
RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Author(s) - Auteur(s) :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche
researchportal.unamur.beUniversity of Namur

Time for Networks

Cortés, David; Ortiz Vega, James Jerson; Basile, Davide; Aranda Bueno, Jesús Alexander;
Perrouin, Gilles; Schobbens, Pierre-Yves
DOI:
10.1145/3644033.3644378

Publication date:
2024

Document Version
Peer reviewed version

Link to publication
Citation for pulished version (HARVARD):
Cortés, D, Ortiz Vega, JJ, Basile, D, Aranda Bueno, JA, Perrouin, G & Schobbens, P-Y 2024, 'Time for
Networks: Mutation Testing for Timed Automata Networks', Paper presented at 12 International Conference On
Formal Methods In Software Engineering, Lisbon, Portugal, 14/04/24 - 15/04/24 pp. 44-54.
https://doi.org/10.1145/3644033.3644378

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1145/3644033.3644378
https://researchportal.unamur.be/en/publications/46e4be77-4f4c-4f61-858f-fd8d34ae39bd
https://doi.org/10.1145/3644033.3644378

Time for Networks: Mutation Testing for Timed Automata
Networks

David Cortés
david.cortes@correounivalle.edu.co

Universidad del Valle
Cali, Colombia

James Ortiz
james.ortizvega@telecom-paris.fr

LTCI, Institut Polytechnique de Paris,
Télécom Paris
Paris, France

Davide Basile
davide.basile@isti.cnr.it

ISTI CNR
Pisa, Italy

Jesús Aranda
jesus.aranda@correounivalle.edu.co

Universidad del Valle
Cali, Colombia

Gilles Perrouin
gilles.perrouin@unamur.be

PReCISE/NaDI, University of Namur
Namur, Belgium

Pierre-Yves Schobbens
pierre-yves.schobbens@unamur.be
PReCISE/NaDI, University of Namur

Namur, Belgium

ABSTRACT
Mutation Testing (MT) is a technique employed to assess the effi-
cacy of tests by introducing artificial faults, known as mutations,
into the system. The goal is to evaluate how well the tests can
detect these mutations. These artificial faults are generated using
mutation operators, which produce a set of mutations derived from
the original system. Mutation operators and frameworks exist for
a variety of programming languages, and model-based mutation
testing is gaining traction, particularly for timed safety-critical sys-
tems. This paper focuses on extendingMT to Networks of Timed
Automata (NTAs), an area that has not been extensively explored.
We introduce mutation operators designed for NTAs specified in
UPPAAL, aiming to create temporal interaction faults. We assess the
effectiveness of these operators on fiveUPPAAL NTAs sourced from
the literature, specifically examining the generation of equivalent
and duplicate mutants. Our results demonstrate a varied prevalence
of equivalent mutants (from 12% to 71%) while the number of du-
plicates is less. In all cases, timed bisimulation was able to process
each mutant pair in less than one second.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Theory of computation→ Timed and hybrid models.

KEYWORDS
Model-Based Mutation Testing, UPPAAL, Bisimulation

ACM Reference Format:
David Cortés, James Ortiz, Davide Basile, Jesús Aranda, Gilles Perrouin,
and Pierre-Yves Schobbens. 2024. Time for Networks: Mutation Testing
for Timed Automata Networks. In Formal Methods in Software Engineering
(FormaliSE) (FormaliSE ’24), April 14–15, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3644033.3644378

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0589-2/24/04
https://doi.org/10.1145/3644033.3644378

1 INTRODUCTION
Digital systems have become an integral part of modern life. They
are used in almost every area, including business, scientific research,
and our daily routines. They range from smartphones, computers,
and common household appliances, to critical systems such as
industrial control systems, medical devices, braking mechanisms,
and avionic systems. As a result, it is imperative to understand and
ensure the accuracy and reliability of these systems, using, among
others, software testing and formal verification.

Here, we focus on safety-critical Timed Systems (TS), where
strict time constraints must be met to ensure correctness. Such
systems are currently validated using testing, as mandated by e.g.,
DO-178, ISO26262, etc. But how to ensure the quality of tests? For
this purpose, Mutation Testing (MT) can be used, where artificial
faults, called mutations, are planted in the system to check whether
its test suite can detect them [33]. Any mutant that is not distin-
guished from the original by the test suite is called alive, otherwise,
it is called killed [25]. The mutation score (MS) that measures the
quality of the test suite: 𝑀𝑆 = 𝑀𝐾/𝑀𝑇 , where 𝑀𝐾 is the number
of killed mutants and𝑀𝑇 is the total number of generated mutants
[25]. Indeed, the type of mutations introduced and their impact on
the system are crucial for an effective and comprehensive Quality
Assurance (QA) process in a safety-critical system. When dealing
with formal models and other formalisms like Timed Systems (TS),
mutations are applied not to the actual system but to a formal model
faithfully mirroring the implementation. This approach is known
as Model-Based Mutation Testing (MBMT). Timed Automata (TA),
Timed Petri Nets (TPN), and Networks of Timed Automata (NTA)
are some of the formalisms commonly used to model these systems
[4, 42].

In this context, we focus on NTA because they provide a more
expressive, declarative, and, depending on the application, a more
natural modeling experience (e.g., for communication protocols,
I/O architectures, etc.) compared to TA, TPN, and UML, among
others. However, most of the existing mutation operators involving
NTA were initially defined for TA or a closely related language
[3, 7, 8, 15, 32, 39, 42]. These operators indirectly mutate the NTA
by targeting its TA components. However, most case studies in-
volve real applications exhibiting synchronous and asynchronous
characteristics. For example, 14 of the 20 (70%) case studies listed
on [41] fall into this category. To our knowledge, specific mutation

https://orcid.org/0009-0002-5771-8817
https://orcid.org/0000-0001-5407-963X
https://orcid.org/0000-0002-7196-6609
https://orcid.org/0000-0002-3391-5966
https://orcid.org/0000-0002-8431-0377
https://orcid.org/0000-0001-8677-4485
https://doi.org/10.1145/3644033.3644378
https://doi.org/10.1145/3644033.3644378

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Cortés et al.

operators for NTA have not been proposed or implemented. This
represents an opportunity to exploit by designing operators that
encode faults mainly present in safety-critical systems with parallel
characteristics. The main contributions of this paper are as follows:

(1) We propose a set of novel mutation operators for NTA in-
spired from other works, emphasizing sync/async aspects;

(2) We implement our operators on top of the MUPPAAL tool;
(3) We evaluate their propensity to yield equivalent and dupli-

cate mutants for five case studies in UPPAAL.

Open Science Policy. The implementation of the operators, UPPAAL
models we used, and the tool’s outputs are available at https://gitlab.
com/formalise/ntaiomutants.

Outline. In Section 2 we present mutation operators for TA and
other TS. Theoretical background on TA, NTA, and modeling tools
are presented in Section 3. In Section 4, we introduce our eight
mutation operators with their respective formal definitions. We
evaluate such operators in Section 5 on five case studies. Finally,
Section 8 concludes and presents possible future directions.

2 RELATEDWORK
Mutation testing has a rich history spanning various domains, from
mainstream programming to formal languages [37]. In particular,
in the area of Timed Systems (TS), the work of Aichernig et al. [3]
stands as a pivotal contribution, introducing a mutation testing
framework for Timed Automata (TA). This seminal work laid the
foundation for subsequent research, inspiring the creation of fun-
damental mutation operators as well as their implementation by
other researchers [4, 32, 39]. Aboutrab et al. and Aichernig et al.
[1, 3] proposed seven mutation operators for UPPAAL to test TS.
Nilsson et al. [35] extended TA with tasks: Every i-th task of a set of
𝑛 (real-time) tasks has a period 𝑇𝑖 , a worst-case execution time 𝐶𝑖 ,
and a relative deadline 𝐷𝑖 . Furthermore, Basile et al. [7] proposed
six mutation operators on TAIO, with the intent of avoiding the
generation of subsumed mutants a priori. The main idea in [7, 8]
was to perform a refinement check between a given mutant and
the system model, using ECDAR [29]. Siavash et al. [39] explored
mutation-based testing capabilities to assess vulnerabilities in Web
services where multiple users interact. They used UPPAAL and
some classic mutation operators, as well as three of their own:
Remove Actions, which randomly deletes one action at a time, Du-
plicate Actions, which randomly copies an action to different parts
of a model, Remove Guards, which randomly selects an action and
removes its guard. The newly defined operators provided erroneous
behaviors that were not revealed by other mutants.

The need for further exploration and development of mutation
operators for systems explicitly expressing time, such as TA was
highlighted in [42]. The paper provided a taxonomy and survey of
existing operators for TS across different formalisms. It emphasized
the importance of investigating new operators that could expose
subtle errors inherent in systems with explicit time representation.

Cuartas et al. [15] proposed an approach for the static detection
of duplicate mutants in TS, introducing a new operator tailored
for remove transition/remove state. This work contributes to ongo-
ing efforts to improve mutation testing techniques for TS. Table 1

was retrieved from [15] and summarizes the operators from the
considered contributions.

Cuartas et al. [14] highlighted the need to explore model-based
mutation testing (MBMT) in Networks of Timed Automata (NTA).
This need became apparent when certain mutants were no longer
detected as erroneous when considered as part of a network, empha-
sizing the importance of evolving mutation testing methodologies
to address the complexity of networked systems.

Alberto et al. [4] instantiates the notions of mutation testing and
the associated formal theory of testing for the state-rich concurrent
language Circus [4]. In particular, Alberto et al. are concerned with
linking mutations that are discovered within a Circus specification
to traces of the denotational semantics of Circus that characterize
tests that include the mutation. The theory and languages on which
Circus is based, such as Communicating Sequential Processes (CSP)
[40], Unifying Theories of Programming (UTP) [2], have employed
mutation testing. However, it is novel to investigate a state-rich
process algebra for refinement with anUTP semantics. Furthermore,
Alberto et al. examine and modify existing mutation operators [40]
for the underlying languages and develop new ones specifically for
Circus to propose new mutation operators.

In terms of implementations, there are several tools dedicated to
mutation-based testing and analysis of TA, the most well-known
and used beingMoMuT: TA [31] and more recently, 𝝁UTA [39], and
the one on which this work builds [14], all work with Networks of
Timed Automata (NTA) inUPPAAL, but neither performs mutations
on the entire network as a whole, but on each automaton, and all
derived work uses only the classical operators defined in [3].

Particularly for theUPPAAL tool, there is a dearth of research and
implementations using mutation operators in NTA. Researching
mutation operators on entireNTA could contribute to a deeper com-
prehension of the value and suitability of mutation-based testing
in distributed and concurrent environments.

3 BACKGROUND
3.1 Clocks and Timed Automata
We use non-negative real-valued variables known as clocks to repre-
sent the continuous time domain. Clocks are variables that advance
synchronously at a uniform rate; they are the basis of TA [5]. Model
checkers such as UPPAAL [9], KRONOS [11], and HYTECH [22]
support and extend TA. Clock constraints within TA control tran-
sitions. Here, we work with an extension of TA known as Timed
Automata with Inputs and Outputs (TAIO) [3]. In TAIO, actions are
divided into inputs and outputs [3, 17].

3.2 Timed Automata with Inputs and Outputs
A TAIO is an extended TA where the interaction between a system
and its environment is modeled using output and input actions [3].

Definition 1 (Clock constraints). Let X be a finite set of clock
variables ranging over R≥0 (non-negative real numbers). Φ(X) are
the clock constraints over X. A clock constraint 𝜙 ∈ Φ(𝑋) is defined
by the following grammar:

𝜙 ::= 𝑡𝑟𝑢𝑒 | x ∼ c | 𝜙1 ∧ 𝜙2

where x ∈ X, c ∈ N, and ∼∈ {<, >, ≤, ≥, =}.

https://gitlab.com/formalise/ntaiomutants
https://gitlab.com/formalise/ntaiomutants

Time for Networks: Mutation Testing for Timed Automata Networks FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

Table 1: Mutation operators for TA, from [15].

Nilsson et al. [35] Aichernig et al. [3] Basile et al. [7]
Op Description Op Description Op Description
ET Execution time CA Change action TMI Transition missing
IAT Inter-arrival time CT Change target TAD Transition Add
PO Pattern offset CS Change source SMI State missing
LT Lock time CG Change guard CXL Constant exchange L
UT Unlock time NG Negate guard CXS Constant exchange S
HTS Hold time shift CI Change invariant CCN Constraint negation
PC Precedence constraints SL Sink location - -
- - IR Invert reset - -

Definition 2 (Clock valuations). Given a finite set of clocks X, a
clock valuation 𝜈 : X→ R≥0 is a function assigning to each clock 𝑥 ∈
X a non-negative value 𝜈(𝑥). We denote R𝑋≥0 the set of all valuations.
For a clock valuation 𝜈 ∈ R𝑋≥0 and a delay d ∈ R≥0, 𝜈 + d is the
valuation given by (𝜈 + 𝑑)(𝑥) = 𝜈(𝑥) + 𝑑 for each 𝑥 ∈ X. Given a clock
subset 𝑌 ⊆ 𝑋 , we denote 𝜈[𝑌 ← 0] the valuation defined as follows:
𝜈[𝑌 ← 0](𝑥) = 0 if 𝑥 ∈ 𝑌 and 𝜈[Y← 0](𝑥) = 𝜈(𝑥) otherwise.

In TAIO, the transitions are guarded by a clock constraint. A
transition also can carry out an action and can reset clocks. TAIO
divide actions into two disjoint sets: input actions (marked with
?) and output actions (marked with !) [3]. The output actions of
a TAIO A can be input actions of another TAIO B. We adapt the
definition of [26] as:

Definition 3 (TAIO). A TAIO is a tuple (𝐿, 𝑙0, 𝑋, Σ𝐼 , Σ𝑂 , Σ,𝑇 , 𝐼),
where:

• 𝐿 is a finite set of locations,
• 𝑙0 ∈ 𝐿 is an initial location,
• 𝑋 is a finite set of clocks,
• Σ𝐼 is a finite set of input actions (?),
• Σ𝑂 is a finite set of output actions (!),
• Σ = Σ𝐼 ∪ Σ𝑂 , is a finite set of input and output actions, such that

Σ𝐼 ∩ Σ𝑂 = ∅,
• 𝑇 ⊆ 𝐿 × Σ × Φ(𝑋) × 2𝑋 × 𝐿 is a finite set of transitions,
• 𝐼 : 𝐿 → Φ(𝑋) is a function that associates to each location a clock

invariant.

We write a transition (𝑙, 𝑎, 𝜙, 𝑌 , 𝑙 ′) ∈ 𝑇 as 𝑙
𝑎,𝜙,𝑌
−−−−→ 𝑙 ′ where 𝑙 and

𝑙 ′ are the source and target locations, respectively, 𝜙 a guard, 𝑎 the
action, 𝑌 the set of clocks to reset. The semantics of a TAIO is a
Timed Input/Output Transition System (TIOTS) where a state is a
pair (𝑙, 𝜈) ∈ 𝐿 × R𝑋≥0, where 𝑙 denotes the current location with its
accompanying clock valuation 𝜈 , starting at (𝑙0, 𝜈0) where 𝜈0 maps
each clock to 0.

Definition 4 (Semantics of TAIO). Let A = (𝐿, 𝑙0, 𝑋, Σ𝐼 , Σ𝑂 , Σ,𝑇 , 𝐼)
be a TAIO. The semantics of TAIO A is given by a TIOTS(A) =
(S, s0, Σ∆,→) where:

• 𝑆 = 𝐿 × RX≥0 is the set of states,
• 𝑠0 = (𝑙0, 𝜈0) with 𝜈0(𝑥) = 0 for all 𝑥 ∈ X and 𝜈0 |= 𝐼 (𝑙0),
• Σ∆ = Σ ⊎ R≥0,

• →⊆ 𝑆 × Σ∆ × 𝑆 is a transition relation defined by the following
two rules:

– Discrete transition: (𝑙, 𝜈)
𝑎−→ (𝑙 ′, 𝜈′), for 𝑎 ∈ Σ iff l

𝑎,𝜙,𝑌
−−−−→ l′,

𝜈 |= 𝜙 , 𝜈 ′ = 𝜈[𝑌 ← 0] and 𝜈 ′ |= I(𝑙 ′) and,

– Delay transition: (𝑙, 𝜈)
𝑑−→ (𝑙, 𝜈 + 𝑑), for some 𝑑 ∈ R≥0 iff 𝜈 + 𝑑

|= I(𝑙).

3.3 Network of Timed Automata I/O
A definition of NTAIO and of their the semantics is presented below.
Basically, an NTAIO is a parallel product of TAIO, where as usual
input is blocking, and the synchronizations are broadcast (i.e., one
sender and zero or more receivers).

Definition 5 (NTAIO). A Network of TAIO (NTAIO) is the parallel
product of TAIO A𝑖 = (𝐿𝑖 , 𝑙0𝑖 , 𝑋𝑖 , Σ

𝐼
𝑖
, Σ𝑂
𝑖
, Σ𝑖 ,𝑇𝑖 , 𝐼𝑖), 1 ≤ 𝑖 ≤ 𝑛, noted

N = A1 | |. . . | |A𝑛 .

Below, given a vector 𝑙 , we denote as 𝑙𝑖 the i-th element of 𝑙 .

Definition 6 (Semantics of NTAIO). The semantics of the NTAIO
N is a TIOTS (S, s0, Σ∆,→) where:
• 𝑆 = {(𝑙, 𝜈) ∈ (𝐿1 × . . . × 𝐿𝑛) × R𝑋≥0 | 𝜈 |=

∧𝑛
𝑖=1 𝐼𝑖 (𝑙𝑖)},

• 𝑠0 = (𝑙0, 𝜈0) such that ∀𝑥 ∈ 𝑋 , 𝜈0(𝑥) = 0,
• Σ∆ = Σ ∪ R≥0,
• →⊆ 𝑆 × Σ∆ × 𝑆 is the transition relation defined by:

• Discrete transition: (𝑙, 𝜈)
𝑎−→ (𝑙 ′, 𝜈′) for some 𝑎 ∈ Σ∆, iff

– let 𝑆𝑦𝑛𝑐ℎ ⊆ {1, . . . , 𝑛} be such that 𝑙𝑖 = 𝑙 ′
𝑖
if 𝑖 ̸∈ 𝑆𝑦𝑛𝑐ℎ,

– for all 𝑖 ∈ 𝑆𝑦𝑛𝑐ℎ there exists some 𝑡𝑖 = (𝑙𝑖 , 𝑎, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖) ∈ 𝑇𝑖 such
that 𝑙𝑖 = 𝑙𝑖 , 𝑙 ′𝑖 = 𝑙 ′

𝑖
,

– there exists 𝑖 ∈ 𝑆𝑦𝑛𝑐ℎ such that 𝑎 ∈ Σ𝑂
𝑖
, and for all 𝑗 ∈ 𝑆𝑦𝑛𝑐ℎ,

𝑗 ̸= 𝑖 it holds that 𝑎 ∈ Σ𝐼
𝑗
.

– 𝜈 |= ∧
𝑖∈𝑆𝑦𝑛𝑐ℎ 𝜙𝑖 ,𝜈 ′ =𝜈[⋃𝑖∈𝑆𝑦𝑛𝑐ℎ 𝑌𝑖 ← 0], and𝜈 ′ |= ∧𝑛

𝑖=1 𝐼𝑖 (𝑙
′
𝑖
)

• Delay transition: (𝑙, 𝜈)
𝑑−→ (𝑙, 𝜈 +𝑑) iff 𝜈 |= ∧𝑛

𝑖=1 𝐼𝑖 (𝑙𝑖) and 𝜈 +𝑑 |=∧𝑛
𝑖=1 𝐼𝑖 (𝑙𝑖).

Example 1. Let N be the NTAIO depicted in Fig 1. N contains two
TAIO (N = A1 | | A2) with two clocks 𝑥 and 𝑦, and two locations: 𝑆0
(initial) and 𝑆1 (forA1), 𝑆2 (initial) and 𝑆3 (forA2). We denote input
actions with (?) and output actions with (!) (𝑎, 𝑏, 𝑐). Thus, 𝑎, 𝑏 and
𝑐 require synchronization of the two automata (i.e., two automata
communicate using synchronization actions). In particular, 𝑆1 and
𝑆3 are the locations in which the invariants are not trivially true:

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Cortés et al.

𝐼 (𝑆1) = (𝑥 ≤ 4), forcing the TAIO (A1) to exit 𝑆0 before 𝑥 becomes 4
and 𝐼 (𝑆2) = (𝑦 ≤ 3), forcing the TAIO (A2) to exit 𝑆3 before𝑦 becomes
3. Locations 𝑆0 and 𝑆3 have true invariants (thus not drawn), allowing

it to stay in 𝑆0 and 𝑆3. The transition 𝑆1
𝑐?,(𝑥==4)
−−−−−−−→ 𝑆0 (A1) specifies

that when the input action 𝑐? occurs and that action is synchronized
with the output action 𝑐! of A2), and the guard 𝑥 == 4 holds, this
enables the transition, leading to a new current location 𝑆0 for the
automatonA1 and the new current location 𝑆2 for the automatonA2

(with transition 𝑆3
𝑐!,𝑦:=0
−−−−−→ 𝑆2). Similarly, the input and output actions

𝑎? (𝑎!) and 𝑏? (𝑏!) are synchronized between the two automata.

S1S0

a?, y ≥ 3, x : = 0

c?, x == 4

b!, x ≔	0

S3S2

a!, y == 3, x : = 0

y ≤ 3
c!, y := 0

x ≤ 4

b?, x ≔	0

!1

!2

Figure 1: Network of TAIO with two clocks 𝑥 and 𝑦.

3.4 Timed Bisimulation
Timed bisimulation [12] is a relation between system states that
captures behavioral equivalence concerning both functional behav-
ior and timing constraints. Timed bisimulation is useful to verify
systems modeled as TA, or any other formalism that has a TIOTS
semantics.

Definition 7 (Timed Bisimulation [12]). Let D1 and D2 be two
TIOTS over the set of actions Σ. Let 𝑆D1 (resp., 𝑆D2) be the set of
states of D1 (resp., D2). A timed bisimulation over TIOTS D1, D2
is a binary relation R ⊆ SD1 × SD2 such that, for all sD1R sD2 , the
following holds:

(1) For every discrete transition sD1
𝑎−→D1 s

′
D1

with 𝑎 ∈ Σ, there

exists a matching transition sD2
𝑎−→D2 s

′
D2

such that s′D1
Rs′D2

and symmetrically.

(2) For every delay transition sD1
𝑑−→D1 s

′
D1

with 𝑑 ∈ R≥0, there

exists a matching transition sD2
𝑑−→D2 s

′
D2

such that s′D1
Rs′D2

and symmetrically.
D1 and D2 are timed bisimilar, written D1 ∼ D2, if there exists a
timed bisimulation relation R over D1 and D2 containing the pair
of initial states.

3.5 UPPAAL
UPPAAL is a tool for the modelling, simulation, and verification
of NTA extended with, among the others, data types, variables,

functions and clocks that can be declared either as global or local.
Furthermore, in UPPAAL there are two synchronization mecha-
nisms, binary and broadcast synchronization, which translate to
unicast and broadcast communication channels [9] (actions of TAIO
are also called channels in UPPAAL).

In Definition 6 all actions are formalized as broadcast. Unicast
synchronizations can be formalized as follows. The set of actions
Σ is further partitioned into broadcast and unicast actions. In Def-
inition 6, whenever (𝑙, 𝜈)

𝑎−→ (𝑙 ′, 𝜈′) and 𝑎 is unicast, the further
constraint |𝑆𝑦𝑛𝑐ℎ |= 2 is required.

UPPAAL also allows to define committed and urgent locations.
Transitions outgoing committed locations have higher priority than
any other discrete/delay transition of any other automaton in the
network. Whenever a location is urgent, no delay transition is
allowed. Basically, whenever the network is in a state (𝑙, 𝜈)where for
some 𝑖 it holds that 𝑙𝑖 is committed, then from (𝑙, 𝜈) it is only possible
to execute discrete transitions such that 𝑖 ∈ 𝑆𝑦𝑛𝑐ℎ. Furthermore,
whenever the network is in a state (𝑙, 𝜈) where for some 𝑖 it holds
that 𝑙𝑖 is urgent, then no delay transition is allowed. The concept of
urgency is extend to action/channels: whenever a source location
has an enabled outgoing transition labelled by an urgent action, no
delay is possible from that location. In UPPAAL it is also possible
to have transitions with no action label. In the following, we write
𝑡 = (𝑙, ∅, 𝜙, 𝑌 , 𝑙 ′) whenever transition 𝑡 has no action label.

3.6 Equivalent/Duplicate mutation problem.
The equivalent/duplicate mutant problem [38] poses a significant
challenge in mutation analysis, where two program variants exhibit
identical behavior, making them indistinguishable by test cases.
This problem has a significant impact on both test suite generation
and evaluation. In test suite generation, resources are wasted trying
to eliminate mutants that cannot be killed, while in evaluation,
results are biased by evaluating the same (erroneous) behavior
multiple times. The problem includes equivalence between mutants
and the original system and equivalence between two mutants that
do not affect the original system.

In the context of model-based mutation testing (MBMT), muta-
tion testing (MT) [19] is a highly effective coverage criterion for
evaluating test suite quality. However, MT comes at a high cost,
and the presence of equivalent and duplicate mutations further
increases this cost [37] [33] [38]. Studies at the code level have
shown that between 30% and 40% of mutants are equivalent, and
20% to 30% are duplicate mutants [37].
• Equivalentmutants: Describe the same behavior as the original
model. It is impossible to kill them, and they do not contribute
to an adequate mutation score [25].
• Redundant mutants: Killed whenever other mutants are killed.
Two types of redundant mutants: (1) duplicated mutants when
two mutants are equivalent; and (2) subsumed mutants when a
mutant is killed whenever the other one is also killed (but they
are not necessarily equivalent) [25]. In this paper, we focus our
analyses on equivalent and duplicate mutants.

4 PROPOSED OPERATORS
Here, we introduce new mutation operators defined specifically
for NTAIO based on the UPPAAL syntax. The new operators are

Time for Networks: Mutation Testing for Timed Automata Networks FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

presented in Table 2. The first column indicates whether the opera-
tor affects the network directly (requires a network) or indirectly
(requires only an automaton). The second column shows the name
of the operator, followed by a description of the operator. We will
now give a formal definition of each operator.

Proposed operators
Name Acronym Type

NTAIO

syncSeq SS Sequential
delSync DS Interleave
maskVarh MVCh Shadow global channel
maskVarc MVCc Shadow global clock
urgChan UC Urgent Channel
BroadChan BC Broadcast Channel

TAIO
urgLoc UL Urgent Location

commLoc CL Committed Location

Table 2: Set of proposed operators.

A mutation operator is a functionM𝜇 that generates a set of
mutants from a NTAIO N . Here, we will use 𝜇 to refer to each
specific operator presented in Table 2.

4.1 SyncSeq mutation (SS)
The objective is to make two synchronizing transitions execute
sequentially. This is achieved by a mutation that removes the syn-
chronization labels, adds a clock reset and a guard, and commits
one of the source locations to force a specific sequential timing
behavior.

Definition 8 (SyncSeq operator (SS)). Let N be a NTAIO and
M𝑠𝑦𝑛𝑐𝑆𝑒𝑞 (N) be the set of mutants generated fromN using the 𝜇 =
𝑠𝑦𝑛𝑐𝑆𝑒𝑞mutation operator. Themutated NTAIO𝑚 ∈M𝑠𝑦𝑛𝑐𝑆𝑒𝑞 (N) is
of the form (A1 | |. . . | |A′𝑖 | |. . . | |A

′
𝑗
| |. . . | |A𝑛)whereA′

𝑖
= (𝐿𝑖 , 𝑙0𝑖 , 𝑋𝑖 , Σ𝐼𝑖 ,

Σ𝑂𝑖 , Σ𝑖 , (𝑇 \{𝑡𝑖 })∪{𝑡 ′𝑖 }, 𝐼𝑖) andA
′
𝑗

= (𝐿𝑗 , 𝑙0𝑗 , 𝑋 𝑗 , Σ𝐼 𝑗 , Σ𝑂 𝑗 , (𝑇 \{𝑡 𝑗 })∪
{𝑡 ′
𝑗
}), 𝐼 𝑗), such that:

• 𝑡𝑖 = (𝑙𝑖 , 𝑎, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖) and 𝑡 𝑗 = (𝑙 𝑗 , 𝑎, 𝜙 𝑗 , 𝑌𝑗 , 𝑙 ′𝑗) where either 𝑎 ∈ Σ𝐼
𝑖
∩

Σ𝑂
𝑗
or 𝑎 ∈ Σ𝑂

𝑖
∩ Σ𝐼

𝑗
,

• 𝑡 ′
𝑖

= (𝑙𝑖 , ∅, 𝜙𝑖 , 𝑌𝑖 ∪ {𝑥}, 𝑙 ′𝑖), 𝑡
′
𝑗

= (𝑙 𝑗 , ∅, 𝜙 𝑗 ∪ {𝑥 > 𝑘}, 𝑌𝑗 , 𝑙 ′𝑗), and
• 𝑙𝑖 is a committed location and 𝑘 > 0.

Example 2. Let N be the NTAIO depicted in Fig 2. N contains two
TAIO (N =A1 | | A2) where the locations: 𝑆1 (initial), 𝑆1 (forA1),𝑄1
(initial), 𝑄2 (forA2). The two automata communicate using synchro-
nization actions (𝑎, 𝑏, and 𝑐). The mutation operator 𝑆𝑦𝑛𝑐𝑆𝑒𝑞 deletes
the synchronized actions (𝑎!, 𝑎?), makes the location 𝑄1 committed,
add the clock reset 𝑦 := 0 and add the guard 𝑦 > 3.

4.2 DelSync mutation (DS)
Two synchronous actions are interleaved by deleting the input/out-
put action labels. This emulates a timing error in which two pro-
cesses skip a step in their synchronization.

Definition 9 (DelSync operator (DS)). Let N be a NTAIO and
M𝑑𝑒𝑙𝑆𝑦𝑛𝑐 (N) be the set of mutants generated from N used the 𝜇 =

Original Model

Generated Model

!1

S1 S2

c?,

a?,

x ≤ 4

x := 0

x ==4

y ≥ 3,

b!
x := 0

Q1

!2

Q2

a!,

c!,

x := 0 y == 3,

y := 0
y ≤ 3

b?
x := 0

!1

S1 S2

c?,

a?,

x ≤ 4

x := 0,

x ==4

 y ≥ 3,

b!
x := 0

Q1

!2

Q2

a!,

c!,

x := 0, y > 3,

y := 0
y ≤ 3

b?
x := 0

y := 0

Figure 2: SyncSeq Operator Example

𝑑𝑒𝑙𝑆𝑦𝑛𝑐 mutation operator. The mutated NTAIO𝑚 ∈M𝑑𝑒𝑙𝑆𝑦𝑛𝑐 (N) is
of the form (A1 | |. . . | |A′𝑖 | |. . . | |A

′
𝑗
| |. . . | |A𝑛)whereA′

𝑖
= (𝐿𝑖 , 𝑙0𝑖 , 𝑋𝑖 , Σ𝐼𝑖 ,

Σ𝑂𝑖 , Σ𝑖 , (𝑇𝑖\ {𝑡𝑖 })∪{𝑡𝑚𝑖
}, 𝐼𝑖) andA′𝑗 = (𝐿𝑗 , 𝑙0𝑗 , 𝑋 𝑗 , Σ𝐼 𝑗 , Σ𝑂 𝑗 , (𝑇𝑗\{𝑡 𝑗 })∪

{𝑡𝑚 𝑗
}, 𝐼 𝑗), such that:

• 𝑡𝑖 = (𝑙𝑖 , 𝑎, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖), 𝑡 𝑗 = (𝑙 𝑗 , 𝑎, 𝜙 𝑗 , 𝑌𝑗 , 𝑙 ′𝑗),
• 𝑎 ∈ Σ𝐼𝑖 , 𝑎 ∈ Σ𝑂 𝑗 or 𝑎 ∈ Σ𝐼 𝑗 , 𝑎 ∈ Σ𝑂𝑖 , and
• 𝑡𝑚𝑖

= (𝑙𝑖 , ∅, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖), 𝑡𝑚 𝑗
= (𝑙 𝑗 , ∅, 𝜙 𝑗 , 𝑌𝑗 , 𝑙 ′𝑗),

To avoid deadlocks in binary synchronization, the labels of the
input and output channels must be deleted. However, if the syn-
chronization is done via broadcast channels, this is not necessary
because the broadcast transmission is non-blocking according to
UPPAAL semantics.

Example 3. LetN be the NTAIO depicted in Fig 3.N contains three
TAIO (N =A1 | | A2 | | A3). The three automata communicate using
binary synchronization actions (𝑎, 𝑏, 𝑐 , 𝑑). The mutation operator
𝐷𝑒𝑙𝑆𝑦𝑛𝑐 deletes the synchronized actions (𝑎!, 𝑎?).

S1

!1

S2

S3

a!

b!

Q1

!2

Q2

Q3

a?

Q4
b?

Original Model

S1

!1

S2

S3

a!

b!

Q1

!2

Q2

Q3

a?

Q4
b?

Generated Model

R1

!3

d!

R2

c! d? c?

R1

!3

R2

d? c! c?d!

Figure 3: DelSync Operator Example

4.3 MaskVar Mutation (MVC(c/h))
This operator simulates a memory inconsistency error by substi-
tuting a global declaration of a variable, channel, clock, etc., into a
local declaration within a NTAIO, effectively masking the global

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Cortés et al.

declaration. In a real-world scenario, such inconsistency could arise
from the variable’s value not updating fast enough, updating too
quickly, or the programmer inadvertently masking the global vari-
able with a local one. Since this operator re-declares a variable
already declared, but within a local scope, the introduced differ-
ences will only be visible from the perspective of UPPAAL (and the
XML file).

First, we define the mutation on clocks, where 𝑥 is a clock de-
clared globally and 𝑥 is the mutated clock that is declared locally.

Definition 10 (MaskVar with clocks (MVCc)). Let N be a NTAIO.
Let 𝑥 and 𝑥 be two clocks, where 𝑥 ∈ 𝑋 and 𝑥 ̸∈ 𝑋 andM𝑚𝑎𝑠𝑘𝑉𝑎𝑟𝑐

(N) be the set of mutants generated from N used the 𝜇 =𝑚𝑎𝑠𝑘𝑉𝑎𝑟𝑐

mutation operator, where𝑚 ∈M𝑚𝑎𝑠𝑘𝑉𝑎𝑟𝑐 (N) is of the form (A1 | |. . . | |
A′
𝑖
| | . . . | |A𝑛)whereA′

𝑖
= (𝐿𝑖 , 𝑙0𝑖′ , ((𝑋𝑖−{𝑥})∪{𝑥}), Σ𝐼𝑖 , Σ𝑂𝑖 , Σ𝑖 ,𝑇𝑖 , 𝐼𝑖).

We also define the mutation on channels/actions, where 𝑐 is a
channel/action declared globally and 𝑐 is the mutated channel/ac-
tion that is declared locally.

Definition 11 (MaskVarwith channels (MVCh)). LetN be aNTAIO.
Let 𝑐 and 𝑐 be two actions (or channels), where 𝑐 ∈ Σ and 𝑐 ̸∈ Σ and
M𝑚𝑎𝑠𝑘𝑉𝑎𝑟ℎ (N) be the set of mutants generated from N used the
𝜇 =𝑚𝑎𝑠𝑘𝑉𝑎𝑟ℎ mutation operator, where𝑚 ∈ M𝑚𝑎𝑠𝑘𝑉𝑎𝑟ℎ(N) is of
the form (A1 | |. . . | |A′𝑖 | | . . . | |A𝑛) where A′

𝑖
= (𝐿𝑖 , 𝑙0𝑖 , 𝑋𝑖 , Σ′𝐼𝑖 , Σ

′
𝑂𝑖
,

((Σ𝑖 − {𝑐}) ∪ {𝑐}),𝑇𝑖 , 𝐼𝑖).

In the above definition, Σ′
𝐼𝑖
, Σ′
𝑂𝑖

are mutated as side effect of the
mutation on Σ𝑖 .

Example 4. Figure 4 depicts the use of the MaskVar operator MVCc,
in which we declare a clock variable in a global environment and
subsequently redeclare it in a local environment (mutation).

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(a) Original model

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(b) Mutant

Figure 4.3: Example delOutput

Mask global variable: maskVar
This operator mimics a memory inconsistency error by duplicating a global decla-

ration of a variable, channel, clock, etc., into a TA’s local declaration, “masking” the
global declaration and simulating inconsistent views of shared resources between pro-
cesses, which in a real-life scenario could be caused by the variable’s value not updating
fast enough, updating too fast or the programmer himself masking the global variable
with a local variable by mistake. Since this operator re-declares an already declared
variable, but in a local scope, the di�erences introduced will only be visible from the
point of view of the model’s XML file.

Listing 4.1: Global declarations
1 clock time;

Listing 4.2: Local declarations
1 int[0,100] foo=0;

Listing 4.3: Mutant’s global declara-
tions

1 clock time;

Listing 4.4: Mutant’s local declarations
1 int[0,100] foo=0;

2 clock time; // <- Mutation

Communication swap: pcs
As defined by Alberto (2019), “swaps two consecutive communication events”, for

NTA this means two consecutive synchronization actions/labels swap their positions in
the model. This operator could cause a message order violation, which arises when the
order of exchanging messages of two or more actors is not consistent with the intended
protocol/behavior, Torres Lopez et al. (2018). See figure 4.4

29

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(a) Original model

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(b) Mutant

Figure 4.3: Example delOutput

Mask global variable: maskVar
This operator mimics a memory inconsistency error by duplicating a global decla-

ration of a variable, channel, clock, etc., into a TA’s local declaration, “masking” the
global declaration and simulating inconsistent views of shared resources between pro-
cesses, which in a real-life scenario could be caused by the variable’s value not updating
fast enough, updating too fast or the programmer himself masking the global variable
with a local variable by mistake. Since this operator re-declares an already declared
variable, but in a local scope, the di�erences introduced will only be visible from the
point of view of the model’s XML file.

Listing 4.1: Global declarations
1 clock time;

Listing 4.2: Local declarations
1 int[0,100] foo=0;

Listing 4.3: Mutant’s global declara-
tions

1 clock time;

Listing 4.4: Mutant’s local declarations
1 int[0,100] foo=0;

2 clock time; // <- Mutation

Communication swap: pcs
As defined by Alberto (2019), “swaps two consecutive communication events”, for

NTA this means two consecutive synchronization actions/labels swap their positions in
the model. This operator could cause a message order violation, which arises when the
order of exchanging messages of two or more actors is not consistent with the intended
protocol/behavior, Torres Lopez et al. (2018). See figure 4.4

29

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(a) Original model

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(b) Mutant

Figure 4.3: Example delOutput

Mask global variable: maskVar
This operator mimics a memory inconsistency error by duplicating a global decla-

ration of a variable, channel, clock, etc., into a TA’s local declaration, “masking” the
global declaration and simulating inconsistent views of shared resources between pro-
cesses, which in a real-life scenario could be caused by the variable’s value not updating
fast enough, updating too fast or the programmer himself masking the global variable
with a local variable by mistake. Since this operator re-declares an already declared
variable, but in a local scope, the di�erences introduced will only be visible from the
point of view of the model’s XML file.

Listing 4.1: Global declarations
1 clock time;

Listing 4.2: Local declarations
1 int[0,100] foo=0;

Listing 4.3: Mutant’s global declara-
tions

1 clock time;

Listing 4.4: Mutant’s local declarations
1 int[0,100] foo=0;

2 clock time; // <- Mutation

Communication swap: pcs
As defined by Alberto (2019), “swaps two consecutive communication events”, for

NTA this means two consecutive synchronization actions/labels swap their positions in
the model. This operator could cause a message order violation, which arises when the
order of exchanging messages of two or more actors is not consistent with the intended
protocol/behavior, Torres Lopez et al. (2018). See figure 4.4

29

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(a) Original model

far near in
appr! enter!

exit!

0 1 2

3

appr? lower!

exit?raise!

(b) Mutant

Figure 4.3: Example delOutput

Mask global variable: maskVar
This operator mimics a memory inconsistency error by duplicating a global decla-

ration of a variable, channel, clock, etc., into a TA’s local declaration, “masking” the
global declaration and simulating inconsistent views of shared resources between pro-
cesses, which in a real-life scenario could be caused by the variable’s value not updating
fast enough, updating too fast or the programmer himself masking the global variable
with a local variable by mistake. Since this operator re-declares an already declared
variable, but in a local scope, the di�erences introduced will only be visible from the
point of view of the model’s XML file.

Listing 4.1: Global declarations
1 clock time;

Listing 4.2: Local declarations
1 int[0,100] foo=0;

Listing 4.3: Mutant’s global declara-
tions

1 clock time;

Listing 4.4: Mutant’s local declarations
1 int[0,100] foo=0;

2 clock time; // <- Mutation

Communication swap: pcs
As defined by Alberto (2019), “swaps two consecutive communication events”, for

NTA this means two consecutive synchronization actions/labels swap their positions in
the model. This operator could cause a message order violation, which arises when the
order of exchanging messages of two or more actors is not consistent with the intended
protocol/behavior, Torres Lopez et al. (2018). See figure 4.4

29

Original Model

Generated Model

Global declarations local declarations

Global declarations local declarations

 <- Mutation

Figure 4: MaskVar (MVCc) Operator Example

4.4 BroadChan and UrgChan mutation
4.4.1 BroadChan Mutation. The broadChan mutation allows for
one-to-many synchronization. When a broadcast synchronization
of this type is enabled, it mandates that all receivers must synchro-
nize. In other words, when one of these broadcast synchronizations
is enabled, all receivers involved in the synchronization must also
synchronize. This mutation is useful for modeling scenarios where
information or signals must be broadcast to multiple receivers, en-
suring that all intended receivers receive and process the broadcast
data. The following mutation mutates a broadcast channel into a
unicast channel.

Definition 12 (BroadChan operator (BC)). Let N be a NTAIO.
Let 𝑐 and 𝑐 be two actions/channels, where 𝑐 ∈ Σ and 𝑐 ̸∈ Σ and
M𝐵𝑟𝑜𝑎𝑑𝐶ℎ𝑎𝑛 (N) be the set of mutants generated from N using the

𝜇 = 𝐵𝑟𝑜𝑎𝑑𝐶ℎ𝑎𝑛 mutation operator, where𝑚 ∈ M𝐵𝑟𝑜𝑎𝑑𝐶ℎ𝑎𝑛(N) is
of the form (A1 | |. . . | |A′𝑖 | | . . . | |A𝑛) whereA′

𝑖
= (𝐿𝑖 , 𝑙0′ , 𝑋𝑖 , Σ𝐼𝑖 , Σ𝑂𝑖 ,

((Σ𝑖 − {𝑐}) ∪ {𝑐}), (𝑇𝑖\𝑈) ∪𝑉 , 𝐼𝑖) where:
• 𝑐 ∈ Σ, is a binary action/channel,
• 𝑐 ̸∈ Σ is a broadcast action/channel,
• 𝑈 ⊆ 𝑇𝑖 is the set of all edges whose action is 𝑐 ,
• 𝑉 = {(𝑙𝑖 , 𝑐, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖) | (𝑙𝑖 , 𝑐, 𝜙𝑖 , 𝑌𝑖 , 𝑙

′
𝑖
) ∈ 𝑈 }.

4.4.2 UrgChan Mutation. The urgChan mutation introduces ur-
gency into a synchronization/shared action, preventing delays in
the source state if an edge with the specified urgent synchroniza-
tion is enabled. An urgent channel implies that there should be no
delay when a transition with an urgent action is enabled, mean-
ing that the next state must involve an action step, which may or
may not be synchronized. In essence, urgent channels are used to
prevent delays/waiting and encourage the next transition through
that channel to be synchronized. In addition, channels can be both
broadcast and urgent. This combination can significantly change
the behavior of the system. However, to generate valid mutants,
this operator can only be applied to edges without clock guards.

Definition 13 (UrgChan operator (UC)). Let N be a NTAIO. Let 𝑐
and 𝑐 be two actions/channels, where 𝑐 ∈ Σ and 𝑐 ̸∈ Σ andM𝑈𝑟𝑔𝐶ℎ𝑎𝑛

(N) be the set of mutants generated fromN used the 𝜇 =𝑈𝑟𝑔𝐶ℎ𝑎𝑛mu-
tation operator, where𝑚 ∈M𝑈𝑟𝑔𝐶ℎ𝑎𝑛(N) is of the form (A1 | |. . . | |A′𝑖 | |
. . . | |A𝑛) whereA′

𝑖
= (𝐿𝑖 , 𝑙0𝑖 , 𝑋𝑖 , Σ𝐼𝑖 , Σ𝑂𝑖 , ((Σ𝑖 − {𝑐})∪ {𝑐}), (𝑇𝑖\𝑈)∪

𝑉 , 𝐼𝑖) where:
• 𝑐 ∈ Σ is a binary action/channel,
• 𝑐 ̸∈ Σ is a urgent action/channel,
• 𝑈 ⊆ 𝑇𝑖 is the set of all edges whose action is 𝑐 ,
• 𝑉 = {(𝑙𝑖 , 𝑐, 𝜙𝑖 , 𝑌𝑖 , 𝑙 ′𝑖) | (𝑙𝑖 , 𝑐, 𝜙𝑖 , 𝑌𝑖 , 𝑙

′
𝑖
) ∈ 𝑈 }.

Example 5. Figure 5 depicts the use of the BroadChan and UrgChan
operators, in which we declare a channel variable and broadcast chan-
nel in a global environment and subsequently redeclare the channel
variable as broadcast channel variable and broadcast channel vari-
able as broadcast urgent channel variable in the same environment
(mutation).

The idea behind this operator is to introduce an error where multiple synchroniza-
tions over the same channel take place, by adding the broadcast type to an existing
channel declaration in the model’s definition.

Listing 4.5: Global declaration
1 chan go;

2 clock x;

Listing 4.6: Mutant
1 broadcast chan go;

2 clock x;

Urgent Channel: urgChann
Channels can be declared urgent as well. An urgent channel states that there will be

no delay if a transition with urgent action is enabled, i.e: the next state must involve an
action step, which may or may not be a synchronization. Essentially, urgent channels
are used to prevent delays/waiting and hopefully to force the next transition to be a
synchronization over said channel. Channels can broadcast and be urgent at the same
time, and this combination can change the system’s behavior completely, however in
order to produce valid mutants this operator can only be applied in edges with no clock
guards.

In conclusion, the urgChann operator has a high chance of not producing equivalent
mutants, or to reveal interesting refinements in the models.

Listing 4.7: Global declaration
1 broadcast chan go;

2 clock x;

Listing 4.8: Mutant
1 broadcast urgent chan go;

2 clock x;

4.2 The equivalent mutant problem
One of the main interests of this work is to produce relevant mutants, that is, mutants
that aren’t equivalent with respect to the SUT nor with each other (duplicates). In
order to achieve that, there needs to be a mechanism to detect equivalent models and
discard them, in numerous works this is either done after generating said mutants or
before doing it, however, it is preferable to avoid their generation from the start to
reduce the number of computations and save time.

For this, the work of Basile et al. (2020) that builds upon Kim G. Larsen et al.
(2017) and Devroey, Perrouin, Papadakis, Legay, P.-Y. Schobbens, et al. (2016) would

32

Global declarationsThe idea behind this operator is to introduce an error where multiple synchroniza-
tions over the same channel take place, by adding the broadcast type to an existing
channel declaration in the model’s definition.

Listing 4.5: Global declaration
1 chan go;

2 clock x;

Listing 4.6: Mutant
1 broadcast chan go;

2 clock x;

Urgent Channel: urgChann
Channels can be declared urgent as well. An urgent channel states that there will be

no delay if a transition with urgent action is enabled, i.e: the next state must involve an
action step, which may or may not be a synchronization. Essentially, urgent channels
are used to prevent delays/waiting and hopefully to force the next transition to be a
synchronization over said channel. Channels can broadcast and be urgent at the same
time, and this combination can change the system’s behavior completely, however in
order to produce valid mutants this operator can only be applied in edges with no clock
guards.

In conclusion, the urgChann operator has a high chance of not producing equivalent
mutants, or to reveal interesting refinements in the models.

Listing 4.7: Global declaration
1 broadcast chan go;

2 clock x;

Listing 4.8: Mutant
1 broadcast urgent chan go;

2 clock x;

4.2 The equivalent mutant problem
One of the main interests of this work is to produce relevant mutants, that is, mutants
that aren’t equivalent with respect to the SUT nor with each other (duplicates). In
order to achieve that, there needs to be a mechanism to detect equivalent models and
discard them, in numerous works this is either done after generating said mutants or
before doing it, however, it is preferable to avoid their generation from the start to
reduce the number of computations and save time.

For this, the work of Basile et al. (2020) that builds upon Kim G. Larsen et al.
(2017) and Devroey, Perrouin, Papadakis, Legay, P.-Y. Schobbens, et al. (2016) would

32

Original Models

Generated Models

The idea behind this operator is to introduce an error where multiple synchroniza-
tions over the same channel take place, by adding the broadcast type to an existing
channel declaration in the model’s definition.

Listing 4.5: Global declaration
1 chan go;

2 clock x;

Listing 4.6: Mutant
1 broadcast chan go;

2 clock x;

Urgent Channel: urgChann
Channels can be declared urgent as well. An urgent channel states that there will be

no delay if a transition with urgent action is enabled, i.e: the next state must involve an
action step, which may or may not be a synchronization. Essentially, urgent channels
are used to prevent delays/waiting and hopefully to force the next transition to be a
synchronization over said channel. Channels can broadcast and be urgent at the same
time, and this combination can change the system’s behavior completely, however in
order to produce valid mutants this operator can only be applied in edges with no clock
guards.

In conclusion, the urgChann operator has a high chance of not producing equivalent
mutants, or to reveal interesting refinements in the models.

Listing 4.7: Global declaration
1 broadcast chan go;

2 clock x;

Listing 4.8: Mutant
1 broadcast urgent chan go;

2 clock x;

4.2 The equivalent mutant problem
One of the main interests of this work is to produce relevant mutants, that is, mutants
that aren’t equivalent with respect to the SUT nor with each other (duplicates). In
order to achieve that, there needs to be a mechanism to detect equivalent models and
discard them, in numerous works this is either done after generating said mutants or
before doing it, however, it is preferable to avoid their generation from the start to
reduce the number of computations and save time.

For this, the work of Basile et al. (2020) that builds upon Kim G. Larsen et al.
(2017) and Devroey, Perrouin, Papadakis, Legay, P.-Y. Schobbens, et al. (2016) would

32

The idea behind this operator is to introduce an error where multiple synchroniza-
tions over the same channel take place, by adding the broadcast type to an existing
channel declaration in the model’s definition.

Listing 4.5: Global declaration
1 chan go;

2 clock x;

Listing 4.6: Mutant
1 broadcast chan go;

2 clock x;

Urgent Channel: urgChann
Channels can be declared urgent as well. An urgent channel states that there will be

no delay if a transition with urgent action is enabled, i.e: the next state must involve an
action step, which may or may not be a synchronization. Essentially, urgent channels
are used to prevent delays/waiting and hopefully to force the next transition to be a
synchronization over said channel. Channels can broadcast and be urgent at the same
time, and this combination can change the system’s behavior completely, however in
order to produce valid mutants this operator can only be applied in edges with no clock
guards.

In conclusion, the urgChann operator has a high chance of not producing equivalent
mutants, or to reveal interesting refinements in the models.

Listing 4.7: Global declaration
1 broadcast chan go;

2 clock x;

Listing 4.8: Mutant
1 broadcast urgent chan go;

2 clock x;

4.2 The equivalent mutant problem
One of the main interests of this work is to produce relevant mutants, that is, mutants
that aren’t equivalent with respect to the SUT nor with each other (duplicates). In
order to achieve that, there needs to be a mechanism to detect equivalent models and
discard them, in numerous works this is either done after generating said mutants or
before doing it, however, it is preferable to avoid their generation from the start to
reduce the number of computations and save time.

For this, the work of Basile et al. (2020) that builds upon Kim G. Larsen et al.
(2017) and Devroey, Perrouin, Papadakis, Legay, P.-Y. Schobbens, et al. (2016) would

32

Global declarations

Global declarations

Global declarations

Figure 5: BroadChan and UrgChan Operators Example

4.5 UrgLoc and CommLoc mutation
4.5.1 UrgLoc Mutation. As stated in Section 3.5, we recall that in
UPPAAL locations can be labeled as urgent. In an urgent location,
time cannot be waited for. In other words, it is not possible to intro-
duce delays while occupying that location. However, leaving the
urgent location can still occur normally. This type of location signif-
icantly alters the sequence of events and their timing. Nonetheless,

Time for Networks: Mutation Testing for Timed Automata Networks FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

defining a location as urgent can be a common modeling mistake,
especially for individuals new to the field. The introduction of this
novel operator is justified based on the inherent complexities and
potential pitfalls associated with the use of urgent locations [23].

Definition 14 (UrgLoc operators (UL)). Let N be a NTAIO. Let
M𝑈𝑟𝑔𝐿𝑜𝑐 (N) be the set of mutants generated from N using the 𝜇 =
𝑈𝑟𝑔𝐿𝑜𝑐 mutation operator, where𝑚 ∈ M𝑈𝑟𝑔𝐿𝑜𝑐 (N) is of the form
(A1 | |. . . | |A′𝑖 | | . . . | |A𝑛) where A′

𝑖
= ((𝐿𝑖 − {𝑙𝑖 }) ∪ {𝑙𝑖 }, 𝑙0𝑖 , 𝑋𝑖 , Σ𝐼𝑖 ,

Σ𝑂𝑖 , Σ𝑖 , (𝑇𝑖\𝑇𝑙𝑖) ∪𝑇𝑙𝑖 , 𝐼𝑖) where:

• 𝑙 is a urgent location, substituing the non-urgent location 𝑙𝑖 ,
• 𝑇𝑙𝑖 = {𝑡 | 𝑡 ∈ 𝑇𝑖 has source or target location 𝑙𝑖 } and
• 𝑇

𝑙𝑖
is obtained from𝑇𝑙𝑖 by swapping 𝑙𝑖 with 𝑙𝑖 in all elements of𝑇𝑙𝑖 .

4.5.2 CommLoc Mutation. As stated in Section 3.5, we recall that
in UPPAAL, locations can also be declared committed. Committed
locations freeze time, but must guarantee atomicity. The idea of
this operator is to change any urgent or normal location into a com-
mitted location and analyze the results. Due to the massive changes
a committed location introduces into a system, this operator will
likely generate a large number of non-equivalent mutants or even
error-revealing ones.

Definition 15 (CommLoc operators (CL)). Let N be a NTAIO.
LetM𝐶𝑜𝑚𝑚𝐿𝑜𝑐 (N) be the set of mutants generated from N used
the 𝜇 = 𝐶𝑜𝑚𝑚𝐿𝑜𝑐 mutation operator, where 𝑚 ∈ M𝐶𝑜𝑚𝑚𝐿𝑜𝑐 (N)
is of the form (A1 | |. . . | |A′𝑖 | | . . . | |A𝑛) where A′

𝑖
= ((𝐿𝑖 − {𝑙𝑖 }) ∪

{𝑙𝑖 }, 𝑙0𝑖 , 𝑋𝑖 , Σ𝐼𝑖 , Σ𝑂𝑖 , Σ𝑖 , (𝑇𝑖\𝑇𝑙𝑖) ∪𝑇𝑙𝑖 , 𝐼𝑖) where:

• 𝑙𝑖 is a committed location, 𝑙𝑖 is not committed,
• 𝑇𝑙𝑖 = {𝑡 | 𝑡 ∈ 𝑇𝑖 has source or target location 𝑙𝑖 } and
• 𝑇

𝑙𝑖
is obtained from𝑇𝑙𝑖 by swapping 𝑙𝑖 with 𝑙𝑖 in all elements of𝑇𝑙𝑖 .

Example 6. Let N be the NTAIO depicted in Fig 6. N contains two
TAIO (N = A1 | | A2) where the locations: 𝑆1 (initial), 𝑆1 (for A1),
𝑄1 (initial), 𝑄2 (for A2) in Fig 6 (𝑎). The two automata communi-
cate using synchronization actions (𝑎 and 𝑐). The mutation operator
𝑢𝑟𝑔𝐿𝑜𝑐 change the normal location 𝑄2 into an urgent location (Fig 6
(𝑏)). The mutation operator 𝑐𝑜𝑚𝑚𝐿𝑜𝑐 change the normal location 𝑄2
into a committed location (Fig 6 (𝑐)).

5 EVALUATION
5.1 Case Studies
Our studies come from UPPAAL specifications of these cases and
are available at [18]. In addition, we considered a mechanical venti-
lator [13]. Our case studies consist of 5 models in total. The models
Collision Avoidance, Train Gate Controller, Tram Door, Gear Con-
trol, Mechanical Ventilator are all cyclic and deadlock-free models.
For each case study, we focused on the Network of TA (UPPAAL).
Table 3 provides structural metrics for each case study.

5.1.1 Collision Avoidance (CA). The CA case models a protocol
where different agents want to get access to Ethernet through a
shared channel [24]. The model consists of two instances (TAIO),
which together form a NTAIO. The CA model has 12 locations in
total and 26 transitions.

a) Original Models

b) Generated Model with urgLoc operator

!1

S1 S2

c?

a?,

Q1

!2

Q2

a!

c!

!1

S1 S2

c?

Q1

!2

U

c! a?

a!

c) Generated Model with commLoc operator

!1

S1 S2

c?

Q1

!2

C

c! a?

a!

Figure 6: urgLoc and commLoc Operators Example

5.1.2 Train Gate Controller (TGC). The TGC models a railway
system that controls access to a bridge for several trains [6]. The
model consists of 3 instances (TAIO), which together form a NTAIO.
The bridge is a shared resource accessible by only one train at a time.
The TGC model has 17 locations in total. There are 18 transitions,
of which four have guards of the form 𝑥 < 𝑐 , and four have guards
of the form 𝑥 > 𝑐 , for a clock 𝑥 and constant 𝑐 .

5.1.3 Tram Door (TD). The TD model represents the mechanism
between a tram door and a retractable bridge (a.k.a. bridge plate)
for wheelchair access to trams. The model consists of 5 instances
(TAIO), which together form a NTAIO. The model has 32 locations
in total, 36 transitions, and 2 clocks.

5.1.4 Gear Control (GC). The GC models a simple gear controller
for vehicles [30]. The model consists of 2 TAIO, forming a NTAIO.
Overall, the GC model contains 48 locations, of which 20 have
invariants and 60 transitions.

5.1.5 Mechanical Ventilator (MV). The MV model describes the
basic functionality and behavior of a mechanical ventilator [16].
The model consists of 5 TAIO, forming a NTAIO. The model has 24
locations in total and 29 transitions.

5.2 Research Questions
To evaluate our newly introduced operators, we measure the num-
ber of mutants they can produce and their proneness to generate
equivalent and duplicate mutants. Therefore, we form the following
research questions:
RQ1 How many mutants each operator generates?
RQ2 How do NTAIO and TAIO operators compare regarding

equivalent mutants?
RQ3 How do NTAIO and TAIO operators compare regarding du-

plicate mutants?
RQ4 What is the cost of generating mutants and removing equiv-

alent and duplicate ones?

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Cortés et al.

Table 3: Case Studies Details.

Case Studies Instances Locations Transitions Clocks Channels Broad. Channels Urg. Channels
CA 2 12 26 1 0 11 0
GC 2 48 60 1 0 20 0
TGC 3 17 18 1 0 9 0
MV 5 24 29 6 7 12 0
TD 5 32 36 2 0 11 0

5.3 Evaluation Procedure
We ran our experiments on a UBUNTU 21.10 × 86_64 GNU/Linux
machine with 4 cores, 4.7GHz, 32GB RAM. To mitigate randomness
effects, we ran the mutant generation 5 times. The computation
of equivalent and duplicate mutants relies on the timed bisimula-
tion algorithm presented in Section 3. Figure 7 shows the general
workflow for our five systems (see Section 5.1). For each case, we
first generate a set of mutants (MU) using our novel operators
presented in Table 4. This results in 779 total mutants for all case
studies, as shown in Table 4. For each case study, the generated mu-
tants are grouped in all possible pairs, and the timed bisimulation
algorithm presented in [36] is applied to each pair to check how
many mutants are equivalent.

6 RESULTS AND DISCUSSION
6.1 RQ1: Number of Generated Mutants

Table 4: Average number of generated mutants per operator

CA GC TGC MV TD
DS 25 56 36 17 36

MVCh 22 40 16 60 55
MVCl 2 2 7 9 8
UC 11 20 8 12 11
UL 12 46 28 17 36
CL 12 46 28 20 31
SS 9 18 7 7 10
BC 0 0 0 7 0
Total 93 228 130 149 179

Table 4 presents the average number of generated mutants for
each operator. Indeed, the implementation of the operators involves
some randomness and may create invalid ones that we discard. We
can see that the delete synchronization operator (DS) generates
the maximum number of mutants for three out of the five systems.
The masking channel operator (MVCh) is also able to generate
many mutants, in particular for the mechanical ventilator and tram
door, because these models have many synchronizations. Logically,
MVCc operator yields more mutants when there are more clocks.
In contrast, the BC operator was only applied to the mechanical
ventilator model. This is due to the nature of channels. Indeed, in
all but the ventilator model, channels were already broadcast ones,
preventing the application of the operator.

RQ1 Summary: Our operators exhibit diversity in the
number of mutants they can generate, from widely ap-
plicable channel masking and interleaving to operators
focusing on TA-specific elements such as clocks and non-
broadcast channels.

6.2 RQ2: NTAIO vs TAIO Equivalent Mutants
Table 5 shows the number of equivalent mutants per operator for
each UPPAAL network. The last column shows varied averages of
equivalent mutants, from 12% to 71%. In particular, the masking
channel operator (MVCh) is particularly likely to produce equiva-
lent mutants. Interestingly, the clock masking operator (MVCc) gen-
erates fewer equivalent mutants (42% compared to 71% for (MVCh),
denoting a very distinct impact on model behavior. While operators
producing high numbers of equivalent mutants may seem irrele-
vant, we mitigate this aspect by having an exact procedure (timed
bisimulation) to remove them. Generally, network-aware operators
yield either the maximum or the minimum number of mutants.

RQ2 Summary: Our operators also have diverse behavior
regarding equivalent mutants. The operatorMVCh is by
far the largest contributor to equivalence, followed by UC.
Thus, network operators are more prone to yield equiva-
lence.

6.3 RQ3: NTAIO vs TAIO Duplicate Mutants
Tables 6 to 10 detail occurrences of duplicates per study and themost
involved combinations of operators yielding such duplicates. For
example, one can interpret the first row of Table 7 as “The operator
that generated the most mutants duplicated with DS was UL, its
mutants comprising 28% of the total mutants that are bisimilar
with other DS mutants." In three out of the five models, the MVCh
operator is the most involved in duplicate pairs, followed by the
UL and CL that are tied in the two remaining models. TheMVCh
operator is also often appearing in duplicate pairs when compared
to other operators (e.g., for the mechanical ventilator, see Table 10).
The CL and UL operators seem to contribute equally in duplicate
pairs for three of our systems.

Time for Networks: Mutation Testing for Timed Automata Networks FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

Figure 7: Experimentation workflow

Table 5: Average ratio of Equivalent Mutants Computed via Timed Bisimulation.

Case Collision Avoidance Gear Control Train Gate Controller Mechanical Ventilator Tram Door Average
DS 4/25 (16%) 9/56 (16%) 3/36 (8%) 15/17 (88%) 1/36 (3%) 26%

MVCh 3/22 (14%) 38/40 (95%) 14/16 (87%) 56/60 (93%) 36/55 (65%) 71%
MVCc 0/2 (0%) 1/2 (50%) 4/7 (57%) 6/9 (66%) 3/8 (37%) 42%
UC 5/11 (45 %) 19/20 (95%) 5/8 (62%) 8/12 (66%) 6/11 (54%) 64%
UL 4/12 (33%) 43/46 (93%) 21/28 (75%) 6/17 (35%) 24/36 (66%) 60%
CL 3/12 (25%) 43/46 (93%) 21/28 (75%) 9/20 (45%) 20/31 (64%) 60%
SS 0/9 (0%) 1/18 (5%) 0/7 (0%) 4/7 (57%) 0/10 (0%) 12%
BC 0 (0%) 0 (0%) 0 (0%) 2/7 (28%) 0 (0%) 28%
Total 19/93 (20%) 154/228 (67%) 75/130 (58%) 106/149 (71%) 90/187 (48%) 52%

Table 6: Average redundant mutants for the CA case study.

Operator No. duplicated pairs Most duplicated operator
DS 56/8556 (0.65%) MVCH 10 (27%)

MVCh 1055 /8556 (12.3%) CL & UL 528 (50%)
MVCl 116 /8556 (1.3%) MVCH 44 (38%)
UC 591 /8556 (7%) MVCH 242 (40%)
UL 639 /8556 (7.5%) MVCH 264 (41%)
CL 636 /8556 (7.5%) MVCH 264 (42%)
SS 0/8556(0%) N/A

Table 7: Average duplicate mutants for the TGC case study.

Operator No. duplicated pairs Most duplicated operator
DS 643 / 16770 (4%) UL 153 (23%)

MVCh 1292 / 16770 (8%) CL & UL 896 (69%)
MVCl 354 / 16770 (2%) CL & UL 224 (63%)
UC 680 / 16770 (4%) CL & UL 448 (65%)
UL 2107 / 16770 (12.5%) CL 784 (37%)
CL 2108 / 16770 (12.5%) UL 784 (37%)
SS 28 / 16770 (0.1%) CL 12 (42%)

RQ.3 Summary: TheMVCh operator is the most impor-
tant contributor to pairs of duplicatemutants. This network
operator is more involved in duplicates than non-network
ones. The “locations” operators (UL and CL) contribute
equally to duplicates.

Table 8: average duplicate pairs of mutants for each operator,
with the TD case study.

Operator No. duplicated pairs Most duplicated operator
DS 44 / 31,862 (0.1%) MVCH 14 (31%)

MVCh 5569 / 31,862 (17.5%) UL 1705 (30%)
UC 1356 / 31,862 (4.2%) MVCH 605 (44%)
UL 3509 / 31,862 (11%) MVCH 1705 (48%)
CL 3511 / 31,862 (11%) MVCH 1704 (48%)
SS 3 / 31,862 (0.009%) CL 1 (33%)

Table 9: Average duplicate pairs of mutants for each operator,
with the GC case study.

Operator No. duplicated pairs Most duplicated operator
DS 939/ 51,756 (1.8%) CL 167 (17%)

MVCh 5515 / 51,756 (10.6%) CL & UL 3680 (66%)
MVCl 316 / 51,756 (0.6%) CL & UL 184 (58%)
UC 2971 / 51,756 (5.7%) CL & UL 1840 (62%)
UL 6221 / 51,756 (12%) CL 2116 (34%)
CL 6221 / 51,756 (12%) UL 2116 (34%)
SS 193 / 51,756 (0.3%) UL 58 (30%)

6.4 Answering RQ4: Mutation Costs
Table 11 presents the costs of mutation, that is the time required
to generate mutants and perform equivalent and duplicate mutant
analysis. As we can expect, mutant generation is quite fast, and
most of the cost is formed by the comparison amongst mutants

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Cortés et al.

Table 10: Average duplicate pairs of mutants for each opera-
tor, with the MV case study.

Operator No. duplicated pairs Most duplicated operator
DS 2448 / 22,052 (11%) CL 167 (17%)

MVCh 4837 / 22,052 2 (22%) MVCH 1546 (31%)
MVCl 972 / 22,052 (4.4%) MVCH 504 (51%)
UC 1278 /22,052 (5.7%) MVCH 672 (52%)
UL 909 / 22,052 (4.1%) MVCH 379 (41%)
CL 1225 / 22,052 (5.5%) MVCH 548 (44%)
BC 128 / 22,052 (0.5%) MVCH 55 (42%)
SS 685 / 22,052 (3.1%) MVCH 340 (49%)

Table 11: Average times for mutant generation, bisimulation
for all pairs, and mean bisimulation per pair (left to right)
across case studies.

Case study Mutant gen-
eration

Bisimulation
of all pairs

Bisimulation
per pair

CA 1 s 24 min 660 ± 41 ms
GC 3 s 172 min 1 s ± 126 ms
TGC 2 s 153 min 748 ± 52 ms
MV 2.5 s 165 min 1 s ± 177 ms
TD 3 s 195 min 726 ± 67 ms

using timed bisimulation, which can take more than three hours.
A comparison takes less than one second, and it is not necessarily
the largest model (in terms of locations and transitions) that takes
more time to analyze. For example, the mechanical ventilator is
smaller but we see the influence of the number of clocks on the
analysis times.

RQ4 Summary: Our timed bisimulation algorithm can
analyze an equivalent/duplicate pair in less than one sec-
ond. The analysis times are only partially dependent on
the model’s structural characteristics suggesting a good
scalability of timed bisimulation.

6.5 Discussion
6.5.1 Number of equivalent mutants. Compared to code-based mu-
tation, where the number of equivalent mutants is around 30% [37],
the number of equivalent mutants may seem important (up to 71%).
This was one of the motivations when designing network operators
to assess this point. This is in line with recent studies showing
that, even for operators not operating at the network level, there
could be a large ration of subsumed mutants refining the original
system (that are thus equivalent). In particular, theMVCh operator
creates a masking problem that cannot be detected easily without
proceedings to resets. The analysis of non-equivalent mutants in
terms of introduced faults is left to future work.

6.5.2 Dynamic vs Static Equivalent/Duplicate Detection. Our oper-
ators exhibit a variety of behaviors, and some may be more easily
detected by static analysis rather than a more costly bisimulation.
For example, given the number of equivalent/duplicates generated

by MVCh, it can be of further interest to avoid masking in gen-
eration guidelines [7, 8]. Further, studying the tradeoffs between
precision and analysis speed for each operator could pave the way
for hybrid equivalence detection approaches.

6.5.3 On Timed Bisimulation. This paper focuses on timed bisimu-
lation equivalence as the primary equivalence relationship between
NTAIO. The following reasons motivate this choice. First, while for
deterministic systems timed trace equivalence is also possible, timed
bisimulation is more efficient [20, 28]. Second, timed bisimulation
being the strongest equivalence relation, it will finely distinguish
behaviour due to subtle faults, allowing to keep stubborn mutants
(i.e., hard-to-kill mutants), improving bug detection ability of test
suites. Yet, it would be of interest to compare the influence of simu-
lation relations (such as TIOCO [27]) on the effectiveness of timed
mutation testing.

7 THREATS TO VALIDITY
Internal validity. To mitigate effects due to randomness we ran
each operator on each system five times. The timed bisimulation
algorithm is exact and is therefore not subject to parameterization
issues.

External validity. We cannot guarantee that our results extend to
all timed systems expressed in UPPAAL. To mitigate this threat, we
selected five cases of different natures: a gear controller, a network
communication model avoiding collisions, a train gate controller, a
tram door, and a mechanical ventilator. These models have different
sizes and numbers of clock constraints. They enabled us to observe
differences in detecting and removing duplicate mutants.

8 CONCLUSION
In this paper, we designed novel operators for Networks of Timed
Automatawith Input andOutput (NTAIO). Our experiments showed
various behaviors regarding equivalent and duplicate mutant oc-
currences. Timed bisimulation is a cost-effective way to remove
them.

There is room for future work. First, wewould like to evaluate the
influence of resets on masking operators, which may lead to many
equivalent and duplicate mutants. The invert reset operator [3] is a
candidate for this. Second, concerning the quality of the remaining
mutants, we would like to assess their stubbornness and determine a
minimally adequate subset of mutation operators via subsumption
analyses. We will evaluate our operators for test generation and
assessment. Finally, we would like to explore the transferability of
our operators to other formalisms or languages, such as Timed Petri
Nets, Timed Process Algebras, and Real-time Logics [10, 21, 34, 43].

ACKNOWLEDGMENTS
James Ortiz and Pierre Yves Schobbens were partially supported by
the Fonds de la Recherche Scientifique FNRS under PDR Grant n°
T.0199.21 (Scaling Up Variability). Special thanks to the agreement
between the University of Namur and Universidad del Valle. Da-
vide Basile acknowledges the MUR PRIN 2022 PNRR P2022A492B
project ADVENTURE 2023-2025, funded by European Union Next-
Generation EU. Gilles Perrouin is a FNRS Research Associate. This
manuscript reflects only the authors’ views and opinions.

Time for Networks: Mutation Testing for Timed Automata Networks FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

REFERENCES
[1] M Saeed AbouTrab, Steve Counsell, and Robert M Hierons. 2012. Specification

mutation analysis for validating timed testing approaches based on timed au-
tomata. In 2012 IEEE 36th Annual Computer Software and Applications Conference.
IEEE, 660–669.

[2] Bernhard K. Aichernig and He Jifeng. 2008. Mutation testing in UTP. Formal
Aspects of Computing 21, 1–2 (Feb. 2008), 33–64. https://doi.org/10.1007/s00165-
008-0083-6

[3] Bernhard K Aichernig, Florian Lorber, and Dejan Ničković. 2013. Time for
mutants—model-based mutation testing with timed automata. In Tests and Proofs:
7th International Conference, TAP 2013, Budapest, Hungary, June 16-20, 2013. Pro-
ceedings 7. Springer, 20–38.

[4] Alex Donizeti Betez Alberto. [n. d.]. Formal mutation testing in Circus process
algebra. Doutorado em Ciências de Computação e Matemática Computacional.
https://doi.org/10.11606/T.55.2019.tde-04012019-112931

[5] Rajeev Alur and David L Dill. 1994. A theory of timed automata. Theoretical
computer science 126, 2 (1994), 183–235.

[6] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. 1993. Parametric real-
time reasoning. In STOC. ACM, 592–601.

[7] Davide Basile, Maurice H ter Beek, Sami Lazreg, Maxime Cordy, and Axel Legay.
2022. Static detection of equivalent mutants in real-time model-based mutation
testing: An Empirical Evaluation. Empirical Software Engineering 27, 7 (2022),
160. https://doi.org/10.1007/s10664-022-10149-y

[8] Davide Basile, Maurice H. ter Beek,MaximeCordy, andAxel Legay. 2020. Tackling
the equivalent mutant problem in real-time systems: the 12 commandments of
model-based mutation testing. In SPLC’20: 24th ACM International Systems and
Software Product Line Conference, Volume A, Roberto Erick Lopez-Herrejon (Ed.).
ACM, 30:1–30:11. https://doi.org/10.1145/3382025.3414966

[9] Gerd Behrmann, Alexandre David, and Kim G Larsen. 2006. A tutorial on Uppaal
4.0. Department of computer science, Aalborg university (2006).

[10] B. Berthomieu and M. Diaz. 1991. Modeling and verification of time dependent
systems using time Petri nets. IEEE Transactions on Software Engineering 17, 3
(1991), 259–273. https://doi.org/10.1109/32.75415

[11] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis,
and Sergio Yovine. 1998. Kronos: A model-checking tool for real-time systems.
In Computer Aided Verification: 10th International Conference, CAV’98 Vancouver,
BC, Canada, June 28–July 2, 1998 Proceedings 10. Springer, 546–550.

[12] Kārlis Cerāns. 1993. Decidability of Bisimulation Equivalences for Parallel Timer
Processes. In Proceedings of the 4th International Workshop on Computer Aided
Verification (CAV’92) (Lecture Notes in Computer Science, Vol. 663), Gregor von
Bochmann and David K. Probst (Eds.). Springer-Verlag, 302–315.

[13] David Cortes. 2023. Mechanical Ventilator Case Study. https://github.com/
ventynet/ventynet.

[14] Jaime Cuartas. 2022. Model-Based Mutation Testing Prototype for Timed Automata.
Bachelor’s Thesis.

[15] Jaime Cuartas, Jesús Aranda, Maxime Cordy, James Ortiz, Gilles Perrouin, and
Pierre-Yves Schobbens. 2023. MUPPAAL: Reducing and Removing Equivalent
and Duplicate Mutants in UPPAAL. In 2023 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 52–61.

[16] Jaime Cuartas, David Cortés, Joan S. Betancourt, Jesús Aranda, José I. García,
Andrés M. Valencia, and James Ortiz. 2023. Formal Verification of a Mechanical
Ventilator Using UPPAAL. In Proceedings of the 9th ACM SIGPLAN International
Workshop on Formal Techniques for Safety-Critical Systems (Cascais, Portugal)
(FTSCS 2023). Association for Computing Machinery, New York, NY, USA, 2–13.
https://doi.org/10.1145/3623503.3623536

[17] Alexandre David, Kim G Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wa-
sowski. 2010. Timed I/O automata: a complete specification theory for real-time
systems. In Proceedings of the 13th ACM international conference on Hybrid systems:
computation and control. 91–100.

[18] Rebeka Farkas. 2023. Case Studies. https://github.com/farkasrebus/
XtaBenchmarkSuite.

[19] Phyllis G Frankl, Stewart N Weiss, and Cang Hu. 1997. All-uses vs mutation
testing: an experimental comparison of effectiveness. Journal of Systems and
Software 38, 3 (1997), 235–253.

[20] Pierre Ganty, Nicolas Manini, and Francesco Ranzato. 2023. Computing Reachable
Simulations. arXiv:2204.11804 [cs.LO]

[21] M. R. Hansen. 1998. Duration Calculus: A Logical Approach to Real-Time Systems.
DFKI Saarbrücken. http://www2.compute.dtu.dk/pubdb/pubs/1902-full.html

[22] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. 1997. HyTech: A
model checker for hybrid systems. In Computer Aided Verification: 9th Interna-
tional Conference, CAV’97 Haifa, Israel, June 22–25, 1997 Proceedings 9. Springer,

460–463.
[23] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to

Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., USA.

[24] Henrik Jensen, Kim Larsen, and Arne Skou. 2002. Modelling and Analysis of a
Collision Avoidance Protocol using SPIN and UPPAAL. BRICS Report Series 3 (01
2002). https://doi.org/10.7146/brics.v3i24.20005

[25] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[26] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2010. The
theory of timed I/O automata. Morgan & Claypool Publishers.

[27] Moez Krichen and Stavros Tripakis. 2009. Conformance testing for real-time
systems. Formal Methods Syst. Des. 34, 3 (2009), 238–304. https://doi.org/10.1007/
S10703-009-0065-1

[28] Antonín Kučera and Richard Mayr. 2002. Why is Simulation Harder than Bisimu-
lation?. In Proceedings of the 13th International Conference on Concurrency Theory
(CONCUR’02) (Lecture Notes in Computer Science, Vol. 2421), Luboš Brim, Petr
Jančar, Mojmír Křetínský, and Antonín Kučera (Eds.). Springer-Verlag, 594–609.

[29] Kim G Larsen, Florian Lorber, Brian Nielsen, and Ulrik M Nyman. 2017. Mutation-
based test-case generation with ecdar. In 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 319–328.

[30] Magnus Lindahl, Paul Pettersson, and Wang Yi. 2001. Formal design and analysis
of a gear controller. International Journal on Software Tools for Technology Transfer
3, 3 (01 Aug 2001), 353–368. https://doi.org/10.1007/s100090100048

[31] Florian Lorber. 2015. Model-Based Mutation Testing of Synchronous and Asyn-
chronous Real-Time Systems. In 8th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2015,. IEEE Computer Society, 1–2.
https://doi.org/10.1109/ICST.2015.7102615

[32] Florian Lorber, Kim G Larsen, and Brian Nielsen. 2018. Model-based mutation
testing of real-time systems via model checking. In 2018 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE,
59–68.

[33] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2013.
Overcoming the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation. IEEE Transactions on Software
Engineering 40, 1 (2013), 23–42.

[34] Xavier Nicollin and Joseph Sifakis. 1994. The Algebra of Timed Processes, ATP:
Theory and Application. Inf. Comput. 114, 1 (1994), 131–178. https://doi.org/10.
1006/INCO.1994.1083

[35] Robert Nilsson, Jeff Offutt, and Sten F Andler. 2004. Mutation-based testing
criteria for timeliness. In Proceedings of the 28th Annual International Computer
Software and Applications Conference, 2004. COMPSAC 2004. IEEE, 306–311.

[36] James Jerson Ortiz, Moussa Amrani, and Pierre-Yves Schobbens. 2017. Multi-
timed Bisimulation for Distributed Timed Automata. In NASA Formal Methods -
9th International Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017,
Proceedings. 52–67.

[37] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in Computers. Vol. 112. Elsevier, 275–378.

[38] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and
Márcio Ribeiro. 2019. A systematic literature review of techniques and metrics to
reduce the cost of mutation testing. Journal of Systems and Software 157 (2019),
110388.

[39] Faezeh Siavashi, Dragos Truscan, and Jüri Vain. 2018. Vulnerability Assessment
of Web Services with Model-Based Mutation Testing. In 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). https://doi.org/10.
1109/QRS.2018.00043

[40] Thitima Srivatanakul, John A. Clark, Susan Stepney, and Fiona Polack. 2003.
Challenging Formal Specifications by Mutation: a CSP Security Example. In
Proceedings of the 10th Asia-Pacific Software Engineering Conference (APSEC’03).
Chiang Mai, Thailand, 340–350.

[41] UppalTeam. [n. d.]. Uppaal Case Studies. https://uppaal.org/casestudies/.
[42] James Jerson Ortiz Vega, Gilles Perrouin, Moussa Amrani, and Pierre-Yves

Schobbens. 2018. Model-based mutation operators for timed systems: a tax-
onomy and research agenda. In 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS). IEEE, 325–332.

[43] Wang Yi. 1991. CCS + time = an interleaving model for real time systems. In Au-
tomata, Languages and Programming, Javier Leach Albert, Burkhard Monien, and
Mario Rodríguez Artalejo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
217–228.

https://doi.org/10.1007/s00165-008-0083-6
https://doi.org/10.1007/s00165-008-0083-6
https://doi.org/10.11606/T.55.2019.tde-04012019-112931
https://doi.org/10.1007/s10664-022-10149-y
https://doi.org/10.1145/3382025.3414966
https://doi.org/10.1109/32.75415
 https://github.com/ventynet/ventynet
 https://github.com/ventynet/ventynet
https://doi.org/10.1145/3623503.3623536
 https://github.com/farkasrebus/XtaBenchmarkSuite
 https://github.com/farkasrebus/XtaBenchmarkSuite
https://arxiv.org/abs/2204.11804
http://www2.compute.dtu.dk/pubdb/pubs/1902-full.html
https://doi.org/10.7146/brics.v3i24.20005
https://doi.org/10.1007/S10703-009-0065-1
https://doi.org/10.1007/S10703-009-0065-1
https://doi.org/10.1007/s100090100048
https://doi.org/10.1109/ICST.2015.7102615
https://doi.org/10.1006/INCO.1994.1083
https://doi.org/10.1006/INCO.1994.1083
https://doi.org/10.1109/QRS.2018.00043
https://doi.org/10.1109/QRS.2018.00043
https://uppaal.org/casestudies/

