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ABSTRACT
Machine Learning (ML) models are ubiquitous in decision-
making applications impacting citizens’ lives: credit attribu-
tion, crime recidivism, etc. In addition to seeking high perfor-
mance and generalization abilities, ensuring that ML models
do not discriminate against citizens regarding their age, gen-
der, or race is essential. To this end, researchers developed
various fairness assessment techniques, comprising fairness
metrics and mitigation approaches, notably at the model
level. However, the sensitivity of ML models to fairness data
perturbations has been less explored. This paper presents
mutation-based pipelines to emulate fairness variations in
the data once the model is deployed. FairPipes implements
mutation operators that shuffle sensitive attributes, add new
values, or affect their distribution. We evaluated FairPipes
on seven ML models over three datasets. Our results high-
light different fairness sensitivity behaviors across models,
from the most sensitive perceptrons to the insensitive sup-
port vector machines. We also consider the role of model
optimization in fairness performance, being variable across
models. FairPipes automates fairness testing at deployment
time, informing researchers and practitioners on the fairness
sensitivity evolution of their ML models.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; • Computing methodologies → Machine learning.
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1 INTRODUCTION
Machine Learning (ML) models are prevalent in various ap-
plications, from automatic translation to granting insurance
or predicting crime recidivism chances. Thus, most of these
applications impact many aspects of citizens’ lives. One must
design, train, and deploy high-quality ML models that are
often limited to finding the best performance, i.e., tuning
the model to reduce prediction errors as much as possible.
This performance quest motivated the design of more and
more sophisticated models from decision trees [5] to various
neural architectures [3]. However, performance is sometimes
achieved at the expense of other qualities such as fairness [10].
Achieving fairness means having similar attributes regarding
a specific task should result in a similar decision from the ML
model [6, 10]. For instance, if two persons ask for a loan. If
they both have the same status (same education level, same
job, etc.) except that one is younger by a year than the other,
if the loan is given to the younger one, it should also be given
to the older one. In particular, model decisions should be
free from biases concerning gender, age, or ethnicity. Unfor-
tunately, examples of biases abound in deployed ML systems,
should they be for image recognition [17], natural language
processing [19], or crime recidivism prediction tasks [16].

The ML and software engineering communities have ac-
knowledged the extent and diversity of biases in software and
developed many bias mitigation methods to improve fairness,
e.g., [10, 27]. These communities also designed metrics to
assess fairness [2], supporting fairness improvement in ML
models. Yet, as noted by Yang et al. [26], how ML models
will react to fairness perturbations once deployed is a less
explored domain.

Our goal is to support ML engineers in choosing the ML
algorithm best suited to their fairness and performance needs
and gain confidence in the robustness of the model (regarding
fairness) once in production. In this paper, we take inspira-
tion from mutation testing techniques [21] to mimic fairness
perturbations and investigate the following research ques-
tions:

∙ RQ1: Which models are sensitive to fairness mutations
at test time?;

∙ RQ2:Which mutation operators are the most relevant
for fairness sensitivity assessment?;

∙ RQ3: Does model optimisation influence fairness sen-
sitivity?

This paper makes the following contributions:

https://orcid.org/0009-0009-8822-2209
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(1) FairPipes, a set of automated pipelines inspired by
mutation testing [21], that trains various types of ML
models, injects perturbations (mutations) affecting pro-
tected (sensitive) attributes in their test sets and mea-
sure the impact of these mutations on the model’s
fairness properties and performance (accuracy);

(2) FairPipes adapts three existing mutation operators
(mutators) and introduces a new operator that adds a
new value for the protected attribute.

(3) FairPipe evaluation on three datasets and for seven
different models, totalizing 53, 900 executions of our
pipelines, reveals sensitivity patterns, notably the ro-
bustness to fairness mutations of the SVM and decision
trees (RQ1). We found no predominance of one mutator
over the others (RQ2). Finally, optimization influences
model sensitivity positively or negatively depending on
model type (RQ3);

(4) Open Science Policy. All the results of our evaluation
are available on the following website: https://zenodo.
org/record/8335266. The source code of FairPipes is
also available: https://github.com/Camille-Molinier/
mutation-testing-ml-fairness.

In the following, we describe mutation testing and some
popular measures to assess the fairness of ML models in
Section 2. Section 3 presents our framework and defines a
first set of mutators that can be easily extended. We run
our framework against a set of ML models over different
datasets in Section 4 and draw general conclusions about the
sensitivity of the different ML models regarding our mutators.
Section 6 concludes and discusses future directions.

2 BACKGROUND & RELATED WORK
2.1 Mutation Testing
Mutation testing [9] assesses the quality of existing tests by
first injecting artificial faults to form mutants of a System
Under Test (SUT). Then, it runs the existing tests over the
newly created mutants. If testing outcomes differ from the
original system, it means tests can kill or distinguish mutants,
revealing their sensitivity to these artificial faults. These
faults mimic the kind of errors that developers could make.
For instance, due to fatigue, they could exchange a “≥” into
a “>” or a “=” into a “! =”. One injects these faults through
mutation operators or mutators to create automatically these
mutants. Thus, mutation testing relies on the idea that the
more sensitive test suites are to these faults, the more likely
they are to find real ones. One can measure the strength of
test suites by computing the ratio of killed versus non-killed
mutants, called the mutation score. Mutation testing is now
a mature approach to test quality, and mutation frameworks
exist for many programming languages and applications [21].

The spread of ML algorithms and concerns about their
correct behavior in deployed software led to the transfer of the
mutation testing paradigm to machine learning [15, 18, 20,
24]. As a result, many mutators were proposed, from changing
the training data labels to removing neurons in a deep neural
network [15]. The design of fairness-aware mutators is more

recent and less explored [14, 25]. This paper explores the
impact of such fairness operators on the ML models at test
time.

2.2 Fairness Assessment
While performance prediction measures, such as accuracy or
F1-score, are the most predominant metrics to optimize ML
models while learning, other measures, such as fairness, are
gaining interest. This interest is probably due to the use of ML
models in a growing number of decision-making algorithms
impacting people’s lives. A prediction model being fair is
supposed to treat any data equally as long as the decision
that is being taken does not involve taking into account
any characteristics that would favor or harm a part of the
population. ML models are not exempt from biases due to
training data, feature extraction, or model hypotheses. This
motivates the need to assess and mitigate such biases [8].

The fairness community developed several fairness mea-
sures. We can think of demographic parity [10], equalized
odds [12], equalized opportunity [12], statistical parity [11,
27], disparate impact [7, 11], or threshold testing [23]. They
can be grouped into families depending on their mathematical
expression as in the FairML book [2].

In the following, we will focus on two of the most popu-
lar measures: demographic parity and equalized opportunity.
Their mathematical expressions can be stated in different
ways (e.g., a ratio or a difference). Here, we focus on the form
that uses differences as shown in Equations 1 and 2. Both
measures use the predicted value of the classifier (called 𝑌 )
and a protected attribute, that we call 𝐴. The population
is divided into two groups: the disadvantaged one (identi-
fied by 𝐴 = 1) and the privileged one (identified by 𝐴 = 0).
demographic parity is defined as an absolute difference [10]:

𝐷𝑃 =
⃒⃒
𝑃 𝑌 = 1|𝐴 = 0 − 𝑃 𝑌 = 1|𝐴 = 1

⃒⃒
≤ 𝜖 (1)

In the end, this definition states that no difference (or in
between an 𝜖 margin) should be observed in the prediction be-
tween two data when only the value of the protected attribute
changes (which is not supposed to impact the prediction any-
way). Similarly, equal opportunity is defined as follows:

𝐸𝑂 =
⃒⃒
𝑃 𝑌 = 1|𝐴 = 0, 𝑌 = 1 − 𝑃 𝑦 = 1|𝐴 = 1, 𝑌 = 1

⃒⃒
≤ 𝜖 (2)

where 𝑃 𝑌 = 1 is the prediction of an ML model to the
supposedly disadvantaged group, 𝐴 is the protected attribute
(on which the model should not rely to take a decision), and
𝑌 = 1 is the true outcome. While the two measures have a
similar form, equal opportunity takes into consideration the
information that the true outcome is 𝑌 = 1 which is ignored
by demographic parity (and is one of the main arguments
against using it).

3 OUR APPROACH
3.1 Overview
From a conceptual point of view, we want to propose a frame-
work that can assess whether already deployed ML models

https://zenodo.org/record/8335266
https://zenodo.org/record/8335266
https://github.com/Camille-Molinier/mutation-testing-ml-fairness
https://github.com/Camille-Molinier/mutation-testing-ml-fairness
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are sensitive (in terms of fairness but also accuracy) to po-
tential changes in the data fed to them. In this sense, the ML
models cannot be modified. Their training and optimization
processes were done on datasets before any changes. To assess
model sensitivity, we take inspiration from mutation testing.

First, we define a set of mutators (i.e., operators of modi-
fications that we describe right after). The proposed list is
not exhaustive, and it reuses some previously defined in the
literature while others are new. Figure 1 presents our muta-
tion workflow. The upper part describes a typical training
and hyper-optimization process. Once the model is trained,
it is evaluated using a test set (upper right part of the figure)
that gives the baseline performance measures (i.e., accuracy
but also the fairness measures, see Section 2). Then, we apply
the mutators to generate new test sets (bottom part). Gen-
erally, mutators target changes over the protected attribute,
which should not impact the decisions taken by the model.
The evaluation procedure (i.e., the evaluation of the perfor-
mances) is applied again to the modified datasets. Measures
are retrieved (bottom right) and can be compared with the
ones drawn from the original test set. The final step is to
conclude via statistical tests.

3.2 Mutators
Other approaches have been proposed that are similar to our
idea. They have defined some operators we have reused in
our experiments [1, 13]. We present them hereafter with some
others we added as they might reveal behaviours of interest.
Two main types of operators are described in the literature:
(i) the parametric operators and (ii) the non-parametric ones.
Parametric operators typically take a parameter defining the
proportion of data to modify, while non-parametric opera-
tors will operate over the whole dataset. We consider four
operators: two parametric and two non-parametric ones.

First, probably the most intuitive, the column shuffle oper-
ator. It randomly replaces the value of a protected attribute
from one data sample to another. We made it parametric
so that a specific proportion of the dataset has its value
replaced.

For instance, if the operator runs with a parameter set to
12%, it means that 12% of the dataset is randomly chosen and
extracted. Then, inside this subset, we change the value of the
protected attribute (via permutations). As no other checks
are done, permutations may occur between two data having
the same feature value regarding the protected attribute.
Finally, the value did not change, but a permutation did
occur. For instance, this may happen when the distribution
of the values of the protected attribute is not balanced.

The second parametric operator is called the new value
introducer. This is a completely new operator. It introduces a
new value to the set of possible values a protected attribute
can take. This way, we can simulate that data may evolve.

Specifically, if the parameter is set to 12%, we change the
value of the protected attribute for 12% of randomly chosen
data to a new value that was not reported. The newly intro-
duced value is ‘null’ by default. Yet, our framework has been

designed to let users choose any values not reported before
(for this specific attribute). As only the protected attribute
is changed, and since it should not influence the prediction,
we should not expect to see changes in the decisions over the
modified data.

Regarding the non-parametric operators, first we define the
column killing operator. It changes the value of an attribute
to the same value for all the data. This way, no statistical
relations can be drawn. This attribute becomes useless in
the decision-making, and if the operator is applied on the
protected attribute, as it should occur in the decision process,
we expect to see no changes at all in the predictions.

As the number of changes in the outcome increases after
using this operator, it suggests a strong correlation between
the modified attribute and the decision, which could show
that the model was biased. From an implementation point of
view, the value assigned to all the data is chosen arbitrarily
as the value from the first data of the dataset.

Our last operator is called the redistribution operator. It
is also non-parametric and tries to balance the occurrence
of the different values that the protected attribute can take.
Again, the idea behind this operator is that if all values are
equally represented, their significance in the decision process
will be lowered.

4 EVALUATION
To evaluate our approach, we answer the following research
questions (RQs):

∙ RQ1: Which models are sensitive to fairness mutations
at test time?

∙ RQ2: Which operators are the most relevant for fairness
sensitivity assessment?

∙ RQ3: Does model optimisation influence fairness sensi-
tivity?

4.1 Dataset description and preprocessing
We use the adult census, German credit, and COMPAS
datasets. They are all built for classification tasks and are
probably the most popular datasets when evaluating the
fairness properties of ML models. Table 1 presents a short
description of these three datasets. While the number of
features remains similar between the datasets, the number of
samples differs. All datasets have only two possible labels, but
their representation (% of data with a label) varies from 24%
in the Adult dataset to 70% in the German credit dataset.
Compas seems almost balanced with 45.5%.

We did not perform preprocessing over the data except
for the COMPAS dataset. We tried to reproduce the dataset
used in the ProPublica study as it showed that ML models
were biased. Thus, we reproduce the same preprocessing 1

that they have proposed.

1we reproduce the processing in cells 3 and 4 reported at ProPublica
GitHub repo

https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb
https://github.com/propublica/compas-analysis/blob/master/Compas%20Analysis.ipynb
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Training
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Figure 1: An overview of the proposed framework. It starts with the training of an ML model (upper part). It is evaluated using a
test set to observe accuracy and fairness measures (top right). Mutation operators are applied to the test set, and the ML model
is again evaluated but using the modified versions of the test set (bottom part). New accuracy and fairness measures are observed
and can be used to compare with the original ones.

Figure 2: Accuracy, Dpd, and Eod evolutions from the German dataset when the Foreign Worker attribute is selected as a
protected attribute. Each row is a model (optimized or not), and the operators are represented via columns. A cell reports the
comparison between the 50 runs and the original value (when no modifications were used). A red cell with a “-" reports that all
the runs report a lower value than the original. A green cell with a “+" reports that all the runs report a higher value than the
original. An orange cell with a “- +" reports that sometimes the runs report a higher value and sometimes a lower value. A white
cell with a “=" reports no difference (p-value=1 in this extreme case). If the computed p-value is higher than 10𝑒−3 but < 1, the
cell is black with “NS" inside (not significant).

4.2 ML models
To perform our evaluation and assess the sensitivity of ML
models concerning changes in the data we selected seven dif-
ferent ML models. They cover different families of algorithms
(among others: support vector machines (SVMs), decision

trees, and nearest neighbors). Despite deep learning models
being state of the art regarding accuracy measures, they
require an amount of data to be trained that is orders of
magnitude higher than the one proposed by the considered
datasets for evaluation (see Table 1). Furthermore, deep learn-
ing models generally perform worse (or at best equally) than
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Figure 3: Accuracy, Dpd, and Eod evolutions from the Adult dataset when the Relationship attribute is selected as a protected
attribute. Each row is a model (optimized or not), and the operators are represented via columns. A cell reports the comparison
between the 50 runs and the original value (when no modifications were used). A red cell with a “-" reports that all the runs
report a lower value than the original. A green cell with a “+" reports that all the runs report a higher value than the original.
An orange cell with a “- +" reports that sometimes the runs report a higher value and sometimes a lower value. A white cell with
a “=" reports no difference (p-value=1 in this extreme case). If the computed p-value is higher than 10𝑒−3 but < 1, the cell is
black with “NS" inside (not significant).

Figure 4: Accuracy, Dpd, and Eod evolutions from the Compas dataset when the Age attribute is selected as a protected attribute.
Each row is a model (optimized or not), and the operators are represented via columns. A cell reports the comparison between
the 50 runs and the original value (when no modifications were used). A red cell with a “-" reports that all the runs report a
lower value than the original. A green cell with a “+" reports that all the runs report a higher value than the original. An orange
cell with a “- +" reports that sometimes the runs report a higher value and sometimes a lower value. A white cell with a “="
reports no difference (p-value=1 in this extreme case). If the computed p-value is higher than 10𝑒−3 but < 1, the cell is black
with “NS" inside (not significant).
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Figure 5: Results for adult dataset and sex protected attribute for a non-optimized mlpc. The subplots are arranged by operator
in rows and metric in columns. In all subplots, the yellow dotted curve represents the value without mutation, and the full curve
represents the measure with mutation.

Table 1: Description of the three datasets used in the evaluation: Adult, COMPAS, and German credit. We report the number of
samples, the number of features per data, what were the features that we used as protected attributes, what is the favourable
outcome (i.e., Y=0)), and the task that an ML model is trying to solve using the dataset.

Dataset #Samples #Features Protected attributes Favorable label (% of
data with this label)

ML Task

Adult 32561 15 marital-status, rela-
tionship, race, sex,
native-country

income > 50k (24%) Predict if a person’s income is higher
than 50K per year

Compas 6172 14 sex, age, age_cat,
race

two_year_recid==1
(45.5%)

Predict if a defendant is likely to
commit a recidivism act in less than
two years

German 1000 21 ex-and-marital-
status, age (years),
foreign worker

Creditability==1
(70%)

Predict if a person is admissible for
a credit

non-deep ones for tabular data [4]. Therefore, we excluded
them but may consider them in the future. Yet, we still
consider multi-layered perceptrons that may be a (simpler)
surrogate model.

We consider two versions of these models: the optimised
one, which is supposed to be used in real-world conditions as
its hyper-parameters have been optimised for the dataset at
hand; and the non-optimised one, for which all parameters
are set to the default value given by the library (in our case
scikit-learn [22]).

We optimised our models using a grid-search strategy.
Because of the combinatorial explosion resulting from con-
sidering more and more parameters to optimise, we selected
a fixed number of them for each algorithm that we detail
hereafter. The different classifiers’ implementations and the
grid-search strategy come from the scikit-learn library [22].

First, regarding the decision tree classifiers 2, we opti-
mized the following parameters: max_depth, ccp_alpha, and

2Using the DecisionTreeClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
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Figure 6: Results for adult dataset and relationship protected attribute for a non-optimized SVM. The subplots are arranged by
operator in rows and metric in columns. In all subplots, the yellow dotted curve represents the value without mutation, and the
full curve represents the measure with mutation.

Figure 7: P-values for the Adult dataset when Relationship is used as the protected attribute and a KNN classifier is trained. For
each matrix, the operators are the row, and the measures (Accuracy, Dpd, and Eod) are the columns.

min_samples_leaf. Respectively representing the maximum
depth of the tree, the cost-complexity trade-off to select
between potential candidates and the minimal number of
samples per leaf for pruning.

Another popular family of classifiers is ensemble mod-
els. We decided to use random forests 3, adaBoost 4, and
3Using the RandomForestClassifier
4Using the AdaBoostClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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XGBoost 5. Regarding the random forests, the following
parameters were optimised: n_estimators that defines the
number of trees in the forest, max_depth that defines the
maximum depth of each tree, bootstrap that defines whether
to use a bootstrap sample for training and oob_score which
is the out-of-bag score (an alternative to the accuracy). Ad-
aBoost classifiers were optimised considering the following
parameters: estimator that defines the model used inside
the ensemble, n_estimators that defines the number of esti-
mators, and learning_rate defining the importance of each
model for the final decision. XGBoost models are optimised
by exploring: n_estimators that defines the number of gra-
dient boosted trees, learning_rate that defines the learning
rate, and max_depth that limits the maximum depth of the
trees.

SVMs are different kinds of classifiers that are differentiable
as opposed to trees and ensemble methods. We used the scikit-
learn SVC implementation 6. The optimization is performed
over the following parameters: kernel defining the kernel type
to be used (we consider the three most popular kernels: radial
basis function (RBF), polynomial, and linear), C defining the
regularisation parameter, and gamma (only when the RBF
kernel is used) defining the kernel coefficient in the SVM
optimization problem.

We have also used the K-nearest-neighbor (KNN) algo-
rithm 7. KNNs are mostly considered as an unsupervised
method. Yet, different implementations exist, and some allow
for turning it into a supervised technique. We optimised the
following parameters: n_neighbors defining the number of
neighbours to consider for taking a decision, metric defining
the metric to use for distance computation, and p defining
the power parameter for the Minkowski metric.

The last classifier we used is the multi-layer perceptron
(MLP) 8. We tuned the following parameters: hidden_layer_sizes
that defines both the number of layers and the number of
neurons per layer, solver defining the solver for weight op-
timisation, and max_iter defining the maximum number of
iterations for optimisation.

4.3 Settings
By definition, ML algorithms are statistical methods implying
that random effects may occur and bias our results and
conclusions. To mitigate this threat, we ran our experiments
50 times. We measure the evolution of the accuracy and the
evolution of two fairness measures (i.e., demographic parity
difference (Dpd) and equal opportunity difference (Eod))
and we report p-values and effect sizes to show statistical
significance.

As we wrote in Section 4.2, we used grid search optimiza-
tion while training the model. We also consider the case
where users might not want to spend too much effort in opti-
mization and thus will quickly prototype with default values.

5Using the dmlc XGBoost implementation
6SVC implementation in sklearn
7KNN implementation in sklearn
8MLP implementation in sklearn

This leads to a total of 14 models to train for each dataset
and each protected attribute. Thus, we ran: (i) for the Adult
dataset, 14 models x 5 protected attributes x 50 repetitions
= 3, 500 evaluations that report 3 different measures each; (ii)
for the Compas dataset, 14 models x 3 protected attributes x
50 repetitions = 2, 100 evaluations; and (iii) for the German
dataset, 14 models x 3 protected attributes x 50 repetitions
= 2, 100 evaluations. In total, we ran our experiment 3, 500 +
2, 100 + 2, 100 = 7, 700 times all datasets taken into account.

Furthermore, regarding the operators to modify the datasets,
we used 4 of them. 2 are parametric and 2 are non-parametric
as described in Section 3.2. The 2 parametric ones have a
parameter (i.e., the percentage of data to modify) that we
also made vary to assess the impact of modifying more and
more data. This may simulate a drift in the population. We
started with 0% (i.e., the original dataset) and went up to
50% with an increasing step of 10% by 10% (10%, 20%, 30%,
40%, and 50%). Thus, we evaluated 6 different settings for
parametric operators and one for non-parametric operators.
These 7 settings were applied on all three datasets and for
each model (and repeated 50 times). In the end, we ran 7, 700
x 7 = 53, 900 times our pipeline in total.

We ran these 53, 900 evaluations on a Google Colab envi-
ronment to try to make the running environment as homoge-
neous as possible. All the code is written in Python 3.9 and
does not use any GPU.

4.4 Results
For the sake of space, we focus only on some runs. Yet, all the
results are available at https://zenodo.org/record/8335266.

Figure 8: Graphical representation of an optimized decision
tree on the Compas dataset. Since the max_depth parameter
is limited to 2, only some of the attributes can be important
for decision-making.

4.4.1 RQ1: Model Sensitivity to Test Set Mutations. Figures 3,
4, and 2 show the results of mutating selected protected at-
tributes on our models for our three datasets. We focus on
accuracy, Eod, and Dpd measures as presented previously. In
these figures, each cell represents the evolution of the measure
when the model is tested with an operator compared with

https://xgboost.readthedocs.io/en/stable/python/sklearn_estimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://zenodo.org/record/8335266


FairPipes: Data Mutation Pipelines for Machine Learning Fairness AST ’24, April 15–16, 2024, Lisbon, Portugal

measures from the original test set. A first observation is that
the models’ responses to mutations generally vary among
attributes and datasets. All but one model see their fairness
measure improve 9 at the cost of a lower accuracy score for
the adult dataset. This is not the case for other datasets: for
example, the mlpc model can see both its accuracy and its
Dpd improving for the German dataset when the redistribu-
tion operator is applied. Similar trends can be observed with
the xgbc model. Looking now at Figure 4, we can see that for
most of the models, the fairness measures do not change at
all while the accuracy can increase (e.g., random forests (row
rf)) or decrease (e.g., adaboost (row ada)). Overall the two
most sensitive models are the decision trees and the mlpc.
For instance, Figure 5 illustrates the diversified impacts of
our operators on the mlpc model. In contrast, SVMs are by
far the least sensitive, Figure 6, shows an example of this
insensitivity. Remarkably, this model showcases remarkable
stability across a wide spectrum of scenarios. Regardless of
the operator, the nature of the dataset, or the specific pro-
tected attribute under scrutiny, the SVM model consistently
maintains an unwavering performance. The three measures
remain the same regardless of the dataset (except in Figure 4
with the last operator). As exemplified in Figures 3, 4, and 2,
it is evident that save for minor fluctuations in accuracy, this
model remains remarkably resilient to variations associated
with protected attributes.

Conclusion (RQ1)

Model sensitivity to fairness mutations varies across
datasets. The most sensitive models are the decision
trees and the mlpc. SVM is unaffected by mutations
and remains stable on all datasets.

4.4.2 RQ2: Relevance of Operators. Figures 3, 4, and 2 do
not exhibit any particular patterns that would favour the
systematic use of one of the selected operators. That is, each
operator generally affects the response of a given model dif-
ferently. For example, Figure 7 the results of the p-values
computed for the KNN model on the Adult dataset. We
can observe that column killing does not impact at all the
accuracy, hence the extreme p-value of 1, while new class and
redistribution do the same regarding Eod. In terms of our se-
lected fairness metrics, we see that Dpd is generally improved
by our operators. On the German dataset, Eod is worse when
the new class or the Redistribution operator is applied. One
exception is the Adult dataset showing that both Dpd and
Eod are improved. We did not design our operators so that
they necessarily improve the fairness measures, so mutations
can be either adverse or beneficial. Again FairPipes focuses
on the sensitivity analysis and not fairness improvement. The
exploitation of the adversarial perturbations during training
time to improve fairness in models can be found in previous
work [8].

9note that, since Dpd and Eod are differences (see Equations 1 and 2),
when they decrease it means the model becomes fairer

Conclusion (RQ2)

There is no redundancy across our four mutation
operators, each of them impacting models differently.
Column shuffle is the least impacting one, yielding
no or insignificant differences in fairness metrics.

4.5 RQ3: Influence of Model Optimisation
The optimized version of decision trees (row dt_opt) is also
stable overall, and in particular more stable than the non-
optimized version (row dt). We assume this behaviour comes
from the reduced size of the tree. Since not all features can
be selected to build the tree, only the most discriminant
ones are selected (regarding the Gini impurity index). On
the other hand, the non-optimized version has no limit of
depth, thus all features are likely to be selected at least once.
Figure 8 shows one of the trained optimized trees. Finally,
we can also notice that adaboost and non-optimized random
forests behave very similarly. We assume that this is due
to the selection of random forests as a base classifier of
our adaboost. This stability trend does not happen for all
models, with optimized SVMs being more sensitive than non-
optimized ones. One possible explanation is that optimized
SVMs learn a more precise separation function to better “fit"
the data and thus are more sensitive to variations.

Conclusion (RQ3)

Optimization plays a significant role in model sensitiv-
ity to fairness: decision trees can move from the most
sensitive to the less sensitive models. The opposite is
also possible (SVM).

5 THREATS TO VALIDITY
We now discuss some threats that may mitigate our conclu-
sions.

5.1 Internal threats
The first threat is the combinatorial explosion that forces us
to select only some instances. The choice of the algorithms
and the grid search do not cover the whole space of possible
models to train and evaluate. Yet, we selected a set of ML
algorithms covering common families of algorithms. The com-
parison of optimised models via grid search and non-optimal
models extends our selection and shows the difference when
an optimisation strategy is applied.

A second threat is that we focused on some features that
we defined as protected as they seem less relevant for the
defined task. These protected attributes are the ones studied
in previous works [16] and are known to favour unfairness
when taken into account while training ML models. Yet, other
hidden (or unexplored) correlations can be left and should
be addressed.

We proposed a framework inspired by mutation testing and
defined four different operators to bring modifications to the
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data. These operators are a first attempt to check whether
they could impact trained ML models. We implemented both
unit and statistical tests to check the framework’s functional-
ity and ensure the validity of our results. For reproducibility
purposes, it is available on our Github: https://github.com/
Camille-Molinier/mutation-testing-ml-fairness.

5.2 External threats
We used three different datasets that are popular in ML
fairness-related works. These show different characteristics in
the number of data and the number of features. We cannot
guarantee that our observations generalise to other datatsets.

6 CONCLUSION
ML models are used in ever more applications, which they
can directly impact citizens’ lives such as in banking or judi-
cial decisions. These applications require to mitigate biases
as much as possible regarding their decisions avoiding pos-
sible harm to a part of the population. Usually, ML models
are trained and evaluated once before deployment, but after
some time, changes in data can occur. This work presents a
framework that assesses the sensitivity of trained ML models
to changes after deployment. In particular, we focus on the
impact of changes regarding accuracy and two fairness mea-
sures. To do so, we draw inspiration from Mutation Testing, a
software testing technique used to evaluate tests. The idea is
to change some features from the data, evaluate an ML model
on the modified test set, and compare the measure to the
original results. We proposed four operators and evaluated
their impact on seven different ML algorithms. Our results
show that SVMs are less sensitive to changes overall, but
depending on the dataset and the operator, the impact on the
ML model may drastically change. Our future work naturally
includes the investigation of additional operators and other
datasets. We would also like to adapt these pipelines to deep
learning models and other forms of data (e.g. images).
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