with the SVD decomposition, de facto linearly correlating different links in the
network instead of using a custom kernel. The idea of employing SVD in order to ob-
tain low rank matrices has been explored in [36] where, singular values are regularized
and the gradient is performed with respect to the orthogonal matrices.

4.1.1 Spectral Layer
Consider a deep feedforward network made of ℓ distinct layers and label each layer
with the progressive index i (= 1, ..., ℓ). Following the convention already introduced,
denote by Ni the number of computing units, the neurons, that belong to layer i.
The total number of parameters that one seeks to optimise in a dense neural network
setting (all neurons of any given layer with i < ℓ− 1 are linked to every neurons of the
adjacent layer) equals ∑ℓ−1

i=1 NiNi+1, when omitting additional bias. As we shall prove
in the following, impressive performance can be also achieved by pursuing a markedly
different procedure, which requires acting on just N1 +Nℓ + 2∑ℓ−1

i=2 Ni free parameters
(not including bias).

To illustrate the effectiveness of the proposed methodology we make reference to
Fig. 4.1 (a), which summarises a first set of results obtained for MNIST. To keep the
analysis as simple as possible we have here chosen to deal with ℓ = 3. The sizes of the
input (N1) and output (N3) layers are set by the specificity of the considered dataset.
Conversely, the size of the intermediate layer (N2) can be changed at will. We then
monitor the relative accuracy, i.e. the accuracy displayed by the deep neural networks
trained according to different strategies, normalised to the accuracy achieved with an
identical network trained with conventional methods. In the upper panel of 4.1 (a),
the performance of the non linear neural networks trained via the modified spectral
strategy (referred to as to Spectral) is displayed in blue (triangles). The recorded ac-
curacy is satisfactory (about 90% of that obtained with usual means and few percent
more than that obtained with the spectral method of original conception [23]), despite

4.2. SPECTRAL QR 27

the modest number of trained parameters. To exemplify this, in the bottom panel of
Fig. 4.1 (a) we plot the relative ratio of the number of tuned parameters (Spectral vs.
conventional one) against N2 (blue triangles) : the reduction in the number of param-
eters as follows the modified spectral method is staggering. Working with the other
employed dataset, respectively F-MNIST and CIFAR-10, yields analogous conclusions
shown in Figures 4.1 (b) and 4.1 (c).

4.1.2 Spectral SVD
One further improvement can be achieved by replacing ϕ(k) with its equivalent singular
value decomposition (SVD), a factorization that generalizes the eigendecomposition
to rectangular (in this framework, Nk+1 × Nk) matrices (see [37] for an application
to neural networks). In formulae, this amounts to postulate ϕ(k) = UkΣkVT

k where
Vk and Uk are, respectively, Nk ×Nk and Nk+1 ×Nk+1 real orthogonal matrices. On
the contrary, Σk is a Nk+1 × Nk rectangular diagonal matrix, with non-negative real
numbers on the diagonal. The diagonal entries of Σk are the singular values of ϕk.
The symbol (·)T , stands for the transpose operation. The learning scheme can be
hence reformulated as follows. For each k, generate two orthogonal random matrices
Uk and Vk. These latter are not updated during the successive stages of the learning
process. At variance, the Mk+1 = min(Nk, Nk+1) non trivial elements of Σk take
active part to the optimisation process and its diagonal values are tuned. For each
k, Mk+1 +Nk +Nk+1 parameters can be thus modulated to optimize the information
transfer, from layer k to layer k+ 1. Stated differently, Mk+1 free parameters adds up
to the Nk +Nk+1 eigenvalues that get modulated under the original spectral approach.
One can hence count on a larger set of parameters as compared to that made available
via the spectral method, restricted to operate with the eigenvalues. Nonetheless,
the total number of parameters scales still with the linear size N of the deep neural
network, and not quadratically, as for a standard training carried out in direct space.
This addition (referred to as the S-SVD scheme) yields an increase of the recorded
classification score, as compared to the setting where the Spectral method is solely
employed, which is however not sufficient to fill the gap with conventional schemes
(see Fig. 4.1 (a)). Similar scenarios are found for F-MNIST and CIFAR-10 4.1 (b,c),
with varying degree of improvement, which reflects the specificity of the considered
dataset. Analogous results have been proven for a simplified multi layer scenario and
are shown in Appendix A.7.

4.2 Spectral QR
A decisive leap forward is however accomplished by employing a QR factorization of
matrix ϕ(k). ForNk+1 > Nk, this corresponds to writing theNk+1×Nk matrix ϕk as the
product of an orthogonal Nk+1×Nk matrix Qk and an upper triangular Nk×Nk matrix
Rk. Conversely, when Nk+1 < Nk, we factorize ϕT

k , in such a way that the square
matrix Rk has linear dimension Nk+1. In both cases, matrix Qk is randomly generated
and stays frozen during gradient descent optimisation. The Mk+1(Mk+1 + 1)/2 entries
of the Mk+1×Mk+1 matrix Rk can be adjusted so as to improve the classification ability
of the trained network (this strategy of training, integrated to the Spectral method,
is termed S-QR). Results are depicted in Fig. 4.1 with red diamonds (For MNIST,

28 CHAPTER 4. FILLING THE GAP WITH DIRECT SPACE

F-MNIST and CIFAR-10 in panels (a,b,c) respective). The achieved performance
is practically equivalent to that obtained with a conventional approach to learning.
Also in this case ρ < 1, the gain in parameter reduction being noticeable when N1 is
substantially different (smaller or larger) than N2, for the case at hand.

4.2.1 S-QR, Sparse R
Interestingly enough, for a chief improvement of the performance, over the SVD ref-
erence case, it is sufficient to train a portion of the off diagonal elements of R. In
the following, we report the recorded accuracy against p, the probability to train the
entries that populate the non null triangular part of Rk. The value of the accuracy
attained with conventional strategies to the training is indeed approached, already at
values of p which are significantly different from unit. Introduce p ∈ [0, 1]. When
p = 0, the diagonal elements of R in the S-QR method are solely trained. The off-
diagonal elements are instead frozen to random values. In the opposite limit, when
p = 1 all elements of matrix R are assumed to be trained. Intermediate values of
p interpolate between the aforementioned limiting conditions. More specifically, the
entries that undergo optimisation, are randomly chosen from the pool of the avail-
able ones, as reflecting the selected fraction. In Fig. 4.2 (a) the relative accuracy for
MNIST is plotted against p. Here, the network is made of ℓ = 3 layers with N2 = 500.
A limited fraction of parameters is sufficient to approach the accuracy displayed by
the network trained with conventional means. In Figs. 4.2 (b) and 4.2 (c) the results
relative to F-MNIST and CIFAR-10 are respectively reported. The same results have
been validated also on a multi-layered architecture for F-MNIST and CIFAR-10 and
can be found on Appendix A.7.

4.3 Spectral training of sparse networks
The quest for a limited subset of key parameters which define the target of a global
approach to the training is also important for its indirect implications, besides the ob-
vious reduction in terms of algorithmic complexity. As a key application to exemplify
this point, we shall consider the problem of performing the classification tasks consid-
ered above, by training a neural network with a prescribed degree of imposed sparsity.
This can be achieved by applying a non linear filter on each individual weight wij.
The non linear mask is devised so as to return zero (no link present) when |wij| < C.
Here, C is an adaptive cut-off which can be freely adjusted to allow for the trained
network to match the requested amount of sparsity. This latter is measured by a scalar
quantity, spanning the interval [0, 1]: when the degree of sparsity is set to zero, the
network is dense. At the opposite limit, when the sparsity equals one, the nodes of
the network are uncoupled and the information cannot be transported across layers.
Working with the usual approach to the training, which seeks to modulate individual
weights in direct space, one has to face an obvious problem. When the weight of a
given link is turned into zero, then it gets excluded by the subsequent stages of the
optimisation process. Consequently, a weight that has been silenced cannot regain an
active role in the classification handling. This is not the case when operating under the
spectral approach to learning, also when complemented by the supplemental features
tested above. The target of the optimisation, the spectral attributes of the transfer

4.4. CONCLUSIONS 29

operators, are not biased by any filtering masks: as a consequence, acting on them,
one can rescue from oblivion weights that are deemed useless at a given iteration (and,
as such, silenced), but which might prove of help, at later stages of the training. In
Fig. 4.3, the effect of the imposed sparsity on the classification accuracy is represented
for conventional vs. S-QR method. The latter is definitely more performant in terms
of displayed accuracy, when the degree of sparsity gets more pronounced. The drop
in accuracy as exhibited by the sparse network trained with the S-QR modality is
clearly less pronounced, than that reported for an equivalent network optimised in
direct space. Deviations between the two proposed methodologies become indeed ap-
preciable in the very sparse limit, i.e. when the residual active links are too few for a
proper functioning of the direct scheme. In fact, edges which could prove central to
the classification, but that are set silent at the beginning, cannot come back to active.
At variance, the method anchored to reciprocal space can identify an optimal pool of
links (still constraint to the total allowed for) reversing to the active state, those that
were initially set to null. Interestingly, it can be shown that a few hubs emerge in the
intermediate layer, which collect and process the information delivered from the input
stack. Analogous results have been proven for F-MNIST in a simplified multi layer
scenario and are shown in Appendix A.7.

Taken altogether, it should be concluded that a large body of free parameters is de
facto unessential. The spectral learning scheme, supplemented with a QR training of
the non trivial portion of eigenvectors’ matrix, enabled us to identify a limited subset
of key parameters which prove central to the learning procedure, and reflect back with
a global impact on the computed weights in direct space. This observation could mate-
rialise in a drastic simplification of current machine learning technologies, a challenge
at reach via algorithmic optimisation carried out in dual space. Quite remarkably,
working in reciprocal space yields trained networks with better classification scores,
when operating at a given degree of imposed sparsity. This finding suggests that shift-
ing the training to the spectral domain might prove beneficial for a wide gallery of
deep neural networks applications.

4.4 Conclusions

In our study of neural network training, we’ve closely examined the role of eigen-
values and eigenvectors. Our findings indicate that these quantities can be crucial
for optimization processes. We’ve also introduced a dual-eigenvalue method, termed
S-SVD, which has shown to be effective in balancing both network efficiency and com-
putational cost. Moreover, performances equivalent to conventional learning schemes
can be attained when the QR decomposition is employed; showing that with smarter
parametrizations and correlations a very effective training can be carried out by em-
ploying a very small number of trainable parameters with respect to the naive imple-
mentation. Furthermore, this paradigm shift that couples different weights by using
a spectral derived parametrization, makes a sparsification oriented training extremely
effective as the constrains in the direct space - imposed with non linear filters- can
be dynamically moulded during the training process, letting turned off connections to
become active once again if needed.
Next, we will extend these findings to consider the importance of individual nodes

30 CHAPTER 4. FILLING THE GAP WITH DIRECT SPACE

within the network. If eigenvalues act as tuning parameters for the network’s behav-
ior, they can also shed light on which nodes are more or less critical. This leads us to
our next area of investigation: the use of eigenvalues as metrics for network pruning
strategies.
As we proceed to the following chapter, our focus will move from a broader optimiza-
tion landscape to the specifics of individual node importance. Through the lens of
eigenvalues, we intend to explore a mapping between nodes and their respective eigen-
values. This holds the promise for understanding the network’s intrinsic structure and
for developing more efficient, yet still effective, network architectures. We will delve
into how these spectral insights can guide us in achieving a balance between network
compactness and performance showing that such novel parametrization implicitly reg-
ularizes the complexity of the network.

4.4. CONCLUSIONS 31

(a) MNIST, ℓ = 3, with N2 = 500 (b) F-MNIST, ℓ = 3, with N2 = 500

(c) CIFAR-10, ℓ = 3, with N2 = 700

Figure 4.1: Upper panel: the accuracy of the different learning strategies, normalised
to the accuracy obtained for an identical deep neural network trained in direct space,
as a function of the size of the intermediate layer, N2. Triangles stand for the the
relative accuracy obtained when employing the spectral method (Spectral). Pentagons
refer to the setting which extends the training to the eigenvectors’ blocks via a SVD
decomposition. Specifically, matrices Uk and Vk are randomly generated (with a
uniform distribution of the entries) and stay unchanged during optimisation. The
singular values are instead adjusted together with the eigenvalues which stem from the
spectral method (this configuration is labelled S-SVD). Diamonds are instead obtained
when the eigenvalues and the elements of the triangular matrix R (as follows a QR
decomposition of the eigenvectors’ blocks) are simultaneously adjusted S-QR). Here, Q
is not taking part to the optimisation process (its entries are random number extracted
from a uniform distribution). Errors are computed after 10 independent realisations of
the respective procedures. Lower panel: ρ the ratio of the number of tuned parameters
(modified spectral, S-SVD, S-QR methods vs. conventional one) is plotted against N2.
In calculating ρ the contribution of the bias is properly acknowledged. In panel (a)
the results for MNIST, (b) F-MNIST and (c) CIFAR-10.

32 CHAPTER 4. FILLING THE GAP WITH DIRECT SPACE

(a) MNIST, ℓ = 3, with N2 = 500. (b) F-MNIST ℓ = 3, with N2 = 500.

(c) CIFAR-10 ℓ = 3, with N2 = 700

Figure 4.2: The (relative) classification accuracy is plotted (red, diamond and solid
line) against p, the probability to train the entries that populate the non null triangular
part of R. The corresponding value of the relative accuracy as computed via the S-
SVD is also reported (green, pentagons and solid lines). The averages are carried out
over 10 independent realisations.

4.4. CONCLUSIONS 33

Figure 4.3: Training sparse networks. The accuracy of the trained network
against the degree of imposed sparsity. Black diamonds refer to the usual training in
direct space, while red pentagons refer to the S-QR method. From top to bottom:
results are reported for MNIST, F-MNIST and CIFAR-10, respectively. In all cases,
ℓ = 3.

34 CHAPTER 4. FILLING THE GAP WITH DIRECT SPACE

Chapter 5

Spectral Pruning

5.1 Introduction
In this Chapter we will discuss a relevant byproduct of the spectral learning scheme.
More specifically, we will argue that the eigenvalues do provide a reliable ranking of
the nodes, in terms of their associated contribution to the overall performance of the
trained network. Working along these lines, we will empirically prove that the absolute
value of the eigenvalues is an excellent marker of the node’s significance in carrying
out the assigned discrimination task. This observation can be effectively exploited,
downstream of training, to filter the nodes in terms of their relative importance and
prune the unessential units so as to yield a more compact model, with almost identical
classification abilities. The effectiveness of the proposed method has been tested for
different feed-forward architectures, with just a single or multiple hidden layers, by
invoking several activation functions, and against distinct datasets for image recogni-
tion, with various levels of inherent complexity. Building on these findings, we will also
propose a two stages training protocol to generate minimal networks (in terms of al-
lowed computing neurons) which outperform those obtained by hacking off dispensable
units from a large, fully trained, apparatus. This strategy can be seen as an effective
way to discover sub-networks (a.k.a. winning tickets [38]) with recorded performance
comparable to those displayed by their unaltered homologues, after a proper round of
training [38]. More specifically, after a first round of training which solely acts on the
eigenvalues, one can identify the most relevant nodes, as follows the magnitude of the
associated eigenvalues. Since the first training stage is just targeted to eigenvalues,
the eigenvectors obtained after pruning are still bearing reflexes of the random initial-
ization and thus represent a sort of winning ticket. In this respect, according to the
above reasoning, the proposed two stages strategy can be seen as a novel and efficient
way to discover optimal sub-networks. In the next Chapter, we will improve and more
carefully analyze its efficacy.

5.2 Conventional Pruning Techniques
Generally speaking, it is possible to ideally group various approaches for network com-
pression into five different categories: Weights Sharing, Network Pruning, Knowledge
Distillation, Matrix Decomposition and Quantization [39], [40].

35

36 CHAPTER 5. SPECTRAL PRUNING

Weights Sharing defines one of the simplest strategies to reduce the number of
parameters, while allowing for a robust feature detection. The key idea is to have
a shared set of model parameters between layers, a choice which reflects back in an
effective model compression. An immediate example of this methodology are the
convolutional neural networks [41]. A refined approach is proposed in Bat et al. [42]
where a virtual infinitely deep neural network is considered. Further, in Zhang et al.
[43] an ℓ1 group regularizer is exploited to induce sparsity and, simultaneously, identify
the subset of weights which can share the same features.

Network Pruning is arguably one of the most common technique to compress Neural
Network: in a nutshell it aims at removing a set of weights according to a certain
criterion (magnitude, importance, etc). Chang et al. [44] proposed an iterative pruning
algorithm that exploits a continuously differentiable version of the ℓ 1

2
norm, as a

penalty term. Molchanov et al. [45] focused on pruning convolutional filters, so as to
achieve better inference performances (with a modest impact on the recorded accuracy)
in a transfer leaning scenario. Starting from a network fine-tuned on the target task,
they proposed an iterative algorithm made up of three main parts: (i) assessing the
importance of each convolutional filter on the final performance via a Taylor expansion,
(ii) removing the less informative filters and (iii) re-training the remaining filters, on
the target task. Inspired by the pioneering work in [38], Pau de Jorge et al. [46] proved
that pruning at initialization leads to a significant performance degradation, after a
certain pruning threshold. In order to overcome this limitation they proposed two
different methods that enable an initially trimmed weight to be reconsidered during
the subsequent training stages.

Knowledge Distillation is yet another technique, firstly proposed by Hinton et al.
[47]. In its simplest version Knowledge Distillation is implemented by combining two
objective functions. The first accounts for the discrepancy between the predicted and
true labels. The second is the cross-entropy between the output produced by the exam-
ined network and that obtained by running a (generally more powerful) trained model.
In [48] Polino et al. proposed two approaches to mix distillation and quantization (see
below): the first method uses the distillation during the training of the so called stu-
dent network under a fixed quantization scheme while the second exploits a network
(termed the teacher network) to directly optimize the quantization. Mirzadeh et al.
[49] analyzed the regime in which knowledge distillation can be properly leveraged.
They discovered that the representation power gap of the two networks (teacher and
student) should be bounded for the method to yield beneficial effects. To resolve this
problem, they inserted an intermediate network (the assistant), which sits in between
the teacher and the student, when their associated gap is too large.

Matrix Decomposition is a technique that remove redundancies in the parameters
by the means of a tensor/matrix decomposition. Masana et al. [50] proposed a matrix
decomposition method for transfer learning scenario. They showed that decomposing
a matrix taking into account the activation outperforms the approaches that solely
rely on the weights. In [51], Novikov et al. proposed to replace the dense layer with
its Tensor-Train representation [52]. Yu et al. [53] introduced a unified framework,
integrating the low-rank and sparse decomposition of weight matrices with the feature
map reconstructions. Similar concepts have been explored in [35] where different
matrix entries are parametrized via apt kernel expression.

Quantization, as also mentioned above, aims at lowering the number of bits used to

5.3. METHODS 37

represent any given parameter of the network. Stock et al. [54] defined an algorithm
that quantize the model by minimizing the reconstruction error for inputs sampled
from the training set distribution. The same authors also claimed that their proposed
method is particularly suited for compressing residual network architectures and that
the compressed model proves very efficient when run on CPU. In Banner et al. [55] a
practical 4-bit post-training quantization approach was introduced and tested.

Node pruning (or network slimming) is a method to reduce network complexity.
A very popular example is the one by He et al. in [56]. Once the network has been
trained, nodes are classified by means of a node importance function and then removed
or retained depending on their score. The authors proposed three different node rank-
ing functions: entropy, output-weights norm and input-weights norm. In particular,
the input-weights norm function is defined as the sum of the absolute values of the
incoming connections weights. As we will see this latter defines the benchmark model
that we shall employ to challenge the performance of the trimming strategy here pro-
posed. In the same spirit we find the Conditional Computation methods [57]–[59]:
the aim is to dynamically skip part of the network according to the provided input
so as to reduce the computational burden. Related examples can be found in [60]. In
this work a neuron importance score function is calculated as function of the average
activation and the related weights, making it possible to extract the neuron relevance.
At variance with the method that we propose, the relevance is calculated, by Yu and
collaborators, after training and using Training set related statistical quantities. In
[61], in line with the older and very popular approach of [62], the relevance of nodes is
assessed by using the Taylor expansion up to order two, clearly involving further nu-
merical operations. For completeness we would like to point out that, in 2018, Liu and
collaborators [63], the value of pruning strategies that follows the canonical pipeline of
Training → Extracting Relevance Indicators → Pruning, not always results in better
performances when compared with model initialized with random weights.

In contrast with several of those approaches, however, our method involves no fur-
ther after training elaboration: all the information will be stored in the eigenvalues
magnitude.
The method relies on the spectral learning [24], [64] and exploits the fact that eigen-
values are suitable parameters to gauge the importance of a given node among those
composing the destination layer. In short, our aim is to make the network more com-
pact by removing nodes classified as unimportant, according to a suitable spectral
rating.

5.3 Methods
We detail here the spectral procedure to make a trained network smaller, while pre-
serving its ability to perform classification.

To introduce the main idea of the proposed method, we make reference to formula
(2.7) and assume the setting where λ(k)in

j = 0. The information travelling from layer k
to layer k+ 1 gets hence processed as follows: first, the activity on the departure node
j is modulated by a multiplicative scaling factor ϕ(k)

ij , specifically linked to the selected

38 CHAPTER 5. SPECTRAL PRUNING

(ij) pair. Then, all incoming (and rescaled) activities reaching the destination node i
are summed together and further weighted via the scalar quantity λ(k)out

i . This latter
eigenvalue, downstream of the training, can be hence conceived as a distinguishing
feature of node i of layer k + 1. Assume for the moment that ϕ(k)

ij are drawn from a
given distribution and stay put during optimization. Then, every individual neuron
bound to layer k + 1 is statistically equivalent (in terms of incoming weights) to all
other nodes, belonging to the very same layer. The eigenvalues λ(k)

i , dropping the apex
out from now on, gauge therefore the relative importance of the nodes, within a given
stack, and as reflecting the (randomly generated) web of local inter-layer connections
(though statistically comparable). Large values of |λ(k)

i | suggest that node i on layer
k + 1 plays a central role in the economy of the neural network functioning. This is
opposed to the setting when |λ(k)

i | is found to be small. Stated differently, the subset
of trained eigenvalues provide a viable tool to rank the nodes according to their degree
of importance. As such, they can be used as reference labels to make decision on the
nodes that should be retained in a compressed analogue of the trained neural network,
with unaltered classification performance. As empirically shown in the section (5.4)
with reference to a variegated set of applications, the sorting of the nodes based on the
optimized eigenvalues turns out effective also when the eigenvectors get simultaneously
trained, thus breaking, at least in principle, statistical invariance across nodes.

As we will clarify, the latter setting translates in a post-training spectral pruning
strategy, whereas the former materializes in a rather efficient pre-training procedure.
The non linear activation function as employed in the training scheme leaves a non
trivial imprint, which has to be critically assessed.

More specifically, in carrying out the numerical experiments here reported we con-
sidered two distinct settings, as listed below:

• (i) As a first step, we will begin by considering a deep neural network made
of N neurons organized in ℓ layers. The network will be initially trained by
solely leveraging on the set of tunable eigenvalues. Then, we will proceed by
progressively removing the neurons depending on their associated eigenvalues
(as in the spirit discussed above). The trimmed network, composed by a total of
M < N units, still distributed in ℓ distinct layers, can be again trained acting now
on the eigenvectors, while keeping the eigenvalues frozen to the earlier determined
values. This combination of steps, which we categorize as pre-training, yields a
rather compact neural network (M can be very small) which performs equally
well than its fully trained analogue made of N computing nodes.

• (ii) We begin by constructing a deep neural network made of N neurons orga-
nized in ℓ layers. This latter undergoes a full spectral training, which optimizes
simultaneously eigenvectors and the eigenvalues. The trained network can be
compressed, by pruning the nodes which are associated to eigenvalues (see above)
with magnitude smaller that a given threshold. This is indeed a post-training
pruning strategy, as it acts ex post on a fully spectral trained device.

To evaluate the performance of the proposed spectral pruning strategies (schemati-
cally represented in the flowchart of Figure 5.1), we also introduced a reference bench-
mark model. This latter can be conceptualized as an immediate overturning of the
methods in direct space. Simply stated, we train the neural network in the space of

5.4. RESULTS 39

Train Λ, Φ	with Spectral
Method

Evaluate 𝜆!"# , the 𝑞#$
percentile of the distribution of

eigenvalues Λ

Prune all the marked nodes, i.e.
put their respective eigenvalue

Λ % = 0.

Spectral Pruned Network

Train only Λ	with Spectral
Method

Train remaining Λ, Φ	with
Spectral Layer

Spectral Pruned Network

Post-training method (ii) Pre-training method (i)

Light pre-training

Full training on the
reduced network

Full training

Spectral Pruning Spectral Pruning

For each layer 𝑘 mark all the
nodes 𝑖 such that Λ % < 𝜆!"# ,

with 𝑖 ∈ 𝑁&'(+ 1,…	N&

Figure 5.1: Flowchart of the pre- and post-spectral training pruning strategies as
presented in section 5.3.

nodes, by using standard approaches to the learning. Then, we classify the nodes in
terms of their relevance using a proper metric to which shall make reference below,
and consequently trim the nodes identified as less important. When adopting the
spectral viewpoint, one can rely on the eigenvalues to rank the nodes importance. As
remarked above, in fact, the eigenvalues at the receiver nodes set a local scale for the
incoming activity, the larger the eigenvalue (in terms of magnitude) the more impor-
tant the role played by the processing unit. As a surrogate of the eigenvalues, when
anchoring the train in direct space, we can consider the quantity ∑Nk

j=1 |wij|, for each
neuron i belonging to layer k + 1, see also [56]. The absolute value prevents mutual
cancellations of sensible contributions bearing opposite signs, which could incidentally
hide the actual importance of the examined node.

In all explored cases, the pruning is realized by imposing a threshold on the refer-
ence indicator (be it the magnitude of the eigenvalues or the cumulated flux of incoming
–and made positive– weights). Pointedly, the respective indicator is extracted for ev-
ery node in the arrival layer. Then a percentile q is chosen and the threshold fixed
to the q-th percentile. Nodes displaying an indicator below the chosen threshold are
removed and the accuracy of the obtained (trimmed) neural network assessed on the
test-set. The codes employed, as well as a notebook to reproduce our results, can be
found in the public repository of this project.

5.4 Results
In order to assess the effectiveness of the eigenvalues as a marker of the node’s impor-
tance (and hence as a potential target for a cogent pruning procedure) we will consider
a fully connected feed-forward architecture. Applications of the explored methods will

40 CHAPTER 5. SPECTRAL PRUNING

be reported for ℓ = 3 and ℓ > 3 configurations. The nodes that compose the hidden
layers are the target of the implemented pruning strategies. As we shall prove, it is
possible to get rid of the vast majority of nodes without reflecting in a sensible decrease
in the test accuracy, if the filter, either in its pre- or post-training versions, relies on
the eigenvalues ranking. Moreover, it is also important to stress that, in general terms,
the pruning of unessential nodes improves the computational efficiency of the network.
As a matter of fact, reducing the number of output nodes leads a compression in terms
of both memory and inference time which is directly proportional to the number of
removed elements. As an example, by pruning a fraction α (< 1) of the total nodes,
we obtain a new layer with α ·N less neurons and a memory reduction of α ·N times
the number of input features.

For our test, we used three different datasets of images. The first is the renowned
MNIST database of handwritten digits [30], composed by greyscale images of dimen-
sion 28 × 28 pixels. The second is Fashion-MNIST (F-MNIST) [33] (an image dataset
of Zalando’s items) which are still depicted with a greyscale with dimension 28×28 but
display an enhanced degree of inherent complexity for what concerns the type of clas-
sification requiredas compared to the basic MNIST benchmark model (more complex
shapes, patterns on items). The last one is CIFAR-10 [65] a richer dataset composed
by 32 × 32 RGB images of complex real-world objects divided in 10 classes. Further,
different activation functions have been employed to evaluate the performance of the
methods. In the following we will show the results obtained for the ELU but, as can
be seen from the Figures, similar results are obtained when operating with the ReLU
and tanh. In the following we will report into two separate sub-sections the results
pertaining to either the single or multiple hidden layers settings.

5.4.1 Single hidden layer (ℓ = 3)
In Figure 5.2 the performance of the inspected methods are compared for the minimal
case study of a three layers network. The intermediate layer, the sole hidden layer in
this configuration, is set to N2 = 500 neurons. The accuracy of the different methods
are compared, upon cutting at different percentile, following the strategies discussed
in the Methods and compared with the benchmark model (the orange profile). In
the benchmark model, the neural network is trained in direct space, by adjusting
the weights of each individual inter-nodes connection. Then, the absolute value of
the incoming connectivity is computed and used as an importance rank of the nodes’
influence on the test accuracy (analogous to the way in which we use the eigenvalues).
Such a model has been presented and discussed by He et al. in [56]. Following this
assessment, nodes are progressively removed from the trained network, depending on
the imposed percentile, and the ability of the trimmed network to perform the sought
classification (with no further training) tested. We choose this particular type of
trimming as a benchmark to our spectral pruning technique for the following reasons.
First, it also amount to removing nodes from the collection, and not just sparsify
the weight of the associated transfer matrices. Then, both approaches build on the
concept of nodes ranking, as obtained from a suitable metric, which is respectively
bound to direct vs. spectral domains. We point out that in the next Chapter also
another indicator, the feature norm will be evaluated, obtaining analogous results.
The aforementioned procedure is repeated 5 times and the mean value of the accuracy

5.4. RESULTS 41

plotted in the orange curve of Figure 5.2. The shaded region stands for the semi
dispersion of the measurements. A significant drop of the network performance is
found when removing a fraction of nodes larger than 60 % from the second layer.

The blue curve Figure 5.2 refers instead to the post-processing spectral pruning
based on the eigenvalues and identified, as method (ii), in the Methods Section of
this Chapter. More precisely, the three layers network is trained by simultaneously
acting on the eigenvectors and the eigenvalues of the associated transfer operators, as
illustrated above. The accuracy displayed by the network trained according to this
procedure is virtually identical to that reported when the learning is carried out in
direct space, as one can clearly appreciate by eye inspection of Figure 5.2. Removing
the nodes based on the magnitude their associated eigenvalues, allows one to keep
stable (practically unchanged) classification performance for an intermediate layer that
is compressed of about 70% of its original size. In this case the spectral pruning is
operated as a post-processing filter, meaning that the neural network is only trained
once, before the nodes’ removal takes eventually place.

At variance, the green curve in Figure 5.2 is obtained following method (i) from
the Methods Section, which can be conceptualized as a pre-training manipulation.
Based on this strategy, we first train the network on the set of tunable eigenvalues,
than reduce its size by performing a compression that reflects the ranking of the op-
timized eigenvalues and then train again the obtained network by acting uniquely on
the ensemble of residual eigenvectors. The results reported in Figure 5.2 indicate that,
following this procedure, it is indeed possible to attain astoundingly compact networks
with unaltered classification abilities. Moreover, the total number of parameters that
need to be tuned following this latter procedure is considerably smaller than that on
which the other methods rely. This is due to the fact that only the random directions
(the eigenvectors) that prove relevant for discrimination purposes (as signaled by the
magnitude of their associated eigenvalues) undergo the second step of the optimiza-
tion. This method can also be seen as a similar kind of [38]. As a matter of fact,
the initial training of the eigenvalues uncovers a sub-network that, once trained, ob-
tains performances comparable to the original model. More specifically, the uncovered
network can be seen as a winning ticket [38]. That is, a sub-network with an initial-
ization particularly suitable for carrying out a successful training. Further analysis on
this direction will be, however, carried out in the next Chapter, where also a Spectral
Regularization will be involved.
Same results are shown for Fashion-MNIST and MNIST dataset and with different
activation functions in Figure 5.4 and 5.3 respectively.

Next, we shall generalize the analysis to the a multi-layer setting (ℓ > 3), reaching
analogous conclusions.

Multiple hidden layers (ℓ > 3)
Quite remarkably, the results achieved in the simplified context of a single hidden layer
neural network also apply within the framework of a multi-layers setting.
To prove this statement we set to consider a ℓ = 5 feedforward neural network with
ELU activation function. Here, again, N1 = 784 and N5 = 10 as reflecting the speci-
ficity of the employed dataset, i.e. MNIST. The performed tests follows closely those
reported above, with the notable difference that now the ranking of the eigenvalues

42 CHAPTER 5. SPECTRAL PRUNING

Figure 5.2: Accuracy on the Fashion-MNIST database with respect to the percentage
of trimmed nodes (from the hidden layer), in a three layers feedforward architecture.
Here, N2 = 500, while N1 = 784 and N3 = 10, as reflecting the structural charac-
teristics of the data. In orange the results obtained by pruning the network trained
in direct space, based on the absolute value of the incoming connectivity (see main
text). In blue, the results obtained when filtering the nodes after a full spectral train-
ing (post-training). The curve in green reports the accuracy of the trimmed networks
generated upon application of the pre-training filter. Symbols stand for the averaged
accuracy computed over 5 independent realizations. The shadowed region is traced
after the associated semi-dispersion.

5.4. RESULTS 43

(a) (b) (c)

Figure 5.3: Accuracy on the MNIST database with respect to the percentage of
trimmed nodes (selected from the 500 neurons that compose the sole hidden layer), in
a three layers feedforward architecture. The results reported in each panel refer to a
different selection of the nonlinear activation functions, respectively ELU (a), ReLU
(b) and tanh (c). In orange, the results obtained by using the trimming procedure
based on the absolute value of the incoming connectivity. In blue, the results obtained
when filtering the nodes after a full spectral training (post-training). The curve in
green displays the accuracy of the trimmed networks generated upon application of
the pre-training filter. In this case, the examined network is initially trained on the set
of eigenvalues, while keeping the eigenvectors frozen. After having removed unessential
nodes, based on their associated eigenvalues, the network undergoes another training
phase that is solely targeted to adjusting the entries of the residual eigenvectors. The
shadowed region represents the semi-dispersion over 5 independent realizations. When
using the Relu function, trimming on the absolute value of the incoming connectivity
yields slightly better results than what found when using the post-training spectral
filter. The two stages spectral trimming proves always more effective.

is operated on the pool of N2 + N3 + N4 neurons that compose the hidden bulk of
the trained network. In other words, the selection of the neuron to be removed is
operated after a global assessment, i.e. scanning across the full set of nodes, without
any specific reference to an a priori chosen layer.

In Figure 5.5 the results of the analysis are reported, assuming N2 = N3 = N4 =
500. The conclusions are perfectly in line with those previously reported for the one
layer setting, except for the fact that now the improvement of the spectral pruning over
the benchmark reference are even superior. To support this claim, let us consider the
orange curve that drops at percentage 20, while the blue begins its descent at about
60 %. The green curve, relative to the sequential two steps training, stays stably
horizontal up to about 90 %. Analogues results are shown for different activations for
Fashion MNIST in Figure 5.7 and for MNIST in Figure 5.6

Testing the trimming strategies on CIFAR10 dataset
To assess the flexibility (by testing its relation with a convolutional preprocess) of the
schemes outlined we here consider the harder CIFAR10 dataset and assume a modified
MobileNetV2 [66] adding two dense layer at the end of the network. During training
we freeze all the layers, except for the two appended ones that are trained in the

44 CHAPTER 5. SPECTRAL PRUNING

(a) (b)

Figure 5.4: Accuracy on the Fashion-MNIST database with respect to the percentage
of trimmed nodes (selected from the 500 neurons that compose the sole hidden layer),
in a three layers feedforward architecture. The results reported in each panel refer
to a different selection of the nonlinear activation functions, respectively ReLU (b)
and tanh (c). Symbols and conclusions are in line with those reported for the case of
MNIST.

Figure 5.5: Accuracy on the Fashion-MNIST database with respect to the percentage
of pruned nodes (from the hidden layers), in a five layers feedforward architecture.
Here, N2 = N3 = N4 = 500, while N1 = 784 and N5 = 10, as reflecting the structural
characteristics of the data. Symbols and colors are chosen as in Figure 5.2.

spectral domain. Working in this setting, the pruning is performed on the first dense
layer by using both strategies (i) and (ii), as introduced in Section 5.3. Here again the
results are compared to those obtained when using the absolute value of the incoming

5.5. CONCLUSIONS 45

(a) (b) (c)

Figure 5.6: Accuracy on the MNIST database with respect to the percentage of
trimmed nodes (from the set of N2 + N3 + N4 neurons). The results in each panel
refer to different choices of the non linear function, ELU (a), ReLU (b) and tanh (c).
Symbols are chosen as for the case of the single hidden layer setting. It should be re-
marked that the spectral trimming strategies proves definitely more effective than the
benchmark model anchored to direct space, also when the Relu function is employed,
in the case of multiple hidden layers.

(a) (b)

Figure 5.7: Accuracy on the Fashion-MNIST database with respect to the percentage
of trimmed nodes (from the set of N2 + N3 + N4 neurons). The results in each panel
refer to different choices of the non linear activation function, ReLU (a) and tanh (b).
For the symbols, see the caption of the Figures above. Also in this case the spectral
filters prove always superior.

connectivity as an alternative trimming criterion (see Figure 5.8). The first dense layer
employed is made of 512 nodes with an ELU activation function let us observe that
we tested others activation functions and we obtained analogous results.

5.5 Conclusions
In this Chapter we have discussed a relevant byproduct of a spectral approach to
the learning of deep neural networks. The eigenvalues of the transfer operator that

46 CHAPTER 5. SPECTRAL PRUNING

(a) (b) (c)

Figure 5.8: Accuracy on the CIFAR10 database with respect to the percentage of
trimmed nodes (from the ℓ− 1 layer). The results in each panel refer to different non
linear functions, respectively ELU (a), ReLU (b) and tanh (c). Symbols are chosen in
analogy with the above (the result drawn in green are based on two different runs).

connects adjacent stacks in a multi-layered architecture provide an effective measure of
the nodes importance in handling the information processing. By exploiting this fact
we have introduced and successfully tested two distinct procedures to yield compact
networks –in terms of number of computing neurons– which perform equally well
than their untrimmed original homologous. One procedure (referred as (ii) in the
description) is acknowledged as a post processing method, in that it acts on a multi-
layered network downstream of training. The other (referred as (i)) is based on a
sequence of two nested operations. First the eigenvalues are solely trained. After the
spectral pruning took place, a second step in the optimization path seeks to adjust the
entries of the eigenvectors that populate a trimmed space of reduced dimensionality.
The total number of trained parameters is small as compared to that involved when
the pruning acts as a post processing filter. Despite that, the two steps pre-processing
protocol yields compact devices which outperform those obtained with a single post-
processing removal of the unessential nodes.

As a benchmark model, and for a neural network trained in direct space, we decided
to rank the nodes importance based on the absolute value of the incoming connectiv-
ity. This latter appeared as the obvious choice, when aiming at gauging the local
information flow in the space of the nodes, see also [56]. In principle, one could con-
sider to diagonalizing the transfer operators as obtained after a standard approach to
the training and make use of the computed eigenvalues to a posteriori sort the nodes
relevance. This is however not possible as the transfer operator that links a generic
layer k to its adjacent counterpart k + 1, as follows the training performed in direct
space, is populated only below the diagonal, with all diagonal entries identically equal
zero. All associated eigenvalues are hence are zero and they provide no information
on the relative importance of the nodes of layer k+ 1, at variance with what happens
when the learning is carried out in the reciprocal domain.

Summing up, by reformulating the training of neural networks in spectral space, we
identified a set of sensible scalars, the eigenvalues of suitable operators, that unequiv-
ocally correlate with the influence of the nodes within the collection. This observation
translates in straightforward procedures to generate efficient networks that exploit a
reduced number of computing units. Tests performed on different benchmarks corrob-
orate this conclusions.

However, the capabilities of these spectral tools do not end at merely optimizing es-

5.5. CONCLUSIONS 47

tablished networks. They extend further, enabling us to draw parallels with theoretical
paradigms in Machine Learning, particularly the teacher-student dynamic. Starting
from the premise that spectral space allows us to assess node importance and prune
accordingly, we will, in the following Chapter, try to get insights into the inherent
structures and complexities that exist within student networks, especially when they
are modelled after a compact teacher network.
The following Chapter delves deeper into this hypothesis. Building upon our spectral
findings, we explore the tantalizing possibility of identifying invariant subnetworks
within overparameterized student models, by seeking for structures reminiscent of their
teacher counterparts and, more generally, the complexity of the underlying dataset. In
order to do so we will leave the realm of implicit bias and shift toward the imposition of
a well defined explicit regularization that involves the eigenvalues L2 norm. As we are
about to show, in this simple yet very powerful tool, lies our capability of discovering
the structure of a hidden teacher network or, more generally, the function to regress.

48 CHAPTER 5. SPECTRAL PRUNING

Chapter 6

Spectral Regularization

6.1 Teacher-Student frameweork
The teacher-student framework is a widely recognized concept in the field of theoretical
deep learning, and has gained significant attention due to its effectiveness in knowledge
distillation [67]–[69], and theoretical insight [70]–[72]. Introduced by Hinton et al.[73],
in the context of neural networks, the teacher-student framework usually involves two
neural networks: one called the ”teacher” and the other called the ”student”. The
teacher network is generally a pre-trained, well-performing network. Its main role is
to guide the training of the student network. By using a softened probability distri-
bution from the teacher model as labels, the student model is encouraged to imitate
the teacher’s behaviour.
In this Chapter, we will use this particular setting and focus on three different learning
regimes. These latter can be hierarchically ranked depending on whether the complex-
ity of the function that the student network learns is greater than, less than, or equal
to the complexity of the teacher network function that the student is attempting to
regress.
The teacher network is characterized by specific topological features that reflect its
inherent structure and path distribution. As a follow-up of the analysis, we will com-
pare these characteristics to those recovered by the student network operated under
the spectral paradigm. The degree to which they are preserved in the latter will be one
of the metrics that we shall use to determine the effectiveness of the learning process.

To ensure simplicity in our analysis, we will adopt a teacher network with two
hidden layers and a scalar output, let us observe that this choice has been grounded
on the possibility to have a complete insight into the problem; in the following we will
relax this assumption by working with more complex settings. The weights that refer
to the final layer are all set to one. The proposed formulation is hence inspired by the
theory of soft committee machines [74], [75], but with an additional layer to increase
the problem’s complexity.
The dataset will be generated by choosing the probability distribution of the Instance
space p(x) to be a Standardized Gaussian in R10, namely p(x) = N (x;µ = 0,Σ =
I). In this framework, the teacher network T (x) is used as a Supervisor defining
a conditioned probability distribution g(y|x) = δ(y − T (x)). The dataset is thus
composed by the collection to data-label tuples D = {(x(i), y(i))i∈1...|D| | (x(i), y(i)) ∼
pdata(x, y) = p(x)g(y|x)} and has a number of elements |D| = 1.3 104.

49

50 CHAPTER 6. SPECTRAL REGULARIZATION

The dimensions of the teacher layers are respectively set to 10 − 20 − 20 − 1 and
are initialized according to a standard Glorot Uniform distribution [31]. The student
network S(x), on the other hand, is formed by a two hidden layers deep neural network
with dimension 10 − h− 20 − 1 where h is a variable integer that will be tuned across
experiments. The second hidden layer is taken to be a standard fully connected layer
(the gradient will be computed with respect to the connections). The first hidden
layer, whose dimension h can be changed at will, can be either parametrized as a
fully-connected layer or as its spectral analogue (the eigenvalues λ(1) and eigenvectors
components ϕ(1) are thus the target of the optimization), depending on the specific
aims of the analysis. Accordingly, the loss function will be different depending on the
layer employed. Namely, we will use

L = 1
|D|

|D|∑
i∈1

(T (x(i)) − S(x(i)))2 + αw

∑
k∈1,2

L2(w(k)) (6.1)

for the student parametrized in the standard way, and

L = 1
|D|

|D|∑
i∈1

(T (x(i)) − Sλ(x(i)))2 + αλL2(λ(1)) + αϕL2(ϕ(1)) + αwL2(w(2)) (6.2)

for the student which bears a spectral parametrization of the first hidden layer, here
denoted by Sλ for clarity. Note the L2 penalty term that, as discussed above, acts as
an explicit regularization.
To focus on the impact of the spectral parametrization of the layer, we will initialize S
and Sλ such that the set of links is identical but still randomized. We accomplish this
by setting λ(1)

i = 1 for i ∈ 1 . . . h and ϕ
(1)
ij = −w(1)

ij for all i ∈ 1 . . . h and j ∈ 1 . . . 10.
The w(1)

ij are sampled from a Glorot distribution, ensuring that there is no bias in the
optimization due to differences in the initialization of the inter-nodes connections. For
each run, we will use the minibatch stochastic gradient descent algorithm Adam [28],
with a batch size of 300 and 500 for Sλ and S, respectively, and a total of 2000 epochs.
The relevance of the features extracted by S and Sλ will be computed as the norm of
the vectors that modulate the information to be conveyed at the destination nodes on
the layer of variable size h. More specifically, we can extract from the conventionally
parametrized student S, the following indicator bound to node i:

Wi =
 h∑

j=1
w2

ij

1/2

(6.3)

For the network Sλ, on the other hand, we will employ the following expression:

Li = λi

 h∑
j=1

ϕ2
ij

1/2

(6.4)

which scales proportionally to the eigenvalue entry λi. It is clear that these quantities
hold for every i ∈ 1 . . . h, and both support the idea that the larger the L2 magnitude
of the connections, the more relevant the associated processing node. Notice, however,
that this latter quantity needs to be appropriately rescaled for the corresponding eigen-
value’s magnitude for fair comparison when operating under spectral parametrization.

6.2. EXPERIMENTAL FRAMEWORK 51

We speculate that by imposing a node-wise localization of the features when working
under the usual parametrization results in a cumbersome excercise which cannot be
easily performed. In literature the work by Molchanov et al. [61] use the L2 norm of
the input parameters of every neuron in the network with a regularization that scales
with the deepness of the model. In this thesis we will not compare to this work as
only preliminary results have been obtained in this direction. Indeed, we would like
to stress and explore the multimodal relevance of the spectral parametrization. For
what concerns the comparison with state of the art techniques, we are planning to
carry out an extensive study in forthcoming papers. On the other hand, this goal can
be instead accomplished when working under the spectral parametrization. We also
speculate that the same effect could be induced on the input features when using all
the spectral components, i.e. when the λin in Eq.(2.7) are not left untrained. However,
we postpone reporting on this alternative scenario in a future publication.

Formulation of the algorithm
The results presented in this paper are obtained by using an algorithm that can be
summarized as follows:

• Replace the conventional feedforward, fully-connected layers with the so called
Spectral layers, where the links are parameterized as in Equation (2.7).

• Initialize λ(k)in to 0 (and leave it untrained), set λ(k)out to 1, and initialize ϕ(k)by
using the Glorot distribution [31].

• Apply L2 regularization to λ(k)out and ϕ(k), and proceed with the optimization.

• Examine the entries Li for each node i from Equation (6.4); a larger value
indicates higher node relevance.

The implementation of the Spectral layer and the Structural pruning functions can be
found in https://github.com/Jamba15/SpectralTools.

6.2 Experimental Framework
In order to assess the effectiveness of the introduced parametrization and regular-
ization, the dimension of the hidden layer h has been varied within the set I =
[10, 20, 40, 60, 100, 200, 500, 700, 1000]. For each h ∈ I, a total of 30
trials have been conducted, train and test losses have been recorded for statistical
purposes. This evaluation has been performed for both S and Sλ, which we will now
denote as S(h) and Sλ(h) respectively, with h ∈ I. The teacher function T (x) is
fixed as described above and the student gets trained over 2000 epochs, to ensure a
consistent and proper convergence. The average test loss, evaluated on a different set
of 1000 samples distributed according to the same pdata(x, y), is computed. For all
h > 20 (the teacher layer dimension), the average mean squared error (MSE) of S(h)
is ⟨MSE(S(h))⟩ = 9 ± 1 × 10−3 (with a one-sigma error), and the average MSE of the
prediction of Sλ(h) reads ⟨MSE(Sλ(h))⟩ = 9 ± 3 × 10−3. Note that averages here are

https://github.com/Jamba15/SpectralTools

52 CHAPTER 6. SPECTRAL REGULARIZATION

taken over the 30 repetitions of the experiment. It is worth emphasizing that these
values stay stably across all choices of h above 20. This implies that both models are
operated in a properly converging regime, where the two different parametrizations
prove equivalent in terms of test error. Building upon this, we can now examine the
properties of the network after training in light of the two employed parametrizations.
To assess feature localization within the network, we generated aggregated histograms
of the scalars (6.3) and (6.4). This aggregation was performed across all trials for a
fixed hidden layer size, h. The range scanned by the aforementioned scalar entries was
rescaled in such a way that both W and L lie in the same range [0, 1]. This enables
for a meaningful comparison between the two distributions. Figure 6.1 demonstrates
a stark difference between the empirical distributions of the two computed scalars.
The blue histograms stands for (6.3), which refer to the spectral attribute L, while
the orange histograms represent the feature norm for a conventional regularized train-
ing scheme. The latter exhibits a prototypical behavior, with the distribution slowly
shifting towards zero as the size of the hidden layer increases. On the other hand,
the former displays a more marked dependence on the imposed size h of the variable
hidden layer.

Figure 6.1: Histogram for the quantities (6.4) (in blue) and (6.3) (in orange) for the
first hidden layer of the student. The scalars entries are divided by the maximum of
the sample so that the two distributions lies in the interval [0, 1].

6.3 Invariant Core
In the over-parametrized (h > 20) student regime, we observe the emergence of a peak
in the first bin, which corresponds to values of the feature parameter close to zero. This
observation qualifies as a significant change as compared to the under-parametrized
regime, where the distribution only contains non-zero values of Li. On the other hand,
the behaviour of W remains qualitatively similar across different sizes of system be-
ing trained. The significance of the zero-peaked L values is straightforward: these
are the features (i.e. the neurons) that can be safely discarded without affecting the
generalization properties of the network Sλ(h). To support this interpretation, we
plot the average dimension size of the first hidden layer, considering only the non-zero
features, in the left panel of Figure 6.2. Strikingly enough, we observe the emergence
of an invariant processing core within the student, the dimension of which is closely
connected to that of the teacher (in this case, h = 20). Despite achieving the same

6.3. INVARIANT CORE 53

test accuracy, the two networks (S and Sλ) exhibit distinct topologies and levels of
interpretability. The former demonstrates a sparse structure that distributes informa-
tion across the entire set of connections, while the latter, obtained as a byproduct of
the spectral training complemented with a suitable regularization, drives the informa-
tion processing towards a minimal and identifiable subnetwork core. The additional
feature weighting parameter, which can be interpreted as a particular case of a Spec-
tral parametrization of the transfer operator, could be effectively utilized, along with
regularization, to identify the Winning Lottery Ticket features within the network.
We speculate that an iterative approach, similar to the one described by Frankle and
Carbin [76] but focused on nodes rather than links, may be feasible, but we leave this
deepening for future investigation.

Figure 6.2: (Left) Average dimension of the first hidden layer after the nodes associated
to zero values of W or L have been removed. The average is taken across the 30 trials
and the shaded region refer to one standard deviation. (Right) The deviation of the
mean squared error (MSE) is plotted against nλ − nT . Here nλ stands for the number
of neurons that are left after pruning, while nT refer to the actual size of the teacher.
A phase transition-like behaviour occurs when the size of the first hidden layer of the
student matches that of the teacher network. The vertical scale is logarithmic.

To ensure that the achieved conclusions are not influenced by the size of the sec-
ond hidden layer, various student configurations have been tested, yielding equivalent
results. Specifically, the size of the retrieved computational core remains constant,
across different initial choices of the variable hidden layer size. The residual size re-
flects the inherent complexity of the teacher. As such, it could be thus different from
the size of the teacher’s homologous layer.

To provide a complementary view, we also estimate the deviation of the mean
squared error (MSE) computed after pruning (i.e. upon removing unessential nodes
as ranked via L) from the corresponding value recovered at the end of training, for the
full network. This latter quantity is plotted in the right panel of Figure 6.2 against
nλ − nT where nλ represents the number of residual neurons and nT refers to the
number of nodes in the teacher (here hT = 20). The invariant core exhibits remarkable
robustness when neurons corresponding to low L values are removed. However, as soon
as the minimal bulk is perturbed, the MSE deviation starts growing regardless of the
initial size of the layer, thereby revealing a universal scaling profile with respect to
h. More specifically, the deviation follows an approximately exponential decrease, and
the curve ∆MSE vs. nλ − hT exhibits a critical point at nλ − hT = 0, where a sudden

54 CHAPTER 6. SPECTRAL REGULARIZATION

change in the generalization performance of Sλ is observed.

6.4 Other datasets

In order to extend the validity of our results to a less artificial scenario the same
analysis has been carried out for various datasets: Shuffled MNIST, Shuffled Fash-
ion MNIST (Standard MNIST datasets but with shuffled pixels), California Housing
[77], and a more intricate Teacher structure. In the latter, the size of the first hidden
layer differs from that of the second , resulting in a more heterogeneous and real-
istic structure. The student structure remains consistent with the dimension of the
second hidden layer set to 50. In this context, the performance metrics (in terms of
accuracy and loss function) for both the spectral Student and the traditional student
are comparable across all datasets. The findings presented in Figure 6.3 align with
those reported for the simpler scenario presented above: the spectral regularization is
capable of finding a computational core (panels a − d) whose MSE behaviour, after
perturbation, is independent from the size of the initial layer (panels e− h)

6.4. OTHER DATASETS 55

Figure 6.3: Average dimension of the hidden layer (a-d) and effect on the ∆MSE

(e-f) using the node removal strategy mentioned above. The dataset presented are:
Shuffled Fashion MNIST (panels a and e), Shuffled MNIST (b and f), two hidden
layer teacher but with heterogeneous hidden size (20-40-20-1) (panels c and g), and
California Housing (on panels d and h). In this case no reference dimension is shown.
Regarding the Average dimension of the hidden layer the accuracy and loss of the
Spectral and Classical students are the same for each size (within the statistical error,
namely the one standard deviation variance across the 30 trials done for each ’Units’
value).

It is important to emphasize that the structure of the conventionally parametrized
network is fundamentally different, and due to its sparsity, it is impossible to conduct
a similar analysis for extracting a compact invariant subnetwork. After applying the
node removal strategy to Sλ, we can further analyze the relationship between the
pruned student network and the teacher network. Specifically, we investigate whether
any properties of the teacher, other than its layer size, can be inferred from the analysis
of the invariant core within the student network Sλ. We focus on a natural property
given the feedforward structure of both networks: the path magnitude.

56 CHAPTER 6. SPECTRAL REGULARIZATION

(a) Path comparison between compressed
(Pruned) Spectral student and the teacher.

(b) Path comparison the full Spectral stu-
dent, the full Direct space trained and the
teacher.

Figure 6.4: Comparison of the path magnitude between the input and second hidden
layer of the teacher, displayed in orange, and those obtained for every other case
study here considered. The first hidden layer in the student network is set to 200 but
equivalent results hold for every other h ∈ I. In panel (a) the first hidden Spectral layer
is compressed by removing the nodes that populate with the peak of the normalized
distribution of L reaching nλ = 20 neurons. In panel (b) no compression is done. As
can be seen the correct distribution cannot be retrieved via the usual Direct approach.

6.5 Linear Core
To examine the magnitude of each path in the compacted network from a given input
node to a specific neuron in the second hidden layer, we construct the expression:

w̃
(1)
i0,i1 · w̃(2)

i1,i2 = Γi1
i0,i2 , ∀i0 ∈ 1 . . . N0 = 10, i1 ∈ 1 . . . h, i2 ∈ 1 . . . N2 = 20 (6.5)

Here, w̃(1)
i0,i1 represents the weight between input node i0 and hidden layer neuron

i1, and w̃(2)
i1,i2 represents the weight between hidden layer neuron i1 and second hidden

layer neuron i2. Γi1
i0,i2 then corresponds to the path from i0 to i2 passing through

neuron i1.
To account for the large amount of permutation invariance in the problem, we

transform the tensor Γi1
i0,i2 into a vector Γ⃗ of size Ntot = N0 · N1 + N1 · N2, where the

components Γi range from 0 to Ntot.
Next, we sort the components of the vector in ascending order and plot them for the

teacher network in orange, and for the student network in blue and green (Figure 6.4).
The values are plotted with respect to fraction of the vector components obtained by
mapping the index of the sorted vector between zero and one, enabling a meaningful
comparison between the networks (due to different number of nodes). Upon visual
inspection of panel (a) in Figure 6.4, it is evident that the combined effect of spectral
parametrization and regularization yields the emergence of an invariant core within
the network. This core can be easily retrieved and exhibits a path structure that
closely aligns with that of the teacher network.

6.6. CONCLUSIONS 57

In contrast, when analyzing the sparse structure of the conventionally trained and
L2 regularized network, a significantly different path structure is seen, as depicted in
panel (b) of Figure 6.4. Specifically, the edges of the path magnitudes differ, as does
the overall distribution.

6.6 Conclusions
In summary, our study illustrates the advantages of a novel approach to Deep Neural
Networks (DNNs) training which is anchored on the spectral domain. The eigenvec-
tor and eigenvalues of the underlying linear transfer operators are the target of the
optimization. The proposed method weights feature relevance in each layer through a
dedicated indicator which scales as the eigenvalues. When regularized, this latter quan-
tity enables us to identify a minimal, efficient subnetwork within the original structure
that retains full network performance upon pruning. Tested using the teacher-student
paradigm, we found that this reduced network recovers the same topological features
as the original teacher network. This approach outperforms conventional weight decay
and classical parametrization, opening up new possibilities for the optimization and
scalability of DNNs especially when working in the over-parametrized regime.

After discussing how to identify important substructures within feedforward neural
networks using spectral tools, we are now moving to a new but related topic. These
spectral tools have given us the capability to pinpoint information-rich parts within
networks, and as we will see, their uses go beyond merely understanding the structures
of these networks.
In the next chapter, we will apply spectral decomposition in a new way: for dynamical
automated classification. Unlike our previous focus, which was mainly on imitating
a known dataset learning a function, we will now use this technique to sort data
dynamically. In our new model, the Recurrent Spectral Network (RSN), we will employ
spectral decomposition to guide data flow based on specific attractors. These attractors
are influenced by the decomposition of linear operators, which are essentially the
driving force behind data movement in the now-recurrent network.
We will explore this novel and rich learning paradigm describing on how spectral
elements like memory kernels, attractors, and decomposition come together to create
a new, efficient and more interpretable classification model.

58 CHAPTER 6. SPECTRAL REGULARIZATION

Chapter 7

Recurrent Spectral Networks

7.1 Classification as a dynamical system
Delving into the principles of the spectral methodology, we will now propose a radically
novel approach to computational machine learning which is deeply rooted into the
theory of discrete dynamical systems. In a nutshell, the incoming signal is processed
by successive iterations across the very same constellation of nodes. The links, and
thus the topology of the ensuing network, are fixed and shaped under the spectral
paradigm, upon optimization at a given number of iterations. Non-linearities acting on
the nodes are imposed a priori or, conversely, learned self-consistently via an apposite
deep neural network, which is embedded into the cost function. In either settings,
non-linear terms acting in real space at the nodes locations, are forced to vanish
asymptotically, iteration after iteration, in such a way that the dynamics eventually
turns purely linear. The linear operator, mirroring the processing network, possesses
a high dimensional attracting linear manifold spanned by the eigenvectors associated
to the eigenvalues equal to one. These latter come in a number that matches the
classes to be eventually categorised. A suitable non linear spectral filter is enforced in
the loss function to project the ensuing direction along a given eigenvector, assumed
as the destination target of a class of homologous entities and selected from those
displaying unitary eigenvalues 1. Stated differently, the classification is accomplished
when the processed output - approximately - aligns along a specific direction in dual
space, instead of turning active a single node in direct space, as customarily done.
This formulation yields a rather natural interpretation of the classifier operational
mode: non-linearities, acting at the early stages of the dynamical evolution, drive
the discrete dynamical system towards distinct effective stationary equilibria, self-
consistently sculpted across the learning scheme and associated to different classes

1In principle, the system could eventually align along any direction in the manifold spanned by
the eigenvectors (of the linear operator) relative to unit eigenvalues. Indeed the learning process, as
encoded in the chosen loss function, forces the system to align (as much as possible) along a specific
direction - a given eigenvectors selected from those that are associated to eigenvalues identically
equal to one. The effectiveness of the procedure is confirmed by a posteriori inspection, as we shall
discuss in the following. The proposed method proves indeed remarkably successfully beyond the toy
model setting investigated for pedagogical reasons and against classical benchmark datasets. The
approximate alignment along the target direction can be made exact by a non linear projection filter
that singles out the most prominent among residual directions, in reciprocal space at the time of
decision.

59

60 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

of supplied items. Delineating the non-trivial contours that separate the inspected
classes in the input space constitutes the tangible outcome of the learning scheme.
Remarkably, the trained dynamical system can be iterated forward in time, beyond the
limited horizon of the learning procedure: the ability of classifying stays unchanged.
The eigenvectors associated to eigenvalues equal to one, are hence veritable memory
kernels where the information is kept stored. We name Recurrent Spectral Network
(RSN) our novel approach to automated classification via sculpting the attracting
invariant subspace of a discrete dynamical map.

Points of connections are found with the framework of reservoir computing. In this
latter case, input signals are mapped into higher dimensional computational spaces
through the dynamics of a fixed, non-linear system termed reservoir [78]–[80]. Within
the RSN, the bulk model is not fixed but self-consistently tailored to the assigned task.

A straightforward variant of the RSN recipe, which accounts for quasi-orthogonal
eigen-directions for each processed task, can be also introduced. This latter enables for
the sequential handling of different datasets. In simple terms, an artificial computing
unit can be assembled which keeps memory of a task, for which it was initially trained,
while being exposed to another training session, with an independent dataset to be
processed. This is at present arduous with standard approaches to deep learning, as
the second learning stage causes the so-called catastrophic forgetting taking over any
form of digital consciousness inherited from the first [81]–[83]. Few attempts have been
so far reported which aim at overcoming this limitation [84]–[86].

The Chapter is organized as follows. In the next Section we introduce the mathe-
matical notation and the relevant model setting. Then, in the subsequent Section, we
will turn to considering a simple example of a dataset defined in R2 that will prove
useful for clarifying the essence of the proposed methodology. In particular we will
show, that the system can effectively trace the boundaries that non-linearly separate
different classes within a given datasets. Each class is evolved toward a distinct target,
that we identify with a specific direction of the attracting subspace possessed by the
underlying linear system. Further, we will proceed by applying the proposed technique
to the celebrated MNIST dataset [30]. We will also show that the RSN can also handle
multiple datasets with a modest drop in the peak accuracy, and following sequential
stages of learning. Finally, we will sum up and draw our conclusions.

7.2 The mathematical foundation
Consider N isolated nodes. Our aim is to assign weighted links among the latter,
in such a way that the ensuing network can cope with the assigned task, as e.g.,
classification of different items in distinct categories. Here, N can coincide with the
number of input variables (e.g., the pixels of a supplied image): in this case, the nodes
where reading is performed match the units where calculations are carried out. This
is at variance with usual feedforward deep neural networks, where the information to
be processed flows from the input to the output, the collection of computing neurons
growing with the number of layers that define the underlying architecture. Working
within the proposed framework, the topology of the network will unfold as an emerging
byproduct of the optimization procedure. As we shall discuss, N can be larger than the
characteristic dimension of the input data, a setting that we will specifically assume

7.2. THE MATHEMATICAL FOUNDATION 61

when dealing with the problem of sequential learning, with dedicated memory kernels.
Denote by x⃗(0) the input vector, made of N entries organized in a column. The

idea that we shall hereafter develop is to set up a recursive scheme, the Recurrent
Spectral Network (RSN), that takes x⃗(0) as the initial condition and transforms it via
successive iterations into a stationary stable output. To stress that the activity vector
always belongs to the same space we have decided to keep the ‘top arrow’ notation
for vectors in the whole Chapter; the reader shall remind also that, in this context,
the apex ·(i) stands for the iteration i instead of the layer i. Once the stable output is
reached, it should somehow reflect the specific traits of the input items, as identified
self-consistently upon dedicated training sessions. Different objects should eventually
align along distinct directions of the attracting manifold, depending on the category of
specific pertinence. Stated differently, the multidimensional space where the examined
objects belong to gets partitioned in mutually exclusive portions, as tailored by suited
non-linearities, each associated to a definite asymptotic destination. In the following,
we shall label with n the number of independent target directions, namely the number
of independent classes in which the inspected dataset can be eventually partitioned.

Assume x⃗(k) to represent the image of the input vector x⃗(1) after k application of
the iterative scheme. Then:

x⃗(k+1) = f⃗k

(
Ax⃗(k)

)
(7.1)

where A is a N × N weighed adjacency matrix that defines the patterns of inter-
actions among nodes; f⃗k(·) is a non-linear (N - dimensional) function that depends on
the iteration parameter k and which acts at the level of individual nodes. We require
in particular limk→∞ f⃗k → 1⃗ ≡ (I, I, ..., I)T , in such a way that, for large enough k, the
system approximately follows a linear update rule. This is achieved by setting:

f⃗k(·) = 1⃗+ g⃗(·)
kγ

(7.2)

where g⃗(·) is a non-linear function which can be imposed a priori or determined
self-consistently via a neural network regression model and γ is a parameter that can
be freely adjusted (here we chose to set γ = 1.5). Focus now on the linear component
of the dynamics, as encapsulated in matrix A, which takes over for sufficiently large
k. We cast in particular A = ΦΛ (Φ)−1, by invoking spectral decomposition. Here,
Λ is the diagonal matrix of the eigenvalues (λ1, λ2, ..., λN). Working in the spectral
domain enables us to enforce n-dimensional attracting subspace. To this end, we
impose λ1 = λ2 = ... = λn = 1, and assume |λi| < 1 for i > n. These latter N − n
quantities are among the target of the optimization scheme. Moreover, we assume
ϕ⃗1, ϕ⃗2,..., ϕ⃗n, namely the eigenvectors relative to the eigenvalues identically equal to
one, to identify frozen linearly independent directions of the embedding N -dimensional
space. The remaining eigenvectors (ϕ⃗i, with i > n, relative to eigenvalues λi) can be
freely adjusted, so contributing with a total of (N − n) × N tunable parameters to
the optimization scheme. When k >> 1, non-linear terms fade away and the iterative
scheme converges to a linear map, x⃗(k+1) ≃ Ax⃗(k).

By definition, ϕ⃗i, with i ≤ n are stationary solutions of the above system. This
latter is hence associated with a high dimensional attracting invariant manifold: any
linear combination of ϕ⃗i with i ≤ n is in fact a stationary solution of the linear dynam-
ics that is approached by the examined non linear system, for large enough iterations

62 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

k. By acting on the collection of tunable spectral parameters, which ultimately echo
on the topology of the network made of N computing nodes, and by exploiting the
non-linearities that act over a finite transient, we aim at steering different input objects
toward distinct target solutions, which can be stably maintained beyond the limited
horizon of the performed training. To rephrase in words, we postulate that any gener-
ically complex classification task is eventually amenable to a multi-dimensional linear
problem, with properly tuned interactions strengths and provided non-linearities, im-
posed or self-consistently learned, are made to initially deform the features landscape.

To implement the learning scheme on these basis, we consider x⃗(k̄), the image on the
output layer of the input vector x⃗(0) after k̄ iterations of the iterative algorithm, where
k̄ is sufficiently large for the linear approximation to hold true. Then, we calculate
c⃗k̄ = (Φ)−1 x⃗(k̄): the i-th element (c⃗k̄)i represents the projection of x⃗(k̄) along the
eigen-direction ϕ⃗i. Each element of the training set is associated to a label ℓ ≤ n to
identify the category to which x⃗(0) belongs to. Then, an optimization is carried out
which seeks at minimizing the squared distance of c⃗k̄ (that implicitly depend on the
training parameters) with a target n-dimensional column vector c⃗ℓ, made by zeroes
except for the element in position ℓ which is set to unit. In such a way, we require
that after sufficiently many iterations the dynamical map aligns (as much as possible)
along the direction ϕ⃗ℓ, where ℓ identifies the class to which the supplied entry refers.
Different initial conditions, decorated with their reference labels pointing to one of
the n classes, are forced (by a proper use of the non-linearities, as vehiculated by the
network arrangement) to yield different asymptotic equilibria, which approximately
align along distinct directions in reciprocal space. A perfect alignment along the eigen-
modes that flag distinct classes can be eventually forced by performing a projection
along the most represented direction, at the end of the iterative update.

Operatively, we begin by initializing the trainable portion of the eigenvectors matrix
Φ with a random uniform distribution of the assigned entries. Similarly, for the N −n
trainable eigenvalues that enter the definition of matrix Λ. Then, we define a global
model (via Tensorflow [87]) that implements a chain of successive applications of the
linear mapping A. Each linear transfer is followed by the application of the non-
linear filter as specified by equation (7.2), which acts at the nodes location. Matrix
A is written in terms of its spectral decomposition by composing together the three
matrices (Φ)−1, Λ and Φ, as introduced above. The number of iterations is set to k̄,
a parameter supplied as an input. After iteration k̄, we apply one more time matrix
(Φ)−1 to obtain the coefficients c⃗k̄ that enter the definition of the loss function. The
trainable weights of the model are updated according to the gradient descent rule, the
loss function gradients being estimated via a standard backpropagation algorithm.

In the following Section, to challenge the effectiveness of the proposed recipe, we
set to study a simple dataset defined in R2, which bears pedagogical interest. We will
then turn, in a subsequent Section, to examining the ability of the RSN methodologies
to cope with a standard datasets of image.

7.3 Testing RSN: a simple dataset in R2

As mentioned above, we aim at testing the RSN as outlined above against a simple
dataset, created for this specific purpose. The goals are twofolds. On the one side,

7.3. TESTING RSN: A SIMPLE DATASET IN R
2 63

we wish to provide the first consistent implementation of the procedure, by showing
that a dynamical system can be trained which preserves its ability to discern beyond
the horizon of the training (as instead it is the case for conventional recurrent neural
networks). This is an indirect mark of the imposed convergence towards an asymptotic
equilibrium, inherent to the dynamical scheme, which flags the class to be identified.
Then, we shall convincingly demonstrate that classification by RSN amounts to seg-
menting the space of the initial conditions in disconnected domains, each pointing to
a distinct asymptotic direction, within the invariant attracting manifold. Indeed, the
trained map will make a single target mode, representative of the processed class, to
stand out as compared to the other. The degree of alignment as observed empirically
improves with the complexity of the explored dataset, as we shall remark in the fol-
lowing section. A perfect alignment can be forced by means of a suitable non-linearity
that implements a punctual projection along the most represented direction, at final
iteration.

The dataset that we shall here consider as a proof of concept is composed by two
sets of points, laying on the plane. The points falling inside the unitary circle, centred
at the origin, define the first class (displayed in yellow, in Figure 7.1). Those situated
outside the circle and inside a square domain of linear width L =

√
2π, contribute to

the second reservoir of datapoints (shown in blue, in Figure 7.1). The size of the square
has been chosen in such a way that the surface of the two regions where the dataset
insists is equal. The two sets are divided by a non-linear boundary that coincides with
the perimeter of the unitary circle. Our objective is to train a RSN, following the
prescriptions of the preceding Section, so as to associate any given point - randomly
generated to belong to the square domain of width L - to its reference portion, as
introduced above.

Figure 7.1: The dataset used as a validation test for the RSN scheme. Points populate
two different regions, of equal relevance, separated by a sharp non-linear boundary,
which we identify as the unitary circle.

For the sake of definiteness we cast N = 10. Every point of coordinates (x, y) (con-
strained so as to fall inside the square of linear size L) yields an initial condition for the
RSN that we wish at training, i.e. (x⃗(1)) = (x, y, 0, 0, 0, 0, 0, 0, 0, 0). During the train-
ing stage, we generate a sufficiently large reservoir of (M) points, each complemented
with a scalar label that specifies the class, or domain, where the corresponding point

64 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

falls. The first two eigenvalues of Λ are set to unit and the corresponding eigenvectors,
respectively ϕ⃗1 and ϕ⃗2, are fixed and identify randomly selected (linearly independent)
directions in R

10. The eigenvalues λi, as well and the entries of the vectors ϕ⃗i, for
i > 2, contribute to the pool of parameters that one can freely adjust during optimiza-
tion. Moreover, and to test the method in its general formulation, we do not impose a
priori the non-linear function g(·) (the very same function for each node of the RSN).
Rather, we represent g(·) as a two layered neural network, whose parameters are to
be self-consistently adjusted during optimisation. Each of these latter layers is made
of 30 neurons and nodes are entitled with a tanh activation function. We label with
k̄ the number of iterations of the RSN, assumed during training. Recall that we will
also be interested in assessing the behavior of the fully trained systems for k > k̄. In
the following k̄ = 60. The number of epochs is set to 200 and the Early Stopping
technique has been employed.

In Figure 7.2, the test-accuracy and the corresponding loss are plotted for k < k̄
and for k̄ < k < 100. As it can be visually appreciated, the accuracy (and the loss) is
stable for k > k̄, i.e., when extending the RSN beyond the iteration number assumed
for training.

Figure 7.2: Accuracy (in blue) and loss (in red) against the iteration k, for a trained
RSN with k̄ = 60 (vertical dashed line). Data refer to just one realization of the
training procedure.

The trained RSN classifies points (x, y) ∈ R2, provided as an input, by generating
a late time output in R

10 which tentatively aligns along different target directions:
points in the plane contained within the unitary circle with center in the origin, should
predominantly activate the spectral mode ϕ⃗1. In this case, c1 is thus expected to
stand out, as compared to all others coefficients, after sufficiently many iterations. At
variance, points falling outside the unitary circle are dynamically driven towards a final
equilibrium which selectively favours the eigen-direction ϕ⃗2. The coefficient c2 should
therefore prevail over the others. This scenario is confirmed by inspection of Figure
7.3, where c1 and c2 are plotted against the iteration number for data points falling

7.3. TESTING RSN: A SIMPLE DATASET IN R
2 65

respectively inside (top panel) and outside (lower panel) the unitary circle. Different
classes are hence flagging distinct solutions, as stipulated a priori. It is worth recalling
that any direction obtained as a linear combination of ϕ⃗i with i = 1, 2, is also, by
construction, a stationary solution of the RSN. This is why a residual activation of
the other modes - those relative to eigenvalues one but different from that identified
as the target for the class under scrutiny - can in principle manifest when the RSN is
challenged against the test-set. A projection along the most represented eigen-mode
would enforce a perfect alignment along the sought target direction, with no impact
on the performance of the trained device.

Figure 7.3: The evolution of the coefficients c1 (orange) and c2 (green) is plotted for
points of the test set positioned respectively inside (top panel) and outside (lower
panel) the unitary circle. The shadowed region points to the standard deviation of
the collected signal when averaging over the population of supplied input, organized
in groups which reflect their domain of pertinence.

The above analysis carried out for a simple benchmark model allowed us to grasp
some intuition on the decision making scheme as implemented via the dynamical RSN.
Classification is here synonym of convergence towards a specific direction of the at-
tracting manifold. This latter direction is flagged as the destination target of the
dynamics, for a homogeneous ensemble of input items. Different classes are hence
associated by the RSN to the the eigen-directions of A associated to eigenvalues equal
to one. For the case at hand, the separatrix between the domains in R

2 which de-
fines the two classes to be eventually identified matches the unitary circle. To show
that the RSN is able to correctly spot out the non-linear separation between the two
contiguous domain in R2, and so resolve the distinctive features of the dataset under
exam, we consider ⟨ci⟩, the average of the i-th coefficient, across successive phases
of the RSN evolution and for different input choices (x, y) ∈ R

2. More specifically,
⟨ci⟩(x, y) = 1

kF −kI

∑kF
k=kI

(ck)i(x, y), for all specific coefficients i - including those which

66 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

will fade away after a transient - and as function of the departure point. In Figure 7.4
the computed coefficients are displayed in the reference plane (x, y), with an apposite
colorcode and for different choices of (kI , kF). The panels on the top refers to the
initial stages of the evolution (kF = 5, kI = 1): the separation between the two classes
here considered leaves a clear imprint in the distribution of the ⟨ci⟩ (in particular
those with i > 2) across (x, y) (in Figure 7.4 we plot ⟨c6⟩, as an illustrative example
as well as ⟨c⟩ =

(∑10
i=3⟨ci⟩

)
/7). An abrupt transition is indeed observed for ⟨ci⟩, with

i > 2, when crossing the unitary circle, namely the separatrix between the two adjacent
classes that defines our test model. For small kF (see top panels), the aforementioned
coefficients are in fact remarkably different inside and outside the sepratrix. On the
other hand, for large kF , they are spatially uniformly vanishing (see lower panels, re-
ferred to kF = 50, kI = 40). The patterns associated to ⟨c1⟩ and ⟨c2⟩ are less clear,
at short times, but become evidently distinct when the iterations number is made to
increase (see lower panels). Transient modes (those associated to eigenvalues with
magnitude smaller than unit) are employed for an early assessment of the examined
dataset and get progressively disangaged, at later times. The processed information
is in fact passed over the stationary directions, where it is eventually crystallized for
classification purposes. Averaged projection coefficients can be employed to trace out,
in direct space, key distinctive features that form the basis of decision making. It is
here speculated that this is a general attribute of the RSN that can be exported to
other, more complex, settings for an a posteriori understanding of the principles that
guide artificial reasoning. As a side complement, in Figure 7.5 we depict the non-linear
function g(·) self-consistently obtained via the regression neural model accommodated
for in the RSN. In this specific case, it looks like an inverted ReLu (a rectified linear
unit) with an additional offset.

Building on these preliminary observations, we will turn in the next Section to
considering the application of RSN to MNIST dataset.

7.4 Applying RSN to the MNIST dataset
As a further step in the analysis, we apply the RSN to the celebrated and already
mentioned MNIST dataset [30]. The images are to be classified in 10 distinct groups
(the numbers from 0 to 9). Each element of the training set is associated with an
integer label to point to the class to which the selected image belongs to. In the
following we will set to train a RSN made by N = 784 nodes: the nodes that receive
the information as an input are the very same nodes that carry out the classification,
through a dynamical segmentation that originates from the underlying RSN. The
network of excitatory (positive weight) or inhibitory (negative weight) interactions is
shaped by the optimization scheme which seeks at adjusting the non trivial eigenvalues
and eigenvectors of matrix Φ. The first 10 eigenvalues are set to unit, as in the spirit
of the above, and refer to the eigen-directions employed for discrimination. These
latter eigenvectors are a priori fixed and can be engineered so as to return evocative
patterns in the space of the inspected images, as we shall demonstrate in the following.
Further, we assume g(·) = tanh(·), for the sake of simplicity. Summing up, we can
count on a total of N × (N − 10) + (N − 10) adjustable parameters to yield a fully
trained RSN which can efficiently classify MNIST images.

7.4. APPLYING RSN TO THE MNIST DATASET 67

Figure 7.4: The quantities ⟨ci⟩ for i = 1, 2, 6 and ⟨c⟩ are plotted, for different (x, y), i.e
moving on the plane of the initial condition. Top panels refer to kF = 5, kI = 1. Lower
panel to kF = 50, kI = 40. The separatrix between the two considered classes (which
coincides with the unitary circle centered at the origin) is sensed, at short times, by
the transient directions. The projections of the generated output along these latter
directions fade asymptotically away and the existence of the two classes, as well as the
relative domain of definition, leave an imperishable trace in ⟨c1⟩ and ⟨c2⟩.

In Figure 7.6, we challenge the ability of the trained RSN to discern images of the
test set that respectively corresponds to four (top panel) and five (lower panel). In the
former case, as expected, c4 (depicted in orange) sticks out as the only residual coef-
ficients after sufficiently many iterations of the RSN machinery. All other coefficients
(including c5, plotted in green) are eventually bound to almost disappear, thus imply-
ing that all items belonging to the very same reservoir of images align along a specific
direction that can be here traced back to one individual eigen-mode. Remarkably, all
coefficients - except for the one that stands for the selected direction - become rapidly
negligible. The system is hence directed towards the chosen asymptotic state, with-
out forcing the projection. The shadowed regions that are associated to each average
curve refer to the degree of variability inherent to the examined gallery of images. The
lower plot in Figure 7.6 shows the response of the RSN when the images displaying a
number five are read as an input, and the interpretation is in line with the above. In
both cases, the training is performed by arresting the RSN at iteration k̄ = 10: the
outcome is however stably maintained well beyond the training horizon, with a mod-
est, although significative in terms of its philosophical implications, improvements in
terms of confidence of the assessment. When it comes to the overall performance, the
accuracy on the train set is of about 98%, while on the test set the RSN scores 97%,
in line with what usually reported when using conventional approaches to machine
learning. Figure 7.7 illustrates the progressive convergence of the scheme, for two dis-
tinct exemplaries of input images. The RSN converges asymptotically to the deputed
solutions, which respectively correspond to eigenvectors ϕ⃗4 (left) and ϕ⃗5 (right). The
entries of these latter eigenvectors are shaped so as to return a stylised version of the
digits that define the categories in which the dataset is partitioned. The outcome of

68 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

Figure 7.5: The non-linear function g(x) as obtained from the regression neural model
that is associated to each computing neuron of the RSN.

the analysis is hence a stationary stable image, the plastic modulation of the input
that is dynamically steered towards a final destination shaped at will by the opera-
tor. It is worth stressing that the performances of the method are not affected by the
specificity of the target eigenvectors. Stated differently there is no need for them to
align with the category that we aim at identifying. Any random eigenvectors would
equivalently serve the scope.

7.4.1 Comparison with Recurrent Network
As mentioned earlier, a specific advantage of the RSN model is the ability to keep
memory of the final state for k > k̄. This is a byproduct of the fact that, for sufficiently
large times, the non-linear activation terms are virtually silenced and the update rule
converges to a simple linear scheme. The dynamics aligns by construction towards
stationary directions of the linear mapping, and this makes it possible to operate the
RSN for any k larger than the training horizon k̄. As a benchmark model, we consider
a standard Recurrent Neural Network (RNN) trained in direct space [88]–[90]. The
RNN in its simplest version is conceived as a single transfer layer between two adjacent
stacks made of N = 784 nodes, iterated k times (recognition is performed on the first
10 nodes of the final layer). The number of trainable parameters is thus N × N ,
comparable to the number of parameters adjusted by the RSN model. In Figure 7.8,
we compare the accuracy measured for the MNIST dataset, for both the RSN and the
RNN trained upon completion of iteration k̄. The accuracy recorded for the RSN (red
symbols) converges rapidly and the achieved score is stably maintained for k > k̄ (here
k̄ = 5). Conversely, the RNN (blue symbols) returns its largest accuracy (basically
identically to that obtained with the RSN) only for k = k̄. By taking just one step
further (i.e. adding one additional layer to the RNN) is enough to lose predictive
power.

As also shown for the case of the simple model discussed in the preceding session,

7.4. APPLYING RSN TO THE MNIST DATASET 69

Figure 7.6: Top panel: the full set of handwritten four available in the test set is
provided as an input to the trained RSN and the response monitored in terms of the
obtained ci, with i = 1, ..., 10. As expected, c4 (orange) emerges and converges to unit,
for k > 10 (k̄ = 10 being the maximum iteration number set during training). All other
coefficients, including c5 (green) disappear. Lower panel: the situation is analogous
to that analyzed in the top panel with the notable exception that now handwritten
five are analyzed by the RSN. Hence, c5 (green) converges to unit while, ci with i ̸= 5
(including c4, in orange) fade away. In both cases, the shadowed regions reflect the
variability of the images, within any given class of the test set.

there is a progressive tendency to crystallize the final output along the eigen-directions,
where recognition is eventually performed. This observation can be made quantitative
- see Figure 7.9 - by monitoring the evolution of the coefficients ci, as computed from
the state vector across successive iterations. In particular, three sets of ci are identified:
each group clusters together the coefficients associated to eigen-directions relative to
eigenvalues that approximately share the same magnitude (a set relative to small
eigenvalues, a set relative to larger eigenvalues and the final set of eigenvalues equal
to one, i.e., those associated to the eigen-directions where recognition takes place).
We evaluate the three sets of coefficients for each image in the test set displaying a
four and a five and compute the average distance (square norm) between each set
of coefficients, against k, the iteration of the RSN. The coefficients stemming from
the transient modes single out the differences between the analyzed samples, before

70 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

Figure 7.7: In each row we plot the activity on each node of the RSN, at different iter-
ations and for two input numbers that belong to two distinct categories, respectively a
four (left) and a five (right), see top panels. After a few iterations the RSN converges
asymptotically to the eigenvectors ϕ⃗4 (left) and ϕ⃗5 (right)) that are triggered by the
provided input. Note that the asymptotic solutions can be shaped to manifest as a
stylized version of the number to be classified. The more yellow the pixels, the more
intense the activity on the associated nodes.

converging to zero when the stationary eigen-modes, inactive at first, get eventually
approached

In the next Section we will turn to considering a variant of the RSN which is
constructed to yield sequential handling of different datasets, with a long term memory
effect. To demonstrate our findings, and as a preliminary proof of concept, we will
split MNIST into two distinct, though perfectly balanced, datasets, the first formed by
digits from zero to four, and the other populated with the remaining elements, ranging
from five to nine.

7.5 Sequential Learning
In this Section we will discuss a generalization of the RNS which allows to keep track,
to some extent, of a learned task, while dealing with an independent session of training,

7.5. SEQUENTIAL LEARNING 71

Figure 7.8: Evolution of the accuracy as computed on the test set of the MNIST
dataset. Red symbols stand for a RSN model, trained at k̄ = 5 (black dashed line);
blue symbols refer to a RNN, with k̄ + 1 consecutive layers, i.e. with k̄ nested appli-
cations of the same N ×N transfer operator. The RSN quickly converges to the best
accuracy, which stays constant for k > k̄. At variance, the RNN is capable to correctly
discriminating the items provided as input entries only punctually, at k̄ = 5. It loses
any predictive power for k > k̄.

on a distinct dataset. To elaborate along these lines, and with the sole aim of providing
a preliminary proof of concept of the basic implementation, we shall split the MNIST
into two distinct, though balanced datasets. The first will be composed by handwritten
digits ranging from zero to four. The remaining images, displaying numbers from five
to nine, constitute the second reservoir. We will then train the RSN to classify the
images belonging to the first dataset according to the recipe previously presented,
namely we fix 5 eigenvalues to 1 and the associated eigenvectors to random and linearly
independent directions. Then, the obtained RSN undergoes a second round of training
focusing on the images that define the complementary dataset. By assuming sets of
quasi-orthogonal2 eigenvectors with associated memory kernels, yields a fully coupled
network, the backbone of the RSN, which is capable to efficiently handle novel tasks
while preserving notion of past knowledge. This is at variance of conventional schemes,
based on standard deep learning architectures or RNN, which tend to eradicate former
imprints by overwriting existing memory slots, as we shall hereafter demonstrate [81]–
[83].

7.5.1 Quasi-Orthogonal Φ
MNIST images are read as an input by a layer made of N0 = 28×28. This information
is passed to the N nodes of the RSN via an all-to-all linear transformation encoded by

2As we will explain further this terms means that the off diagonal elements of the matrix ΦT Φ is
a percent of the main diagonal elements

72 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

Figure 7.9: Euclidean distance (normalized to its maximum value) between the three
sets of coefficients as described in the main body of the Chapter and respectively
referred to fours and fives, against the iteration index k. The orange curve refers
to (10) coefficients, associated to modes with small magnitude, as obtained after the
training. The green curve is computed by considering the projections along (10) modes
with eigenvalues bearing larger absolute values, though smaller than one. The curve
depicted in blue refers to the values of the coefficients of the 10 eigen-directions relative
to eigenvalues one, where classification is eventually performed. The peak travels
horizontally suggesting that the information crawls from the transient towards the
stationary modes. The fact that the orange curve seems more persistent that the
green at larger k is just a consequence of the imposed normalization. The vertical
dashed line is set at k̄.

a N0 ×N matrix w0, see Figure 7.10. Here, w0 is fixed. As such, the entries of w0 do
not take active part to the optimization process which is instead focused on the RSN
component of the dynamics. Further, N (assumed even, with no loss of generality) can
be larger of smaller than N0 without any limitation whatsoever. We then postulate
the following form for matrix Φ:

Φ =
(

Φ11 ϵΦ12
ϵΦ21 Φ22

)
(7.3)

The four blocks Φij, with i, j = 1, 2 have dimensions N/2 ×N/2, and comparable
norms. The parameter ϵ sets the importance of the off-diagonal blocks as compared
to those that define the block diagonal terms. In the limiting case ϵ = 0 the matrix
of the eigenvectors is block diagonal. The eigenvectors are hence organized into two
distinct ensemble, mutually orthogonal and the corresponding network splits into two
disconnected parts. When ϵ ̸= 0 instead the two subparts of the ensuing network get
mutually entangled and virtually indistinguishable for a sufficiently large magnitude
of the coupling parameter ϵ. For ϵ ̸= 0, though relatively small as we shall assume
in the following, the eigenvectors form two quasi-orthogonal blocks. Focus now on

7.5. SEQUENTIAL LEARNING 73

Figure 7.10: A schematic layout of the architecture employed to handle sequential
learning. The information stemming from the image presented as an input are passed
to the RSN, and therein iteratively elaborated until convergence to the deputed sta-
tionary solution (here exemplified as a stylized version of the input number).

the diagonal matrix of the eigenvalues. These are also split into two groups of identi-
cal cardinality, which will be eventually structured as follows

(
1, 1, 1, 1, 1, λ6, ..., λN/2

)
and

(
1, 1, 1, 1, 1, λN/2+6, ..., λN

)
. Trivial eigenvalues are associated to specific eigen-

directions, the target of the RSN, which stay put across optimization. In practice,
each eigenvalue equal to unit points to a specific memory slot which can be filled and,
at least partially, preserved, across multiple learning stages. Starting from this setting
we proceed as follows:

• We set at first to zero the first five eigenvalues belonging to the second group,
as identified above. In doing so, we seek at protecting a specific set of memory
slots, which should not be contaminated during the first round of training

• We then train the RSN to recognize and correctly classify the first reservoir made
of handwritten digits from zero to four, as outlined above. During this operation,
the optimization acts on λ6...λN/2 and on (the full set or a limited sub-portion
of) the entries of the eigenvectors associated to these latter eigenvalues. Here,
ϵ ̸= 0, which in turn implies that by modulating the entries of the eigenvectors
belonging to the first of the two sets, yields an indirect signature on all the
inter-nodes weights in direct space. At the end of the optimization, the RSN is
capable to correctly classifying analogous images belonging to the test set.

• We then turn to the second round of training by providing to the above RSN
(namely, the RSN that has been trained to cope with the first dataset) the ele-
ments belonging to the second reservoir of images, those depicting digits ranging
from five to nine. The second set of memory slots is turned on, by setting to unit
the eigenvalues initialized to be zero: the corresponding eigenvectors define the
asymptotic solutions that the trained system should eventually approach. The
eigenvalues that identify the target eigen-directions from the preceding training
are instead set to zero.

74 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

After completion of the optimization, one can check the performance of the RSN,
which has been trained across two successive stages, referred to two distinct datasets.
To this end we turn on all possible memory slots (trained as follows the above, two
steps, procedure): in practice we set to one the eigenvalues relative to the (10) eigen-
directions where information is asymptotically conveyed. In Figure 7.11 (top panel),
the performance of the RSN, as measured by the reported accuracy, is tested against
the epochs of the optimization scheme. The optimization is carried out by assuming
k̄ = 10 in the RSN, and assuming 100 of epochs for each of the two nested stages of
learning. Already after a few epochs the RSN returns a very high accuracy against
images of the test set which display digits ranging from zero to four. When the RSN
gets also trained on the complementary reservoir of handwritten digits, as follows the
sequential scheme highlighted above, it quickly manages to handle the novel task with
an adequate success rate, while, at the same time, manifesting a relatively modest drop
in performance as referred to the former. Notice that the images, differently from other
methods, are supplied as an input with no extra markings, or alert flags, to point to the
relevant group of destination patterns. To grasp the interest of the proposed scheme
we report in Figure 7.11 the results obtained for a RNN with a number of layers equal
to k̄+ 1. As immediately confirmed by visual inspection, any knowledge coming from
the first round of training is - almost instantaneously - lost, when the network becomes
acquainted with the second task. Similar conclusions (data not shown) are obtained
when dealing with a deep neural network, with a standard feedforward architecture
[81]–[83]. Summing up, working with a quasi-orthogonal basis, with a set of (almost)
mutually exclusive blocks equal to the number of tasks to be eventually handled,
yields a RSN which can be sequentially trained, while keeping memory of the previous
training sessions. A drop in the recorded accuracy is however found which could be
possibly mitigated for increasing RSN size and/or addressing ad hoc solutions that
require further investigations, beyond the scope of a mere proof of concept. It is also
remarkable that the accuracy displayed against the first dataset, and after the initial
sudden jump that follows the second training round, ramps again, epoch after epoch,
to align to that refereed to the second dataset.

7.6. CONCLUSIONS 75

Figure 7.11: Top panel: accuracy against the epochs number for the RSN. The first
100 epochs refer to the RSN confronted with the task of classifying the images of the
dataset made of digits from zero to four. Then, the second range of epochs, refers to
the RSN while learning to classify numbers from five to nine, after having completed
the first stage of training. The accuracy drops but the RSN keeps still memory of
the first task, while learning to cope with the second with an almost identical score
of reported success. In this specific example, the elements of the off diagonal blocks
Φ12 and Φ21 are kept fixed, during optimization. Lower panel: sequential learning is
ineffective with usual RNN (and standard feedforward deep neural networks, data not
shown), since any form of pre-installed knowledge gets washed out during a subsequent,
independent, training stage. Here k̄ = 10, ϵ = 0.25 and N = 1000.

7.6 Conclusions
In this Chapter we have introduced and tested a novel approach to automated learning,
which is rooted in reciprocal space and exploits foundational elements of the theory of
discrete dynamical systems. The information under scrutiny is read by a collection of
nodes, typically (but not necessarily) the pixels of the image provided as an entry, and
further processed by the very same nodes, as follows an iterative update scheme which
alternates linear mapping and non-linear filters. Depending on the characteristics of
the signal provided as an input, the ensuing dynamics is steered (as a byproduct of the
training) towards different asymptotic solutions for the subsequent recognition to take
eventually place. The convergence to the asymptotic state is stable by construction,

76 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

and the alignment along the selected direction that we demonstrate empirically for a
classical benchmark model is guaranteed also when pushing the iterations beyond the
limited horizon of the optimization. We have referred to the proposed methodology
as to Recurrent Spectral Network RSN, to signify the dynamical nature of the process
which is formulated in reciprocal domain.

Neural networks are sometimes called black boxes because it is not immediate to
understand how or why they work as well as they do. At variance, the operational mode
of a RSN is absolutely transparent and, as such, it could help unveiling the blanked of
mystery that surrounds deep learning applications. Indeed, the RSN asymptotically
aligns along different directions within the attracting manifold of an underlying -
linear - discrete dynamical system. Learning to classify within the RSN amounts to
partitioning the high dimensional input space into separated domains, each pointing
to a specific stationary eigen-mode of the underlying dynamical system, in its linear
approximation. Non-linearities act over a transient and fades eventually away, when
the non trivial classification problem has been de facto turned into a linear one.

A variant of the RSN has been also considered which accounts for quasi-orthogonal
eigen-directions to carry out a sequential handling of different datasets. In practice, a
RSN can be assembled which keeps memory of an initial task, while being subject to
another session of training on an independent dataset.

Several directions for further investigations can be outlined. One interesting pos-
sibility is to modify the loss function by forcing the contribution at iteration k to be
smaller than that at iteration k + 1. Preliminary checks shows that the RSN tunes
self-consistently its convergence rate, which is hence not a priori imposed as it is here
done. It is also tempting to speculate that proceeding along these lines, one could
eventually generate a RSN which is capable of improving its accuracy score by iterat-
ing further beyond the specific window of training. Another possibility is to introduce
apposite frustration mechanisms, which tend to disfavour the accidental convergence
towards directions that have been already exploited, when operating with the sequen-
tial learning protocol. Also, it would be extremely important to devise other possible
strategies, alternative to the one here employed, to structure the eigenvectors matrix
for multiple datasets handling.

7.7 From low to high order
In this Chapter, our focus revolved around the Recurrent Spectral Network (RSN), a
novel strategy in automated classification. There, the spectrum of the adjacency ma-
trix of a network guides the system towards distinct asymptotic stable states whose
existence has been engraved in the spectral properties of the adjacency matrix, empha-
sizing the profound role spectral decomposition plays in defining the activity evolution
within a processing network.
As we proceed into the subsequent Chapter, our spectral lens shifts: now focusing
on the spectrum of high-order differential operators, specifically, the Dirac operator.
As we will discover, indeed, it is possible to define signals not only on the nodes of
a network but also in the edges, faces and so on, resulting in a fully alive discrete
structure. Those higher order topological signals, physically interpreted as fluxes or
circulations, can be coupled and the resulting dynamics is deeply dependent on the

7.7. FROM LOW TO HIGH ORDER 77

spectral structure of the operators used at this purpose. Indeed the Dirac operator
allows to let signals defined on structures of different dimension to naturally interact,
while the adjacency matrix, or its generalization to higher-order structures, does not
immediately posses this property.
While the adjacency matrix spectrum helped us in understanding boundaries and
memory kernels in the RSN, the spectrum of high-order differential operators, that
will be used as coupling, extends our comprehension of how topological signals inter-
act and evolve. As we are about to see, we will be able to predict the emergent stable
state of a dynamical system that couples node defined signals with edge defined fluxes.
Again the spectral properties of the linear operators—whether governing discrete or
continuous dynamics—critically shape the eventual states making them pivotal quan-
tities for an in-depth comprehension of the system.

78 CHAPTER 7. RECURRENT SPECTRAL NETWORKS

Chapter 8

Topological Signals

Simplicial complexes are higher-order networks that come with extremely rich and
useful structures inherited from discrete topology [91]–[93]. Roughly speaking, a sim-
plicial complex is a topological structure that, besides nodes and links, also contains
triangles, i.e., allowing for modelling of three-body interactions, tetrahedra, i.e., four-
body interactions, and so on. One can thus consider topological signals defined on
nodes and links, but also on higher-order structures [91]. Examples of topological
signals are flows associated to links such as synaptic signals between neurons [94],
edge signals in large scale brain networks [95], [96], and flows occurring in biological
transportation networks [97], [98], in power-grids [99] or in traffic on a road network
[100]–[103]. Even higher-order signals, associated to faces, like fluxes, can be taken
into account. Moreover edge signals might also represent a number of climate data
such as currents in the ocean and velocity of wind that can be projected on a suit-
able triangulation of the Earth surface [102], [103]. Topological signals can undergo
higher-order simplicial synchronization [104]–[110], and higher-order diffusion [106],
[111], [112]. Furthermore datasets of topological signals can be treated with topolog-
ical signal processing [100], [103], [113] and with topological machine learning tools
[114]–[117]. Note that this increasing interest in topological signals occurs while the
entire field of dynamical processes on simplicial complexes is bursting with significant
research activity [118]–[128].

Topological signals of a given dimension can be coupled by the higher-order Lapla-
cians also called the Hodge-Laplacians [91], [129], [130]. However the Dirac operator
[131]–[134] is necessary to couple topological signals of different dimension such as
interacting signals defined on nodes and links of a network. Interestingly, the Dirac
synchronization which stems from the adoption of the Dirac operator to couple topo-
logical signals of different dimension, provides a topological and local pathway towards
explosive synchronization and rhythmic phases [108].

The Chapter is structured as follows. In the first section we will present the
mathematical framework of simplicial complexes and we will emphasize their difference
with respect to node signals. We will then introduce the concepts proper of algebraic
topology such as Boundary and Coboundary operators, preparing the ground for the
definition of the Hodge Laplacian and the Dirac operator: the two most common linear
couplings in this filed.

79

80 CHAPTER 8. TOPOLOGICAL SIGNALS

8.1 Why simplicial complexes

While a comprehensive analysis of the many and different kinds of higher-order inter-
action is beyond the scope of this thesis, we will detail the assumptions underpinning
the use of a simplicial complex and we will differentiate them with other types of pop-
ular high-order interaction framework such as hypergraphs.
For the sake of pedagogy, we start by considering the adjacency matrix. In the study
of network, the adjacency matrix serves as a critical tool for describing the interac-
tions between arbitrary agents, represented as nodes in a network. These interactions
can signify various physical quantities, such as the flow of vehicles or pedestrians on a
street, or electrical signals between neurons. Additionally, these matrices can encap-
sulate more abstract interactions like friendship or animosity between two individuals.
At its most basic level, an adjacency matrix can simply denote the presence or absence
of an interaction between nodes. In such cases, the matrix is commonly referred to as a
”topological adjacency matrix” or a ”binarized adjacency matrix,” where the elements
are restricted to binary values of 1 or 0. These different levels of representation offer a
versatile framework for investigating diverse systems, from physical to social, through
the lens of network theory. In subsequent sections, we will explore how simplicial
complexes enable us to generalize both relational and spatial concepts. Specifically,
we can broaden the notion of relationships by introducing multi-body relations among
a subset of nodes using simplicial complexes. This approach requires that the presence
of any higher-order relation also necessitates the presence of every lower-order relation.
To illustrate this concept, consider a three-body relation represented by a two-dimensional
simplex. This means not only to deal with three entities (say ABC) related altogether,
but also every pairwise relation (AB, BC, and AC) must also exist. This contrasts with
hypergraphs where establishing a relation between ABC using a three-dimensional hy-
pernode doesn’t necessarily imply lower-order binary relationships.
Bacause the standard definition of adjacency matrices on network lack the mathemat-
ical tools to allow for such for such definitions the use of simplicial complexes or other
high order structures is mandatory to provide a robust framework.
The key idea is to extend the notion of the topological adjacency matrix, defining an
equivalent concept that will enable us not only to correctly describe the discrete space
that its hosting whatever process we are dealing with, but also to naturally insert the
notion of orientation. This concept, deeply rooted to the concept of boundary, will
enable us to leverage differential geometry and analysis tools in this context. This
idea of interlinking signals defined on various spatial dimensions might initially seem
unconventional, yet it mirrors concepts familiar in scientific endeavours. Consider the
continuity equation, ∂tρ + ∇ · J⃗ = 0. Here, a scalar quantity (density) interacts with
a vector quantity (current) through the differential operator divergence. Think of the
density as a node signal, defined on a 0-dimensional object, and the current as a link
signal, defined on a 1-dimensional pathway. In this way the scalar or vectorial quan-
tities defined on continuous space can be straightforwardly translated in a discrete
domain, enabling de facto differential calculus on graphs.
The initial sections of this Chapter aim to adapt equations like the above for discrete
spaces, such as networks. As we are about to discover, shifting the focus toward the
spectral properties of the differential operator, which becomes matrices in discrete
space, greatly simplifies this analysis.

8.2. GEOMETRIC VIEWPOINT 81

8.2 Geometric viewpoint
An n-dimensional simplex is a set of n+ 1 nodes describing a higher-order interaction
among (n+1) agents or a (n+1) dimensional discrete space. In particular a 0-simplex
is a node, 1-simplex is a link, a 2-simplex is a triangle and so on. The faces of a simplex
are the simplices that can be constructed starting from a proper subset of its nodes.
For instance the faces of a 2-simplex (i.e., a triangle) are 3 nodes (0-simplices) and
3 links (1-simplices). To simplify the introduction we will start with a geometrical
approach, as it is much easier to tackle this subject starting from this viewpoint. In
general a simplex σn can be geometrically defined as the subset of Rn+1 such that

σn =
{

(t0, . . . , tn) ∈ Rn+1 |
n∑

i=0
ti = 1 and ti ≥ 0 for i = 0, . . . , n

}
(8.1)

In this way we get the 0 dimensional 0-simplex: the ’point’, 1 dimensional 1-simplex,
the ’segment’, 2 dimensional 2-simplex, the ’triangle’, 3 dimensional 3-simplex, the
’tetrahedron’ and so on. The simplices constitute the building blocks of simplicial
complexes, i.e. ,a discrete manifold. In fact a d-dimensional simplicial complex S is
a collection of simplices whose dimension n is smaller or equal to d. The intuitive
idea is that we can construct a discrete structure whose topology is well defined by
glueing together any kind of geometric simplex via its faces. For example we can glue
together 2 triangles attaching them via its edges but also via two nodes. This naive
way of constructing the simplicial complex is accompanied by a mathematical propri-
ety: d-dimensional simplicial complex must be closed under the inclusion of the faces
of each simplex. In other words, if a triangle is included in the simplicial complex, its
nodes and all its links are included in the simplicial complex as well. Moreover if two
triangles are glued together via their link also their nodes will be attached. This re-
quirement is central to the understanding of simplicial complexes for two key reasons.
First, it solidifies the object as a proper topological ’space’ by providing a framework
to discuss boundaries. In this context, statements like ’these links form the boundary
of this triangle’ become meaningful. Second, the interpretation of higher-order inter-
actions that we introduced in the previous section gains validity. Specifically, if a set
of three people is considered as higher-order nucleus of interaction, it logically implies
that the individual pairs within the set are also interacting.
It’s important to note that to properly distinguish a link from a pair of nodes, the link
must have an orientation. While this orientation is arbitrary, it serves as an essential
aspect of bookkeeping. In a naive sense, a one-dimensional object like a link can sup-
port a vector or a flux that is directed from one node to another. This in turn defines
what can be considered a ’positive’ direction. Referencing to Figure 8.1, the link [1, 2]
assumes a positive orientation when going from node 1 to 2. This ensures that it is a
higher-order object with respect to the node (which does not have enough ’space for
orientation’). The same idea applies to higher order objects such as the triangle. The
latter, should be capable of hosting a face-flux or, equivalently, its boundary should
be capable of hosting a circulating closed flux.
Therefore, the triangle needs an orientation that is, as in Calculus curses, the orienta-
tion of its area in order to be ontologically different from three links. As a pedagogical
example we shall refer to Figure 8.1: we could assign the orientation to the triangle
[1, 2, 3] by saying that, indeed, the right hand rule is applied to the path 1 → 2 → 3,

82 CHAPTER 8. TOPOLOGICAL SIGNALS

as we have written in square brackets. Then, with the right hand rule, this im-
plies that the ’entering the plane’ verse is positive. Equivalently we could have said
that the triangle is defined as the 2 simplex that has the following closed boundary:
[[1, 2], [2, 3], [3, 1]].
There are basically three ways of operatively define the simplicial complex:

• Relational: Every set of related nodes is listed as an ordered sequence, usually
denoted by using square brakets, remembering that any high order relations
implies all the lower order ones.

• Geometric bottom up: The discrete manifold is constructed from the lower di-
mensional entities to the higher dimensional ones. Then the lower entities are
labelled and an orientation is induced in all the higher dimensional ones.

• Geometric top down: The discrete manifold is constructed from the upper di-
mensional entities to the higher dimensional ones. Then the upper entities are
labelled and an orientation is induced in all the lower dimensional ones thanks
to the action of the boundary operator.

In the following of this thesis we will consider the geometric approach. As we will see,
the two approaches (bottom up and top down) comes with their own advantages but
are, of course, both equally valid. Crucially, those concepts are intertwined with the
definition of the boundary of a simplex that, for the moment, has been only naively
introduced; a formal definition will be presented in the next section.

8.3 Algebraic Topology, an overview

The structure of simplicial complexes can be investigated using methods coming from
algebraic topology. Indeed, the concept of gluing together the pieces of space, as
defined in Equation (8.1), can be further abstracted. The properties of the space we
construct in this manner can be represented without needing to remember the entire
set of points comprising the triangles, or the links that make up the discrete manifold.
Instead, it is sufficient to remember the nature of the simplices that we are gluing
together. For example, a triangle can be represented as a tuple of numbers, with a
triplet corresponding to a specific triangle, and so forth. In this way, as we will see,
all the relevant information regarding the structure we have conceptualized by gluing
together geometric simplices and their orientations can be deduced.
In algebraic topology, each simplex σ = [i0, i1, . . . , in] is given an orientation (typically
induced by the node labels) obeying

[i0, i1, . . . , in] = (−1)σ(π)
[
iπ(0), iπ(1), . . . , iπ(n)

]
, (8.2)

where π() is any permutation of the indexes and σ() its parity. This is basically an
extension of the naive definition o the triangle [1, 2, 3].

8.3. ALGEBRAIC TOPOLOGY, AN OVERVIEW 83

3

1

4 2

5

3

1

4 2

5a) b) c)

3

1

4 2

5

Figure 8.1: Panel a) shows a simplicial complex on dimension 2, with simplicial ori-
entation induced by a labelling of the nodes. The boundary of the 2-simplex [1, 2, 3]
highlighted in panel Panel b) is shown in panel c)

Let us indicate with Nn = |Sn| the number of n-dimensional simplices present in the
considered simplicial complex. In algebraic topology the simplices σ(m)

n of dimension n
of a simplicial complex define the basis of a vector space Cn of n-chains. Therefore a
n-chain c ∈ Cn is a finite linear combination of the n-simplices σ(m)

n with 1 ≤ m ≤ Nn

with coefficients cm

c =
Nn∑

m=1
cmσ

(m)
n . (8.3)

A more general structure retaining the algebraic richness of simplicial complexes,
is given by cell complexes [135]–[139]. The latter differ from simplicial complexes
because they are obtained by gluing cells, (i.e., regular polytopes) along their faces. In
particular 0-cells are nodes, 1-cells links, while 2-cells are generic polygons, and 3-cells
are the Platonic polytopes, however nothing changes in their definition with respect to
simplicial complexes. Indeed, every aspect of the geometric structure will be encoded
in the so called boundary operator we are about to define.

8.3.1 Boundary Operator
The boundary of a given simplex (or of a chain) can be rigorously defined and com-
puted. Remarkably, the boundary can be obtained from a chain by applying the
boundary operator ∂n : Cn → Cn−1. The boundary operator is linear, therefore can
be completely defined by providing its action on the basis elements of the chain space
σ(i)

n = [i0, . . . , in], i.e., the n-simplices, hence

∂n[i0, . . . , in] =
n∑

p=0
(−1)p[i0, . . . , ı̂p, . . . , in] , (8.4)

where the notation ı̂p stands for the removal of the index ip from the n-simplex,
resulting thus in a (n−1)-simplex. A fundamental propriety of the boundary operator,
which is coherent with the common knowledge of the boundary of a physical object,
is that the boundary of the boundary is closed, or, stated mathematically:

∂n−1∂n = 0 (8.5)

This propriety is at the core of algebraic topology and, as can be seen in [130], implies
the full set of spectral proprieties and decomposition we are about to show in the

84 CHAPTER 8. TOPOLOGICAL SIGNALS

following section.
The action of the boundary operator is illustrated in Fig. 8.1 where the boundary of
the [1, 2, 3] 2-simplex (panel b) is shown (panel c). This boundary is nothing but the
1-chain [1, 2] + [2, 3] − [1, 3].

The boundary matrix Bn is the matrix whose elements are obtained by the action
of the boundary operator on the basis elements. The set of all the boundary matrices
Bn with 0 ≤ n ≤ d of a simplicial complex fully encodes the topology of the simplicial
complex. The boundary matrix Bn is a Nn−1 × Nn rectangular matrix of elements
[Bn]σ,σ′ = +1 if σ is a (n − 1)-dimensional face of the n simplex σ with coherent
orientation, [Bn]σ,σ′ = −1 if the orientation is not coherent, and [Bn]σ,σ′ = 0 if σ is not
a face of σ′. In the particular case of B1, we have for instance

[B1]iℓ =

1 if ℓ = [j, i] and j < i,

−1 if ℓ = [i, j] and i < j,
0 otherwise

(8.6)

once we assume the orientation to be induced by the nodes labels.
The structure of a simplicial complex is completely determined once one defines the

set of its oriented simplices and the inclusion relations existing between each simplex
and its subsets: e.g., two simplices of order k, σ(1)

k and σ
(2)
k are lower adjacent if they

have a common face of order n − 1; they are upper adjacent if both are faces of a
simplex of dimension k + 1. This information together with the information about
their relative orientation can be encoded into the incidence matrices Bk, k = 1, . . . , d.

Bn(i, j) =

1 if σ(i)

n−1 ∼ σ
(j)
k

−1 if σ(i)
n−1 ̸∼ σ

(j)
k

0 otherwise
, (8.7)

Where ∼ stands for equally oriented and ̸∼ for the opposite orientation. Of course
we imply that σ(i)

n−1 ∈ σ
(j)
k , namely, the lower dimensional simplex is included in the

higher dimensional one that we are each time considering.
The matrix B1 and B2 of the simplicial complex shown in Fig. 8.1 are given by

B1 =

[1, 2] [1, 3] [1, 4] [1, 5] [2, 3] [3, 4] [3, 5]

[1] −1 −1 −1 −1 0 0 0
[2] 1 0 0 0 −1 0 0
[3] 0 1 0 0 1 −1 −1
[4] 0 0 1 0 0 1 0
[5] 0 0 0 1 0 0 1

(8.8)

and

8.3. ALGEBRAIC TOPOLOGY, AN OVERVIEW 85

B2 =

[1, 2, 3]

[1,2] 1
[1,3] −1
[1,4] 0
[1,5] 0
[2,3] 1
[3,4] 0
[3,5] 0

(8.9)

Change of basis

The matrix representation of the boundary operator provides a way to highlight an
important fact. When defining the simplicial complex via the top-down approach, the
action of the boundary operator induces a basis for the lower-order simplices. This in
turn implies that the orientation of these lower-order simplices (positive or negative)
is inherited from the higher-order ones. Once this basis is established, one is free to
change the basis of either the lower or higher-order simplices, such as by flipping the
orientation of a link. Such changes require multiplying the corresponding column or
row of the boundary operator matrix by −1. While this approach is valid, one might
instead opt for a bottom-up strategy.
In the bottom-up approach, extra care is needed to ensure that the higher-order sim-
plices are defined with proper closed boundaries, as mentioned earlier. Take, for
example, Figure 8.1. Here, the triangle could be defined as [[1, 2], [2, 3], [3, 1]], which
means that the boundary operator B2 will have only positive entries. The legitimacy
of this definition can be confirmed by verifying that the equation B1 B2 = 0 holds
true. This equation is only satisfied if the boundary in question is properly closed (its
boundary is zero).

8.3.2 Topological Signals
We shall now define the generalization of the node signals, namely the topological
signals, functions defined on the links, faces and so on. A k-dimensional topological
signal x is a k-dimensional cochain x ∈ Ck : Ck → Rd, i.e., a linear function that
associates to every k-chain of the simplicial complex a value in Rd; in the following,
for pedagogical reasons, we shall set d = 1. Once we have a basis of the k-chains (for
example the one induced by the boundary operator or the one we have chosen) the
cochain can be expressed as a vector x of elements

xi = x(σ(i)
k),∀σ(i)

k ∈ Sk (8.10)

Note that thanks to the linearity of the cochain x we always have x(σ(i)
k) = −x(−σ(i)

k)
namely, by inverting the orientation of the simplex, the cochain should also change
sign. Let us consider a cochain x and a function F that associated to x a new cochain
denoted by F(x). Based on the above, the latter is solely characterized by its values
on σ

(i)
k , namely its “components”, F(x) = (f1(x), . . . , fNk

(x)). Let us finally assume
each component to act component-wise, namely fi(x) = fi(xi) for all i. Being x and

86 CHAPTER 8. TOPOLOGICAL SIGNALS

F(x) cochains they should be invariant with respect to the change of orientation of
σ

(i)
k , namely

fi(xi) = −fi(−xi) .

We now want to study the evolution of the topological signals by considering dy-
namical equations for the vector x. Exactly in the same way as in conventional node
dynamics we can define the uncoupled dynamics of a topological signal as

dxi

dt
= fi(xi), (8.11)

where fi : R → R is a nonlinear function. Let us observe that we could also consider
the case fi : Rd → Rd but in this introductory part we will restrict to d = 1 and
fi = f . Requiring the invariance of this equation under change of orientation of the
simplex i, imposes that the function f(x) must be odd. Indeed if the orientation of
the simplex σ(k)

i is reversed we have xi → −xi and the dynamical Eq.(8.11) becomes

−dxi

dt
= f(−xi). (8.12)

Therefore to ensure that the dynamical equation (8.11) obeys the necessary invariance
conditions for describing the dynamics of topological signals of dimension k > 0, we
need to require f(−xi) = −f(xi), hence that f(xi) is an odd function. Note that
requiring odd nonlinear functions f(xi) is a necessary condition only for higher-order
topological signals of dimension k > 0. Indeed since nodes do not have an orientation
this requirement is not necessary for treating topological signals defined on nodes.
Therefore this is an important difference with the dynamics defined exclusively on
nodes. The reader should not be intimidated by this constrain as it is a consequence of
the fact that higher-order signals are vector-like quantities and therefore their meaning
is given once a basis is fixed. A 1-topological signal is carries the information of
directionality from one node to another one and changing (flipping) the orientation of
the links (by flipping the labels of the respective nodes) should consequently impact the
sign in front of the corresponding coefficient. Such behaviour should, clearly, be taken
into account and preserved once we act on such signals with a non linear function.

8.3.3 Coboundary operator

We can now define the coboundary operator δk : Ck → Ck+1 that associates to every
k-cochain of the simplicial complex (k + 1)-cochain

δkx = x ◦ ∂k+1. (8.13)

Therefore we obtain

(δkx) [i0, i1, . . . , ik+1] =
k+1∑
p=0

(−1)px
([
i0, i1, . . . , ip−1, îp, ip+1 . . . ik+1

])
(8.14)

8.3. ALGEBRAIC TOPOLOGY, AN OVERVIEW 87

It follows that if g ∈ Ck+1 : g = δkx then g = B⊤
k+1 x 1.

Connection between boundary and coboundary

We shall start defining a scalar product between k-cochains as:

⟨x, x⟩ = x⊤x (8.17)

that can be rewritten as follows by using the coefficients of the cochain

⟨x, x⟩ =
∑

r∈Sk

x2
r (8.18)

Once we have defined the norm on Ck we can define the adjoint of the Coboundary
with respect to the inner product that we have defined. Clearly the adjont of the
coboundary operator δ∗

k : Ck+1 → Ck satisfies

⟨g, δkf⟩ = ⟨δ∗
kg, f⟩ (8.19)

for any f ∈ Ck and g ∈ Ck+1. It follows that if f ′ = δ∗
kg then f ′ = B[k+1]g. We

therefore have that the matrix representation of the k+ 1-boundary operator and the
k-coboundary operators are linked by the transpose. This fact has a profound inter-
pretation: asking questions regarding the boundary is the same as asking questions
regarding functions or, stated differently, defining the action of discrete differential
operators.

Discrete differential operators

As extensively explained in [130] there is a precise correspondence with the intuitive
definition of differential operators on network. Indeed assume that ρ is a 0-cochain
(or a 0-topological/node signal), J is a 1-cochain (or a 1-topological/edge signal),
namely a current or flow and Φ is a 2-cochain (or a 2-topological/face signal) a.k.a
a flux. Each of them, once we have labelled every simplex, will be a vector whose
component is the value on each node, oriented link and oriented face. For example, in
the triangle [1, 2, 3] we could have ρ = ρ(1)[1] + ρ(2)[2] + ρ(3)[3] = (ρ(1), ρ(2), ρ(3)),
J = J(1, 2)[1, 2] + J(2, 3)[2, 3] + J(1, 3)[1, 3] and Φ = Φ(1, 2, 3)[1, 2, 3].
Then we can define the discrete differential operators as:

(grad ρ)(i, j) = ρ(j) − ρ(i) (8.20)
(divX)(i) =

∑
j:X(i,j)<0

X(i, j) −
∑

j:X(i,j)>0
X(i, j) (8.21)

(curlX)(i, j, k) = X(i, j) +X(j, k) +X(k, i) (8.22)

1If σ
(α)
k+1, α ∈ 1 . . . |Sk+1| are the basis of the k + 1-chains and σ

(i)
k , i ∈ 1 . . . |Sk| of the k-chains

than we can evaluate the following component:

(δkx)α = x ◦ ∂k+1(σ(α)
k+1) = x

(∑
i∈Sk

(Bk+1)i,ασ
(i)
k

)
=
∑
i∈Sk

(Bk+1)i,αx(σ(i)
k) (8.15)

=
∑
i∈Sk

(Bk+1)i,αxi =
∑
i∈Sk

(B⊤
k+1)α,ixi = B⊤

k+1 x (8.16)

88 CHAPTER 8. TOPOLOGICAL SIGNALS

Remarkably we have grad = B⊤
1 , div = B1 and curl = B⊤

2 and, in this setting, we
obtain the Laplace operator as − div grad = L0 = ∇2.
In the following of this thesis every time a lower dimensional (0,1 or 2) signal is en-
countered and modified through a boundary or coboundary operator the reader could
think about it as a discrete version of the differential operator of Calculus courses.
As byproduct, there is an insightful and elegant feature in this discrete framework
worth highlighting. One could either start by defining the discrete space and label-
ing its nodes, then proceed to construct the boundary operators (essentially, discrete
differential operators), or one could take the opposite approach—starting with the
boundary operators and subsequently inferring the discrete space. This reciprocal re-
lationship suggests that space and differential operators serve as mirrors of each other.
Consequently, we should anticipate a complex interplay between the topology—i.e.,
the structure of the space—and the dynamics generated by the coupling of differential
operators. This intricate relationship underscores the true beauty and generality of
this framework.

8.3.4 Hodge-Laplacians and the Dirac operator
Starting from the boundary and the coboundary operators, we define the higher-order
Laplacians and the Dirac operator.

The Laplace operator [91], [129], [130] of order n, also called n-Hodge-Laplacian,
describes higher-order diffusion from n-simplices to n-simplices and are Nn ×Nn ma-
trices defined as

Ln = B⊤
n Bn + Bn+1B⊤

n+1 = Ldown
n + Lup

n (8.23)

for 1 ≤ n < d. For n = 0 and n = d the Hodge-Laplacians L0 and Ld are respectively
given by L0 = Lup

0 = B1B⊤
1 and Ld = Ldown

d = B⊤
d Bd.

The definition the n-Laplacian Ln can be also related to the notion of neighbour
and orientation as follows:

Ln(i, j) =

d(σ(k)

i) + (p+ 1) i = j.

1 i ̸= j, σ
(k)
i ⌢ σ

(j)
k ∨ σ

(k)
i ⌣ σ

(j)
k , σ

(k)
i ∼ σ

(j)
k

−1 i ̸= j, σ
(k)
i ⌢ σ

(j)
k ∨ σ

(k)
i ⌣ σ

(j)
k , σ

(k)
i ≁ σ

(j)
k

0 otherwise.

(8.24)

where ⌣ and ⌢ indicate lower and upper incident neighbour simplices respectively.
Those two equivalent definitions (8.23) and (8.24) show how defining the space operator
is just a consequence of the labelling and the definition of a relative orientation. The
action of the Hodge-Laplacian can be interpreted as follows. The term Lup

n represents
the diffusion between n-simplices through shared (n+1)-dimensional simplices. In the
case of a network, as previously noticed, this is the combinatorial Laplacian, where
concentrations on nodes diffuse through incident edges. The term Ldown

n represents
diffusion between n-simplices through shared (n − 1)-simplices, i.e., incident (n − 1)-
faces. For instance in a network (i.e., a 1-simplicial complex) L1 = Ldown

1 determines
diffusion from links to links through nodes.

From this definition, it is clear that the Hodge-Laplacian of order n only acts on
topological signals of dimension n. Therefore the n-Hodge-Laplacian cannot couple
signals of different dimension.

8.3. ALGEBRAIC TOPOLOGY, AN OVERVIEW 89

In order to couple signal of different dimension, we require the Dirac operator
[131]–[134], D, which is encoded by an M × M matrix where M = ∑d

n=0 Nn and has
elements

Dσ,σ′ =
{

[Bn]σ,σ′ if |σ′| = |σ| + 1 = n
[B⊤

n]σ,σ′ if |σ| = |σ′| + 1 = n
, (8.25)

where with |σ| we indicate the dimension of the simplicial complex σ. It follows that
in a two dimensional simplicial complex, the Dirac operator has the block structure

D =

 0 B1 0
B⊤

1 0 B2
0 B⊤

2 0

 , (8.26)

while in a network the Dirac operator is given by

D =
(

0 B1
B⊤

1 0

)
, (8.27)

It follows that the Dirac operator, differently from the Hodge-Laplacian, can couple
topological signals of different dimension. In particular the Dirac operator can be used
to project a topological signal of any dimension n onto simplices of dimension n + 1
and n− 1. One of the most significant properties of the Dirac operator is that it can
be considered the “square root” of the Laplacian. In fact we have

D2 = L = L0 ⊕ L1 ⊕ . . .⊕ Ld . (8.28)

For instance, for a simplicial complex of dimension d = 2 we have

D2 = L =

L0 0 0
0 L1 0
0 0 L2

 , (8.29)

and for a network
D2 = L =

(
L0 0
0 L1

)
. (8.30)

Interestingly, both the Hodge-Laplacians and the Dirac operator can be extended to
weighted simplicial complexes (see for instance [140]).

8.3.5 Major Spectral properties
The n-order Hodge-Laplacian [91], [129], [130] is a semi-definite positive operator
whose kernel has dimension equal to the n-th Betti number βn, i.e., the degeneracy
of its null eigenvalue is equal to the Betti number βn. In addition to this, the Hodge-
Laplacians obey the Hodge decomposition which implies that the space of n-chains
can be decomposed as

Cn = im(B⊤
n) ⊕ ker(Ln) ⊕ im(Bn+1), (8.31)

where the kernel of the Hodge-Laplacians are given by

ker(L0) = ker(B⊤
1) ker(Ln) = ker(Bn) ∩ ker(B⊤

n+1) . (8.32)

90 CHAPTER 8. TOPOLOGICAL SIGNALS

This same decomposition can be applied to the space of topological signals, namely
the one of the n-cochain in exactly the same way. For us the Boundary operators
could either act on the chains or on the cochain and their representation will be the
same. Now a connection with discrete differential operators is worth stressing. Let
us fix n = 1 than we can decompose the space of 1 dimensional topological signals,
namely flows on network, as:

C1 = im(B⊤
1) ⊕ ker(L1) ⊕ im(B2) = im(grad) ⊕ ker(∆) ⊕ im(rot⊤), (8.33)

Namely each flux can be expressed as a potential flow ⊕ harmonic component ⊕ vector
potential, which is a known and widely used decomposition of flows in Calculus.

The Dirac operator [131] has a kernel given by the direct sum of the kernels of the
Laplacians,

ker(D) = ker(L) = ker(L0) ⊕ ker(L1) ⊕ . . .⊕ ker(Ld). (8.34)
The non-zero spectrum of the Dirac operator is formed by the concatenation of the
spectra of the Hodge-Laplacians taken with positive and negative sign.

Let us now focus on the spectrum of the Hodge-Laplacians L0 and L1 defined on a
network, and reveal the relation between their spectrum and the singular values of the
boundary operator B1. Since L0 = B1B⊤

1 and L1 = B⊤
1 B1 it follows that L0 and L1

are isospectral, i.e., they have the same non-zero eigenvalues and any eigenvalue Λk
0 of

L0 can be written as Λk
0 = b2

k where bk indicates the non-zero singular eigenvalues of
the boundary matrix B1. We note however that the degeneracy of the zero eigenvalue
Λ0 = 0 is different for L0 and L1. Indeed, for L0 the degeneracy of the zero eigenvalue
is β0, i.e., the number of connected components of the network, while for L1 it is
given by β1, i.e., the number of independent cycles of the network. Therefore for a
network that has the topology of a linear chain with periodic boundary conditions then
N0 = N1, and thus β0 = β1 = 1, for a tree when we have N1 = N0 − 1 we have β0 = 1
and β1 = 0 and in general for a connected network we have β0 = 1, β1 = N1 −N0 + 1.

Chapter 9

Pattern formation of topological
signals

Nature is a blossoming of patterns, spontaneously emerging from the web of nonlin-
ear interactions existing among the many basic units constituting the system under
scrutiny [141], [142]. Scholars have developed theories capable to deal with both the
case of stationary patterns [143]–[145] and time varying ones [146]–[150]. Such re-
search has been developed in the framework of network science [151]–[154] relying on
the assumption that system interactions can be sufficiently well described by using a
pairwise representation: the basic units composing the system exhibit their own dy-
namics, i.e., a local evolution law associated to each node of the network, and then they
interact by diffusing or via non-local (long-range) interactions, by using the available
links. In this Chapter we propose a framework to reveal Turing patterns of reacting
species described by topological signals defined on the simplices of different dimen-
sions (nodes, links, triangles) coupled through the Dirac operator. Our main goal is
to consider reaction-diffusion systems [155] and extend the Turing theory developed
so far on networked systems [144] to the framework of simplicial complexes.

Turing’s original framework involved two reacting species whose stable homoge-
neous equilibrium can turn out unstable once the species are allowed to diffuse and
suitable conditions of the species diffusivities are assumed [143]. Gierer and Meinhardt
later emphasized that for the Turing instability to set up, one of the two species needs
to be an activator while the other should be an inhibitor, and moreover the latter needs
to diffuse much faster than the former [156]. The theory was successively extended
to regular lattices by Othmer and Scriven [157] and finally to complex networks by
Nakao and Mikhailov [144]. The latter framework has been further expanded consider-
ing directed networks [158], multiplex [159], temporal networks [160] and non-normal
networks [161], just to mention a few. In all the above settings, the two species react
in each node while diffusing through the links. For signals defined exclusively on the
nodes cross-diffusion terms have been been introduced in [162], [163]. Turing patterns
on higher-order structures have been recently studied in [164], [165]. Note however
that our approach is different because in those works the dynamics is restricted to
nodes, while links and high-order structures support the generalized diffusion.

In particular, we consider two different settings: when the reaction term is solely
responsible for the coupling of signals of different dimension and when the diffusion also
includes cross-diffusion terms coupling the dynamics of signals in different dimension.

91

92 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

For the sake of simplicity, in this Chapter, we will focus our analysis to the case of
coupled nodes and links signals which is arguably also the most relevant to applications.
We derive the conditions under which stable Turing patterns can be observed and we
highlight the differences between the dynamics with and without cross-diffusion terms.
The analytical results derived in general are presented with applications to square
lattices with periodic boundary conditions and validated by numerical simulations on
a benchmark network.

We are interested in studying reaction-diffusion systems defined on simplicial com-
plexes. This entails defining appropriate reaction and diffusion terms. In a network
the reaction term is localized on nodes, where the interacting species can be found.
When the interacting species are associated to simplices of different dimension, a Dirac
reaction term that uses the Dirac operator is required to allow topological signals of
different dimension to interact. The theory will be developed in general and then a
more realistic application involving lower dimensional topological signal will be pre-
sented. In a network, concentrations can flow from one node to one of its neighbours,
passing through links, namely the structure one dimension above. A similar idea can
be thought in simplicial complexes: quantities defined on links can flow among links
by using the faces they share, hence again the structures one dimension above. There
is however a second possibility: they can use structures one dimension below, i.e.,
nodes, to communicate. Such processes can be described by introducing the Hodge
Laplace matrix which describes uncoupled diffusion of topological signals of any given
dimension. However Hodge-Laplacians describe diffusion terms that act on topological
signals of any given dimension separately. Requiring a diffusive coupling of topological
signals of different dimension can be only achieved by considering Dirac cross-diffusion
terms which involve odd powers of the Dirac operator. Specifically, this includes cross-
diffusion terms that are linear or cubic in the Dirac operator.

Here we propose a Turing theory for topological signals and to this end we con-
sider a simplicial complex of dimension n and species living on nodes, links, triangles,
etc. In the present terminology, the concentration of the species living on nodes is
a 0-topological signal while the concentration of the species defined on links is a 1-
topological signal etc. The dynamical state of the simplicial complex is described by
a vector Φ which is the direct sum of all topological signals defined on the simplicial
complex. For example in a n = 2 dimensional simplicial complex with N0 nodes, N1
links and N2 triangles, assuming a one dimensional dynamical system living in each
discrete structure, we have

Φ =

u
v
w

 , (9.1)

where u ∈ RN0 ,v ∈ RN1 ,w ∈ RN2 are the vectors of concentration of species defined on
nodes, links and triangles respectively. In general, if the dimension of every dynamical
system is large than one, we have u ∈ RN0×du ,v ∈ RN1×dv ,w ∈ RN2×dw , where du,v,w

is the dimension of the node, link and face defined dynamical system respectively.
These signals can only interact with each other when we consider their projection to
simplices of one dimension up or one dimension down. This projection is performed

93

by applying the Dirac operator D to Φ obtaining new (projected) signals, i.e.,

Ψ = DΦ =

 û
v̂
ŵ

 , (9.2)

where û ∈ RN0 , v̂ ∈ RN1 , ŵ ∈ RN2 are defined on nodes, links and triangles respec-
tively. In a simplicial complex of dimension n = 2 the Dirac operator D is a M × M
matrix with M = N0 + N1 + N2 which can be expressed in terms of the incidence
matrices B1,B2 (defined in the precedent Chapter) and their transpose as

D =

 0 B1 0
B⊤

1 0 B2
0 B⊤

2 0

 . (9.3)

We therefore obtain that the projected signal Ψ is given by

Ψ = DΦ =

 û
v̂
ŵ

 =

 B1v
B⊤

1 u+ B2w
B⊤

2 v

 , (9.4)

where B⊤
1 u and B2w describe the irrotational part and the solenoidal part of the link

signal v̂. Therefore, the dynamical state of the simplicial complex comprises both the
topological signals Φ and their projections Ψ = DΦ.

Here we propose a Turing theory for topological signals where the topological
signals Φ can be coupled to the projected topological signals Ψ either through a Dirac
reaction term or through a Dirac diffusion term or both. In presence of a Dirac reaction
term and a positive-definite Laplacian1 diffusion term, the reaction-diffusion process
of topological signal is defined as

Φ̇ = F (Φ,DΦ) − γLΦ, (9.5)

where F (Φ,DΦ) is the Dirac reaction term coupling each topological signal of di-
mension n with the nearby topological signals of dimension n + 1 or n − 1 projected
to dimension n. In particular F (Φ,DΦ) here indicates a generic nonlinear function,
assumed to be applied component-wise on the vectors. For instance for n = 2 we have

F (Φ,DΦ) =

 f0(u,B1v)
f1(v,B⊤

1 u+ B2w)
f2(w,B⊤

2 v).

 , (9.6)

where fn(x,y) are nonlinear functions, such that :
f1(u,B1v) = (f1(u1, (B1v)1), . . . , f1(uN0 , (B1v)N0) etc. The matrix γ in Eq.(9.5) is a
diagonal matrix

γ =

D0 0 0
0 D1 0
0 0 D2

 , (9.7)

1We point out that this is at variance with more canonical Turing schemes where, instead, the
Laplace operator is negative-definite. This justifies the ′−′ in Equation (9.5)

94 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

where Dn is the diffusion coefficient acting on topological signals of order n. Therefore
Eq.(9.5) describes topological signals defined on the simplices of the simplicial complex
that react with the projection of the topological signals defined in different dimension
while undergoing higher-order diffusion.

Note that from the dynamical system given by Eq.(9.5) one can derive the dynamics
of the projected signal Ψ = DΦ which is given by

Ψ̇ = F̂ (Φ,Ψ) − DγDΨ, (9.8)

where F̂ (Φ,Ψ) = DF (Φ,Ψ). In the case of diffusion coefficients independent on the
order of the simplices, i.e., for Dk = D, this equation reduces to

Ψ̇ = F̂ (Φ,Ψ) − γLΨ. (9.9)

Therefore in this case the dynamics of the projected signal is the same as the dynamics
of the signal Φ (Eq. (9.5)) provided that F (Ψ,Φ) = F̂ (Φ,Ψ) = DF (Φ,Ψ) as for
instance in the case of square lattices with periodic boundary conditions (note that Ψ
and Φ have been exchanged, due to the duality between links and nodes that holds in
this setting).

We now consider Dirac cross-diffusion terms enforcing diffusion of signals across
different dimensions.

In particular, we consider including a linear Dirac cross-diffusion term which is
proportional the Dirac operator. In [166] also the case of a cubic cross-diffusion term
is discussed. In the case of a linear Dirac cross-diffusion term, the reaction-diffusion
dynamics takes the form

Φ̇ = F (Φ,DΦ) − γ̃DΦ − γLΦ, (9.10)

where γ̃ is the diagonal matrix of cross-diffusion coefficients D̃n,

γ̃ =

D̃0IN0 0 0
0 D̃1IN1 0
0 0 D̃2IN2

 . (9.11)

In this case, the corresponding projected signals Ψ = DΦ obey the dynamical system
of equations

Ψ̇ = F̂ (Φ,Ψ) − Dγ̃Ψ − DγDΨ. (9.12)
If the diffusion and cross-diffusion coefficients are the same and γ and γ̃ are propor-
tional to the identity matrix, then we have that both γ and γ̃ commute with the Dirac
operator D and the dynamics of projected signals becomes

Ψ̇ = F̂ (Φ,Ψ) − γ̃DΨ − γLΨ. (9.13)

Therefore, in this case too, as long as F̂ (Φ,Ψ) = DF (Φ,Ψ) can be written as the reac-
tion term F (Φ,Ψ) (as it happens for square lattices with periodic boundary conditions
for example) the equation for the signal is equal to the equation for the projected sig-
nals. In all the considered cases, the Turing mechanism requires the presence of a
stable homogeneous equilibrium once the diffusion part is silenced. Such state turns
out unstable for suitable values of the diffusion coefficients and conditions on the un-
derlying topology; and ultimately evolves into an heterogeneous state. If we think

9.1. ONSET OF DIFFUSION DRIVEN INSTABILITY 95

about a network defined dynamical system with Laplacian coupling, requiring the sta-
bility of the homogeneous state implies the homogeneous vector (whose components
are all ones) in the kernel of the graph Laplacian. Otherwise the coupling could be
able to perturb the homogeneous state towards an heterogeneous one. Despite this
condition being trivially satisfied in a connected graph, the situation changes when
activity lies in the simplices of a simplicial complex. When dealing with topological
signals, a necessary condition is that the homogeneous state vector h = (1, . . . , 1)⊤ is
in the kernel of the Dirac operator h ∈ ker(D) or, equivalently,

Dh = 0. (9.14)

when the state vector includes both nodes and links signals Eq.(9.14) accounts to
require

B1h = 0 and B⊤
2 h = 0 (9.15)

where h = (1, 1 . . . , 1)⊤ is a homogeneous N1-dimensional column vector defined on
the links of the network.

By assuming to have a 1-simplicial complex, (i.e., a network) we discard the pres-
ence of triangles. In that case B2 = 0, and the second of the conditions in Eq.(9.15) is
trivially satisfied. Let us now focus on the remaining condition. Tackling this problem
becomes much easier by noticing that the i-th row of the boundary operator is equal
to minus the divergence of node i. Such equivalence, proved in [130], can be exploited
to construct a simplicial complex with the wanted property.

By requiring that every node has an equal amount of in-going and out-going links,
we thus ensure that a homogeneous signal, namely an edge-flow directed as indicated by
the links orientation, has zero divergence. To sum up, the following analysis grounded
on the conditions given in Eq. (9.15), holds for every simplicial complex whose nodes
have an even number of connected edges. Notably examples of these networks are
square lattices with periodic boundary conditions, however in the following Chapter
other examples of such structures for higher dimensions will be given.

9.1 Onset of diffusion driven instability

9.1.1 Dirac reaction term
In this section we focus on reaction-diffusion systems involving topological signals
defined on the nodes and on the links of a network. Our goal is to derive the dispersion
relation allowing us to determine the conditions for the Turing instability onset in the
presence exclusively of a Dirac reaction term that couples the two topological signals
of different dimension, while the diffusion term does not, i.e., driven by Eq.(9.5) which
we rewrite here for convenience

Φ̇ = F (Φ,DΦ) − γLΦ. (9.16)

In a network we have Φ = (u,v)⊤ and F (Φ,DΦ) =
(
f(u,B1v), g(v,B⊤

1 u)
)⊤

where
f and g are two generic nonlinear functions, assumed to be applied component-wise
on the vectors, i.e., f(u,B1v) = (f(u1, (B1v)1), . . . , f(uN0 , (B1v))N0). Here γ reduces

96 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

to the (N0 +N1) × (N0 +N1) block diagonal matrix with structure

γ =
(
D0IN0 0

0 D1IN1

)
, (9.17)

where D0 and D1 indicate the diffusion coefficients of the species defined on nodes and
links respectively. The Dirac operator D and the Laplacian operator L are defined as
the (N0 +N1) × (N0 +N1) matrices with block structure

D =
(

0 B1
B⊤

1 0

)
, L = D2 =

(
L0 0
0 L1

)
. (9.18)

If follows that the dynamics driven by Eq.(9.16) can be rewritten explicitly as

du
dt

= f(u,B1v) −D0 L0 u,

dv
dt

= g
(
v,B⊤

1 u
)

−D1 L1 v
(9.19)

We would like to stress that, using more familiar mathematical symbols, such system
is equivalent to:

du
dt

= f(u,∇ · v) −D0∇2u,

dv
dt

= g (v,∇u) −D1∆1v
(9.20)

Where ∆1 stands for the Graph Helmholtzian. In the spirit of Turing theory, let
us silence the generalized diffusive terms and look for a homogeneous solutions, i.e.,
the existence of u∗ = u0h and v∗ = v0h, for some constants u0 and v0. Because of
the assumption on the underlying simplex, we have B1v∗ = 0 and B⊤

1 u∗ = 0. The
existence of a homogeneous fixed point reverberates on the structure of f, g such that

0 = f(u∗, 0) and 0 = g(v∗, 0) , (9.21)

which in turn yields that u0 and v0 are solutions of f(u0, 0) = g(v0, 0) = 0.
To study the stability feature of the homogeneous equilibrium, we consider a ho-

mogeneous perturbation about the latter, δu = u − u∗ and δv = v − v∗. Hence by
linearising (9.19) we obtain

dδu
dt

= ∂uf(u∗, 0)δu,
dδv
dt

= ∂vg(v∗, 0)δv,
(9.22)

where we used again the conditions h = (1, . . . , 1)⊤ ∈ ker B1 and h ∈ ker B⊤
1 to remove

some terms in the previous equation. The condition for the stability, considering the
component-wise action of the functions, is thus

∂uf(u0, 0) < 0 and ∂vg(v0, 0) < 0 . (9.23)

Let us observe that Eq. (9.23) implies that both species are self inhibitors, this is
the result of the peculiar form of Eq. (9.19), and of the assumption B1v∗ = 0 and
B⊤

1 u∗ = 0 which ultimately decouples the dynamics of the two species in the linear

9.1. ONSET OF DIFFUSION DRIVEN INSTABILITY 97

regime. This is at odd with the classical Turing instability where patterns can never
emerge in the inhibitor-inhibitor setting, unless some additional assumptions are made
[167].

We now focus on the stability of such equilibrium once subjected to heterogeneous
perturbations, hence not in the kernels of L0 and L1. Let us linearize Eq. (9.19) about
the equilibrium solution, obtaining

dδu
dt

= (∂uf) δu + (∂B1vf) B1δv −D0 L0 δu,

dδv
dt

= (∂B⊤
1 ug)B⊤

1 δu + (∂vg)δv −D1 L1 δv ,
(9.24)

where ∂B1vf and ∂B1vf denote the scalars indicating the derivative of f , g with respect
to their second argument, (i.e., the projected higher and lower dimensional signal
respectively) calculated at the homogeneous stationary solution.

We now recall that the network Laplacians L0 = B1B⊤
1 and L1 = B⊤

1 B1 are
isospectral, i.e., they have the same non-zero spectrum. The N̂ non-zero eigenvalues
Λk

0 with 1 ≤ k ≤ N̂ of L0 and L1 can be expressed as the square of the singular values
bk of B1, i.e., Λk

0 = b2
k. The eigenvectors ψm

0 and ψm
1 of L0 and L1 can be adopted as

a basis to perform the singular value decomposition of B1. On a connected network
these eigenvectors include the eigenvectors ψk

0 and ψk
1 corresponding to the non-zero

eigenvalue Λk
0 = Λk

1 = b2
k, the eigenvector ϕh

0 = (1, . . . , 1)⊤ of L0 associated to the zero
eigenvalue Λ0 = 0 and the eigenvectors ψl

1 associated the zero eigenvalues Λl
1 = 0 of L1.

Interestingly the eigenvectors ψk
0 and ψk

1 associated to the eigenvalue Λk
0 = Λk

1 = b2
k > 0

obey
B1ϕ

k
1 = bkψ

k
0 , B⊤

1 ϕ
k
0 = bkψ

k
1 . (9.25)

Using these results, the signals δu and δv, as well as the projected signals δû = B1δv
and δv̂ = B⊤

1 δu, can be projected onto the basis of the eigenvectors ψm
n of Ln (with

n = 0, 1 for the analyzed case) corresponding to the non-zero eigenvalues Λk
0 = b2

k. We
obtain

⟨ψk
0 , δu⟩ = δûk, ⟨ψk

1 , δv⟩ = δv̂k , (9.26)
⟨ψk

0 ,B1δv⟩ = bkδv̂k, ⟨ψk
1 ,B⊤

1 δu⟩ = bkδûk, (9.27)

where ⟨·, ·⟩ denotes the scalar product. By using Eq.(9.26) and Eq.(9.27), we can
project in Eq.(9.24) the equations for δu onto ψk

0
⊤ and the ones for δv on ψk

1
⊤, with

k such that Λk
0 = Λk

1 = b2
k ̸= 0, to eventually obtain:

dδûk

dt
= (∂uf) δûk + (∂B1vf) bkδv̂k −D0b

2
kδûk,

dδv̂k

dt
= (∂vg) δv̂k +

(
∂B⊤

1 ug
)
bkδûk −D1b

2
kδv̂k .

(9.28)

It is interesting to notice that the leftover modes are those associated to the eigen-
vectors spanning the kernel space of both L0 and L1. Since in the relevant case of
a connected network, the eigenvector associated to the zero eigenvalue is the homo-
geneous one, i.e it is aligned to the stationary state u∗ of the nodes, it follows that
δu will never have a component along this eigenvector. However, we need to consider

98 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

the projection of δv onto the eigenvectors ψl
1 associated to the zero eigenvalues of L1,

obtaining
dδv̂l

dt
= (∂vg) δv̂l . (9.29)

Hence these modes are always stable due to the second condition in Eq. (9.23).
The instability is realized if the linear system (9.28) admits at least one unstable

mode; more precisely we have to compute the eigenvalues of the matrix

Jk =
(
∂uf −D0b

2
k bk∂B1vf

bk∂B⊤
1 ug ∂vg −D1b

2
k

)
, (9.30)

and determine if there is k for which the associated eigenvalue, λ(bk), has a positive
real part. Let us notice that the latter is usually named dispersion relation in the
literature. The eigenvalues of Jk can be obtained by solving

λ2 + λΓ1
(
b2

k

)
+ Γ2

(
b2

k

)
= 0 . (9.31)

where Γ1 (b2
k) and Γ2 (b2

k) are given by

Γ1
(
b2

k

)
= b2

k(D1 +D0) − (∂vg + ∂uf), (9.32)

Γ2
(
b2

k

)
= a2b

4
k + a1b

2
k + a0, (9.33)

with
a2 = D0D1,

a1 = −
(
D1∂uf +D0∂vg + ∂B⊤

1 ug ∂B1vf
)
,

a0 = ∂uf ∂vg.

(9.34)

Since both the leading coefficient of Eq.(9.31) and Γ1(b2
k) are positive, the existence

of a solution with positive real part requires that Γ2(b2
k) < 0 for some k 2. Let us

observe that Γ2(b2
k) given by Eq. (9.33) is a parabola in b2

k with positive concavity,
a2 = D0D1 > 0, and positive constant term, a0 = ∂uf ∂vg > 0. Therefore, to satisfy
the condition Γ2(bk) < 0 with a real bk, a necessary condition is

D0∂vg +D1∂uf + ∂B⊤
1 ug ∂B1vf > 0. (9.35)

By using these conditions we can guarantee that Γ2(b2
k) < 0 if the minimum of the

parabola is negative. A straightforward computation returns the condition(
D0∂vg +D1∂uf + ∂B⊤

1 ug ∂B1vf
)2

4D0D1
> ∂uf ∂vg. (9.36)

Let us observe that differently from the classical Turing framework, such condition
depends on the diffusive coefficients separately and not on their ratio.

In conclusion, we have hence found the conditions for the onset of Turing instability
for topological signals whose dynamics is described by Eq. (9.19), namely the stability
of the homogeneous solution given by Eq. (9.23) and the existence of at least one
unstable mode according to Eqs. (9.35) and (9.36). Moreover the roots of Eq. (9.31)

2This is a consequence of the Descartes’ rule of signs for polynomials.

9.1. ONSET OF DIFFUSION DRIVEN INSTABILITY 99

are given by λ1,2 = −Γ1 ±
√

Γ2
1 − 4Γ2, but Γ1 > 0 and Γ2 < 0, and thus λ1,2 are real

numbers. Consequently, the corresponding patterns are stationary.
Let us now note that as expected, when the topological signals on nodes and links

are not coupled by the Dirac reaction term, i.e., when

F (Φ,DΦ) = F (Φ) =
(
f(u)
g(v)

)
, (9.37)

we can never have Turing patterns. In fact in this case we would have ∂B⊤
1 ug =

0, ∂B1vf = 0 and Eq. (9.35) cannot be satisfied together with Eq. (9.23). A major
result of this study is that the Turing instability of the topological signals of a network
will be never localized only on nodes or only on links but will always involve both nodes
and links signals. Moreover, we also obtain that if the original signals Φ = (u,v)⊤

display a Turing pattern, the projected dynamics of DΦ = (B1v,B⊤
1 u)⊤ also does.

9.1.2 Numerical results on a benchmark network
The aim of this section is to validate the above results with a numerical study. To focus
on the novelty of the framework and to remove unnecessary complicated features, we
will build a toy model with cubic nonlinearities to test our theory (the square lattice
implementation can be found in Appendix B). By keeping the same notation as before,
i.e., u is the signal on the nodes and v that on the links, the equations of our model
read

u̇ = −au − bu3 + cB1v −D0 L0 u,
v̇ = −αv − βv3 + γB⊤

1 u −D1 L1 v, (9.38)

where a, b, c, α, β, γ are non-negative real parameters and each non linear function is
to be intended component-wise.

System (9.38) admits (u0h, v0h) = (0, 0) as equilibrium point. By computing the
Jacobian of the system evaluated at this point and removing the space contribution
due to h, we get

J0 =
(
∂uf ∂B1vf
∂B⊤

1 ug ∂vg

)
=
(

−a c
γ −α

)
.

The system exhibits a Turing instability if the above parameters satisfy the conditions
(9.23), (9.35) and (9.36), that we now rewrite

a > 0 α > 0, cγ > αD0 + aD1, (9.39)
(cγ − αD0 − aD1)2 > 4D0D1aα, (9.40)

and the simplicial complex is such that h ∈ ker L1. A simple example of a 1-
dimensional simplicial complex satisfying the latter condition is provided by a network
of 16 nodes, whose nodes degrees are even and with closed loops. Note that the latter
is chosen to be a subset of a square lattice. The Turing pattern associated to this
dynamics are evident when one monitors nodes as well as link signals. In Fig. 9.2.a
the nodes and links are colored according to the asymptotic concentration of respec-
tively u and v and we can thus have a geometric view of the emerging pattern. On the
other hand a dynamical view is presented in Fig. 9.2.c− d where we report the nodes

100 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

Figure 9.2: a) Turing patterns for the species on the nodes and on the links described by
model (9.38) on a network satisfying the conditions for the homogeneous equilibrium;
b) dispersion relation: in blue we depict the continuous curve, computed as a function
of the continuous parameter b2

k, while the cyan dots are the actual dispersion relation,
where now the onset of the Turing instability is a function of the (real) spectrum of L0;
in panels c) and d) we depict time series of the two species u and v on the nodes and
the links, respectively, while panels e) and f) show the time series of the projection
of the two species with the action of the boundary operator B1. The parameters are
a = α = b = β = γ = D0 = D1 = 1 and c = 6; the initial perturbation is ∼ 10−2.

9.1. ONSET OF DIFFUSION DRIVEN INSTABILITY 101

concentration, ui(t), and link concentration, vi(t), as a function of time. From this
figure one can clearly appreciate the onset of the instability at short time, pushing the
initial conditions far from the equilibrium state (u0, v0) = (0, 0), and the stationary
asymptotic behavior of the solution. Interestingly we observe that the projected dy-
namics also display a Turing pattern (see Fig.9.2.e and Fig.9.2.f). In Fig. 9.2b we show
the dispersion relation and we emphasize the unstable modes triggering the instability
(dots).

9.1.3 Dirac cross-diffusion term
We now consider the dynamics including the Dirac cross-diffusion terms. In particular
we will cover the linear cross-diffusion case. Topological signals on nodes and links can
be coupled by a linear cross-diffusion term, leading to the reaction-diffusion dynamics

Φ̇ = F (Φ,Dϕ) − γ̃DΦ − γLΦ, (9.41)

where the dynamical state of the network is captured by the vector Φ = (u,v)⊤. The
diagonal (N0 +N1) × (N0 +N1) matrix γ̃ of cross-diffusion coefficients is here chosen
to have block structure

γ̃ =
(
D01 0
0 D10

)
. (9.42)

In particular the coupled dynamics of the topological signals u and v can be re-written
as

du
dt

= f(u,B1v) −D01B1v −D0 L0 u,

dv
dt

= g
(
v,B⊤

1 u
)

−D10B⊤
1 u −D1 L1 v.

(9.43)

It is pretty straightforward to prove that system (9.41) can be mapped onto (9.16)
and thus results from the previous section can be used to derive the conditions under
which the reaction-diffusion dynamics with the linear cross-diffusion term displays
Turing patterns. We notice that by putting

F (Φ,DΦ) − γ̃DΦ = F̃ (Φ,DΦ), (9.44)

Eq.(9.41) reduces to Eq.(9.16) with Dirac reaction term given by F̃ (Φ,DΦ), i.e. it
reduces to

Φ̇ = F̃ (Φ,DΦ) − γLΦ. (9.45)
It follows that the conditions for the onset of the Turing instability can be trivially
obtained directly from Eq. (9.35) and Eq. (9.36) by making the substitutions

∂B1 vf → ∂B1 vf −D01, ∂B⊤
1 ug → ∂B⊤

1 ug −D10. (9.46)

This allows us to obtain that in the case with linear Dirac cross-diffusion terms we can
observe the onset of the Turing instability when in addition to Eq.(9.23), the following
two conditions are satisfied:

A = D0∂vg +D1∂uf + (∂B1 vf −D01)(∂B⊤
1 ug −D10) > 0,

A2 > 4D0D1∂uf ∂vg. (9.47)

102 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

Let us stress a major consequence of these conditions, i.e., the cross-diffusion term
is the driver for the instability. Indeed the cross-diffusion term enforced through the
Dirac operator allows the onset of Turing patterns also in situations where patterns
can never emerge if we silence cross-diffusion. In particular we can observe Turing
patterns in presence of Dirac-type crossed-diffusion patterns, also when the reaction
term only depends on Φ but not on DΦ, i.e.,

F (Φ,DΦ) = F (Φ) =
(
f(u)
g(v)

)
, (9.48)

as long as Eq. (9.23) and Eqs. (9.1.3) hold which can occur as long as D01D10 > 0.
Let us recall that, as discussed in the previous section, under the latter assumption
(9.48) Turing patterns cannot develop in absence of linear cross-diffusion terms.

9.2 Conclusions
In this Chapter exploited the fundamental concepts of Algebraic topology in order to
formulate a reaction-diffusion dynamics of topological signals defined on nodes, links,
and higher-order simplices of simplicial complexes. In this framework, each species
of reactants lives on simplicies of a given dimension, for instance in a simplicial com-
plex of dimension d = 2 one would consider three species living on nodes, links and
triangles respectively. Species associated to simplices of different dimension can be
coupled thanks to the Dirac operator which projects a signal defined on n-dimensional
simplices either one dimension up or one dimension down. In the proposed reaction-
diffusion dynamics, the coupling can then be enforced either by a Dirac reaction term
or/and Dirac cross-diffusion terms. After discussing the general framework valid for
simplicial complexes of arbitrary dimension, we focus on the reaction-diffusion dy-
namics of topological signals defined on networks, i.e., coupling the dynamics between
links and nodes, and we establish conditions for the onset of the Turing instability.
The latter conditions are derived when signals of different dimension are only cou-
pled with the Dirac reaction term, as well as when they are also coupled by a linear
Dirac cross-diffusion term. We have found that the Turing patterns arising from the
reaction-diffusion dynamics of topological signals are never localized only on nodes or
links of the network. Instead they always involve both node and link signals. More-
over, the projection of the link signals on the nodes, and the projection of the node
signals onto the links are shown to also display a Turing pattern. We also observe
that when the reaction term does not depend on the projected signal, the Turing
pattern can be observed only in presence of a linear Dirac cross-diffusion term. Our
results are validated on a small toy model for the reaction-diffusion of topological signal
on a network, and on simulations of square lattices with periodic boundary conditions.

After examining the behavior of reaction-diffusion systems in complex structures
like simplicial complexes, we are now turning our attention to synchronization dynam-
ics. Both topics are influenced by the complex topologies they’re situated in, from
simple nodes and links to more elaborate structures like faces and cell complexes.
Our earlier research highlighted the role of the Dirac operator in how topological sig-
nals interact and spread across the network. This operator serves as a conduit for

9.2. CONCLUSIONS 103

signals to traverse and interact across different dimensions of the network.
As we proceed, we will shift our focus from Turing patterns to the dynamics of synchro-
nization in these topological signals. Moving from a situation where the eigenvectors
of the coupling operators are set unstable to one where stability is prioritized. While
these multi-dimensional signals are increasingly discussed in scientific literature, our
understanding of their collective behavior is still in its early stages. This upcoming
Chapter aims to integrate topology and non-linear dynamics to explore the conditions
necessary for synchronization in these signals.
Specifically, simplicial complexes can pose challenges for the synchronization of signals
in odd dimensions, while cell complexes offer avenues to mitigate these issues. This
highlights the dual role that topology can play in either hindering or facilitating syn-
chronization processes.
Central to this discussion is the significance of the spectral properties of network-
defined operators like the adjacency matrix and the Laplacian. As we delve further,
these spectral elements not only provide a theoretical foundation but also have a direct
impact on the behavior of these systems. For instance, in machine learning algorithms
like multi-layer perceptrons (MLPs), it is the spectral structure of the adjacency ma-
trix that informs feature extraction. Similarly, in the dynamics of simplicial complexes,
the spectrum of the Dirac operator plays a critical role.

104 CHAPTER 9. PATTERN FORMATION OF TOPOLOGICAL SIGNALS

Chapter 10

Global Synchronization in
Simplicial Complexes

Synchronization is a widespread phenomenon at the root of several biological rhythms
or human made technological systems [168], [169]. Synchronization refers to the spon-
taneous ability of coupled oscillators to operate at unison and thus exhibit a coherent
collective behavior. Global synchronization is the resulting phenomenon where all os-
cillators behave in the same way. Traditionally synchronization has been studied when
identical [170], [171] or non-identical oscillators [172], [173] are defined on the nodes of
a network and are coupled by the network links. However, to capture the function of
many complex systems, e.g., brain networks [174], [175], social networks [176] and pro-
tein interaction networks [177], it is important to go beyond pairwise interactions and
consider higher-order interactions [178] between two or more nodes instead. Lately,
synchronization of identical and non-identical oscillators defined on the nodes of higher-
order networks has been a field of intense research activity. Global synchronization of
identical oscillators have been first formulated for special topologies (a p-regular hyper-
graph) [179] and for a peculiar Laplace operator obtained from the hyper-adjacency
matrix [180] while recently a general and comprehensive theoretical framework has
been proposed in [181] to study dynamical systems defined on hypergraph with het-
erogeneous hyperedges size distribution, the latter influencing also the Laplace matrix.
Partial synchronization of non-identical nodes oscillators has been investigated using
a variation of the Kuramoto model leading to explosive transitions [118].

Recently the formulation of higher-order topological Kuramoto model [108], [182],
[183] has demonstrated that topological signals of any dimension can synchronize lead-
ing to either continuous or to explosive synchronization transitions. These results
concern partial synchronization while an important question is whether global syn-
chronization of topological signals can ever be achieved.

The aim of this Chapter is to determine the topological and dynamical conditions
under which global topological synchronization of identical topological oscillators can
be observed. Relying on the use of higher-order Laplacian matrices and the extension
of the Master Stability Function (MSF) to simplicial and cell complexes dynamics, we
will be able to tackle this problem emphasizing the difference existing among the two
frameworks.

Anticipating on our results we can state that on simplicial complex we observe
topological obstruction: given a simplicial complex of dimension K, if the topologi-

105

106CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

cal signal is defined on an odd-dimensional simplex of dimension k < K then, global
synchronization is not possible. On the other hand if the simplex has an even dimen-
sion, then we can have global synchronization provided the simplex is balanced (see
hereafter) and the model parameters allow for it. Interestingly we show that cell com-
plexes can overcome topological obstruction and some topologies can sustain global
synchronization of signals of any dimension.

10.1 Dynamical Framework
Let us now consider a topological k-dimensional signal encoded in a k dimensional
cochain x : Ck → Rd which assigns to every chain Ck (linear combination of k-
simplices) values on Rd. The k-topological signal has elements xi = x(σ(i)

k) = (x1
i , . . . , x

d
i)

defined on the i-th oriented k-simplex, σ(i)
k , as we have already said in the precedent

Chapter, according to the properties of the k-cochains we have x(−σ(i)
k) = −x(σ(i)

k),
being the discrete analogous of differential forms on manifolds. Let us assume the value
of the topological signal on every simplex i follows the same dynamics and evolves ac-
cording to ẋi = f(xi), for some odd nonlinear function f : Rd → Rd.
Assume now the k-simplex to belong to a K-simplicial complex, K ≥ k, and assume
the existence of a diffusive–like nonlinear interaction among adjacent simplices of the
same dimension:

dxi

dt
= f(xi) −

Nk∑
j=1

Lk(i, j)h(xj) ∀i = 1, . . . , Nk , (10.1)

where h : Rd → Rd is some odd non linear coupling function. This equation general-
izes the dynamics of identical oscillators anchored to each node [170] to the scenario in
which identical oscillators are defined on higher-dimensional simplices or cells. Please
note that requiring odd functions f(xi) and h(xi) is necessary for higher-order topolog-
ical signals with k > 0 in order to ensure invariance under change of orientation of each
simplex i (see Chapter 8, where topological signals are introduced). For node dynamics
(k = 0) the existence of a global synchronized state is automatically determined by the
properties of the graph Laplacian whose kernel is spanned by u = (1, . . . , 1)⊤, indeed
we have β0 = 1, one connected component. The stability of this global synchronized
state is instead determined by the celebrated Master Stability Function (MSF) [170],
[171].

Given the growing interest in topological signals, a key question is how these classic
results of nonlinear dynamics on networks extend to nonlinear dynamics of topolog-
ical signals on simplicial complexes. Anticipating our results, we will show that the
topology and the combinatorics of the higher-order Laplacian will not always ensure
the existence of a globally synchronized state, and moreover since the dimension of
the kernel of Lk can be bigger than one, also the MSF will differ from the standard
case.

Let us then fix a reference stable solution s(t) of the uncoupled system, ẋi = f(xi).
We are interested in determining the conditions under which the state having each
simplex i either in the state xi = s(t) or in xi = −s(t) is also a stable solution of
the coupled system (10.1). Namely the latter exhibits a global synchronous behavior
in which all simplices display the same dynamics of the isolated simplices when we

10.1. DYNAMICAL FRAMEWORK 107

account for differences of sign, determined by their orientation. To give an intuition
of this result, take the case of link signals indicating fluxes: saying that a flux is J
on the link [i, j] oriented from i to j is the same as saying that the flux is −J on the
link [i, j] oriented from j to i. Therefore global synchronization is observed where the
dynamics of each simplex is the same, when factoring out the sign due to the choice
of orientation.

Let us now introduce the vector v = (v1, . . . , vNk
)⊤ ∈ {−1, 1}Nk such that the

globally synchronized state is given by xi = vis(t). If we turn our attention to the
case of interacting topological signals coupled by the Hodge Laplacian operator whose
dynamics is dictated by Eq. (10.1), a necessary condition to observe global synchro-
nization, is that ∑j Lk(i, j)vj = 0, namely the ’homogeneous’ signal is in the kernel.
Note that since the degeneracy of the zero eigenvalue of Lk is given by the k-th Betti
number, it follows that the Hodge Laplacian Lk, when k > 0, can admit more than one
eigenvectors of this form. However we are not guaranteed that an arbitrary simplicial
or cell complex will have at least one such eigenvectors. In order to give a concrete ex-
ample of such topologies we mention that a d-dimensional regular cell complex which
tessellates a torus has

(
d
k

)
such eigenvectors while any simplicial or cell complex with-

out any k-dimensional hole will have k-th Betti number βk = 0 and hence any such
eigenvector. This is a property that is in strike contrast with what happens for k = 0
where any connected network has one and only one constant eigenvector (1, . . . , 1)⊤

in its kernel. Note that these combinatorial constraints have also topological conse-
quences, as we will see, indeed they imply that global synchronization is allowed on
topologies structures having holes that span the entire structure as hypersphere and
tori.

Let us recall that kerLk = kerBk ∩ kerB⊤
k+1, thus the ∑j Lk(i, j)vj = 0 condition

ultimately returns to require v⊤Bk+1 = 0 (condition i) and Bkv = 0 (condition ii).

<latexit sha1_base64="yMZOoTRM8mR7j94tUGUqnnWL7Ss=">AAACMXicbVBNSwMxFMzW7/pV9eglWIR6sOyWol4EqRePClYL3VKy6ds2NJtdkrdiWfqXvPhPxEsPinj1T5jWHqx14MEw8x7JTJBIYdB1R05uYXFpeWV1Lb++sbm1XdjZvTNxqjnUeSxj3QiYASkU1FGghEaigUWBhPugfzn27x9AGxGrWxwk0IpYV4lQcIZWaheu/IhhLwiz2rBdOfclhFjyA+gKlZmISWldLR6HHvX9Y28yoDozlq9Ft4dH7ULRLbsT0HniTUmRTHHdLrz4nZinESjkkhnT9NwEWxnTKLiEYd5PDSSM91kXmpYqFoFpZZPEQ3polQ4NY21HIZ2ovy8yFhkziAK7Oc5n/npj8T+vmWJ41sqESlIExX8eClNJMabj+mhHaOAoB5YwroX9K+U9phlHW3LeluD9jTxP7ipl76RcvakWL2rTOlbJPjkgJeKRU3JBrsg1qRNOnsgreSPvzrMzcj6cz5/VnDO92SMzcL6+AVAxquk=</latexit>

B2 =
⇣

1
�1
�1

⌘

<latexit sha1_base64="QL618e9RMeA+JD/YJzE+N+u0c/k=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBahgpakFHUjlLpxWcE+oAllMp20QyeTODMRSujGjb/ixoUibv0Hd/6NkzYLbT3DwOGce7n3Hi9iVCrL+jZyS8srq2v59cLG5tb2jrm715JhLDBp4pCFouMhSRjlpKmoYqQTCYICj5G2N7pO/fYDEZKG/E6NI+IGaMCpTzFSWuqZhyX7VL8TJ0Bq6PlJfdKrXJ3ZDif30OqZRatsTQEXiZ2RIsjQ6JlfTj/EcUC4wgxJ2bWtSLkJEopiRiYFJ5YkQniEBqSrKUcBkW4yvWICj7XSh34o9OcKTtXfHQkKpBwHnq5Ml5XzXir+53Vj5V+6CeVRrAjHs0F+zKAKYRoJ7FNBsGJjTRAWVO8K8RAJhJUOrqBDsOdPXiStStk+L1dvq8VaPYsjDw7AESgBG1yAGrgBDdAEGDyCZ/AK3own48V4Nz5mpTkj69kHf2B8/gCxQJYs</latexit>

(1, 1, 1)B2 = �1 6= 0

a)

b)

<latexit sha1_base64="D+PtKmjf7AHpef4wXpCvOtaq+9k=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7JLiHokevGIiYAJLKRbutDQdjdtV0M2/A8vHjTGq//Fm//GAntQ8CWTvLw3k5l5QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRS0eJIrRJIh6phwBrypmkTcMMpw+xolgEnLaD8c3Mbz9SpVkk780kpr7AQ8lCRrCxUq+r2VDgXlqunk/7Xr9YcivuHGiVeBkpQYZGv/jVHUQkEVQawrHWHc+NjZ9iZRjhdFroJprGmIzxkHYslVhQ7afzq6fozCoDFEbKljRorv6eSLHQeiIC2ymwGellbyb+53USE175KZNxYqgki0VhwpGJ0CwCNGCKEsMnlmCimL0VkRFWmBgbVMGG4C2/vEpa1Yp3Uand1Ur16yyOPJzAKZTBg0uowy00oAkEFDzDK7w5T86L8+58LFpzTjZzDH/gfP4AiqSR5Q==</latexit>

�
(2)
1

<latexit sha1_base64="D0ftQSnauT3Z6AgC/5+cVoniVmw=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7JLiHokevGIiYAJLKRbutDQdjdtV0M2/A8vHjTGq//Fm//GAntQ8CWTvLw3k5l5QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRS0eJIrRJIh6phwBrypmkTcMMpw+xolgEnLaD8c3Mbz9SpVkk780kpr7AQ8lCRrCxUq+r2VDgXlqunk/71X6x5FbcOdAq8TJSggyNfvGrO4hIIqg0hGOtO54bGz/FyjDC6bTQTTSNMRnjIe1YKrGg2k/nV0/RmVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+skJrzyUybjxFBJFovChCMToVkEaMAUJYZPLMFEMXsrIiOsMDE2qIINwVt+eZW0qhXvolK7q5Xq11kceTiBUyiDB5dQh1toQBMIKHiGV3hznpwX5935WLTmnGzmGP7A+fwBjCiR5g==</latexit>

�
(2)
2

<latexit sha1_base64="cMqFZ+UerzXDzHdHM/bjyQxnyFM=">AAACM3icbVBNS8NAEN34WetX1aOXYBH0YElU1ItQ6kU8VbBWaErZbCft4mYTdidiCflPXvwjHgTxoIhX/4PbNgerPhj28d4Ms/P8WHCNjvNiTU3PzM7NFxaKi0vLK6ultfVrHSWKQYNFIlI3PtUguIQGchRwEyugoS+g6d+eDf3mHSjNI3mFgxjaIe1JHnBG0Uid0oUXUuz7QVrLOgennoAAdzwfelymOqRCGFfx+8z1vD1T4wdkd8L0FO/1cbdTKjsVZwT7L3FzUiY56p3Sk9eNWBKCRCao1i3XibGdUoWcCciKXqIhpuyW9qBlqKQh6HY6ujmzt43StYNImZJoj9SfEykNtR6EvukcXqh/e0PxP6+VYHDSTrmMEwTJxouCRNgY2cMA7S5XwFAMDKFMcfNXm/WpogxNzEUTgvv75L/ker/iHlUOLw/L1VoeR4Fski2yQ1xyTKrknNRJgzDyQJ7JG3m3Hq1X68P6HLdOWfnMBpmA9fUNBiWrxw==</latexit>

B3 =

✓
1
�1
1
�1

◆

<latexit sha1_base64="9MqlYsimKi2QtdQgpsYd+HP0ilM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKokXdCKVuXFawD2hDmEwn7dDJJMxMhBKy8VfcuFDErZ/hzr9xkmah1TMMHM65l3vv8SJGpbKsL6O0tLyyulZer2xsbm3vmLt7XRnGApMODlko+h6ShFFOOooqRvqRICjwGOl505vM7z0QIWnI79UsIk6Axpz6FCOlJdc8qNmn+TsZBkhNPD9ppe75teWaVatu5YB/iV2QKijQds3P4SjEcUC4wgxJObCtSDkJEopiRtLKMJYkQniKxmSgKUcBkU6SH5DCY62MoB8K/bmCufqzI0GBlLPA05XZlnLRy8T/vEGs/CsnoTyKFeF4PsiPGVQhzNKAIyoIVmymCcKC6l0hniCBsNKZVXQI9uLJf0n3rG5f1Bt3jWqzVcRRBofgCNSADS5BE9yCNugADFLwBF7Aq/FoPBtvxvu8tGQUPfvgF4yPbyVHlDo=</latexit>

(1, 1, 1, 1)B3 = 0

c)

d)

<latexit sha1_base64="guu3fvDXxt/PHY5vdc255RV+M5I=">AAACxHicjVFNT9wwEHVSPkOBbTn2YrGiggOrBKHSCxKlUsWRSiwgrVcrxzvJWjhOak8Qq2j7I7kh/kyd3YC6wIGRxnp+z88ez8SFkhbD8MHzPywsLi2vrAZrH9c3NlufPl/avDQCuiJXubmOuQUlNXRRooLrwgDPYgVX8c3PWr+6BWNlri9wXEA/46mWiRQcHTVoPbKM4yhOqtPJIDpmChLcZTGkUlc240o51ci7CQ0i+pXWuf+8hC7ZMEdbY8YChjKDevMu0BhnRO2+fWLeA+YIBno4Vy0zMh3h3qDVDjvhNOhrEDWgTZo4H7Tu3cWizECjUNzaXhQW2K+4QSkUTAJWWii4uOEp9BzU3JXer6ZDmNAdxwxpkhuXGumU/d9R8czacRa7k3XL7UutJt/SeiUm3/uV1EWJoMXsoaRUFHNaT5QOpQGBauwAF0a6WqkYccMFurkHrgnRyy+/BpcHnehb5/D3YfvktGnHCvlCtskuicgROSFn5Jx0ifB+eKlXeH/8X77yrV/Ojvpe49kic+H//QfvUdQI</latexit>

B1 =

1 1 �1 �1 0 ... 0
⇥ ⇥ ⇥ ⇥ ⇥ ... ⇥
...

...
...

...
... ...

...

!

<latexit sha1_base64="J6kMZ87No7o6d6klSMv+nMWPIdM=">AAACj3icdVFNT+MwEHXCfpTALgWOXKytWMGBKqnQstIuqIILewOJAlJdVY47aS0cJ7In1VZR/w4/iBv/BqcN0vKxI431/OaNZvwc50paDMNHz1/58PHT58ZqsLb+5etGc3Pr2maFEdATmcrMbcwtKKmhhxIV3OYGeBoruInvzqr6zRSMlZm+wlkOg5SPtUyk4OioYfOepRwncVKezoedY6YgwT0Ww1jq0qZcKVc18u+cBhH9Tg+qI3TJRhnaCjMWMJQpVJd3QC1bEpV2+sz8BzDQoxeDmZHjCe4Pm62wHS6CvgVRDVqkjoth88ENF0UKGoXi1vajMMdByQ1KoWAesMJCzsUdH0PfQc3dgoNy4eec7jpmRJPMuNRIF+y/HSVPrZ2lsVNW7tnXtYp8r9YvMPk5KKXOCwQtloOSQlHMaPU5dCQNCFQzB7gw0u1KxYQbLtB9YeBMiF4/+S247rSjH+3Dy8NW97S2o0F2yDeyRyJyRLrknFyQHhHeutfxfnm//U3/yD/xu0up79U92+RF+H+eAJkuwnQ=</latexit>

B2 =

1 �1 0 ... 0
⇥ ⇥ ⇥ ... ⇥
...

...
...

...

!

<latexit sha1_base64="+aXc8HxvK5EsdDUdzQ4JsJ1GC9Q=">AAACfXicdVHLSgMxFM2M7/qqunQTLIKKlBkRdSOIblxWsCo0pWQyd9pgJjMkd8Qy9C/8Mnf+ihvNtF34vBA4nHNzcnNulCtpMQjePH9mdm5+YXGptryyurZe39i8s1lhBLRFpjLzEHELSmpoo0QFD7kBnkYK7qPHq0q/fwJjZaZvcZhDN+V9LRMpODqqV39hKcdBlJSXo17IFCS4xyLoS13alCvlRCOfRzRkjLKnOENLGQspAx1/a2BG9ge4f/6/Q1A5oEzBfrH6x6ZXbwTNYFz0NwinoEGm1erVX1mciSIFjUJxazthkGO35AalUDCqscJCzsUj70PHQc3dGN1ynN6I7jompklm3NFIx+zXGyVPrR2mkeussrI/tYr8S+sUmJx1S6nzAkGLyUNJoShmtFoFjaUBgWroABdGulmpGHDDBbqF1VwI4c8v/wZ3R83wpHl8c9y4uJzGsUi2yQ7ZIyE5JRfkmrRImwjy7lFv3zvwPvxd/9BvTlp9b3pni3wr//QTBVzEhA==</latexit>

B1

1
...
1

!
=

0
⇥
...

!

<latexit sha1_base64="/01n0WYQe3Vw3hdzmjiih6Hy4i0=">AAACfXicdVHLSgMxFM2Mr1pfVZdugkVQkTIjom6EohuXClaFppRM5k4bzGSG5I5Yhv6FX+bOX3GjmdqFzwuBwzk3JzfnRrmSFoPg1fNnZufmF2qL9aXlldW1xvrGrc0KI6AjMpWZ+4hbUFJDByUquM8N8DRScBc9XFT63SMYKzN9g6MceikfaJlIwdFR/cYzSzkOo6Q8H/cPmYIEd1kEA6lLm3KlnGjk05iGjFH2GGdoKWMhZaDjbw3MyMEQ987+dwgqB5Qp2C9W/9j0G82gFUyK/gbhFDTJtK76jRcWZ6JIQaNQ3NpuGOTYK7lBKRSM66ywkHPxwAfQdVBzN0avnKQ3pjuOiWmSGXc00gn79UbJU2tHaeQ6q6zsT60i/9K6BSanvVLqvEDQ4vOhpFAUM1qtgsbSgEA1coALI92sVAy54QLdwuouhPDnl3+D28NWeNw6uj5qts+ncdTIFtkmuyQkJ6RNLskV6RBB3jzq7Xn73ru/4x/4rc9W35ve2STfyj/5AAdoxIU=</latexit>

B2

1
...
1

!
=

0
⇥
...

!

e)

f)

<latexit sha1_base64="AB7tAjhLMwoOgk1mIYU+KYBAJlk=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPUkBS8eK9gPaLclm2bb0CS7JFmlLP0fXjwo4tX/4s1/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN/O/NYjVZpF8sFMYuoLPJQsZAQbK/W6mg0F7qVl73za9/rFkltx50CrxMtICTLU+8Wv7iAiiaDSEI617nhubPwUK8MIp9NCN9E0xmSMh7RjqcSCaj+dXz1FZ1YZoDBStqRBc/X3RIqF1hMR2E6BzUgvezPxP6+TmPDaT5mME0MlWSwKE45MhGYRoAFTlBg+sQQTxeytiIywwsTYoAo2BG/55VXSvKh4l5XqfbVUu8niyMMJnEIZPLiCGtxBHRpAQMEzvMKb8+S8OO/Ox6I152Qzx/AHzucPh+iR4A==</latexit>

�
(1)
1

<latexit sha1_base64="WxxQmbfffUl/Rvx8DKu1S7cS2/A=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7JLiHoyJF48YiJgAgvpli40tN1N29WQDf/DiweN8ep/8ea/scAeFHzJJC/vzWRmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohH6iHAmnImadMww+lDrCgWAaftYHwz89uPVGkWyXsziakv8FCykBFsrNTrajYUuJeWvfNpv9ovltyKOwdaJV5GSpCh0S9+dQcRSQSVhnCsdcdzY+OnWBlGOJ0WuommMSZjPKQdSyUWVPvp/OopOrPKAIWRsiUNmqu/J1IstJ6IwHYKbEZ62ZuJ/3mdxIRXfspknBgqyWJRmHBkIjSLAA2YosTwiSWYKGZvRWSEFSbGBlWwIXjLL6+SVrXiXVRqd7VS/TqLIw8ncApl8OAS6nALDWgCAQXP8ApvzpPz4rw7H4vWnJPNHMMfOJ8/iWyR4Q==</latexit>

�
(1)
2

<latexit sha1_base64="18rQzLtpluD57ySGBgwCUGAtfss=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9nVop6k4MVjBfsB7bZk02wbmmSXJKuUpf/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LOtHHdb2dldW19YzO3ld/e2d3bLxwcNnSUKELrJOKRagVYU84krRtmOG3FimIRcNoMRrdTv/lIlWaRfDDjmPoCDyQLGcHGSt2OZgOBu2nJO5v0LnqFolt2Z0DLxMtIETLUeoWvTj8iiaDSEI61bntubPwUK8MIp5N8J9E0xmSEB7RtqcSCaj+dXT1Bp1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+dmPDaT5mME0MlmS8KE45MhKYRoD5TlBg+tgQTxeytiAyxwsTYoPI2BG/x5WXSOC97l+XKfaVYvcniyMExnEAJPLiCKtxBDepAQMEzvMKb8+S8OO/Ox7x1xclmjuAPnM8fivCR4g==</latexit>

�
(1)
3

<latexit sha1_base64="67uvF2Zy0QWi4R3Y6/uuzuXubws=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOpJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7TsnU/7Xr9YcivuHGiVeBkpQYZGv/jVG0QkEVQawrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtlVhQ7afzg6fozCoDFEbKljRorv6eSLHQeiIC2ymwGellbyb+53UTE175KZNxYqgki0VhwpGJ0Ox7NGCKEsMnlmCimL0VkRFWmBibUcGG4C2/vEpaFxWvVqneVUv16yyOPJzAKZTBg0uowy00oAkEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx+hTo+k</latexit>

c
(1)
1

<latexit sha1_base64="hGkOPpqcfFVk+PDvJDG3L0PnBhA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKepJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7TsnU/71X6x5FbcOdAq8TJSggyNfvGrN4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k/nB0/RmVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+smJrzyUybjxFBJFovChCMTodn3aMAUJYZPLMFEMXsrIiOsMDE2o4INwVt+eZW0qhXvolK7q5Xq11kceTiBUyiDB5dQh1toQBMICHiGV3hzlPPivDsfi9ack80cwx84nz+i0o+l</latexit>

c
(1)
2

<latexit sha1_base64="f3KcoAKkEYA9aiXUrFwjUhqlFGQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquFvUkBS8eK9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aOooUYQ2SMQj1Q6wppxJ2jDMcNqOFcUi4LQVjG6mfuuJKs0ieW/GMfUFHkgWMoKNlR7IY1r2Tie9816x5FbcGdAy8TJSggz1XvGr249IIqg0hGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKrGg2k9nB0/QiVX6KIyULWnQTP09kWKh9VgEtlNgM9SL3lT8z+skJrzyUybjxFBJ5ovChCMToen3qM8UJYaPLcFEMXsrIkOsMDE2o4INwVt8eZk0zyreRaV6Vy3VrrM48nAEx1AGDy6hBrdQhwYQEPAMr/DmKOfFeXc+5q05J5s5hD9wPn8ApFaPpg==</latexit>

c
(1)
3

<latexit sha1_base64="Tf06emSeSWXQordfXYwqLbx2+2g=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOpJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7TsnU/71X6x5FbcOdAq8TJSggyNfvGrN4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k/nB0/RmVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+smJrzyUybjxFBJFovChCMTodn3aMAUJYZPLMFEMXsrIiOsMDE2o4INwVt+eZW0LiperVK9q5bq11kceTiBUyiDB5dQh1toQBMICHiGV3hzlPPivDsfi9ack80cwx84nz+l2o+n</latexit>

c
(1)
4

<latexit sha1_base64="yTR0Q2oWGO5eNNieI25sx/i1a3I=">AAACNnicbVDLSgMxFM34tr6qLt0Ei6ALy4yIuhFEN26ECrYVmlIy6Z02mMkMyR2xDP0qN36HOzcuFHHrJ5g+FlY9cOFwzr0k54SpkhZ9/8Wbmp6ZnZtfWCwsLa+srhXXN2o2yYyAqkhUYm5DbkFJDVWUqOA2NcDjUEE9vLsY+PV7MFYm+gZ7KTRj3tEykoKjk1rFKxZz7IZRft5vHZwyBRHushA6Uuc25ko518iH/n5AGdsPGKOjAd2e8JmRnS7utYolv+wPQf+SYExKZIxKq/jM2onIYtAoFLe2EfgpNnNuUAoF/QLLLKRc3PEONBzVPAbbzIex+3THKW0aJcaNRjpUf17kPLa2F4ducxDS/vYG4n9eI8PopJlLnWYIWoweijJFMaGDDmlbGhCoeo5wYaT7KxVdbrhA13TBlRD8jvyX1A7KwVH58PqwdHY+rmOBbJFtsksCckzOyCWpkCoR5JG8kDfy7j15r96H9zlanfLGN5tkAt7XN0OUrEQ=</latexit>

B2 =

✓�1
�1
1
1

◆

<latexit sha1_base64="W0zPXhG89PQi1f4Xmopz/fv1+SM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUEFKUoq6EUrduKxgH9CGMJlO2qGTSZiZCCVk46+4caGIWz/DnX/jJM1Cq2cYOJxzL/fe40WMSmVZX0ZpZXVtfaO8Wdna3tndM/cPejKMBSZdHLJQDDwkCaOcdBVVjAwiQVDgMdL3ZjeZ338gQtKQ36t5RJwATTj1KUZKS655VLPP83c2CpCaen7STt3GteWaVatu5YB/iV2QKijQcc3P0TjEcUC4wgxJObStSDkJEopiRtLKKJYkQniGJmSoKUcBkU6SH5DCU62MoR8K/bmCufqzI0GBlPPA05XZlnLZy8T/vGGs/CsnoTyKFeF4MciPGVQhzNKAYyoIVmyuCcKC6l0hniKBsNKZVXQI9vLJf0mvUbcv6s27ZrXVLuIog2NwAmrABpegBW5BB3QBBil4Ai/g1Xg0no03431RWjKKnkPwC8bHNyPBlDk=</latexit>

(1, 1, 1, 1)B2 = 0

<latexit sha1_base64="KwXN3vB75cO8+iCgGHki3Rqat+8=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKepJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7RcPZ/2q/1iya24c6BV4mWkBBka/eJXbxCRRFBpCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VGJBtZ/OD56iM6sMUBgpW9Kgufp7IsVC64kIbKfAZqSXvZn4n9dNTHjlp0zGiaGSLBaFCUcmQrPv0YApSgyfWIKJYvZWREZYYWJsRgUbgrf88ippVSveRaV2VyvVr7M48nACp1AGDy6hDrfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8ApFqPpg==</latexit>

c
(2)
2

<latexit sha1_base64="b+sBcHUxchug3itkypZe91QsAQA=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9mtRT1JwYvHCvZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdb2dldW19YzO3ld/e2d3bLxwcNnWUKEIbJOKRagdYU84kbRhmOG3HimIRcNoKRjdTv/VElWaRvDfjmPoCDyQLGcHGSg/kMS1Vzia9816h6JbdGdAy8TJShAz1XuGr249IIqg0hGOtO54bGz/FyjDC6STfTTSNMRnhAe1YKrGg2k9nB0/QqVX6KIyULWnQTP09kWKh9VgEtlNgM9SL3lT8z+skJrzyUybjxFBJ5ovChCMToen3qM8UJYaPLcFEMXsrIkOsMDE2o7wNwVt8eZk0K2Xvoly9qxZr11kcOTiGEyiBB5dQg1uoQwMICHiGV3hzlPPivDsf89YVJ5s5gj9wPn8Apd6Ppw==</latexit>

c
(2)
3

<latexit sha1_base64="XbNAd5Ni+Gen4CAv5K62blgr15A=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyG+DhJwIvHCOYhyRpmJ7PJkJnZZWZWCEu+wosHRbz6Od78GyfJHjSxoKGo6qa7K4g508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1M/dYTVZpF8t6MY+oLPJAsZAQbKz2Qx7RUOZv0znuFolt2Z0DLxMtIETLUe4Wvbj8iiaDSEI617nhubPwUK8MIp5N8N9E0xmSEB7RjqcSCaj+dHTxBp1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDKT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjPI2BG/x5WXSrJS9i3L1rlqsXWdx5OAYTqAEHlxCDW6hDg0gIOAZXuHNUc6L8+58zFtXnGzmCP7A+fwBqOaPqQ==</latexit>

c
(2)
5

<latexit sha1_base64="TxUgsItDuvQq58603w9ImJOtkyo=">AAACOnicbVBNS8NAEN3Ur1q/qh69BIugB0uiRb0IpV48VrAqNCFstpN26WYTdidiCf1dXvwV3jx48aCIV3+A29qDVQeGfbw3w+x7YSq4Rsd5sgozs3PzC8XF0tLyyupaeX3jSieZYtBiiUjUTUg1CC6hhRwF3KQKaBwKuA77ZyP9+haU5om8xEEKfky7kkecUTRUUL7wYoq9MMobw+Dw1BMQ4a4XQpfLXMdUCKMqfjd0PW/f9NQDsjM14yne7eFeUK44VWdc9l/gTkCFTKoZlB+9TsKyGCQyQbVuu06Kfk4VciZgWPIyDSllfdqFtoGSxqD9fGx9aO8YpmNHiTIt0R6zPzdyGms9iEMzOTKqf2sj8j+tnWF04udcphmCZN+HokzYmNijHO0OV8BQDAygTHHzV5v1qKIMTdolE4L72/JfcHVQdY+qtYtapd6YxFEkW2Sb7BKXHJM6OSdN0iKM3JNn8krerAfrxXq3Pr5HC9ZkZ5NMlfX5Bcr4rgw=</latexit>

B3 =

0
@

1
�1
1
�1
1
�1

1
A

<latexit sha1_base64="lduRrt0It/fR7VifxpGFFcokS+8=">AAACBHicbVDLSgMxFL3js9bXqMtugkWoIGVGi7oRSt24rGAf0A5DJs20oZkHSUYoQxdu/BU3LhRx60e482/MtEW09YTA4Zx7ufceL+ZMKsv6MpaWV1bX1nMb+c2t7Z1dc2+/KaNEENogEY9E28OSchbShmKK03YsKA48Tlve8DrzW/dUSBaFd2oUUyfA/ZD5jGClJdcslOyTn3fcDbAaeH5aG7tnV5ZrFq2yNQFaJPaMFGGGumt+dnsRSQIaKsKxlB3bipWTYqEY4XSc7yaSxpgMcZ92NA1xQKWTTo4YoyOt9JAfCf1DhSbq744UB1KOAk9XZlvKeS8T//M6ifIvnZSFcaJoSKaD/IQjFaEsEdRjghLFR5pgIpjeFZEBFpgonVteh2DPn7xImqdl+7xcua0Uq7VZHDkowCGUwIYLqMIN1KEBBB7gCV7g1Xg0no03431aumTMeg7gD4yPb+W+lRw=</latexit>

(1, 1, 1, 1, 1, 1)B3 = 0

<latexit sha1_base64="uBNx6Mc+2rPxjQGfQC64YonhPBQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKepJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7RcPZ/2a/1iya24c6BV4mWkBBka/eJXbxCRRFBpCMdadz03Nn6KlWGE02mhl2gaYzLGQ9q1VGJBtZ/OD56iM6sMUBgpW9Kgufp7IsVC64kIbKfAZqSXvZn4n9dNTHjlp0zGiaGSLBaFCUcmQrPv0YApSgyfWIKJYvZWREZYYWJsRgUbgrf88ippVSveRaV2VyvVr7M48nACp1AGDy6hDrfQgCYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8Ap2KPqA==</latexit>

c
(2)
4

<latexit sha1_base64="is3r8ZYzeD4kpM7iEMExeCXr0Lo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKepJCl48VrAf0q4lm2bb0CS7JFmhLP0VXjwo4tWf481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GN/M/PYTVZpF8t5MYuoLPJQsZAQbKz2Qx7RcPZ/2vX6x5FbcOdAq8TJSggyNfvGrN4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k/nB0/RmVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+smJrzyUybjxFBJFovChCMTodn3aMAUJYZPLMFEMXsrIiOsMDE2o4INwVt+eZW0qhXvolK7q5Xq11kceTiBUyiDB5dQh1toQBMICHiGV3hzlPPivDsfi9ack80cwx84nz+i1o+l</latexit>

c
(2)
1

<latexit sha1_base64="cCXje7DxL9f/dxKocp93+Fco1tM=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9ktpXqSghePFeyHtGvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6387a+sbm1nZuJ7+7t39wWDg6bukoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG9mfvuJKs0ieW8mMfUFHkoWMoKNlR7IY1qqXEz7tX6h6JbdOdAq8TJShAyNfuGrN4hIIqg0hGOtu54bGz/FyjDC6TTfSzSNMRnjIe1aKrGg2k/nB0/RuVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+smJrzyUybjxFBJFovChCMTodn3aMAUJYZPLMFEMXsrIiOsMDE2o7wNwVt+eZW0KmWvVq7eVYv16yyOHJzCGZTAg0uowy00oAkEBDzDK7w5ynlx3p2PReuak82cwB84nz+qao+q</latexit>

c
(2)
6

<latexit sha1_base64="kx/a9cd1AVUXWNNjl1noD2cgb10=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLRD0SvXjERD4SWEi3FGhou5u2qyEb/ocXDxrj1f/izX9jgT0o+JJJXt6bycy8IOJMG9f9djJr6xubW9nt3M7u3v5B/vCoocNYEVonIQ9VK8CaciZp3TDDaStSFIuA02Ywvp35zUeqNAvlg5lE1Bd4KNmAEWys1O1oNhS4mxTL59PeRS9fcEvuHGiVeCkpQIpaL//V6YckFlQawrHWbc+NjJ9gZRjhdJrrxJpGmIzxkLYtlVhQ7Sfzq6fozCp9NAiVLWnQXP09kWCh9UQEtlNgM9LL3kz8z2vHZnDtJ0xGsaGSLBYNYo5MiGYRoD5TlBg+sQQTxeytiIywwsTYoHI2BG/55VXSKJe8y1LlvlKo3qRxZOEETqEIHlxBFe6gBnUgoOAZXuHNeXJenHfnY9GacdKZY/gD5/MHjayR5w==</latexit>

�
(2)
3

<latexit sha1_base64="MnkPu1tPHSc4nnQ2Rd35G5I67FQ=">AAAB9XicbVBNTwIxEJ3FL8Qv1KOXRmKCF7JLiHokevGIiYAJLKRbutDQdjdtV0M2/A8vHjTGq//Fm//GAntQ8CWTvLw3k5l5QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRS0eJIrRJIh6phwBrypmkTcMMpw+xolgEnLaD8c3Mbz9SpVkk780kpr7AQ8lCRrCxUq+r2VDgXlqunk/7tX6x5FbcOdAq8TJSggyNfvGrO4hIIqg0hGOtO54bGz/FyjDC6bTQTTSNMRnjIe1YKrGg2k/nV0/RmVUGKIyULWnQXP09kWKh9UQEtlNgM9LL3kz8z+skJrzyUybjxFBJFovChCMToVkEaMAUJYZPLMFEMXsrIiOsMDE2qIINwVt+eZW0qhXvolK7q5Xq11kceTiBUyiDB5dQh1toQBMIKHiGV3hznpwX5935WLTmnGzmGP7A+fwBjzCR6A==</latexit>

�
(2)
4

Figure 10.1: Schematic description of conditions i) (panels a,b,e,f) and ii) (panels
c and d) for topological signals defined on 1-dimensional cells (links, panels in top
row) and 2-dimensional cells (triangles or squares, panels in bottom row) in which we
assume that there is an orientation such that w = u = (1, 1, . . .)⊤. In the case of
simplicial complexes (panels a, d) condition i) cannot be satisfied for signals defined
on 1-dimensional simplices while in the case of cell complexes (panels e, f) condition
i) it can be satisfied. Condition ii) can be satisfied on simplicial and cell complexes
as long as the simplices are balanced (see panels c, d) for the simplicial complex case).

The first condition has a striking consequence. If k is an odd number, because

108CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

any (k + 1)-simplex contains an odd number of k-faces, then condition i) cannot be
ever satisfied. On the contrary if k is even, then any (k+ 1)-simplex contains an even
number of k-faces condition i) can be realised (see Fig. 10.1a-b). On the other hand
condition ii) can be satisfied by imposing a suitable condition of the (k − 1)-faces of
the k-simplex, which we call balanced condition. In particular if v = u = (1, . . . , 1)⊤

this condition can be satisfied requiring every (k − 1)-face to be adjacent to an even
number of k-simplices and moreover to be oriented coherently with half of them (see
Fig. 10.1c-d) (See Appendix A and following sections for further details).

Therefore for even values of k, global synchronization can be achieved while if k
is odd we observe, as long as v⊤Bk+1 ̸= 0, a topological obstruction to the onset of
global synchronization. Interestingly for K-dimensional signals having BK+1 = 0, only
the balanced condition remains (i.e., condition ii)) which is automatically satisfied for
the vector v = u if the simplicial complex is a closed manifold without boundary.
Hence K-dimensional topological signals defined on closed K dimensional manifolds
can always achieve global synchronization for arbitrary value of K.

A similar derivation can be generalized and extended to topological signals defined
on the k-dimensional cells of cell complexes. In particular the conditions to achieve
global synchronization on a cell complex are unchanged and given again by condition
i) and ii). However the combinatorics of cell complexes is different from the one
of simplicial complexes. Take for instance a cell complex whose network skeleton is
formed by a d-dimensional square lattice with periodic boundary conditions, i.e., a
regular tessellation of d-dimensional torus. Then every cell of dimension k + 1 > 0
has a even number of k-dimensional faces therefore condition i) can be satisfied also
if k is odd (see Fig. 10.1e-f). This implies that on cell complexes we can overcome
topological obstruction. Until now we have focused on the combinatorial implication
of the conditions i) and ii). Now that we have characterized the conditions for the
onset of global synchronization we shall focus on the construction of such discrete
manifolds. We will start with the more straightforward one and then move to the
more elaborate, leaving the cell complex as last.

10.2 Construction of eulerian discrete manifolds
In this section we show how to construct a simplicial or cell complex capable of hosting
a globally synchronized state. The example shown are all related to a more general
analysis of the problem that is not shown in this Chapter but it is presented in Ap-
pendix A. In the latter we relate the topological problem to a graph problem showing
how the proprieties of Bk and Bk+1 of a given simplicial complex can be transferred
to the analysis of a flow over a graph.

10.2.1 2-simplicial complex
The aim of this section is to build a 2-simplicial complex satisfying conditions i) and ii)
for k = 2 and k = 0. In this case the simplex is formed by triangles connected among
them to pave a 2-torus. We could have used the orientation given by the node labels,
but again we decided to introduce an alternative orientation, following a bottom up
approach, aimed at directly obtaining that u = (1, . . . , 1)⊤ lies in ker L2. Also in this
case this choice does not change the topological properties of the simplicial complex

10.2. CONSTRUCTION OF EULERIAN DISCRETE MANIFOLDS 109

with respect to those of the same simplicial complex oriented by using the node labels
orientation.

Consider the case of topological signals defined on 2-simplices, i.e., the faces of
the 2-simplicial complex. Conditions ii) becomes thus B2u = 0, while condition i)
is automatically satisfied because B3 = 0, being the 3-simplices not allowed. The
basic element is thus an oriented triangle, i.e., a 2-simplex A = [a c b] whose links
are oriented as [a b], [b c] and [c a] (see Fig. 10.2a). Consider now a second triangle
B = [b c d] sharing the link [b c] with the previous one, and whose links are oriented
as [b c], [c d] and [d b]. Because of the chosen orientations the shared link determine
a +1 and a −1 entries in the matrix B2, namely in the product B2u they contribute
with a 0 (see Fig. 10.2b). We can then repeat such construction by alternating the
two kinds of triangles above defined and eventually identify among them the “vertical
left” and “vertical right” sides (red lines in Fig. 10.2c) and also the “horizontal top”
and “horizontal bottom” sides (blue lines in Fig. 10.2c). In this way we have obtained
a 2-torus whose surface is paved with triangles and such that by construction we have
B2u = 0. Let us observe that because nodes are not oriented no special construction
is required for the case k = 0 except each node to have an even degree, condition that
holds true in the present case, indeed ki = 6 ∀i, and they are ”correctly” oriented.

a)
a

b

c

b)
a

b

c

d

c) d)

ab
ca
bc
cd
db

A B
-1 0
-1 0
-1 1
0 1
0 1

<latexit sha1_base64="1qpUNkUCs1xhePFYlUjVo2zKqfc=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSlqBuh1I3LCvYBbSiT6aQdOpnEmUmhhH6HGxeKuPVj3Pk3TtIstPXAwOGce7lnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lFhLAltk5CHsudhRTkTtK2Z5rQXSYoDj9OuN71L/e6MSsVC8ajnEXUDPBbMZwRrI7mDAOuJ5yfNxbB2OyxX7KqdAa0TJycVyNEalr8Go5DEARWacKxU37Ej7SZYakY4XZQGsaIRJlM8pn1DBQ6ocpMs9AJdGGWE/FCaJzTK1N8bCQ6UmgeemUxDqlUvFf/z+rH2b9yEiSjWVJDlIT/mSIcobQCNmKRE87khmEhmsiIywRITbXoqmRKc1S+vk06t6lxV6w/1SqOZ11GEMziHS3DgGhpwDy1oA4EneIZXeLNm1ov1bn0sRwtWvnMKf2B9/gBiX5Hb</latexit>

B2 =

A = [a c b] B = [b c d]

A

B

Figure 10.2: A 2-torus paved with triangles. We consider 2-torus whose surface
is paved with oriented triangles (panel a)) organized in such a way that once they
share a common link then the latter is coherent with the orientation of one triangle
and incoherent with the second; they contribute thus to the matrix B2 with entries
+1 and −1 (panel b)). Such construction is repeated in the longitudinal and vertical
direction and eventually including periodic boundary conditions (panel c)).

10.2.2 3-simplicial complex
The aim of this section is to show how to build a 3-simplicial complex, P , satisfying
conditions i) and ii) for k = 2 and k = 0, and thus admitting a synchronous manifold
for topological signals defined on faces or nodes. The nodes of this simplicial complex
are placed on a 2-dimensional square grid with periodic boundary conditions. However
each four nodes of any (imaginary) square placquette of this grid are belonging to a

110CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

distinct tetrahedron. As it can be directly shown this structure admits an eigenvector
v with elements |vi| = 1 for any orientation induced by the node labels, as long as
k ∈ {0, 2}.

This interesting structure can be obtained by looking at topologies that satisfy
conditions i) and ii) for an orientation such that v = u = (1, . . . , 1)⊤ will lie in ker L2
(and of course in ker L0). One can show that the resulting oriented simplicial complex
has the the same topological properties of the simplicial complex oriented by using the
node label order, the reason being that their basis are related by an invertible linear
transformation.

For sake of concreteness we will consider the case of topological signals defined on
2-simplices, belonging to a 3-simplicial complex. The case k = 0 being associated to
a standard network synchronization phenomenon fits in the standard global synchro-
nisation phenomenon on networks. Conditions i) and ii) translate thus into B⊤

3 u = 0
and B2u = 0. The sought simplicial complex will thus be obtained by assembling
together nodes, links, triangles and tetrahedra. Let us notice that once such simplicial
complex has been built we show that he can support global synchronization also for
topological signals defined on 0-simplex, i.e., on nodes, while this will not be the case
for topological signals defined on 1-simplex, links, or 3-simplex, tetrahedra.

Let us start by considering a tetrahedron (see Fig. 10.3a) and let us fix an orien-
tation for its faces, A, B, C and D. For sake of concreteness, we define a face to be
positively oriented if one circulates between its vertices in a anticlockwise manner, and
negatively oriented on the opposite (see Fig. 10.3b). To better appreciate the relative
orientations of the faces we show the same tetrahedron but “flattened”, in this way it
is clear the presence of two positively oriented (A and C) and two negatively oriented
(B and D) faces, which implies that condition i) is satisfied, i.e., B⊤

3 u = 0.
By labelling the vertices with a, b, c and d, we can assign an orientation to the

links (Fig. 10.3b); together with the faces orientation we can compute the incidence
matrix B2 (see Fig. 10.3c). From the latter we can appreciate the existence of four
links (rows shaded in light grey in the incidence matrix, also coloured in orange in
Fig. 10.3a) that are coherently oriented with two faces, thus in the product B2u they
return a +2. There are also two links (white rows in the incidence matrix) that are
not coherently oriented with the two faces to which they are incident, hence in the
product B2u they contribute with a 0.

The idea to build the sought 3-simplicial complex satisfying the constraints B2u =
0 and B⊤

3 u = 0, is to add another oriented tetrahedron with an opposite orientation
for its faces with respect to the previous one, but with the same orientation of the
links (see Fig. 10.4a). This “opposite” tetrahedron will have two positively oriented
and two negatively oriented faces and thus it satisfies again B⊤

3 u = 0, moreover its
incidence matrix B2 will be the opposite of the previous one (panel b) of Fig. 10.4).
This means that we can select an edge in the first tetrahedron (say ad) and a second
edge in the opposite tetrahedron (say a′d′) and “glue” them (see Fig. 10.4c). In this
way this edge will be incident with four faces, and it will be coherently oriented with
two of them and non coherently oriented with the remaining two. Hence the row of
the incidence matrix of the “glued” tetrahedron, B(glue)

2 , will contain two “+1” and
two “−1”, the remaining entries being “0” (see Fig. 10.4d). In conclusion this link
will contribute to 0 in the product B(glue)

2 u. As we have shown the construction of
this simplicial complex has been realized as a mixture of the top down and bottom up

10.2. CONSTRUCTION OF EULERIAN DISCRETE MANIFOLDS 111

a) b)

Negative orientation

Positive orientation
a

bc

d

dd

A
BC

DA

B

ad
ac
ba
cb
db
dc

A B C D
0 1 1 0
1 0 -1 0
1 1 0 0
1 0 0 1
0 1 0 -1
0 0 1 1

<latexit sha1_base64="1qpUNkUCs1xhePFYlUjVo2zKqfc=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqiSlqBuh1I3LCvYBbSiT6aQdOpnEmUmhhH6HGxeKuPVj3Pk3TtIstPXAwOGce7lnjhdxprRtf1uFjc2t7Z3ibmlv/+DwqHx80lFhLAltk5CHsudhRTkTtK2Z5rQXSYoDj9OuN71L/e6MSsVC8ajnEXUDPBbMZwRrI7mDAOuJ5yfNxbB2OyxX7KqdAa0TJycVyNEalr8Go5DEARWacKxU37Ej7SZYakY4XZQGsaIRJlM8pn1DBQ6ocpMs9AJdGGWE/FCaJzTK1N8bCQ6UmgeemUxDqlUvFf/z+rH2b9yEiSjWVJDlIT/mSIcobQCNmKRE87khmEhmsiIywRITbXoqmRKc1S+vk06t6lxV6w/1SqOZ11GEMziHS3DgGhpwDy1oA4EneIZXeLNm1ov1bn0sRwtWvnMKf2B9/gBiX5Hb</latexit>

B2 =
ac

b

d

A = [acb] B = [adb]
C = [adc] D = [bdc]

c)

C

D

Figure 10.3: An oriented tetrahedron. We consider an oriented tetrahedron, i.e.,
3-simplex, both in a 3D view (panel a)) and in a “flatten” 2D one (panel b)). Given
the orientation of the faces and of the links proposed in panel b), we can compute
the incidence matrix B2 (panel c)). We can observe the presence of four links whose
contribution to B2u is non zero, they correspond to the grey rows in the matrix and
to the orange links in panel a).

approach.
By construction the 3-simplicial complex obtained by gluing the two opposite tetra-

hedra contains a link, (ad) that is incident with four faces and it is coherently oriented
with two of them and incoherently with the other two (see Fig. 10.5a). Moreover such
simplicial complex contains six links each one belonging to two faces and coherently
oriented with both of them, hence they will contribute with a non zero entry in the
product B2u. In panel a) of Fig. 10.5 they are colored in blue in the case of the first
considered tetrahedron and in red for the second one; let us for short say that such
links have the “wrong property”. To tackle this issue we repeat the construction show
on Fig. 10.4 by alternating “positively” and “negatively” oriented tetrahedra along
the two opposite sides of the square obtained by “flattening” each tetrahedron and
considering only the sides with the “wrong property” (see Fig. 10.5b). The result-
ing structure resemble to a “waffle” (see Fig. 10.5c) to which we imposed periodic
boundary conditions (see Fig. 10.5c). Eventually taking L squares along the longitu-
dinal direction and M squares along the latitudinal direction, we obtain the sought
3-simplicial complex that by construction satisfies B2u = 0 and B⊤

3 u = 0. It can thus
support a synchronous manifold for topological signals defined on 2-simplex but not
on the 1-simplex; indeed B⊤

2 u ̸= 0, nor the 3-simplex because B3u ̸= 0. Let us observe
that in this case B⊤

4 u = 0, being the tetrahedron the simplex with the largest dimen-
sion and thus B4 = 0, however we do not have global synchronization of 3-topological
signals because the used simplex is not a closed manifold without boundary. Now that
we have realized the construction of a simplicial complex capable of hosting a globally
synchronized state we will move to the cell-complex case.

10.2.3 3-cell complex: 3D-torus
In the following we will build a 3-cell complex made of nodes, links, squares (i.e., 2-
cells) and cubes (i.e., 3-cells) capable to support global synchronization for topological
signals of any dimensions, k = 0, 1, 2, 3.

Let us consider a cube formed by six 2-cells, the squares (see Fig. 10.6a), and we
can orient the faces to have three positive and three negative contributions to B⊤

3 u is
in such a way the latter sums to zero (see panels b)). It is important for the following

112CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

a)

a’

b’c’

d’

d’d’

A’ B’C’

D’

A’ = [a’b’c’]

B’ = [a’b’d’]
C’ = [a’c’d’]
D’ = [b’c’d’]

a’d’
a’c’
b’a’
c’b’
d’b’
d’c’

A’ B’ C’ D’
0 -1 -1 0
-1 0 1 0
-1 -1 0 0
-1 0 0 -1
0 -1 0 1
0 0 -1 -1

c)

ac

b

d

<latexit sha1_base64="lWJUK9xEvw0tYOo8BnkPfCp1sL0=">AAAB9HicbVBNSwMxEM36WetX1aOXYBE8ld1S1ItQ6sVjBfsB7Vqy6WwbmmTXJFsoS3+HFw+KePXHePPfmLZ70NYHA4/3ZpiZF8ScaeO6387a+sbm1nZuJ7+7t39wWDg6buooURQaNOKRagdEA2cSGoYZDu1YAREBh1Ywup35rTEozSL5YCYx+IIMJAsZJcZKfq1Xfky7sWICpje9QtEtuXPgVeJlpIgy1HuFr24/ookAaSgnWnc8NzZ+SpRhlMM03000xISOyAA6lkoiQPvp/OgpPrdKH4eRsiUNnqu/J1IitJ6IwHYKYoZ62ZuJ/3mdxITXfspknBiQdLEoTDg2EZ4lgPtMATV8YgmhitlbMR0SRaixOeVtCN7yy6ukWS55l6XKfaVYrWVx5NApOkMXyENXqIruUB01EEVP6Bm9ojdn7Lw4787HonXNyWZO0B84nz9s1ZHk</latexit>

B0
2 =

<latexit sha1_base64="xNLPRFWl83dq9TS2iFvyF8z/CTY=">AAACCHicbVDLSsNAFJ3UV62vqEsXBotQNyUpRd0IpW5cVrAPaGOYTCft0JlJmJkIJWTpxl9x40IRt36CO//GSZuFth4YOHPOvdx7jx9RIpVtfxuFldW19Y3iZmlre2d3z9w/6MgwFgi3UUhD0fOhxJRw3FZEUdyLBIbMp7jrT64zv/uAhSQhv1PTCLsMjjgJCIJKS555PGBQjf0gaaZe7T6Z/QRLKiMa47M0vfLMsl21Z7CWiZOTMsjR8syvwTBEMcNcIQql7Dt2pNwECkUQxWlpEEscQTSBI9zXlEOGpZvMDkmtU60MrSAU+nFlzdTfHQlkUk6ZryuzReWil4n/ef1YBZduQngUK8zRfFAQU0uFVpaKNSQCI0WnmkAkiN7VQmMoIFI6u5IOwVk8eZl0alXnvFq/rZcbzTyOIjgCJ6ACHHABGuAGtEAbIPAInsEreDOejBfj3fiYlxaMvOcQ/IHx+QP1pZnx</latexit>

B
(glue)
2 =

ad
A B C D
0 1 1 0

A’ B’ C’ D’
0 -1 -1 0

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...
<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...
<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...
<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...
<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...
<latexit sha1_base64="qDf6pzroMMJvMcIkHWdR/tYPv+o=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS1GPRi8cKthbaUDabTbt2sxt2J4VS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MBXcoOd9O4W19Y3NreJ2aWd3b/+gfHjUMirTlDWpEkq3Q2KY4JI1kaNg7VQzkoSCPYbD25n/OGLacCUfcJyyICF9yWNOCVqp1R1FCk2vXPGq3hzuKvFzUoEcjV75qxspmiVMIhXEmI7vpRhMiEZOBZuWuplhKaFD0mcdSyVJmAkm82un7plVIjdW2pZEd67+npiQxJhxEtrOhODALHsz8T+vk2F8HUy4TDNkki4WxZlwUbmz192Ia0ZRjC0hVHN7q0sHRBOKNqCSDcFffnmVtC6q/mW1dl+r1G/yOIpwAqdwDj5cQR3uoAFNoPAEz/AKb45yXpx352PRWnDymWP4A+fzB85dj0s=</latexit>...

c’

b’

b)

d)

Figure 10.4: An opposite oriented tetrahedron. We show a tetrahedron whose
faces have an opposite orientation with respect to the ones of Fig. 10.3, while the
tetrahedron and its edges are oriented in the same way in both cases (panels a) and
b)). In panel c) we show the “gluing” process of these two tetrahedra along two selected
links, ad and a′d′, in such a way the shared link is now incident with four faces and its
is coherently oriented with two of them and non coherently with the two other ones
(panels c) and d)).

construction to incoherently orient opposite faces (see panels c)-d) and e)), this is
because once we will “glue” together several cubes, the shared faces should have the
right orientation to ensure B2B3 = 0 .

We then orient the links according to a left-right on the horizontal direction,
bottom-up in the vertical one and front-back in the transversal direction (see again
panels a) and b)). Once faces and links have been oriented we can compute the matri-
ces Bk, k = 1, . . . , 3 and we can observe that six links exist, three of which contributing
with “+2” (solid blue line) or “−2” (dashed red line) to B2u.

Once we have obtained the oriented cube, we can “glue” together several copies of
the same cube along the three directions (see Fig. 10.7). Because of the orientations
given to the faces (see Fig. 10.6), the face shared by each couple of cubes will have the
right orientation. Moreover this gluing process ensures also that B2u = 0; indeed as it
can been observed from Fig. 10.7 the unique link incident with four cubes, hence eight
faces, has a zero contribution to B2u. By considering for instance the configuration
shown in panel a), the vertical link common to the four cubes A, B, C and D will
contribute with +2 (it has been coloured in blue according to the scheme presented in
Fig. 10.6) because of the two faces of the B cube, with −2 (it has been coloured in red
according to the scheme presented in Fig. 10.6) because of the two faces of the D cube
and 0 (it has been coloured in black according to the scheme presented in Fig. 10.6) to
the faces in the cubes A and C. The same analysis can be done for the constructions
in the vertical direction (panel b)) and in the transversal one (panel c)). Finally by

10.3. MASTER STABILITY EQUATION FOR TOPOLOGICAL SIGNALS 113

a) b)

c) d)

a=a’b

c d=d’

b’

c’

+2

+2

+
2 -2+
2

-2

-2

-2

Figure 10.5: The 3-simplicial complex P. We schematically show the construction
of the 3-simplicial complex obtained by gluing together opposite tetrahedra and then
by identifying the opposite sides of the square composed by the tetrahedron links
contributing with a non zero value to B2u (the edges in blue and red in panels a-b)
or in yellow in panel c)).

imposing periodic boundary conditions in the three directions we obtain a 3D torus
with the required properties. Let us observe that the links orientation together with
the periodic boundary conditions ensure B1u = 0.

10.3 Master Stability Equation for Topological Sig-
nals

Let us now assume the reference solution s(t) to be also a solution of the coupled system
(10.1), then by introducing the distance from the reference orbit, δxi = xi − s(t), we
can derive its time evolution by linearising Eq. (10.1):

dδxi

dt
= Jf (s)δxi −

Nk∑
j=1

Lk(i, j)Jh(s)δxj ∀i = 1, . . . , Nk (10.2)

being Jf (s) (resp. Jh(s)) the Jacobian of the function f (resp. h) evaluated on the
reference solution.

The matrix Lk being symmetric, it admits an orthonormal basis, ϕϕϕ(α)
k , associated to

eigenvalues Λ(α)
k , α = 1, . . . , Nk, namely Lkϕϕϕ

(α)
k = Λ(α)

k ϕϕϕ
(α)
k . In particular, since we work

under the assumption that the simplicial complex is balanced, ϕϕϕ(1)
k ∼ (1, . . . , 1)⊤ ∈

RNk , Λ(α)
k = 0 for 1 ≤ α ≤ βk and Λ(α)

k > 0 for all α > βk.
Let us decompose the deviation vectors δxi onto this eigenbasis: δxi = ∑

α δx(α)(ϕϕϕ(α)
k)i.

Then linearising the dynamical equation, we obtain
dδx(α)

dt
=
[
Jf (s) − Λ(α)

k Jh(s)
]
δx(α) ∀α = 1, . . . , Nk (10.3)

114CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

a)

Negatively oriented

Positively oriented

b)

a

c

b

d

e

f

h

g
g

a

c

b

d

e

f

h

gh

q
1

q
2

q
3

q
4

q
5 q

6

e

f

fe

contribution -2
contribution +2

c)

a

c

b

d

e

f

h

g

d)

a

c

b

d

e

f

h

g

e)

a

c

b

d

e

f

h

g

Figure 10.6: An oriented cube. We show an oriented cube, both in a 3D view (panel
a)) then in a “flatten” 2D one (panel b)). Given an orientation of the faces and of the
links (see panels a) and b)), we can compute the incidence matrix B2 and identify the
link whose contribution to B2u is not zero. This allows to emphasise 6 links forming
a closed loop (thicker dashed red and solid blue lines in panel a)) in the cube. Let us
observe that opposite faces of the cube must be incoherently oriented (see panels c)-d)
and e)).

Perturbations aligned with the kernel do not change the stability of the uncoupled
system, therefore only the perturbations orthogonal to the kernel can modify the sta-
bility of the reference solution. This observation, in the realm of simplicial complexes
is far more relevant with respect to the graph case, as a kernel with dimension larger
than one is very easily obtainable. This is the MSF in the framework of simplicial
synchronization of topological signals. It is a linear, in general non autonomous, ODE
parametrized by the eigenvalues Λ(α)

k , allowing to infer the stability character of the
reference solution by looking at its spectrum.

10.3.1 Simplicial Stuart-Landau model
As an application of the general theory above introduced, let us consider the Stuart-
Landau (SL) model [184]–[186] defined for topological signals of dimension k and
d = 2. For k = 0 the model describes a nonlinear oscillator anchored at each node,
while for k = 1 it can describe an oscillating flux associated to an edge linking two
nodes. More precisely let us define wj = x1

j + ix2
j and let us consider the “local

reaction” function f(x) = f(w) = σw − βw|w|2, where σ = σℜ + iσℑ and β =
βℜ + iβℑ are complex control parameters. We can prove that the uncoupled dynamics

10.3. MASTER STABILITY EQUATION FOR TOPOLOGICAL SIGNALS 115

Figure 10.7: Gluing together four oriented cubes along the three dimensions.
We show how to glue together four cubes in the horizontal (panel a)), vertical (panel
b)) and vertical transversal (panel c)) plane. We can observe that in all cases the link
common to eight faces (and four cubes) returns a null contribution to B1u, indeed it
contributes with 0 to two couples of faces (thin black line), with +2 to a couple of
faces (blue thick line) and with −2 to the remaining couple of faces (dashed red line).
The final construction is schematically depicted in panel d). The cube is repeated
along each one of the three spatial dimensions and periodic boundary conditions are
implemented connecting opposite faces of the cubic array (represented with a lower
opacity). The basic element of the construction is shown in the centre. As in the other
figures, the non zero contributing edges are shown in orange and in dark grey all the
others. The edges coloured with the same color index as in panels a)-c) are also shown
for orientation reference.

ẇj = f(wj) in each simplex j admits a limit cycle solution ẑ(t) =
√
σℜ/βℜe

iωt, where
ω = σℑ − βℑσℜ/βℜ, that is stable provided σℜ > 0 and βℜ > 0, conditions that we
hereby assume. We now consider the coupled dynamics Eq. (10.1) with nonlinear
coupling function h(x) = h(w) = µw|w|m−1, where m is a positive integer and µ =
µℜ + iµℑ a complex parameter that sets the coupling strength. We study the stability
of the reference limit cycle solution ẑ(t) (see Appendix C) and we prove that the
system can globally synchronize, i.e., the dispersion relation is negative, only if the
model parameters do satisfy µℜ + µℑβℑ/βℜ > 0 , and the simplicial complex is such
that u ∈ ker Lk. To measure global synchronization we compute the (generalised)
Kuramoto order parameter R(t) =

∣∣∣∣∑j ρj(t)eiθj(t)
∣∣∣∣ /Nk, where wj(t) = ρj(t)eiθj(t)

is the polar form of the complex signal. Then R(t) → 1 testifies the existence of
phase and amplitude synchronization. Results shown in Fig. 10.8 provide numerical
evidence of our theoretical predictions. In Fig. 10.8a-c we show the results obtained by

116CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

studying the SL model defined on top of a designed balanced 3-simplicial complex (see
Section 10.2.2). The model parameters have been set to values allowing for a negative
dispersion relation and indeed once the complex amplitudes are defined on 2-faces,
i.e., triangles, the system globally synchronizes (see Fig. 10.8b). On the other hand,
once the SL oscillators are defined on links the system cannot globally synchronize (see
Fig. 10.8c). In Fig. 10.8d-f we provide an example of a cell complex which overcomes
topological obstruction: a 3D square lattice with periodic boundary conditions. Such
cell complex is made of nodes, link, squares and cubes (see Section 10.2.3). In this
case case global synchronization can be achieved for signals of every dimension (see
Fig. 10.8e-f for global synchronization of links and squares).

10.4 Conclusions
In this Chapter we have studied global synchronization of identical topological oscil-
lators on simplicial or cell complexes. We have found that global synchronization of
topological signals cannot be observed on arbitrary simplicial or cell complexes but
that only some special higher-order network topologies can sustain such a dynamical
state. This is in stark contrast with the corresponding scenario in networks where
global synchronization can be observed in every network topology given proper dy-
namical conditions. By combining topology, and in particular the spectral properties
of higher-order Laplacians, to nonlinear dynamics techniques such as the MSF, we have
identified the topological and dynamical conditions under which identical topological
oscillators can achieve global synchronization on simplicial or cell complexes. We have
proved that global synchronization of odd dimensional topological signals is obstructed
in simplicial complexes. This topological obstruction implies that on a K-dimensional
simplicial complex we can never observe global synchronization of odd dimensional
topological signals of dimension d < K. However, such obstruction is not present in
cell complexes. In particular we show evidence that in specific topologies such as the
d-dimensional square lattice with periodic boundary conditions global synchronization
of topological signal of any dimension can be observed. These results significantly
enrich our understanding of the relation between higher-order network topology and
dynamics revealing collective phenomena of topological signals. Our study is relevant,
for its inherent simplicity, to a wide spectrum of applications (neuroscience/biology/-
social sciences) where many-body interactions involve signals defined on face or link
in the framework of condensed matter [187].

10.4. CONCLUSIONS 117

Figure 10.8: The Kuramoto order parameter R is plotted versus time t for the Stuart-
Landau model of topological oscillators of the balanced simplicial and cell complexes
represented in panels a) and d) respectively. Panels b) and c) refer respectively to the
order parameter of triangles and links of the simplicial complex in panel a). Panels
e) and f) refer respectively to the order parameter of the squares and links of the cell
complex in panel d). The insets display the dynamical time series of the topological
signals. It is clear that while on the links of the simplicial complex, the oscillators
do not globally synchronize, the ones of the cell complex do support synchronization.
The model parameters are σ = 1.0 + 4.3i, β = 1.0 + 1.1i, µ = 1.0 − 0.5i and m = 3
ensuring the negativity of the dispersion relation (see Appendix C).

118CHAPTER 10. GLOBAL SYNCHRONIZATION IN SIMPLICIAL COMPLEXES

Chapter 11

Conclusions and outcomes

As we reach the end of this thesis, it is apt to reflect on the intertwined pathways
we have traversed. We began with an exploration into the spectral properties of neu-
ral networks and culminated in the investigation of signal dynamics within simplicial
complexes. Although these two domains appear disparate at first glance, both in-
vestigations demonstrate the undeniable utility of spectral methods as analytical and
optimization tools in the landscape of theoretical physics and machine learning.

In the first part of this research ventured into the territory of neural network
interpretability and efficiency via the introduction of a novel concept: the Spectral
Parametrization. We have shown that by translating neural network weights into the
spectral domain, specifically the eigenvalues and eigenvectors of the adjacency matrix,
one can gain a remarkable level of insight. Via this clever yet simple parametrization
the optimization process changes and the eventual structure can be interpreted much
more easily: the eigenvectors components are the features learned and the eigenvalues
their respective relevance. Thanks to this understanding pragmatic algorithms for
network slimming and spectral regularization have been developed. These algorithms
not only compact the networks but also maintain their performance, addressing one
of the central challenges in machine learning today. Moreover imposing an opportune
regularization on the eigenvalues a much more feature oriented network structure ap-
pears, revealing a processing core reminiscent of the complexity of the wanted task.
The invariance of this core, made by only the relevant neurons, tested against different
initialization structures, let us speculate that the majority of the employed architecture
can be slimmed and that the proposed regularization, mathematically and empirically
solid, could be of great applicative interest.
We hope that with this research we have paved the way for a proper neural network
analysis as only the relevant information is present in the structure. Indeed, the op-
timization process works sinergically with the parametrization and the regularization
exploring preferentially feature oriented and compact structures.

The spectral formulation and the parallelism with its relevance in network dynam-
ics, where it is a crucial aspect for predicting the evolution, enables us to connect
with the world of dynamical systems: we have created a context where ”learning”
means steering the dynamics stemming from an initial state (the input) towards a
given attractor. This research line opens up a plethora of scenarios where the tools of

119

120 CHAPTER 11. CONCLUSIONS AND OUTCOMES

dynamical systems are efficiently and beneficially applied to understand the learning
process.

Pivoting from this bridge between those areas we embarked on a comprehensive
analysis of pattern formation and synchronization in simplicial complexes topological
signals. Through the lens of the Dirac operator, we unravel the relationships that tie
together topological signals dynamics and spectral properties. The discovered rela-
tionships have implications for understanding the behavior of complex systems, from
neuronal networks to social interactions, governed by the same mathematical princi-
ples. For the first time we have been able to understand the contexts where topological
signals of arbitrary dimension can synchronize and form organized interdimensional
patterns, culminating with the development of a simplicial master stability function.
The field of topological signal is still at its infancy and its beauty and mathematical
rigour have been widely recognised and explored in this thesis. We sincerely hope that
with the theoretical advances presented this powerful mathematical framework could
soon unravel its true potential in relevant applications such as neuronal dynamics and
likely, as we have briefly said, in condense matter. Indeed, the latter, where operators
have been related to links and faces of discrete structures, seems a very promising
unexplored territory for topological signals application, unravelling in a very natural
way the recognised interplay between the lattice topology and the phenomenology.

Regarding our contribution to deep learning we would like to stress that, nowa-
days, a substantial number of political and social challenges have emerged due to the
increasing effectiveness of neural networks. Unfortunately, their widespread adoption
is not matched by a corresponding understanding of the underlying mechanisms or,
importantly, their post-training content. While there is a growing array of models
and techniques capable of explaining the operation of simpler neural networks, effec-
tive tools for understanding state-of-the-art architectures are still lacking. We believe
this thesis can contribute to addressing this issue through a judicious blend of theory
and computational methods, creating a technique to simplify these complex structures
for easier analysis. Hopefully, by achieving this, we may one day render the learned
content of neural networks interpretable, transforming them from merely a form of
’black-box oracle’ in the hands of private corporations to an instrument for cultural
enrichment.

Appendix A

Construction of a simplex
satisfying Lk u = 0

A.1 Introduction
The problem of finding a simplicial complex capable of supporting an homogeneous
signal that lies in the the kernel of a boundary operator of a certain dimension is a
mixture of topology and combinatorial can be tackled with a formalism we are about
to explain.
The core idea behind it is to represent the action of a k boundary operators in terms
of divergence of a fictitious vector field in a network made by three different types of
nodes: one representing k-simplex and another k ± 1.
Such vector field will represent how a homogeneous signal (on a given basis we are
about to define) rebounds on the upper and lower faces σk±1 after the action of a
boundary or coboundary operator.
The whole procedure we are about to explain has similarities similar to the one at page
50 of [188], which describes how to construct the dual complex. Let us also observe
that in [188] the dual and primal complex are considered separately whereas we will
represent them to be part of the same structure.

A.2 Graph representation of Boundary operator
Bk

Let us start with the definition of the action of a boundary operator Bk that acts
on a k simplex and returns a k − 1 simplex. In the following we proceed firstly by
illustrating how to construct a bipartite network representation of the simplex where
nodes are k-simplices and upper (or lower) faces and the way Bk acts on the latter for
every k. Then we will show how to exploit such representation to construct a simplicial
complex whose Hodge Laplacian Lk has the propriety that Lk(1, . . . , 1) = (0, . . . , 0).
The construction process shown is valid for every simplicial complex of any order but,
for simplicity we will show the construction for the case of a tetrahedron P , represented
in Figure A.1 (a).

We focus on k = 2 and therefore Sk = T , the space of triangles and Sk−1 = e, the
space of edges. In Figure (b) a flat version of the tetrahedron P is shown and the

121

122 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

Figure A.1: This figure depicts a tetrahedron in three distinct representations. In
subfigure (a), the 3-dimensional structure is shown with oriented edges indicated by
arrows on the links, while the triangles are unoriented but labeled. Subfigure (b)
presents a flattened version of the tetrahedron for clarity. In subfigure (c), the structure
is again displayed, but the triangles are oriented arbitrarily. The symbols + and -
are used, at this level, to describe the triangles that are coherently on incoherently
oriented.

triangles have been labelled. The first and only thing, at this level, that we need to
set, is the relative orientation of every triangle. Such orientation is fundamental and
will be represented with a sign +,−. Intuitively as soon as we have defined a fixed T
to be positively oriented and marked with +, every other triangle marked with + will
be oriented in the same way and every one with − in the opposite way.
Defining the relative orientation of every triangle accounts for the choice of base in
which the homogeneous vector h is written in; a homogeneous signal means that it
has exactly the same direction/orientation as every T in the basis chosen.
Let us orient them as shown in Figure (c), meaning that triangles 2,1,4 are oriented
in the same way and every one of them is opposed to T3.

We shall now describe how to represent a simplicial complex that has been described
by a list of oriented simplices. More specifically we will focus on two dimensions at a
time, namely (k, k + 1) and (k, k − 1). The bipartite graph we are about to show is
just a schematization of the interaction between σk by means of σk−1.
This could be done representing every σk = T with a white circle and every σk−1 = e
with a filled circle. Then every triangle is connected with every edge it contains. The
resulting graph is represented in Figure A.2 (a). From this graph we can easily retrieve
the description of every simplex in terms of its bounding σk−1 and therefore the action
of the k-boundary operator Bk. The core idea is that if σ(1)

k and σ
(2)
k share the same

bounding σk−1 and are oriented in the same way (+,+ or −,−) then σk−1 ⊂ σ
(1)
k and

−σk−1 ⊂ σ
(1)
k or, equivalently, −σk−1 ⊂ σ

(1)
k and σk−1 ⊂ σ

(1)
k . This is, basically, a top

down way of coherently infer the orientation of a k − 1 simplex.
Of course if they are oriented in opposite way then σk−1 ⊂ σ

(1)
k , σ

(2)
k . Such rule can

be exemplified in terms of the construction rule presented in Figure A.2 (b) leading
to the graph in Figure A.3 (a). If two simplices σ(1)

k , σ
(2)
k are oriented in the same way

then when we apply the boundary operator to the homogeneous signal h = σ
(1)
k +1σ(2)

k

it will result in a mutual compensation on the shared σk−1, represented by the filled

A.2. GRAPH REPRESENTATION OF BOUNDARY OPERATOR Bk 123

Figure A.2: In subfigure (a) we show a bipartite graph representation of P where only
the triangles are oriented and represented as a white circle. The edges are black filled
circles. Subfigure (b) schematically show the way of inferring the orientation (and
therefore the action of the boundary operator Bk) of a shared σk−1 when two σk are
coherently or incoherently oriented.

circle. For example if σk−1 is present inside the σ(1)
k and −σk−1 in σ

(2)
k and they are

oriented in the same way the boundary on σk−1 will be the sum of +1 contribute from
σ

(1)
k (an arrow from the white node σ(1)

k to the filled black node) and -1 contribute
from σ

(1)
k (a reversed arrow from the white node σ(1)

k to the filled black node). This
situation is shown in the bottom left diagram of Figure A.2 (b).
Clearly if the two simplices are oriented in the opposite way both σ

(1)
k and σ

(2)
k will

contribute with +1 (diagram top left) or -1 (top right) depending the way the σk−1
simplex appears in their respective list of bounding simplices.
Using this formalism we can see at a glance the links with ”non zero boundary”: the
filled nodes with non zero divergence with respect to the black arrows inserted after
fixing the orientation of each σk.
The reader can thus appreciate that this construction formally describes the action of
the boundary operator Bk as a propriety of a vector field on a graph. This results in
a much easier understanding of the proprieties of a given simplex and transfers the
algebraic propriety of Bk into proprieties of a given flow in a bipartite graph.
Indeed, for a more formal description, let e∗

j be the dual element of ej. This is the linear
operator that returns the j-th component of the chain. When considering a filled point
corresponding to σ(j)

k−1 = ej, it has an equal number of incoming and outgoing arrows.
This implies that e∗

j(B2h) = 0, meaning that the component on the j-th simplex is
zero. On the other hand, if ej has ni incoming arrows and no outgoing arrows, then
e∗

j(B2h) = ni − no.

124 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

Figure A.3: Subfigure (a) shows the representation of the full bipartite graph of P
with the vector field in each link that shows the action of the B2 operator. Subfigure
(b) shows the rule that needs to be followed in order to obtain the list of k−1 simplex
that belongs to every k simplex in the simplicial complex once the arrows are set.

A.3 Top-down construction of P

Once the orientation of every T is given we can infer the mutual orientation of every
bounding e. The representation via listing every σk ∈ Sk can be obtained 1 with the
rule in Figure A.3 (b), leading to:

T1 = (−e4, e5,−e6) T2 = (e4, e1, e3) (A.1)
T3 = (e1, e2,−e6) T4 = (−e3,−e5, e2) (A.2)

The simplex (the tetrahedron P in our example) can therefore be visualized after
imposing an absolute geometrical orientation. For the sake of visualization we shall
set + equal to counter clockwise as in A.3 (c). The list representation consequently
induce the orientation of every edge represented as an arrow in Figure A.4 (a).

Let us now summarize the steps that we have followed. First of all we have set an
arbitrary orientation of every T . Then we have inferred the orientation of every e so
that it can be a well defined bounding simplex i.e a (sub)face of a given T ; this has
been done following the rule in Figure A.2 (b). Under the hood this sets the basis of
both spaces: S2 = T and S1 = e. The base on T is the one where the homogeneous
signal stands for our oriented triangles all taken one time, the base on e is the one
induced by the neighbourhood definition of B2 applied to every Tj ∈ T .
We therefore have, in Figure A.3 all the information to understand the action of the
boundary operator B2 on a given signal we just need to transfer, according to the
arrows, the activity from the white nodes to the black ones (we will come again to this
point later).

1The representation via listing can only be obtained after having ”correctly oriented” to ensure
that we are constructing simplexes, namely satisfying Bk−1Bk = 0

A.3. TOP-DOWN CONSTRUCTION OF P 125

Change of basis

Such formalism is able to account also for a change in the base of Sk or Sk−1. An
orientation flip of either σk or σk−1 can be represented in this formalism as in Figure
A.4 (b), i.e., with a change in the orientation of every arrow around an empty (σk) or
filled (σk−1) circle. Such effect is schematically shown in panel (b) of figure A.4. If

Figure A.4: On panel (a) representation of the flattened tetrahedron P expliciting all
the orientation induced by our construction. On panel (b) the effect on the arrows of
every node (i.e. the Boundary Operator action) when a given simplex is flipped.

we change σ(i)
k → −σ(i)

k the zero boundary signal will therefore be the one such that
σ

∗(i)
k (u′) = −1.

A.3.1 B⊤
k+1

If we consider also the Sk+1 faces by starting from the base definition at level Sk,
the relative orientation has, again, to be taken into account. We shall start from the
construction of the bipartite graph in the same way as before, having, this time, filled
circle for Sk and empty one to denote Sk+1. The relative orientation of every Sk+1
will be represented as + or − inside every circle. This time we will be interested to
infer the listed representation of P once we have fixed the orientation of every T and
arbitrarily fixed the one of P . Now we cannot employ the same top-down approach
as before because the neighbourhood representation of B⊤

k is less trivial. Therefore,
we will proceed by setting the orientation of the level S3 = P and then construct the
operator B⊤

2 action (the arrows’ orientations on the bipartite graph).
Let us therefore assume that the tetrahedron P is oriented + and represent the graph
in Figure A.5 (a). Now we shall apply basically the same idea as before, schematically
represented in Figure A.5 (b) and implemented in (c). As can be noticed the rule is the
opposite as before (Figure A.3 (b)) and this is due to the fact that we are interested
in the action of B⊤

k+1, the transpose of the boundary operator 2. The action of Bk+1
can be shown simply flipping the arrows but, of course, leaving the rule unchanged.

2The signal should be intended as starting from the filled circle here and from the empty in the
precedent setting

126 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

Figure A.5: Panel (a) shows the orientation of 2 and 3 simplices, connected according
to the tetrahedron’s boundary. In (b) we show the construction rule for this case and
in (c) the resulting B2 effect.

This will lead exactly to the same representation as before (it is just a matter of book-
keeping). Thanks to that rule we can infer the via list representation of P , namely
P = (T1, T2,−T3, T4).
Of course with this method we obtain BkBk+1 = 0 and therefore the correct repre-
sentation of Boundary and Coboundary operators. We point out that,without this
construction rule, it is very hard to properly construct the simplex without starting
to set the orientation of the largest dimensional simplices.

A.4 Construction of eulerian simplicial complex
In the following we will construct a Simplicial complex made by Sk and Sk+1 simplex
capable of supporting an homogeneous signal h with the following proprieties:

• σ
∗(j)
k (h) = T ∗

j (h) = 1 ∀j

• Bkh = B2h = 0

• B⊤
k+1h = B⊤

3 h = 0

Recalling that ker Lk = ker Bk ∩ ker B⊤
k+1 this implies Lkh = 0 making it possible for

the simplicial complex to host a globally synchronized state.
Let us start with the construction of the base {Tj} that encodes the signal orientation.
In order for every tetrahedron in our simplicial complex to fulfil the third condition
we have to set up the graph on the left in Figure A.6. Employing such relative orien-
tation, indeed, the empty circle is divergence-less (according to the fictitious flow that
represents the Boundary Operator) independently of its orientation, as could be seen
by the 2 diagrams (corresponding to two different via list representation) on the right.
Such base will ensure the third condition but rebounds non trivially on the structure
of B2 as we shall see in the following.

In Figure A.7 (a), no matter which base we use for the space of edges, we can
see how such base induces four non 0 components on the vector B2h. Those will be

A.4. CONSTRUCTION OF EULERIAN SIMPLICIAL COMPLEX 127

Figure A.6: Examples of how the orientation of a given tetrahedron (white circle)
rebounds on the boundary operator, one the triangles are oriented, i.e. the basis {Tj}
is fixed (black circle). The resulting divergence in the white circle is always 0.

e∗
j(B2h) with j = 1, 2, 3, 4, whose corresponding nodes in the graph are marked in

red. It is important to notice, however, that e∗
j(B2h) = ±1 and we ave the freedom of

choosing either +1 or −1 based on the way we orient ej, rule defined by Figure A.4
(b). Let us focus on the sub graph containing only the portion with non 0 components,

Figure A.7: (a): The boundary operator action on a tetrahedron once the basis of S1,2
is set. In (b) the sub graph containing the edges with non zero divergence is shown
and in (c) it is presented how the divergence of the fictitious flux can be set to zero
glueing together different graph.

illustrated in Figure A.7 (b) and lets imagine to attach another tetrahedron via edge
e3 as in (c). Thanks to that operation we have solved the problem on e3 (indeed we
are altering the topological proprieties by glueing together tetrahedron) but added non
zero e5,6,7. However the same procedure can be repeated and the resulting lattice-like
structure resembles a 2D torus.
By doing this we can compensate every non zero component in every edge in the same
way as the one illustrated in A.8.

128 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

Figure A.8: Representation of the graph after several tetrahedrons are glued together
in order to make the fictitious flux divergence free in every black circle.

A.4.1 Non-homogeneous vector
Working with topological signal on k-simplicial complex we should also take into ac-
count the fact that a signal such that σ∗(i)

k (h) = 1, like (1, 1, 1 . . . 1, 1, 1) is, for our
purpose, equivalent to h′ such that σ∗(i)

k (h′) = −1 for j like (−1,−1, 1 . . . 1, 1, 1). How-
ever the analysis of the second signal in a given simplicial complex can be reframed in
terms of the analysis of the first signal after a change of basis such that σ(j)

k → −σ(j)
k

for all j ∈ J . As an example lets consider the analysis for the case of the tetrahedron.
If we take the orientation of every Ti = + the signal (1, 1, 1, 1) no longer stays in the
kernel of B⊤

k+1 but (1, 1,−1,−1) does. However it is exactly the same as considering
T1 = T2 = + and T3 = T4 = − and with the signal (1, 1, 1, 1). By shifting the focus
on the latter the consideration are easier and can be rephrased in terms of divergence
in every node: the white ones when accounting for Bk+1 and the filled ones for Bk.

A.5 Higher dimension
The above reasoning scheme could be extended and generalized to higher dimension.
Because a Sk simplex is made by k + 1 Sk−1 simplices, in order for the homogeneous
vector to be in the kernel of B⊤

k+1, we must restrict to even k to be able to satisfy the
required property. Figure A.5 (a) shows, indeed, how every Sk+1 simplex has an even
number of incoming nodes and therefore, choosing and opportune base (i.e. orienta-
tion) in which the signal h (homogeneous vector) is written in, it is possible to have a
0 coboundary for all Sk+1.
Let us then consider an even k. This imply that every Sk+1 in our simplicial complex
will have k + 2 faces Sk−1 simplices (i.e. the graphical representation will have k + 2
nodes). The base will be such that the orientation of each Sk will have a number of +
oriented faces equal to the number of − oriented ones.
When passing to the structure of Bk (like diagram in Figure A.3 (a)) having fixed

A.6. GRAPH FORMULATION OF THE PROBLEM 129

simplices the base of Sk we can calculate the number of ”non zero boundary” Sk−1,
namely the non 0 divergence filled node of the associated graph.
Being every Sk connected with every other and being their orientation either + or −
we can reason as follows: the total number of links in such graph is

(
k+2

2

)
. From that

number we have to remove all the zero-divergence Sk−1 simplex, namely the simplexes
connecting two equally oriented Sk. This is exactly the number of filled nodes in the
associated graph with zero divergence.
The number of such Sk−1 filled nodes can be easily calculated as the number of con-
nection between every + oriented Sk plus the number of connection between every −
oriented Sk. Being equal in number this is just

(
(k+2)/2

2

)
× 2. Therefore the number of

non zero divergence filled nodes (or non zero boundary Sk−1) is, for an even k-simplex

τk =
(
k + 2

2

)
−
(

(k + 2)/2
2

)
× 2 (A.3)

Which is equal to

τk = (k + 1)(k + 2)
2 − k + 2

2
k

2 = (k + 2)2

4 (A.4)

For the case of k = 2 we get τ2 = 4, the right value already exploited in the construction
of the torus. However the number with the next k, namely k = 4 is τ4 = 9. We
therefore have to construct an higher dimensional tessellation to compensate that.
Moreover the resulting graph, after the removal of the zero boundary connections, is
very intricate, making the job pretty tough. We speculate that mapping this problem
into a graph colouring scheme could solve the issue and we reserve this aspect further
investigation.

A.6 Graph formulation of the problem
We are now in the position to state in a different way our problem of finding a sim-
plicial or cell complex capable of hosting global synchronization. We conjecture that
a k-dimensional topological signal can globally synchronize if the corresponding graph
schematization of k, k + 1 and k − 1, k are eulerian graph.

130 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

A.7 Results in deep networks: Sparsity and SVD

In this Appendix we will test the setting of a multi-layered architecture by generalising
beyond the case study ℓ = 3 that we have already explored. More specifically, we have
trained according to different modalities a four-layer (ℓ = 4) deep neural network, by
modulating N2 = N3 over a finite window. In A.1a the results for the S-SVD and S-QR
are shown and confirm that the S-QR strategy yields performance that are comparable
to those reached with conventional learning approaches, but relying on a much smaller
set of trainable parameters. As usual, the size of the incoming and outgoing layers are
set by the specificity of the examined datasets. In Fig. A.2 the effect of the imposed
sparsity on the classification accuracy is displayed for both conventional and S-QR
method. Similar conclusions can be reached for MNIST (not shown) and CIFAR-10
A.1b.

A.7. RESULTS IN DEEP NETWORKS: SPARSITY AND SVD 131

(a) MLP - F-MNIST

(b) MLP - CIFAR-10

Figure A.1: Comparative analysis of different datasets with various configurations.
The relative accuracy as obtained by training a four layer network with N2 = N3 via
three different strategies presented in Chapter ??.

Results for the sparsification of a MLP for the F-MNIST dataset.

132 APPENDIX A. CONSTRUCTION OF A SIMPLEX SATISFYING Lk u = 0

Figure A.2: MLP: training a sparse network. The accuracy of the trained network
against the degree of imposed sparsity. Black diamonds refer to the usual training in
direct space, while red pentagons refer to the S-QR method.The analysis is carried
our for F-MNIST. Here, N2 = N3 = 500.

Appendix B

Square Lattice with periodic
boundary conditions

For this case of interest, where the simplicial complex is a d-dimensional square lat-
tice with periodic boundary conditions (p.b.c.), interesting phenomena occur. For a
rectangular portion of a d-dimensional square lattice with linear size Lm in the direc-
tion m, the eigenvalues and the eigenvectors of the graph Laplacians L0 and L1 can
be easily computed [91]. Indeed the eigenvectors of L0 are the Fourier modes of the
lattice associated with wave number q = (q1, q2, . . . , qm, . . . , qd) and the eigenvalues of
L0 can be expressed as

Λ0 = 4
d∑

m=1
sin2(qm/2). (B.1)

The periodic boundary conditions impose

qm = 2π
Lm

n̂m n̂m = 0, 1, 2 . . . Lm − 1. (B.2)

The analysis that has been carried out for the case presented in the main text will
let us conclude that as soon as an eigenvalue returns a positive dispersion law, i.e.,
λ(b2

k) > 0, the corresponding eigenspace will be constituted by one periodic eigenvector
that spans the nodes and one, again periodic, that spans the links. Consequently, as
in the general case, the arising instability cannot be confined to the space of nodes or
links, here too.

To be concrete, we have numerically analyzed the dynamical system (9.38) defined
on a 4 × 4 2-dimensional lattice with p.b.c.. The results are depicted in Fig. B.1: on
the left column, panels a), c) and e), refer to the case where there is single unstable
mode, while on the right column (panels b), d) and f)), multiple unstable modes are
allowed. Let us first observe that the critical mode, i.e., the one associated to the
largest value of the dispersion relation, is the same for both parameter configurations;
we also remark that to each mode, except for the 0-th one, there are associated several
linearly independent eigenvectors, four vectors in the case of a 4×4 lattice with p.b.c..
When only one mode is unstable (see panel c) in Fig. B.1), we observe that the signal
on the nodes exhibits a (horizontal) striped-like pattern and the signals on the links are
non-zero only when the link connects nodes with different signals values (Fig. B.1a).
Such ordered structure is destroyed when multiple modes are unstable (Fig. B.1b, d).
When there is a single unstable mode, the stationary pattern is a linear combination

133

134APPENDIX B. SQUARE LATTICE WITH PERIODIC BOUNDARY CONDITIONS

of the 4 eigenvectors associated to such mode (Fig. B.1e); remarkably this continues
to be true when more than one mode is unstable (Fig. B.1f).

Let us conclude by observing that the former result is a slight generalization of the
one we can found in [144], where authors showed that in the case of a unique unstable
and non-degenerate mode, the patterns can be described by such eigenvector, despite
the fact that they are the reflex of a nonlinear process. Here we have shown that the
same result holds true if the unique critical eigenvalue possesses a high-dimensional
subspace spanned by several eigenvectors and even in the case of multiple unstable
modes.

135

Figure B.1: Model (9.38) on a 4 × 4 2-dimensional lattice with p.b.c. The periodicity
of lattice, shown in panels a) and b), is represented by adding one column and one row,
so that the displayed nodes are 25, but effectively they are 16. Panels on the left show
the case where only one mode contributes to the instability, while those on the right
where multiple modes are unstable, as shown by the dispersion laws in panels c) and
d), respectively. When only one mode is unstable, the nodes’ pattern is striped-like,
while the signal on the links is non-zero only when the given link connects two nodes
with different signals, as shown in panel a); on the other hand, when multiple modes
are unstable, such regular structure is lost, as we can see in panel b). Panels e) and f)
show a comparison of the nodes’ pattern with a linear combination of the eigenvector
associated to the critical mode(s), showing a good accordance. The model parameters
are a = α = b = β = γ = D0 = D1 = 1; c = 4.7 for panels a), c), e), while c = 7.3 for
panels b), d), f); the initial perturbation is ∼ 10−2.

136APPENDIX B. SQUARE LATTICE WITH PERIODIC BOUNDARY CONDITIONS

Appendix C

Analysis of the Stuart-Landau
model

The aim of this section is to provide the interested reader more details about the global
synchronization of identical Stuart-Landau systems defined on top of simplicial and
cell complexes introduced in the main text.

Let us thus assume to deal with a k dimensional topological signal associated to a
nonlinear SL oscillator, whose time evolution is given by

dw

dt
= σw − βw|w|2 ,

where σ = σℜ + iσℑ and β = βℜ + iβℑ are complex model parameters. One can easily
prove that the former system admits a limit cycle solution ẑ(t) =

√
σℜ/βℜe

iωt, where
ω = σℑ − βℑσℜ/βℜ, is the signal frequency. Such solution is stable provided σℜ > 0
and βℜ > 0, conditions that we hereby assume.

We now consider Nk SL topological oscillators and we couple them using the the
(k − 1) and (k + 1)-faces of a simplicial complex. Let also assume the coupling to
be given by the nonlinear function h(w) = µw|w|m−1, where m is a positive integer
and µ = µℜ + iµℑ is a complex parameter defining the interaction strength. Observe
that such coupling has been recently introduced and studied in the framework on
synchronization on time varying networks in [189]. In conclusion we are interested in
studying the system

dwi

dt
= σwi − βwi|wi|2 + µ

Nk∑
j=1

Lk(i, j)wj|wj|m−1 ∀i = 1, . . . , Nk . (C.1)

We are now interested in studying the stability of the reference limit cycle solution
ẑ(t). If this condition is realised, then the system shows global synchronization. To
achieve this goal we introduce real “small” functions ρj(t) and θj(t) and rewrite wj(t)
as follows

wj(t) = ẑ(t)(1 + ρj(t))eiθj(t) , (C.2)

where ρj(t) and θj(t) are real valued functions. We now insert the previous expression
in the coupled Eq. (C.1). By using the expression for ẑ(t) and by expanding the

137

138 APPENDIX C. ANALYSIS OF THE STUART-LANDAU MODEL

resulting equation up to the first order in ρj and θj, we eventually obtain

dρj

dt
= −2σℜρj −

(
σℜ

βℜ

)m−1
2 Nk∑

ℓ=1
Lk(j, ℓ) (mµℜρℓ − µℑθℓ)

dθj

dt
= −2βℑ

σℜ

βℜ
ρj −

(
σℜ

βℜ

)m−1
2 Nk∑

ℓ=1
Lk(j, ℓ) (mµℑρℓ + µℜθℓ) .

(C.3)

We can then decompose ρj(t) and θj(t) on the orthonormal eigenbasis ϕϕϕ(α)
k , α =

1, . . . , Nk, of the Laplace matrix Lk:

ρj =
∑

α

ρ̂αϕ
(α)
k (j) and θj =

∑
α

θ̂αϕ
(α)
k (j) , (C.4)

to eventually obtain

dρ̂α

dt
= −2σℜρ̂α −

(
σℜ

βℜ

)m−1
2

Λ(α)
k

(
mµℜρ̂α − µℑθ̂α

)
dθ̂α

dt
= −2βℑ

σℜ

βℜ
ρ̂α −

(
σℜ

βℜ

)m−1
2

Λ(α)
k

(
mµℑρ̂α + µℜθ̂α

)
.

(C.5)

Let us observe that Eq. (C.5) is autonomous, hence one can compute its eigenvalues
and define the largest real part of the latter ones, say λ, named in the literature
dispersion relation. One can thus conclude that if λ < 0 the reference solution is
stable and hence the system globally synchronizes. The same reasoning can be done
whenever the generic MSF (10.3) is autonomous.

Let us also observe that a similar conclusion can be obtained if s(t) is a periodic
solution by resorting to Floquet analysis; calling again λ the largest real part of the
Floquet eigenvalues we can show that if λ < 0 then the reference solution is stable
and the system globally synchronizes. In the general case, one has to (numerically)
compute the Lyapunov exponent of (10.3) and infer about the stability of the reference
solution using the Lyapunov theory. Let us observe that to stress the dependence on
the simplex eigenvalues we will also write λα = λ(Λ(α)

k).
Back to Eq. (C.5) one can infer the stability of the reference solution and thus of

the global simplicial synchronization by studying if the perturbations ρj and θj fade
away, or equivalently if their projections ρ̂α and θ̂α vanish. Sufficient conditions are
obtained by assuming an exponential behavior, namely ρ̂α ∼ ρ̃αe

λαt and θ̂α ∼ θ̃αe
λαt

with time-independent ρ̃α and θ̃α. Inserting this ansatz into (C.5) and imposing that
(ρ̃α, θ̃α) ̸= (0, 0), one gets the following equation for λα

λ2
α + λα

(σℜ

βℜ

)m−1
2

µℜΛ(α)
k (m+ 1) + 2σℜ

+m

(
σℜ

βℜ

)m−1 (
Λ(α)

k

)2
(µ2

ℜ + µ2
ℑ)+ (C.6)

+ 2Λ(α)
k

(
σℜ

βℜ

)m−1
2
(
µℜσℜ + µℑβℑ

σℜ

βℜ

)
= 0 . (C.7)

We eventually define the dispersion relation (or maximum Floquet exponent) λ =
maxα ℜλα. Let us observe that λ1 = 0, that is λ vanishes if evaluated on Λ(1)

k = 0; this

139

is because the reference solution is a limit cycle. By considering then the behavior of
λα for Λ(α)

k close to zero, one can develop the root λα as follows

λα = 1
2

−
(
σℜ

βℜ

)
µℜΛ(α)

k (m+ 1)

− 2σℜ + 2σℜ

1 + 1
2

(
σℜ

βℜ

)(m−1)/2

Λ(α)
k

µℜ

σℜ
(m− 1) − 2βℑµℑ

βℜσℜ

+ . . .

= −Λ(α)

k

(
σℜ

βℜ

)(m−1)/2 (
µℜ + βℑµℑ

βℜ

)
+

Hence there exists an interval of values for Λ(α)
k such that λα > 0, namely the global

synchronization cannot be achieved, if and only if

µℜ + µℑ
βℑ

βℜ
< 0 .

The above presented theory is applied to topological SL signals defined on top of
the 3-simplicial complex and the 3-cell complex previously introduced. The model
parameters have been set to some generic values allowing for a negative dispersion
relation (see Fig. C.1(b-c) for the simplicial complex and Fig. C.1(e-f) for the cell
complex). However once the complex amplitudes are defined on 2-faces, i.e., triangles
or squares, the system globally synchronizes as we can appreciate from the inset in
panel b) and e), while SL oscillators defined on links have a different behavior if we are
dealing with a simplicial complex where they cannot globally synchronize (see panel
c)) or a cell complex where global synchronization is achieved (see panel f)). Those
different behaviors result from the fact that u ∈ ker L1 for the cell complex while
u ̸∈ ker L1 for the simplicial complex, in the latter case synchronization cannot be
achieved because of the presence of the topological obstruction.

Let us conclude this section by showing the dispersion relation for the topological
SL signals defined on the 2-torus paved with triangles. By assuming the same model
parameters as in Fig. C.1 the numerical results presented in Fig. C.2 confirm our
theory, global synchronization can be achieved only for topological signals defined on
nodes, i.e., k = 0 simplices (see left panel), or triangles, i.e., k = 2 simplices (see right
panel). Indeed we have u ∈ ker L0 and u ∈ ker L2; on the other hand u ̸∈ ker L1
and thus topological signals defined on links cannot globally synchronize (see middle
panel).

140 APPENDIX C. ANALYSIS OF THE STUART-LANDAU MODEL

Figure C.1: Dispersion relation for topological Stuart-Landau model. The
left panels refer to the 3-simplicial complex schematically represented in panel a). In
panel b) we report the dispersion relation λ as a function of the eigenvalues Λ(α)

2 in the
case of topological complex amplitudes defined on 2-faces, i.e., triangles, while as a
function of Λ(α)

1 in panel c) dealing with signals defined on links. Similar functions are
reported in the right panels in the case of 3-cell complex schematically represented in
panel d). The model parameters have been fixed to some generic values, σ = 1.0+4.3i,
β = 1.0 + 1.1i, µ = 1.0 − 0.5i and m = 3, and are the same used to obtain the results
reported in Fig. 10.8.

141

0 2 4 6 8 10
-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6
-8

-6

-4

-2

0

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
0.6

0.7

0.8

0.9

1

1.1

200 205 210 215 220

10

20

30

40

50

60

70

-0.5

0

0.5

200 205 210 215 220

10

20

30

40
-0.5

0

0.5

<latexit sha1_base64="pDIGokNWTgsI25GOLKfHKCLhJHs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00sPoutIrltyyOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1L2LsrV+2qpdpPFkYcTOIVz8OASanAHdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fyJuNew==</latexit>

k = 2
<latexit sha1_base64="cHaK3SB6iQbJrUVLuFuxpKxhUgY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxov2ANpTNdtIu3WzC7kYooT/BiwdFvPqLvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3U791hMqzWP5aMYJ+hEdSB5yRo2VHkbXXq9ccavuDGSZeDmpQI56r/zV7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oScWKVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE175GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsvL5PmWdW7qJ7fn1dqN3kcRTiCYzgFDy6hBndQhwYwGMAzvMKbI5wX5935mLcWnHzmEP7A+fwBxxeNeg==</latexit>

k = 1
b) c)

f g)

(faces)(links)(nodes)
<latexit sha1_base64="PAqHCiLrHI6m0V5HfbFq4YESehs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr4sQ9OIxonlAsoTZSW8yZHZ2mZkVwpJP8OJBEa9+kTf/xkmyB40WNBRV3XR3BYng2rjul1NYWl5ZXSuulzY2t7Z3yrt7TR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6xGV5rF8MOME/YgOJA85o8ZK96Mrt1euuFV3BvKXeDmpQI56r/zZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oQcWaVPwljZkobM1J8TGY20HkeB7YyoGepFbyr+53VSE176GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsv/yXNk6p3Xj27O63UrvM4inAAh3AMHlxADW6hDg1gMIAneIFXRzjPzpvzPm8tOPnMPvyC8/ENxeWNeg==</latexit>

k = 0

a)

e)

0 2 4 6 8 10
-12

-10

-8

-6

-4

-2

0

0 5 10 15 20
0.6

0.7

0.8

0.9

1

1.1

200 205 210 215 220

5

10

15

20
-0.5

0

0.5

Figure C.2: Dispersion relation for topological Stuart-Landau model (II).
We consider the 2-torus paved with triangles. The left panel refers to topological
signals defined on nodes, i.e., 0-simplices, the middle panel to the case of links, i.e.,
1-simplices and the right panel to the case of faces, i.e., 2-simplices panels. Top panels
show the dispersion relation and we can observe that in all cases the latter is negative
except for the zero value associated to Λ(1)

k = 0, k = 0, 1, 2. Bottom panels present the
(generalized) order parameters while the inset report the real part of the signals. The
model parameters have been fixed to some generic values, σ = 1.0+4.3i, β = 1.0+1.1i,
µ = 1.0 − 0.5i and m = 3, and are the same used to obtain the results reported in
Fig. 10.8.

142 APPENDIX C. ANALYSIS OF THE STUART-LANDAU MODEL

Bibliography

[1] C. M. Bishop, Pattern Recognition and Machine Learning, English, 1st ed.
2006. Corr. 2nd printing 2011 edition. New York: Springer, Apr. 2011, isbn:
978-0-387-31073-2.

[2] T. M. Cover and J. A. Thomas, Elements of information theory (Wiley series
in telecommunications). New York: Wiley, 1991, isbn: 978-0-471-06259-2.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer Science and Business Media,
2009.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[5] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, IEEE, 2013, pp. 6645–6649.

[6] N. Sebe, I. Cohen, A. Garg, and T. S. Huang, Machine learning in computer
vision. Springer Science and Business Media, 2005, vol. 29.

[7] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics, vol. 37,
no. 3, pp. 362–386, 2020.

[8] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and
applications, vol. 19, no. 2, pp. 171–209, 2014.

[9] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of
brain mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep., 1961.

[10] E. Meyers and L. Wolf, “Using biologically inspired features for face processing,”
International Journal of Computer Vision, vol. 76, no. 1, pp. 93–104, 2008.

[11] L. Caponetti, C. A. Buscicchio, and G. Castellano, “Biologically inspired emo-
tion recognition from speech,” EURASIP journal on Advances in Signal Pro-
cessing, vol. 2011, no. 1, p. 24, 2011.

[12] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[13] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise train-
ing of deep networks,” in Advances in neural information processing systems,
2007, pp. 153–160.

143

144 BIBLIOGRAPHY

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[15] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[16] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations
by back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

[17] N. Xie, G. Ras, M. van Gerven, and D. Doran, “Explainable deep learning: A
field guide for the uninitiated,” arXiv preprint arXiv:2004.14545, 2020.

[18] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances
in neural information processing systems, pp. 5998–6008, 2017.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[20] T. B. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learn-
ers,” arXiv preprint arXiv:2005.14165, 2020.

[21] D. Erhan, A. Courville, and Y. Bengio, “Understanding representations learned
in deep architectures,” Department dInformatique et Recherche Operationnelle,
University of Montreal, QC, Canada, Tech. Rep, vol. 1355, p. 1, 2010.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[23] L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D. Fanelli, “Machine

learning in spectral domain,” Nature Communications, vol. 12, no. 1, p. 1330,
2021.

[24] L. Chicchi, L. Giambagli, L. Buffoni, T. Carletti, M. Ciavarella, and D. Fanelli,
“Training of sparse and dense deep neural networks: Fewer parameters, same
performance,” Physical Review E, vol. 104, no. 5, p. 054 312, 2021.

[25] D. J. Surmeier and R. Foehring, “A mechanism for homeostatic plasticity,”
Nature neuroscience, vol. 7, no. 7, pp. 691–692, 2004.

[26] S. d’Ascoli, L. Sagun, G. Biroli, and J. Bruna, “Finding the needle in the
haystack with convolutions: On the benefits of architectural bias,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[27] Martin Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale
machine learning on heterogeneous systems, Software available from tensor-
flow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[29] \NoCaseChange{ https: // github. com/ Buffoni/ spectral_ learning} .
[30] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.
[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-

forward neural networks,” PMLR, pp. 249–256, Mar. 2010. [Online]. Available:
https://proceedings.mlr.press/v9/glorot10a.html.

http://www.deeplearningbook.org
https://www.tensorflow.org/
\NoCaseChange {https://github.com/Buffoni/spectral_learning}
https://proceedings.mlr.press/v9/glorot10a.html

BIBLIOGRAPHY 145

[32] A. Saxe, J. L. McClelland, and S. Ganguli, Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks, Dec. 2013. [Online]. Avail-
able: https://openreview.net/forum?id=_wzZwKpTDF_9C.

[33] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[34] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” University of Toronto, Technical Report, 2009.

[35] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Predicting
parameters in deep learning,” neural information processing systems, vol. 26,
pp. 2148–2156, Dec. 2013. doi: https://doi.org/10.14288/1.0165555. [On-
line]. Available: https://open.library.ubc.ca/soa/cIRcle/collections/
ubctheses/24/items/1.0165555.

[36] H. Yang, M. Tang, W. Wen, et al., “Learning low-rank deep neural networks via
singular vector orthogonality regularization and singular value sparsification,”
in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2020, pp. 2899–2908. doi: 10.1109/CVPRW50498.2020.
00347.

[37] M. Gabrié, A. Manoel, C. Luneau, et al., “Entropy and mutual information
in models of deep neural networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2019, no. 12, p. 124 014, Dec. 2019. doi: 10.1088/1742-
5468/ab3430. [Online]. Available: https://doi.org/10.1088%5C%2F1742-
5468%5C%2Fab3430.

[38] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-
able neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[39] J. O. Neill, “An overview of neural network compression,” arXiv preprint arXiv:2006.03669,
2020.

[40] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression
and acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282,
2017.

[41] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to hand-
written zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[42] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Conference
Paper NeurIPS, 2019.

[43] D. Zhang, H. Wang, M. Figueiredo, and L. Balzano, “Learning to share: Si-
multaneous parameter tying and sparsification in deep learning,” in Conference
Paper ICLR, 2018.

[44] J. Chang and J. Sha, “Prune deep neural networks with the modified L {1/2}
penalty,” IEEE Access, vol. 7, pp. 2273–2280, 2018.

[45] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolu-
tional neural networks for resource efficient inference,” arXiv preprint arXiv:1611.06440,
2016.

https://openreview.net/forum?id=_wzZwKpTDF_9C
https://doi.org/https://doi.org/10.14288/1.0165555
https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0165555
https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0165555
https://doi.org/10.1109/CVPRW50498.2020.00347
https://doi.org/10.1109/CVPRW50498.2020.00347
https://doi.org/10.1088/1742-5468/ab3430
https://doi.org/10.1088/1742-5468/ab3430
https://doi.org/10.1088%5C%2F1742-5468%5C%2Fab3430
https://doi.org/10.1088%5C%2F1742-5468%5C%2Fab3430

146 BIBLIOGRAPHY

[46] P. de Jorge, A. Sanyal, H. S. Behl, P. H. Torr, G. Rogez, and P. K. Dokania,
“Progressive skeletonization: Trimming more fat from a network at initializa-
tion,” Conference Paper ICLR, 2021.

[47] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[48] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation
and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[49] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh,
“Improved knowledge distillation via teacher assistant,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 5191–5198.

[50] M. Masana, J. van de Weijer, L. Herranz, A. D. Bagdanov, and J. M. Alvarez,
“Domain-adaptive deep network compression,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2017, pp. 4289–4297.

[51] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural
networks,” arXiv preprint arXiv:1509.06569, 2015.

[52] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[53] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by low
rank and sparse decomposition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 7370–7379.

[54] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit
goes down: Revisiting the quantization of neural networks,” arXiv preprint
arXiv:1907.05686, 2019.

[55] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-bit quantiza-
tion of convolution networks for rapid-deployment,” Conference Paper NeurIPS,
2018.

[56] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep neural network
for fast decoding by node-pruning,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 245–249. doi:
10.1109/ICASSP.2014.6853595.

[57] X. Wang, F. Yu, L. Dunlap, et al., “Deep mixture of experts via shallow em-
bedding,” in Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 552–562.

[58] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learning
dynamic routing in convolutional networks,” in Proceedings of the European
Conference on Computer Vision (ECCV), Sep. 2018.

[59] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional computation
in neural networks for faster models,” Conference Paper ICLR, 2016.

[60] R. Yu, A. Li, C.-F. Chen, et al., “Nisp: Pruning networks using neuron impor-
tance score propagation,” Thecvf.com, pp. 9194–9203, 2018. [Online]. Available:
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_
Pruning_Networks_CVPR_2018_paper.html.

https://doi.org/10.1109/ICASSP.2014.6853595
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html

BIBLIOGRAPHY 147

[61] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estima-
tion for neural network pruning,” Proceedings of 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[62] J. D. Yann LeCunn and S. Solla, “Optimal brain damage,” Advances in Neural
Information Processing Systems, 1989.

[63] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=rJlnB3C5Ym.

[64] L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D. Fanelli, “Machine
learning in spectral domain,” Nature communications, vol. 12, no. 1, pp. 1–9,
2021.

[65] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” Citeseer, 2009.

[66] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[67] N. Komodakis and S. Zagoruyko, “Paying more attention to attention: Improv-
ing the performance of convolutional neural networks via attention transfer,”
Hal.science, Jun. 2017. doi: https://hal-enpc.archives-ouvertes.fr/
hal-01832769. [Online]. Available: https://hal.science/hal-01832769/.

[68] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distillation,”
Thecvf.com, pp. 3967–3976, 2019. [Online]. Available: https://openaccess.
thecvf . com / content _ CVPR _ 2019 / html / Park _ Relational _ Knowledge _
Distillation_CVPR_2019_paper.html.

[69] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov, Knowl-
edge distillation: A good teacher is patient and consistent. [Online]. Available:
https : / / openaccess . thecvf . com / content / CVPR2022 / papers / Beyer _
Knowledge_Distillation_A_Good_Teacher_Is_Patient_and_Consistent_
CVPR_2022_paper.pdf.

[70] S. Goldt, M. S. Advani, A. M. Saxe, F. Krzakala, and L. Zdeborová, “Dy-
namics of stochastic gradient descent for two-layer neural networks in the
teacher–student setup*,” Journal of Statistical Mechanics: Theory and Experi-
ment, vol. 2020, no. 12, p. 124 010, Dec. 2020. doi: https://doi.org/10.1088/
1742- 5468/abc61e. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2019/file/cab070d53bd0d200746fb852a922064a-
Paper.pdf.

[71] H. S. Seung, H. Sompolinsky, and N. Tishby, “Statistical mechanics of learning
from examples,” vol. 45, no. 8, pp. 6056–6091, Apr. 1992. doi: https://doi.
org/10.1103/physreva.45.6056. [Online]. Available: https://journals.
aps.org/pra/abstract/10.1103/PhysRevA.45.6056.

https://openreview.net/forum?id=rJlnB3C5Ym
https://doi.org/https://hal-enpc.archives-ouvertes.fr/hal-01832769
https://doi.org/https://hal-enpc.archives-ouvertes.fr/hal-01832769
https://hal.science/hal-01832769/
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content/CVPR2022/papers/Beyer_Knowledge_Distillation_A_Good_Teacher_Is_Patient_and_Consistent_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Beyer_Knowledge_Distillation_A_Good_Teacher_Is_Patient_and_Consistent_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Beyer_Knowledge_Distillation_A_Good_Teacher_Is_Patient_and_Consistent_CVPR_2022_paper.pdf
https://doi.org/https://doi.org/10.1088/1742-5468/abc61e
https://doi.org/https://doi.org/10.1088/1742-5468/abc61e
https://proceedings.neurips.cc/paper_files/paper/2019/file/cab070d53bd0d200746fb852a922064a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cab070d53bd0d200746fb852a922064a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/cab070d53bd0d200746fb852a922064a-Paper.pdf
https://doi.org/https://doi.org/10.1103/physreva.45.6056
https://doi.org/https://doi.org/10.1103/physreva.45.6056
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.6056
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.6056

148 BIBLIOGRAPHY

[72] F. Krzakala, F. Ricci-Tersenghi, L. Zdeborová, R. Zecchina, E. W. Tramel, and
L. F. Cugliandolo, Statistical Physics, Optimization, Inference, and Message-
Passing Algorithms. Dec. 2015. doi: https://doi.org/10.1093/acprof:
oso/9780198743736.001.0001. [Online]. Available: https://academic.oup.
com/book/26783.

[73] G. Hinton, O. Vinyals, and J. Dean, Distilling the knowledge in a neural net-
work, 2015. [Online]. Available: https://research.google/pubs/pub44873/.

[74] D. Saad and S. A. Solla, “On-line learning in soft committee machines,” Physical
Review E, vol. 52, no. 4, pp. 4225–4243, Oct. 1995. doi: https://doi.org/10.
1103/physreve.52.4225. [Online]. Available: https://journals.aps.org/
pre/abstract/10.1103/PhysRevE.52.4225.

[75] B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová,
“The committee machine: Computational to statistical gaps in learning a two-
layers neural network,” Journal of Statistical Mechanics: Theory and Experi-
ment, vol. 2019, no. 12, p. 124 023, Dec. 2019. doi: https://doi.org/10.
1088/1742- 5468/ab43d2. [Online]. Available: https://iopscience.iop.
org/article/10.1088/1742-5468/ab43d2/meta.

[76] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, train-
able neural networks,” ICLR Conference, Dec. 2018. [Online]. Available: https:
//openreview.net/forum?id=rJl-b3RcF7.

[77] S.-l. library, California housing dataset, https://scikit-learn.org/stable/
datasets/toy_dataset.html, As per the current release.

[78] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, “Next generation
reservoir computing,” Nature communications, vol. 12, no. 1, p. 5564, 2021.

[79] G. Tanaka, T. Yamane, J. B. Héroux, et al., “Recent advances in physical
reservoir computing: A review,” Neural Networks, vol. 115, pp. 100–123, 2019.

[80] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without
stable states: A new framework for neural computation based on perturbations,”
Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[81] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist
networks: The sequential learning problem,” in Psychology of learning and mo-
tivation, vol. 24, Elsevier, 1989, pp. 109–165.

[82] S. Lewandowsky and S.-C. Li, “Catastrophic interference in neural networks:
Causes, solutions, and data,” in Interference and inhibition in cognition, Else-
vier, 1995, pp. 329–361.

[83] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring
catastrophic forgetting in neural networks,” in Proceedings of the AAAI con-
ference on artificial intelligence, vol. 32, 2018.

[84] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., “Overcoming catastrophic
forgetting in neural networks,” Proceedings of the national academy of sciences,
vol. 114, no. 13, pp. 3521–3526, 2017.

https://doi.org/https://doi.org/10.1093/acprof:oso/9780198743736.001.0001
https://doi.org/https://doi.org/10.1093/acprof:oso/9780198743736.001.0001
https://academic.oup.com/book/26783
https://academic.oup.com/book/26783
https://research.google/pubs/pub44873/
https://doi.org/https://doi.org/10.1103/physreve.52.4225
https://doi.org/https://doi.org/10.1103/physreve.52.4225
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.52.4225
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.52.4225
https://doi.org/https://doi.org/10.1088/1742-5468/ab43d2
https://doi.org/https://doi.org/10.1088/1742-5468/ab43d2
https://iopscience.iop.org/article/10.1088/1742-5468/ab43d2/meta
https://iopscience.iop.org/article/10.1088/1742-5468/ab43d2/meta
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://scikit-learn.org/stable/datasets/toy_dataset.html
https://scikit-learn.org/stable/datasets/toy_dataset.html

BIBLIOGRAPHY 149

[85] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks,”
arXiv preprint arXiv:1312.6211, 2013.

[86] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A contin-
ual structure learning framework for overcoming catastrophic forgetting,” in
International Conference on Machine Learning, PMLR, 2019, pp. 3925–3934.

[87] F. Chollet et al., “Keras: The python deep learning library,” Astrophysics source
code library, ascl–1806, 2018.

[88] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404,
p. 132 306, 2020.

[89] Y. Goldberg, Neural network methods for natural language processing. Springer
Nature, 2022.

[90] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applica-
tions, vol. 5, no. 64-67, p. 2, 2001.

[91] G. Bianconi, Higher-Order Networks:An introduction to simplicial complexes.
Cambridge University Press, 2021.

[92] M. Nakahara, Geometry, topology and physics. CRC Press, 2003.
[93] L.-H. Lim, “Hodge laplacians on graphs,” SIAM Review, vol. 62, no. 3, pp. 685–

715, Jan. 2020. doi: 10.1137/18m1223101. [Online]. Available: https://doi.
org/10.1137/18m1223101.

[94] M.-L. Linne, J. Aćimović, A. Saudargiene, and T. Manninen, “Neuron–glia in-
teractions and brain circuits,” in Computational Modelling of the Brain, Springer,
2022, pp. 87–103.

[95] J. Faskowitz, R. F. Betzel, and O. Sporns, “Edges in brain networks: Contribu-
tions to models of structure and function,” Network Neuroscience, vol. 6, no. 1,
pp. 1–28, 2022.

[96] A. Santoro, F. Battiston, G. Petri, and E. Amico, “Unveiling the higher-order
organization of multivariate time series,” arXiv preprint arXiv:2203.10702, 2022.

[97] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, “Damage and fluctuations
induce loops in optimal transport networks,” Physical review letters, vol. 104,
no. 4, p. 048 704, 2010.

[98] J. W. Rocks, A. J. Liu, and E. Katifori, “Hidden topological structure of flow
network functionality,” Physical Review Letters, vol. 126, no. 2, p. 028 102, 2021.

[99] D. Witthaut, F. Hellmann, J. Kurths, S. Kettemann, H. Meyer-Ortmanns, and
M. Timme, “Collective nonlinear dynamics and self-organization in decentral-
ized power grids,” Reviews of Modern Physics, vol. 94, no. 1, p. 015 005, 2022.

[100] S. Barbarossa and S. Sardellitti, “Topological signal processing over simplicial
complexes,” IEEE Transactions on Signal Processing, vol. 68, pp. 2992–3007,
2020.

[101] S. Sardellitti and S. Barbarossa, “Topological signal representation and pro-
cessing over cell complexes,” arXiv preprint arXiv:2201.08993, 2022.

https://doi.org/10.1137/18m1223101
https://doi.org/10.1137/18m1223101
https://doi.org/10.1137/18m1223101

150 BIBLIOGRAPHY

[102] M. T. Schaub and S. Segarra, “Flow smoothing and denoising: Graph signal
processing in the edge-space,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), IEEE, 2018, pp. 735–739.

[103] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra, “Signal
processing on higher-order networks: Livin’on the edge... and beyond,” Signal
Processing, vol. 187, p. 108 149, 2021.

[104] A. P. Millán, J. J. Torres, and G. Bianconi, “Explosive higher-order Kuramoto
dynamics on simplicial complexes,” Physical Review Letters, vol. 124, no. 21,
p. 218 301, 2020.

[105] A. P. Millán, J. G. Restrepo, J. J. Torres, and G. Bianconi, “Geometry, topol-
ogy and simplicial synchronization,” in Higher-Order Systems, Springer, 2022,
pp. 269–299.

[106] J. J. Torres and G. Bianconi, “Simplicial complexes: Higher-order spectral di-
mension and dynamics,” Journal of Physics: Complexity, vol. 1, no. 1, p. 015 002,
2020.

[107] R. Ghorbanchian, J. G. Restrepo, J. J. Torres, and G. Bianconi, “Higher-
order simplicial synchronization of coupled topological signals,” Communica-
tions Physics, vol. 4, no. 1, pp. 1–13, 2021.

[108] L. Calmon, J. G. Restrepo, J. J. Torres, and G. Bianconi, “Topological synchro-
nization: Explosive transition and rhythmic phase,” preprint arXiv:2107.05107,
2021.

[109] A. Arnaudon, R. L. Peach, G. Petri, and P. Expert, “Connecting hodge and
Sakaguchi-Kuramoto: A mathematical framework for coupled oscillators on
simplicial complexes,” arXiv preprint arXiv:2111.11073, 2021.

[110] L. DeVille, “Consensus on simplicial complexes: Results on stability and syn-
chronization,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31,
no. 2, p. 023 137, 2021.

[111] M. Reitz and G. Bianconi, “The higher-order spectrum of simplicial complexes:
A renormalization group approach,” Journal of Physics A: Mathematical and
Theoretical, vol. 53, no. 29, p. 295 001, 2020.

[112] C. Ziegler, P. S. Skardal, H. Dutta, and D. Taylor, “Balanced Hodge Laplacians
optimize consensus dynamics over simplicial complexes,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 32, no. 2, p. 023 128, 2022.

[113] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie, “Random
walks on simplicial complexes and the normalized Hodge 1-Laplacian,” SIAM
Review, vol. 62, no. 2, pp. 353–391, 2020.

[114] C. Bodnar, F. Frasca, Y. Wang, et al., “Weisfeiler and lehman go topological:
Message passing simplicial networks,” in International Conference on Machine
Learning, PMLR, 2021, pp. 1026–1037.

[115] S. Ebli, M. Defferrard, and G. Spreemann, “Simplicial neural networks,” arXiv
preprint arXiv:2010.03633, 2020.

BIBLIOGRAPHY 151

[116] T. M. Roddenberry and S. Segarra, “Hodgenet: Graph neural networks for edge
data,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers,
IEEE, 2019, pp. 220–224.

[117] M. Hajij, K. Istvan, and G. Zamzmi, “Cell complex neural networks,” arXiv
preprint arXiv:2010.00743, 2020.

[118] P. S. Skardal and A. Arenas, “Abrupt desynchronization and extensive mul-
tistability in globally coupled oscillator simplexes,” Physical Review Letters,
vol. 122, no. 24, p. 248 301, 2019.

[119] P. S. Skardal and A. Arenas, “Higher order interactions in complex networks of
phase oscillators promote abrupt synchronization switching,” Communications
Physics, vol. 3, no. 1, pp. 1–6, 2020.

[120] L. V. Gambuzza, F. Di Patti, L. Gallo, et al., “Stability of synchronization in
simplicial complexes,” Nature Communications, vol. 12, no. 1, pp. 1–13, 2021.

[121] K. Kovalenko, X. Dai, K. Alfaro-Bittner, A. Raigorodskii, M. Perc, and S.
Boccaletti, “Contrarians synchronize beyond the limit of pairwise interactions,”
Physical Review Letters, vol. 127, no. 25, p. 258 301, 2021.

[122] U. Alvarez-Rodriguez, F. Battiston, G. F. de Arruda, Y. Moreno, M. Perc,
and V. Latora, “Evolutionary dynamics of higher-order interactions in social
networks,” Nature Human Behaviour, vol. 5, no. 5, pp. 586–595, 2021.

[123] Y. Lee, J. Lee, S. M. Oh, D. Lee, and B. Kahng, “Homological percolation tran-
sitions in growing simplicial complexes,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 31, no. 4, p. 041 102, 2021.

[124] T. Carletti, F. Battiston, G. Cencetti, and D. Fanelli, “Random walks on hy-
pergraphs,” Physical Review E, vol. 101, no. 2, p. 022 308, 2020.

[125] M. Lucas, G. Cencetti, and F. Battiston, “Multiorder laplacian for synchro-
nization in higher-order networks,” Physical Review Research, vol. 2, no. 3,
p. 033 410, 2020.

[126] Y. Tang, D. Shi, and L. Lü, “Optimizing higher-order network topology for
synchronization of coupled phase oscillators,” Communications Physics, vol. 5,
no. 1, pp. 1–12, 2022.

[127] Y. Zhang, V. Latora, and A. E. Motter, “Unified treatment of synchronization
patterns in generalized networks with higher-order, multilayer, and temporal
interactions,” Communications Physics, vol. 4, no. 1, pp. 1–9, 2021.

[128] M. Chutani, B. Tadić, and N. Gupte, “Hysteresis and synchronization processes
of kuramoto oscillators on high-dimensional simplicial complexes with compet-
ing simplex-encoded couplings,” Physical Review E, vol. 104, no. 3, p. 034 206,
2021.

[129] D. Horak and J. Jost, “Spectra of combinatorial Laplace operators on simplicial
complexes,” Advances in Mathematics, vol. 244, pp. 303–336, 2013.

[130] L.-H. Lim, “Hodge Laplacians on graphs,” Siam Review, vol. 62, no. 3, pp. 685–
715, 2020.

152 BIBLIOGRAPHY

[131] G. Bianconi, “The topological Dirac equation of networks and simplicial com-
plexes,” Journal of Physics: Complexity, vol. 2, no. 3, p. 035 022, 2021.

[132] S. Lloyd, S. Garnerone, and P. Zanardi, “Quantum algorithms for topological
and geometric analysis of data,” Nature communications, vol. 7, no. 1, pp. 1–7,
2016.

[133] B. Ameneyro, V. Maroulas, and G. Siopsis, “Quantum persistent homology,”
arXiv preprint arXiv:2202.12965, 2022.

[134] O. Knill, “The Dirac operator of a graph,” arXiv preprint arXiv:1306.2166,
2013.

[135] D. Mulder and G. Bianconi, “Network geometry and complexity,” Journal of
Statistical Physics, vol. 173, no. 3, pp. 783–805, 2018.

[136] E. Steinitz, “Beiträge zur analysis situs,” Sitz-Ber. Berlin Math. Ges, vol. 7,
pp. 29–49, 1908.

[137] R. Klette, “Cell complexes through time,” in Vision Geometry IX. Int. Soc. for
Opt. and Photon., vol. 4117, 2000, pp. 134–145.

[138] A. Hatcher, Algebraic topology. Cambridge University Press, 2005.
[139] L. Grady and J. Polimeni, Discrete calculus: Applied analysis on graphs for

computational science. Sprin. Sci. and Busin. Media, 2010.
[140] F. Baccini, F. Geraci, and G. Bianconi, “Weighted simplicial complexes and

their representation power of higher-order network data and topology,” Physical
Review E, vol. 106, no. 3, p. 034 319, 2022.

[141] I. Prigogine and G. Nicolis, “Symmetry breaking instabilities in dissipative
systems,” J. Chem. Phys., vol. 46, p. 3542, 1967.

[142] A. Pikovsky, J. Kurths, and M. Rosenblum, Synchronization: a universal con-
cept in nonlinear sciences. Cambridge university press, 2001, vol. 12.

[143] A. M. Turing, “The chemical basis of morphogenesis,” Phil. Trans. R. Soc.
Lond. B, vol. 237, p. 37, 1952.

[144] H. Nakao and A. S. Mikhailov, “Turing patterns in network-organized activator-
inhibitor systems,” Nature Physics, vol. 6, p. 544, 2010.

[145] R. Pastor-Satorras and A. Vespignani, “Patterns of complexity,” Nature Physics,
vol. 6, p. 480, 2010.

[146] Y. Kuramoto, “Self-entrainment of a population of coupled non-linear oscil-
lators,” in International Symposium on Mathematical Problems in Theoretical
Physics, H. Araki, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1975,
pp. 420–422.

[147] S. H. Strogatz, “From Kuramoto to crawford: Exploring the onset of synchro-
nization in populations of coupled oscillators,” Physica D: Nonlinear Phenom-
ena, vol. 143, no. 1-4, pp. 1–20, 2000.

[148] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchroniza-
tion in complex networks,” Phys. Rep., vol. 469, no. 3, pp. 93–153, 2008. doi:
10.1016/j.physrep.2008.09.002.

https://doi.org/10.1016/j.physrep.2008.09.002

BIBLIOGRAPHY 153

[149] S. Boccaletti, A. N. Pisarchik, C. I. Del Genio, and A. Amann, Synchronization:
from coupled systems to complex networks. Cambridge University Press, 2018.

[150] T. Carletti and D. Fanelli, “Theory of synchronisation and pattern formation
on time varying networks,” Chaos, Solitons and Fractals, vol. 159, p. 112 180,
2022. doi: https://doi.org/10.1016/j.chaos.2022.112180.

[151] A.-L. Barabási, Network science. Cambridge university press, 2016.
[152] M. E. Newman, Networks: An Introduction. Oxford: Oxford University Press,

2010.
[153] V. Latora, V. Nicosia, and G. Russo, Complex Networks: Principles, Methods

and Applications. Cambridge University Press, 2017.
[154] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex

networks: Structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–
308, 2006.

[155] J. D. Murray, Mathematical biology II: Spatial models and biomedical applica-
tions. Springer-Verlag, 2001.

[156] A. Gierer and H. Meinhardt, “A theory of biological pattern formation,” Ky-
bernetik, vol. 12, p. 30, 1972.

[157] H. G. Othmer and L. E. Scriven, “Instability and dynamic pattern in cellular
networks,” J. Theor. Biol., vol. 32, p. 507, 1971.

[158] M. Asllani, J. D. Challenger, F. S. Pavone, L. Sacconi, and D. Fanelli, “The
theory of pattern formation on directed networks,” Nature Communication,
vol. 5, no. 4517, 2014.

[159] M. Asllani, D. M. Busiello, T. Carletti, D. Fanelli, and G. Planchon, “Turing
patterns in multiplex networks,” Phys. Rev. E, vol. 90, p. 042 814, 4 2014.

[160] J. Petit, B. Lauwens, D. Fanelli, and T. Carletti, “Theory of Turing patterns
on time varying networks,” Phys. Rev. Letters, vol. 119, p. 148 301, 2017.

[161] R. Muolo, M. Asllani, D. Fanelli, P. K. Maini, and T. Carletti, “Patterns of
non-normality in networked systems,” Journal of Theoretical Biology, vol. 480,
p. 81, 2019.

[162] D. Fanelli, C. Cianci, and F. Di Patti, “Turing instabilities in reaction-diffusion
systems with cross diffusion,” Eur. Phys. J. B, vol. 86, p. 142, 2013.

[163] D. Busiello, G. Planchon, M. Asllani, T. Carletti, and D. Fanelli, “Pattern
formation for reactive species undergoing anisotropic diffusion,” Eur. Phys. J.
B, vol. 88, p. 222, 2015.

[164] T. Carletti, D. Fanelli, and S. Nicoletti, “Dynamical systems on hypergraphs,”
Journal of Physics: Complexity, vol. 1, no. 3, p. 035 006, 2020.

[165] R. Muolo, L. Gallo, V. Latora, M. Frasca, and T. Carletti, “Turing patterns in
systems with high-order interaction,” arXiv preprint arXiv:2207.03985, 2022.

https://doi.org/https://doi.org/10.1016/j.chaos.2022.112180

154 BIBLIOGRAPHY

[166] L. Giambagli, L. Calmon, R. Muolo, T. Carletti, and G. Bianconi, “Diffusion-
driven instability of topological signals coupled by the dirac operator,” Phys.
Rev. E, vol. 106, p. 064 314, 6 Dec. 2022. doi: 10.1103/PhysRevE.106.064314.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.106.
064314.

[167] T. Carletti and R. Muolo, “Finite propagation enhances Turing patterns in
reaction–diffusion networked systems,” Journal of Physics: Complexity, vol. 2,
no. 4, p. 045 004, 2021.

[168] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. Cambridge Uni-
versity Press, Cambridge, UK, 2001.

[169] A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchroniza-
tion in complex networks,” Physics Reports, vol. 469, no. 3, p. 93, 2008.

[170] L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized
coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, p. 2109, 1998.

[171] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy, “Fun-
damentals of synchronization in chaotic systems, concepts, and applications,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 7, no. 4, p. 520,
1997.

[172] Y. Kuramoto, Chemical oscillations, waves, and turbulence. Springer-Verlag,
New York, 1984.

[173] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “The Kuramoto model
in complex networks,” Physics Reports, vol. 610, pp. 1–98, 2016.

[174] C. Giusti, R. Ghrist, and D. S. Bassett, “Two’s company, three (or more) is
a simplex,” Journal of Computational Neuroscience, vol. 41, no. 1, pp. 1–14,
2016.

[175] M. W. Reimann, M. Nolte, M. Scolamiero, et al., “Cliques of neurons bound
into cavities provide a missing link between structure and function,” Frontiers
in Computational Neuroscience, p. 48, 2017.

[176] A. Patania, G. Petri, and F. Vaccarino, “The shape of collaborations,” EPJ
Data Sci., vol. 6, no. 1, p. 18, 2017.

[177] E. Estrada and G. J. Ross, “Centralities in simplicial complexes. applications
to protein interaction networks,” J. Their. Biol., vol. 438, p. 46, 2018.

[178] F. Battiston, E. Amico, A. Barrat, et al., “The physics of higher-order inter-
actions in complex systems,” Nature Physics, vol. 17, no. 10, pp. 1093–1098,
2021.

[179] A. Krawiecki, “Chaotic synchronization on complex hypergraphs,” Chaos, Soli-
tons and Fractals, vol. 65, p. 44, 2014.

[180] R. Mulas, C. Kuehn, and J. Jost, “Coupled dynamics on hypergraphs: Mas-
ter stability of steady states and synchronization,” Phys. Rev. E, vol. 101,
p. 062 313, 2020.

[181] T. Carletti, D. Fanelli, and S. Nicoletti, “Dynamical systems on hypergraphs,”
Journal of Physics Complexity, vol. 1, p. 035 006, 2020.

https://doi.org/10.1103/PhysRevE.106.064314
https://link.aps.org/doi/10.1103/PhysRevE.106.064314
https://link.aps.org/doi/10.1103/PhysRevE.106.064314

BIBLIOGRAPHY 155

[182] A. P. Millán, J. J. Torres, and G. Bianconi, “Explosive higher-order Kuramoto
dynamics on simplicial complexes,” Phys. Rev. Lett., vol. 124, p. 218 301, 21
2020.

[183] R. Ghorbanchian, J. G. Restrepo, J. J. Torres, and G. Bianconi, “Higher-
order simplicial synchronization of coupled topological signals,” Communica-
tions Physics, vol. 120, p. 1, 4 2021.

[184] A. van Harten, “On the validity of the ginzburg-landau equation,” J. Nonlinear
Sci., vol. 1, p. 397, 1991.

[185] I. Aranson and L. Kramer, “The world of the complex ginzburg-landau equa-
tion,” Reviews of Modern Physics, vol. 74, p. 99, 2002.

[186] V. Garca-Morales and K. Krischer, “The complex ginzburg-landau equation:
An introduction,” Contem. Phys., vol. 53, p. 79, 2012.

[187] A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics,
vol. 303, no. 1, pp. 2–30, Jan. 2003. doi: https://doi.org/10.1016/s0003-
4916(02)00018-0. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0003491602000180.

[188] L. Grady and J. Polimeni, Discrete Calculus: Applied Analysis on Graphs for
Computational Science. Springer London, 2010, isbn: 9781849962902. [Online].
Available: https://books.google.it/books?id=E3-OSVSPbU0C.

[189] T. Carletti and D. Fanelli, “Theory of synchronisation and pattern formation
on time varying networks,” Chaos, Solitons and Fractals, vol. 159, p. 112 180,
2022.

https://doi.org/https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/https://doi.org/10.1016/s0003-4916(02)00018-0
https://www.sciencedirect.com/science/article/pii/S0003491602000180
https://www.sciencedirect.com/science/article/pii/S0003491602000180
https://books.google.it/books?id=E3-OSVSPbU0C

