

cyberwal.be

cyberexcellence.be

RETHINKING UPDATES IN
ANONYMOUS COMMUNICATION

NETWORKS

PhD student ‒ Faculty of Computer Science, UNamur
March 25th, 2024, Luxembourg

Jules Dejaeghere

1 / 33

https://cyberwal.be/
https://cyberexcellence.be/
https://orcid.org/0000-0002-4970-3730

Outline
1. Overview of Tor
2. Motivation
3. Upfront requirements
4. Overview of the solution
5. Example
6. Non-functional properties (nice to have)
7. How does it help with Tor?

2 / 33

Overview of Tor
Tor protects you by

bouncing your
communications around a

distributed network of
relays run by volunteers all

around the world.
Tor Project [5]

Image : Robert Heaton
3 / 33

https://robertheaton.com/2019/04/06/how-does-tor-work/

Tor relays

Location of the 7522 Tor relays, as of March 21st 2024 2PM UTC

© © — Mapbox OpenStreetMap GeoIP data from MaxMind
4 / 33

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/copyright
https://www.maxmind.com/

Why do we care about updates?
Fixing bugs Fixing security

issues
Bringing new

features

5 / 33

IT'S 2024
WHY DON'T WE JUST
AUTOMATICALLY UPDATE?

6 / 33

For client software — The easy case

Auto-update is already
widely used

Plugins or addons even
allow third-party devs to
extend functionality

⇒ Update upon restart ⇒ Many trust models exist

7 / 33

For server software — The tricky case

The software
cannot be
stopped

What if the
update fails?

Need scripts to
handle the

update

8 / 33

NEW TAKE ON
SOFTWARE UPDATES

9 / 33

Updates are part of normal operation

Updating should not require external scripts
Update process should be platform independent
Updates should happen automatically

10 / 33

Updates are hot swappable

New code is loaded at runtime
No need for admin to login

11 / 33

Updates may fail

The core software can unload failing updates
Rollback to previous version is automatic

12 / 33

HOW DO WE
ACHIEVE THIS?

13 / 33

Two main tools

Rust, for its type and
memory safety and for its

macros

WebAssembly, a portable
binary-code format

14 / 33

Architecture of a typical program

1. The core software with a default implementation of
all the features

2. Updates are WebAssembly modules

Contains hooks (places where updates can be
applied)
Is the most stable part of the application
Embeds a WebAssembly runtime

The updates are attached to a hook in the core

15 / 33

Execution of a typical program

1. When the core software reaches a hook

2. When a new update is published by the devs

Check if an update module is available (locally)
Yes: execute the module
Else: execute the default implementation code

The core fetches the update module (application
specific)
When the hook is reached the next time, the new
module is used

16 / 33

Developer workflow

1. Create the application the usual way
2. Define hooks (where future updates will be applied)
3. Define interface for updates
4. Define a distribution strategy for the updates
5. Write and release update modules

17 / 33

LET'S CREATE A SIMPLE
GREETING APPLICATION

18 / 33

Greeting application — Core and hook

Core of the greeting application, compiling to native

struct HostState;

impl DemoWorldImports for HostState {

 fn current_user(&mut self) -> wasmtime::Result<String> {

 Ok(String::from("Jules"))

}}

use hooked::hooked;1

wasmtime::component::bindgen!("greeting-world" in "wit");2

 3

fn main() {4

 let b = Person{5

 name: "Alice".to_string(),6

 age: 5};7

 println!("{:?}", say_hello(Some(&b)));8

 println!("{:?}", say_hello(None));9

}10

 11

#[hooked(fn_name = "hello", world_name="greeting-world", binding_struct = "HostState")]12

fn say_hello(someone: Option<&Person>) -> String {13

 match someone {14

 Some(person) => { format!("Hi {}", person.name) }15

 None => { "Hello stranger!" }16

}}17

 18

19

20

21

22

23

use hooked::hooked;

wasmtime::component::bindgen!("greeting-world" in "wit");

fn main() {

 let b = Person{

 name: "Alice".to_string(),

 age: 5};

 println!("{:?}", say_hello(Some(&b)));

 println!("{:?}", say_hello(None));

}

#[hooked(fn_name = "hello", world_name="greeting-world", binding_struct = "HostState")]

fn say_hello(someone: Option<&Person>) -> String {

 match someone {

 Some(person) => { format!("Hi {}", person.name) }

 None => { "Hello stranger!" }

}}

struct HostState;

impl DemoWorldImports for HostState {

 fn current_user(&mut self) -> wasmtime::Result<String> {

 Ok(String::from("Jules"))

}}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

19 / 33

Greeting application — Interface

Interface definition for the update module, using WebAssembly Interface Types

world greeting-world {

 record person {

 name: string,

 age: u32,

 }

 import current-user: func() -> string;

 export hello: func(who: option<person>) -> string;

}

package testing: demo;1

 2

3

4

5

6

7

8

9

10

11

12

20 / 33

Greeting application — Distribution

TBD: this will depend on the application, but we plan
on providing functions and macros to ease setup of

common use-cases

21 / 33

Greeting application — Update

Update module for the say_hello function, compiling to WebAssembly

 fn hello(person: Option<Person>) -> String {

 match person {

 Some(person) => { format!("Hello {} yo {}!", person.age, person.name) }

 None => { format!("Hello {}!", current_user()) }

 }

 }

wit_bindgen::generate!({1

 world: "greeting-world",2

 path: "../greetings/wit/greetings.wit"3

});4

struct Demo;5

 6

impl Guest for Demo {7

8

9

10

11

12

13

}14

 15

export!(Demo);16

wit_bindgen::generate!({

 world: "greeting-world",

 path: "../greetings/wit/greetings.wit"

});

struct Demo;

impl Guest for Demo {

}

export!(Demo);

1

2

3

4

5

 6

7

 fn hello(person: Option<Person>) -> String {8

 match person {9

 Some(person) => { format!("Hello {} yo {}!", person.age, person.name) }10

 None => { format!("Hello {}!", current_user()) }11

 }12

 }13

14

 15

16

wit_bindgen::generate!({

 world: "greeting-world",

 path: "../greetings/wit/greetings.wit"

});

struct Demo;

impl Guest for Demo {

 fn hello(person: Option<Person>) -> String {

 match person {

 Some(person) => { format!("Hello {} yo {}!", person.age, person.name) }

 None => { format!("Hello {}!", current_user()) }

 }

 }

}

export!(Demo);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

22 / 33

SOME ADDITIONAL
CONSIDERATIONS

23 / 33

Is WebAssembly secure?

Memory safety

Control flow integrity

API access

Summary of WebAssembly security features from

Sandbox with runtime checks
Managed stack
Traps

Type checking
Return address on the managed stack
Structured control flow only
Jump only at start of constructs

API access provided by the host

Dejaeghere et al. [1]

24 / 33

Is WebAssembly fast (enough)?
When compared to JavaScript
()

When compared to native code
()De Macedo et al. [2] Jangda et al. [3]

PDF reader app: 19.41% faster
than JS
Game Boy emulator: 15.06%
faster than JS

Using
1.55× mean slowdown on
Chrome
1.45× mean slowdown on Firefox

SPEC Benchmark [4]

25 / 33

How to trust the updates?

The core software can check updates integrity using
cryptographic signatures

Trust chain is shorter than usual:

Usual: developer → package maintainer → users
Now: developer → users

26 / 33

BACK TO TOR

27 / 33

How do we get everyone updated?

Location of the 7522 Tor relays, as of March 21st 2024 2PM UTC

© © — Mapbox OpenStreetMap GeoIP data from MaxMind
28 / 33

https://www.mapbox.com/about/maps/
https://www.openstreetmap.org/copyright
https://www.maxmind.com/

Current strategy to get everyone updated
The Tor Project
@torproject@mastodon.social

February 1, 2024 at 11:00 PM

Follow

 PSA: Relay operators running #Tor 0.4.7.x - It's time to upgrade! 0.4.7.x
series reached its end-of-life and all relays and bridges running that series
will be removed soon by Tor Directory Authorities. Please upgrade to the
0.4.8.x series ASAP.
forum.torproject.org/t/tor-rel…

[tor-relays] PSA: Tor 0.4.7 reaches end of life (EOL) on 2024-01-31
Hello! In case it affects you as you are still running…
Tor Project Forum

The Tor Project urging relay operators to update before they get excluded from the network

29 / 33

https://mastodon.social/@torproject
https://mastodon.social/@torproject/111858473454854394
https://mastodon.social/@torproject
https://mastodon.social/tags/Tor
https://mastodon.social/tags/Tor
https://forum.torproject.org/t/tor-relays-psa-tor-0-4-7-reaches-end-of-life-eol-on-2024-01-31/11157
https://forum.torproject.org/t/tor-relays-psa-tor-0-4-7-reaches-end-of-life-eol-on-2024-01-31/11157
https://forum.torproject.org/t/tor-relays-psa-tor-0-4-7-reaches-end-of-life-eol-on-2024-01-31/11157

We can probably do better

Updating Tor relays using our framework may

Get every relay on the latest version
Enable faster deployment of updates
Update propagation in a peer-to-peer fashion
Enable stronger packet policies
Limit legacy code that developers have to deal with

30 / 33

Applicable beyond Tor
The system has interesting properties for other
scenarios : distributed, network-reliant or high-

availability applications

31 / 33

cyberwal.be

cyberexcellence.be

CyberExcellence project, grant 2110186

funded by the SPW Recherche

RETHINKING UPDATES IN
ANONYMOUS COMMUNICATION

NETWORKS

PhD student ‒ Faculty of Computer Science, UNamur
Jules Dejaeghere

32 / 33

https://cyberwal.be/
https://cyberexcellence.be/
https://orcid.org/0000-0002-4970-3730

References
[1] Dejaeghere, J., Gbadamosi, B., Pulls, T. and Rochet, F. 2023. .

Proceedings of the 1st Workshop on eBPF and Kernel Extensions (New York NY USA, Sep. 2023), 35–41.

[2] De Macedo, J., Abreu, R., Pereira, R. and Saraiva, J. 2022.
. 2022 International Conference on ICT for Sustainability (ICT4S) (Plovdiv, Bulgaria, Jun. 2022), 24–34.

[3] Jangda, A., Powers, B., Berger, E.D. and Guha, A. 2019.
. 2019 USENIX Annual Technical Conference (USENIX ATC 19) (2019), 107–120.

[4] Standard Performance Evaluation Corporation 2023. .

[5] Tor Project . Tor Project Support.

This presentation has been designed using images from .

Comparing Security in eBPF and WebAssembly

WebAssembly versus JavaScript: Energy and Runtime
Performance

Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code. (2019), 107–120

SPEC Benchmarks and Tools

About Tor

Freepik - Flaticon.com

33 / 33

https://dl.acm.org/doi/10.1145/3609021.3609306
https://ieeexplore.ieee.org/document/9830108/
https://ieeexplore.ieee.org/document/9830108/
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.usenix.org/conference/atc19/presentation/jangda
https://www.spec.org/benchmarks.html#cpu
https://support.torproject.org/about/
https://www.flaticon.com/

