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B5000 Namur, Belgium

timoteo.carletti@unamur.be

To succeed in their objectives, groups of individuals must be able to make quick and accurate
collective decisions on the best option among a set of alternatives with different qualities. Group-
living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of
autonomous robots can also be programmed to make best-of-n decisions for solving tasks collabora-
tively. Ultimately, humans critically need it and so many times they should be better at it! Thanks
to their mathematical tractability, simple models like the voter model and the local majority rule
model have proven useful to describe the dynamics of such collective decision-making processes. To
reach a consensus, individuals change their opinion by interacting with neighbors in their social
network. At least among animals and robots, options with a better quality are exchanged more
often and therefore spread faster than lower-quality options, leading to the collective selection of the
best option. With our work, we study the impact of individuals making errors in pooling others’
opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on
the introduction of a model that generalizes the two existing models (local majority rule and voter
model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also
investigate the impact of the interaction network topology on the collective dynamics. To do so,
we extend our model and, by using the heterogeneous mean-field approach, we show the presence
of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that
reduced network connectivity corresponds to an increase in collective decision accuracy.

I. INTRODUCTION

Reaching a consensus in a group of individuals without
any central authority or coordinator requires individuals
to exchange opinions and combine conflicting information
received from peers. Studying the situation in which the
group must agree on the best among a set of options—
the so-called best-of-n problem—is interesting because
it helps us to both understand biological processes and
design the robotics systems of our future [1, 2]. Social
insects are an example of collectives which need to solve
the best-of-n problem when selecting the site where to
nidificate [3–5]. While each insect makes an inaccurate
estimate of the quality of each site, the colony is able
to filter noise and reach a consensus on the best alter-
native [6]. Similarly, other more complex animals make
collective decisions on when and in which direction to
flee danger, or the location where to forage [7–9]. Col-
lective agreement is achieved by individuals sharing their

opinion with others (voting) and, in turn, adopting the
opinion expressed by others’ votes. These simple voting
rules employed by animals are a useful source of inspira-
tion to design algorithms for robot swarms, which make
best-of-n decisions, for example, on the shortest path to
navigate [10, 11] or the most important location for their
operations [12, 13].

The group is able to select the best alternative be-
cause each individual shares her opinion as frequently
as the estimated quality, that is, better alternatives are
shared (voted) more often [14, 15]. Despite the indi-
vidual estimates being incorrect, most of the time the
group reaches a consensus for the option that, on aver-
age, is estimated to be of higher quality. Depending on
the effort individuals make in acquiring, processing, and
sharing information in their social network, the collective
dynamics change, e.g., in the group accuracy or the de-
cision speed. While there are several studies analyzing
voting models in decentralized networks [16–19], there
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is no explicit connection between the individual cogni-
tive requirements, the social network, and the collective
decision-making performance.

Here, we build a model that explicitly considers the
cognitive effort that individuals make in acquiring and
processing their neighbor’s vote. The more cognitive ef-
fort individuals put in, the better they pool social infor-
mation (making smaller pooling errors). We investigate
how speed and accuracy change in collective decisions
both as a function of the individual cognitive load and
the interaction network. Our analysis reveals that an in-
creased cognitive effort leads to quicker and more demo-
cratic collective decisions, but which are not necessarily
accurate. Counter-intuitively, the highest levels of col-
lective decision accuracy can be achieved with moderate
levels of cognitive efforts. This however comes at the ex-
pense of a longer deliberation time. Thus, our model en-
riches our understanding of the classical speed-accuracy
trade-off in decision-making [13, 20–23] by describing it
through the lens of the individual cognitive load.

Additionally, the network analysis we performed re-
veals that groups that are sparsely connected can obtain
higher collective accuracy than when they are highly con-
nected. Recent previous research has shown that in a
number of conditions, having reduced connectivity be-
tween the group members can improve collective perfor-
mance in terms of coordination, accuracy, or response
speed [24–29]. More precisely, fish adaptively change
their interaction network when exposed to a threat in
order to maximize information transfer in the fish school
[25]. Robots that can only run simplistic algorithms can
also exploit the advantages of sparse connections to im-
prove swarm accuracy [28, 30]. While it is commonplace
to assume that higher connectivity can improve opinion
sharing and thus lead to better coordination, these re-
cent results show in which conditions limited connectivity
can lead to improved collective dynamics. Our analysis
uses the Heterogeneous Mean-Field theory (HMF) [31–
34] to show that both network connectivity and individ-
ual cognitive load can be control parameters to regulate
the speed-accuracy trade-off of group decision-making.

II. THE MODEL

Let us consider a population composed of N agents
making a binary collective decision between two alter-
native options, say A and B. Each option is charac-
terized by a quality, QA and QB (for option A and B,
respectively); without lack of generality we hereby as-
sume QA > QB > 0 and we will define the quality ratio
Q = QB/QA ∈ (0, 1). Each agent, at a given time t, has
an opinion in favor of either option, A or B. Through-
out the collective decision-making process, agents inter-
act with each other and change their opinions depending
on the votes expressed by their neighbors. Each agent
votes with a frequency linearly proportional to the esti-
mated quality of each option, thusQA andQB for options

A and B, respectively. Therefore, through mean-field ap-
proximation, we model the change of agents’ opinions as
a function of the number of agents with opinion A and
B, denoted by nA(t) and nB(t), respectively, weighted
by the respective option’s quality and normalized by the

group size N . Such weighted proportions, n#
A and n#

B ,
represent the mean-field approximation of the votes ex-
pressed by the agents in favor of option A and B, respec-
tively, and correspond to

n#
A =

QAnA/N

QAnA/N +QBnB/N
and

n#
B =

QBnB/N

QAnA/N +QBnB/N
.

(1)

Aiming at reaching a group consensus, agents follow a
conformist rule where they align their opinion with the
most voted opinion by their neighbors. However, when
agents put a limited effort into acquiring and processing
others’ votes because, for example, they need to reduce
their cognitive load, they may wrongly compute what is
the predominant opinion in their neighborhood, making
what we call a pooling error. Such pooling errors can
be caused by agents that, for example, subsample their
neighborhood (i.e., they do not record the votes from all
their neighbors but only from a subset of them), or oc-
casionally record the incorrect opinion of some of their
neighbors. Therefore, the pooling error α is inversely
linked to the effort that the agent invests into pooling
social information. When the agents put maximum ef-
fort (corresponding to maximum cognitive load), we can
assume they do not make any pooling error, α = 0.
This case corresponds to the weighted local majority rule
model where each agent collects all the votes of its neigh-
bors, group them by opinion, and adopts the opinion
voted by the majority. Instead, when agents only sam-
ple a single vote from a randomly-selected neighbor and
adopt her opinion, they commit moderate levels of pool-
ing error (in our model, α = 1). This case corresponds
to the weighted voter model, where the probability that
an agent committed to A changes her opinion to B is

equal to the weighted proportion n#
B . The extreme case

of maximum pooling error α ≫ 1 corresponds to agents
changing their opinion totally ignoring others’ votes. De-
spite the high error, agents experience very low cognitive
load as they do not make any effort to coordinate with
the others.

Previous work has investigated opinion dynamics in
populations of agents that update their opinion through
either the voter model [17, 35–40] (later extended to the
weighted voter model [15]) and the local majority rule
model [41–44] (later extended to the weighted local ma-
jority rule model [45–47]). We build a model that gen-
eralizes the two existing (weighted) models and can also
interpolate, in a continuous way, the cognitive load level
in the form of pooling error among the two models and
beyond. In our model, agents change their opinion with
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FIG. 1. The probability Pα(x) given by Eq. (2) for repre-
sentative values of the pooling error α, which is a parameter
inversely proportional to agents’ cognitive load. For α = 0,
our model corresponds to the (weighted) local majority rule
model [42, 47], for α = 1 our model corresponds to the
(weighted) voter model [15, 35], for 0 < α < 1 our model in-
terpolates between the two, and for α > 1 the agents change
their opinion with little attention to others’ opinion.

probability

Pα(x) =


1

2
− 1

2
(1− 2x)

α
if 0 ≤ x ≤ 1

2
1

2
+

1

2
(2x− 1)

α
if

1

2
< x ≤ 1 ,

(2)

where α ≥ 0 is the pooling error and x ∈ [0, 1] is the
weighted proportion of agents with a different opinion.
Therefore, an agent with an opinion in favor of option
A (resp. B) will change her opinion to B (resp. A)

with probability Pα(n
#
B) (resp. Pα(n

#
A)). Note that the

assumption of fixed population, nA(t) + nB(t) = N , im-

plies n#
A(t) + n#

B(t) = 1 and therefore, as a consequence
of the functional form of Eq. (2), we have

P (n#
A) + P (n#

B) = 1 . (3)

Fig. 1 shows a graphical representation of Pα(x) of
Eq. (2) and let us appreciate that intermediate values of
the pooling error α allow interpolating between the two
models. Indeed, values of 0 < α < 1 represent cases in
which an agent makes a higher effort than sampling a
random individual (as she does in the voter model), still
the probability of changing opinion in favor of the most-
voted option is lower than the ‘perfect’ case (zero error)
of the local majority rule model. These intermediate val-
ues represent conditions in which the agent samples only
a subset of the population or approximately and impre-
cisely integrates others’ votes. Values of α > 1 further
reduce the cognitive effort that the agent puts into taking
into consideration others’ opinions. As the value of the
pooling error α increases, the probability Pα(x) gradually
becomes more and more independent of the actual votes.
For α ≫ 1, the probability of changing opinion approxi-
mates the flat line Pα(x) = 0.5, that is, the agents make

maximum levels of pooling error by randomly changing
their opinion regardless of the opinions expressed by the
others.
We first consider a well-mixed population, that is,

agents are the nodes of a complete network and there-
fore every agent can directly exchange votes with all the
other agents. Despite being an idealized case, it allows
us to build a deep analytical understanding of our model
in Section III, preliminary to the study of a population
interacting on a heterogeneous network in Section IV.

III. MEAN-FIELD ANALYSIS

Let us introduce the proportion of agents with opin-
ion A (resp. B), a(t) = nA(t)/N (resp. b(t) = nB(t)/N),
hence a(t)+b(t) = 1. The proportion of agents with opin-
ion A increases when agents with opinion B change their
minds and adopt opinion A, or decreases when agents
with opinion A adopt opinion B. As illustrated in Ap-
pendix A, exploiting the well-mixed hypothesis, we ob-
tain the time evolution of a(t) in the form of the following
ordinary differential equation

da

dt
= −a+ Pα

(
a

a(1−Q) +Q

)
=: fα(a) . (4)

Because the population size is finite and fixed (a+b = 1),
Eq. (4) is sufficient to fully determine the temporal dy-
namics of the system, without the need to explicitly de-
fine another equation ruling the evolution of the propor-
tion of agents with opinion B.
We analyze the long-term dynamics of the system by

finding the equilibria of Eq. (4) and computing their sta-
bility as a function of the model parameters. The equi-
libria are found at values of a that satisfy fα(a) = 0.
We find that â∗ = 1 and ǎ∗ = 0 are always two zeros of
fα(a). When these equilibria are stable, they correspond
to a consensus decision for either alternative: for â∗ = 1,
all agents eventually have opinion A, that is, the popula-
tion has selected the best option (because QA > QB), or,
when ǎ∗ = 0, all agents eventually have opinion B and
therefore the population has made a collective mistake
by selecting the option with the inferior quality. For a
range of values of α and Q, a third equilibrium ã∗ ∈ (0, 1)
may exist and it corresponds to a polarized population,
in which agents with opinion A and B coexist. In this
case, there is not a consensus decision but the population
is in a decision deadlock. Recall that Q < 1; therefore,
we can prove (as detailed in Appendix A) that

i) if Q > α, both ǎ∗ = 0 and â∗ = 1 are stable equilib-
ria, and a third equilibrium 0 < ã∗ < 1 exists and is
unstable;

ii) if Q < α < 1/Q, then ǎ∗ = 0 is unstable while â∗ = 1
is stable, the third equilibrium 0 < ã∗ < 1 does not
exist;
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iii) if 1/Q < α, both ǎ∗ = 0 and â∗ = 1 are unstable
equilibria, and a third equilibrium 0 < ã∗ < 1 exists
and is stable.

Note that when the third equilibrium ã∗ exists and it is
unstable – i.e., the case (i) above – the fate of the system
depends on the initial conditions. Stated differently, the
position of the third equilibrium a∗ splits the interval
[0, 1] into two parts [0, ã∗) and (ã∗, 1], and if the initial
conditions are such that a(0) ∈ [0, ã∗), then a(t) → 0
(and thus b(t) → 1), while if a(0) ∈ (ã∗, 1], then a(t) → 1
(and thus b(t) → 0). If there are only two equilibria – i.e.,
the case (ii) above – the system converges to â∗ = 1 for
any initial conditions (which correspond to the accurate
collective decision, being QA > QB).
In Fig. 2, we show the bifurcation diagram of the mean-

field model of Eq. (4) for QA = 1 and QB = 0.9, as a
function of α. We report the equilibria and their stabil-
ity (in green when stable and in red when unstable) for
values of α in the range [0, 2] (x-axis). Note that ǎ∗ = 0
(corresponding to a population fully committed to the
inferior option B) is a stable equilibrium for α < Q and
unstable otherwise. Similarly, â∗ = 1 (corresponding to a
population fully committed to the best option A) is a sta-
ble equilibrium for α < 1/Q (that is 1/0.9 ≈ 1.11 for the
used values of QA and QB) and unstable in the remaining
range of α. The third equilibrium 0 < ã∗ < 1, associated
with a population where opinions A and B coexist, is un-
stable for α < Q (red branch), stable for α > 1/Q (green
branch), and does not exist for Q < α < 1/Q.
In Fig. 2, we also overlay to the analytical bifurcation

diagram the results obtained from the numerical stochas-
tic simulation of a system defined on a complete graph
made of N = 500 agents, using the same values for the
opinion quality, QA = 1 and QB = 0.9. For each value
of α ∈ [0, 2], we numerically integrate the system for
50 000 timesteps and report the average of the final pro-
portion of agents with opinion A (i.e., ⟨nA⟩/N) over 21
runs. When α < QB , the mean-field theory predicts that
the system converges to ǎ∗ = 0 if the initial condition
is below the value of the third unstable equilibrium ã∗.
In agreement with the theoretical predictions, our sim-
ulations, which have been initialized with nA(0) = 100
(i.e., a = 0.2), reached the final system state nA = 0
for α < Q (blue dots in Fig. 2). When only two equi-
libria exist, the mean-field analysis predicts convergence
to â∗ = 1 for any initial conditions, and indeed the blue
points (up to finite size effects) converge to nA = N . Fi-
nally for large α, when the third equilibrium is stable,
according to the mean-field analysis, the system should
oscillate about this third equilibrium; the numerical re-
sults agree well with the analytical predictions, with the
blue dots aligned with the green curve.

Fig. 3a shows the stability diagram of the mean-field
system of Eq. (4) as a function of the parameters α and
Q. The parameter space is divided into three regions,
determined by the stability of the system equilibria. The
three regions are delimited by the curves α = Q (white
curve) and α = 1/Q (black curve), and correspond to the

FIG. 2. Bifurcation diagrams showing the equilibria of the
mean-field model of Eq. (4) as a function of α ∈ [0, 2] for
QA = 1 and QB = 0.9. Green dots show stable equilibria,
red dots show unstable equilibria, and blue dots show the av-
erage asymptotic values of ⟨nA⟩/N obtained with stochastic
numerical simulations of a population of N = 500 agents in-
teracting on a complete graph and initialized at nA(0) = 100.
The match between mean-field model predictions and simu-
lations is good.

three stability cases described above in this section (see
Appendix C for the analytical derivation of such curves).
The large red region corresponds to model parameters by
which the population correctly chooses the opinion with
the highest quality for any initial conditions (case (ii)
above, equilibrium ǎ∗ = 0 is unstable and â∗ = 1 is
stable). In the blue region, the population remains un-
decided, composed of two subpopulations, each with a
different opinion (case (iii) above, equilibria ǎ∗ = 0 and
â∗ = 1 are unstable and 0 < ã∗ < 1 is stable). In the
green region, the population can converge to the best
or the worst option depending on the initial condition,
therefore there is the possibility the population may make
a collective mistake (case (i) above, equilibria ǎ∗ = 0 and
â∗ = 1 are stable and 0 < ã∗ < 1 is unstable). These
mean-field predictions match well with the results shown
in Fig. 3b, obtained from the numerical simulation of a
population of N = 500 agents interacting on a complete
graph. The outcome of the decision is color-coded in
the RGB space, colouring each pixel with an RGB color
where the red value R ∈ [0, 1] corresponds to the propor-
tion of simulations terminating with accurate decisions
(nA = N), the green value G ∈ [0, 1] to the propor-
tion of simulations terminating with incorrect decisions
(nA = 0), and the blue value B ∈ [0, 1] to the proportion
of simulations terminating without a consensus decision
(0 < nA < N) after 50 000 timesteps.

Figs. 3a-b show that only when the agents have a high
pooling error (α > 1), corresponding to a low cognitive
load, the population can remain deadlocked at indecision.
This happens in the blue region which increases in size
as the cognitive load decreases (i.e., increasing pooling
error α) or the decision problem difficulty increases (i.e.,
increasing quality ratio Q). This is caused by agents that
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are rarely capable of changing their opinion based on the
real distribution of opinions in the population. Interest-
ingly, despite the poor skills of the agents, the population
can either select the best option and make an accurate
decision or remain undecided but it never selects the in-
ferior option with the lower quality. Differently, decision
deadlocks do not occur for any cognitive level higher or
equal than the voter model, i.e., α ≤ 1, however, deci-
sion mistakes can be made. For any given pooling error
α < 1 (i.e., relatively high cognitive level), as the deci-
sion problem becomes harder (i.e., the quality ratio Q
increases), the possibility of making a mistake increases.
The collective mistake occurs when the system is in the
bistability (green) region and moves to a state below the
unstable equilibrium, a < ã∗, for example, due to ran-
dom fluctuations. While the stability diagram (Fig. 3a)
only shows the region of bistability, the simulation re-
sults also show that decision mistakes are more likely to
happen for harder decision problems (high Q).

An additional result that may not be obvious is that
the red region in Figs. 3a-b – which corresponds to re-
liably accurate decisions – is maximized for intermedi-
ate cognitive load levels (i.e., α = 1 shown as a dashed
horizontal gray line) and it reduces as the agent cogni-
tive load increases. However, we can appreciate a more
complete picture of the system dynamics by also analyz-
ing the decision time, namely the number of steps re-
quired for the population to reach a complete consensus
(i.e., all agents have opinion A or all agents have opinion
B). Given this definition, we can not compute the deci-
sion time when the system remains undecided and agents
committed to both options coexist (blue region). Fig. 3c
shows the timesteps needed to reach a consensus for a
population of N = 500 simulated agents interacting on a
complete graph. (Note that the top-right corner of the
colormap of Fig. 3c, which coincides with the blue region
in panel b, has no decision time data because the sys-
tem never reaches a consensus, therefore we left it color-
less, in white.) The comparison of Figs. 3b and 3c shows
the existence of a speed-accuracy trade-off, in which the
speed to make a decision is traded with the collective
accuracy, as it has been already documented in previ-
ous work [13, 21, 23, 47]. Therefore, increasing agents’
cognitive load allows the population to quickly reach a
consensus at the cost of possible decision mistakes (here
shown as a wider green region in Figs. 3a-b).

IV. HETEROGENEOUS MEAN-FIELD
ANALYSIS

In this section, we relax the assumption of full connec-
tivity and instead hypothesize that each agent can only
exchange her opinion with a limited number of peers, i.e.,
with her neighbors. Thus, we can represent each agent
as a node of a network connected through edges to a sub-
set of other agents from which she can receive and send
information. The network of connections is described by

the adjacency matrix A, such that Aij = 1 if and only
if agents i and j are connected, and Aij = 0 otherwise.
We also assume the network to be undirected, that is
Aij = Aji, simple, that is at most one edge can con-
nect two nodes, and connected, that is starting from any
node, there is a sequence of edges that allows reaching
any other node.
When agent i is selected, she pools information from

her neighbors to change her opinion. Agent i has ki =∑
j Aij neighbors, of which ni,A have opinion A and ni,B

have opinion B, thus, ki = ni,A + ni,B . The number of
i’s neighbors ki corresponds to the degree of the node i.
Analogous to Eq. (1), but assuming a sparse network, the
votes expressed by the neighbors of i in favor of options
A and B are, respectively,

n#
i,A =

QAni,A/ki
QAni,A/ki +QBni,B/ki

and

n#
i,B =

QBni,B/ki
QAni,A/ki +QBni,B/ki

.

(5)

As further described in Appendix B, once agent i inter-
acts with her neighbors, she adopts opinion A or B with

probability Pα(n
#
i,A) or Pα(n

#
i,B), respectively, as we also

recall that Pα(n
#
i,A) = 1− Pα(n

#
i,B).

By assuming the Heterogeneous Mean Field hypothe-
sis [31, 32] to be valid, we hypothesize that all nodes with
the same degree exhibit the same behavior. Therefore,
we can define Ak (resp. Bk) as the number of agents,
i.e., nodes, with degree k and opinion A (resp. opinion
B), and Nk as the total number of agents with degree
k. Hence, Ak + Bk = Nk for all k. In a similar way to
the mean-field analysis of Sec. III, we define ak = Ak/Nk

(resp. bk = Bk/Nk) as the proportion of agents having
opinion A (resp. B) among all agents with degree k;
hence, for all k we have ak + bk = 1.
Let us now describe the time evolution of ak for a

generic k. The proportion ak increases when an agent
with degree k and opinion B changes her opinion to A,
or it decreases when an agent with degree k and opin-
ion A changes her opinion to B. To compute the fre-

quency of these events, we compute n#
i,A and n#

i,B given

in Eq. (5) under the HMF assumption. The HMF the-
ory originated in epidemiology, which uses the concept
of excess degree [48] to compute the infection probabil-
ity of a focal agent. The excess degree is the number of
neighbors that a neighbor of the focal agent has, without
considering the focal agent. In other words, the excess
degree of an agent is its number of neighbors minus one
(see Fig. 4). We define pk as the probability that a uni-
formly random chosen node has degree k, and qk as the
probability for a node to have excess degree equal to k,
which we can compute as

qk =
(k + 1)pk+1

⟨k⟩ ∀k ≥ 0 , (6)

where ⟨k⟩ = ∑
k kpk is the average node degree, and triv-

ially
∑

k qk = 1. Let us consider a generic focal agent i
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FIG. 3. Stability diagrams and convergence time. In panel (a) we report the stability diagram of the mean-field model (4) as
a function of the quality ratio Q and the pooling error α (inversely proportional to the cognitive cost). The parameter space
is divided into three regions: in the red region the population makes accurate collective decisions for any initial condition; in
the blue region the population remains locked at indecision with agents’ opinions fluctuating between the two options; in the
green region, a consensus for either alternative is possible depending on the initial conditions, therefore mistakes are possible.
The three regions are separated by the curves α = Q (white curve) and α = 1/Q (black curve). Panels (b-c) show the results
from simulations of N = 500 agents interacting on a fully connected (all-to-all) network. For each couple (Q,α), we perform
100 independent simulations with random initial configurations (i.e. the initial number of agents with opinion A is uniformly
drawn in [0, N ] at each run). In (b), the RGB color of each pixel is computed by assigning to the three values R, G, and B a
value equal to the proportion of simulations that terminated at nA = 500, nA = 0, and 0 < nA < 500, respectively. In (c), the
colormap shows the average number of timesteps needed to reach a consensus, i.e., nA = 500 or nB = 500, as a function of Q
and α. The white region in the top-right corner indicates the absence of data as no simulations reached a consensus for either
option.

(or, equivalently, focal node i) with degree k and opinion
B (see Fig. 4); let qj1 be the probability that an agent i1,
connected to the focal agent i, has excess degree j1 ≥ 0.
Let aj1+1 be the probability that agent i1 has opinion
A, and bj1+1 = 1− aj1+1 the probability she has opinion
B. By considering all the k agents connected with the
focal agent i we can conclude that qj1 . . . qjk determines
the joint probability that each agent reachable from any
of the k edges emerging from the former agent, has ex-
cess degree j1, . . . , jk. We can then define πk,ω as the
probability that ω agents among the k ones have opin-
ion B and thus k − ω agents have opinion A. There-
fore, the term ω is a linear combination of the products
of ajm+1 and (1 − ajm+1), with m = 1, . . . , k. Hence,
we can compute the weighted proportion of agents with

opinion A as n#
i,A = (k−ω)/[k−ω+Qω], and this event

happens with probability qj1 . . . qjkπk,ω. In conclusion,
agent i with opinion B can change opinion with prob-
ability qj1 . . . qjkπk,ωPα ((k − ω)/[k − ω +Qω]). See an
explanatory example for k = 2 in Appendix B.

In a similar way, we can compute the decrease rate
of agents with degree k and opinion A. In this case, the
argument of the function Pα is QBω

QA(k−ω)+QBω = Qω
k−ω+Qω ,

that is, the weighted proportion of agents with opinion
B assuming that ω agents among them have opinion B.
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FIG. 4. Schematic representation of the probabilities in-
volved in the heterogeneous mean-field computations. The
focal node i has k neighbors (degree k), denoted by
i1, . . . , ir, . . . , ik. Each neighbor, e.g., node ir, has an ex-
cess degree jr with probability qjr and therefore degree jr+1.
With probability ajr+1, she has opinion A, and therefore with
probability 1− ajr+1, she has opinion B.

Note that, because Pα(n
#
A) + Pα(n

#
B) = 1, we have that

Pα

(
Qω

k − ω +Qω

)
= 1− Pα

(
1− Qω

k − ω +Qω

)
= 1− Pα

(
k − ω

k − ω +Qω

)
.

By combining these equations and following a series of
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simplifications described in Appendix B, we describe the
change in time of the proportion ak as

dak
dt

= −ak+
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
.

(7)
To analyze the dynamics and equilibria of the system,

we define

⟨a⟩ :=
∑
j≥0

qjaj+1 , (8)

and by combining it with Eq. (7), we obtain

d⟨a⟩
dt

= −⟨a⟩+
∑
k

qk

k∑
ω=0

(
k + 1

ω

)
⟨a⟩k+1−ω (1− ⟨a⟩)ω ×

Pα

(
k + 1− ω

k + 1− ω + ωQ

)
:= f (hmf)

α (⟨a⟩) .
(9)

By imposing f
(hmf)
α (⟨a∗⟩) = 0, we can find (up to)

three equilibria ⟨a∗⟩. There is the equilibrium ⟨ǎ∗⟩ = 0,
where ak = 0 for all k, which corresponds to the system
with no agent having opinion A (thus, all agents have
opinion B). There is the equilibrium ⟨â∗⟩ = 1, where
ak = 1 for all k, which corresponds to the system with
all agents having opinion A. There is also a third equi-
librium 0 < ⟨ã∗⟩ < 1, which has a non-trivial mathe-
matical expression and exists only for a certain range of
parameter values. This equilibrium corresponds to the
coexistence of agents with opinions A and B.

The stability of the three equilibria can be studied by

analyzing the sign of the derivative of f
(hmf)
α . By follow-

ing the steps described in Appendix B, the derivatives
evaluated at the equilibria ⟨ǎ∗⟩ = 0 and ⟨â∗⟩ = 1 are,
respectively,

(f
(hmf)
α )′(0) = −1 +

∑
k qk(k + 1)Pα

(
1

1+kQ

)
and

(f
(hmf)
α )′(1) = −1 +

∑
k qk(k + 1)Pα

(
Q

k+Q

)
.

(10)
Therefore, we can appreciate that the stability of both
equilibria is not only determined by the parameters α
and Q, as in the mean-field case of Sec. III, but also
by the network structure, via the probability of excess
degree qk.

A. Scale-free networks

The heterogeneous mean-field analysis allows us to
study the influence of the network topology on group dy-
namics. Here, we consider scale-free networks with a de-
gree distribution that follows a power law with exponent
γ > 2 and minimum degree kmin. Therefore, the prob-
ability that a uniformly random chosen node has degree

k is pk = cγ/k
γ (where cγ :=

(∑
k≥kmin

1/kγ
)−1

> 0

is a normalizing constant). The excess degree proba-
bility is qk = 1

⟨k⟩
cγ

(k+1)γ−1 , and the average degree is

⟨k⟩ =
∑

k≥kmin
kcγ/k

γ . In our simulations, we build
scale-free networks of size N = 500 using the config-
uration model [48], except for kmin = 1, where build-
ing connected networks of a given size through the con-
figuration model is hard; hence to study such a case
(kmin = 1), as reported in the Appendix E, we used
the Simon model [48, 49].

By using the same color code of Fig. 3a, Figs. 5(a-c)
show the stability diagrams for γ ∈ {2.2, 2.6, 3.1} and
kmin = 2 as a function of the parameters pooling error
α and quality ratio Q, defining the individual cognitive
load and the decision-problem difficulty, respectively. We
can appreciate that, as the exponent γ increases, the size
of the red region increases and the size of the green re-
gion decreases (on the other hand, the change in the blue
region is unnoticeable). While in the green region the
collective decision depends on the initial system condi-
tion (thus opening the group to possible errors), in the
red region the population cannot make mistakes but only
makes accurate collective decisions for any initial condi-
tion. The same conclusion can be reached by observing
the stability diagrams of Fig. 6, in which the problem dif-
ficulty is fixed (quality ratio Q ∈ {0.5, 0.8, 0.9}) and the
stability regions are computed as a function of α and γ.
Therefore, the results of Figs. 5 and 6 suggest that when
opinions are exchanged in networks with high γ, the pop-
ulation is more accurate in collective decision-making.

The effect of an improved group accuracy for higher γ
is even more evident in the numerical simulation results,
shown in Figs.5(d-f) and 6(d-f), where the red region ex-
pands to an even larger parameter space than the (green)
region of bistability. This qualitative change of the group
dynamics with γ only happens for kmin ≤ 2 as shown in
Figs. 5 and 6 for kmin = 2, and in Figs. 13 and 14 for
kmin = 1 in Appendix E. Instead, the results in Figs. 15
and 16 for kmin = 3 in Appendix E show dynamics that
are (almost) independent of γ for the mean-field (shown
clearly in the γ-α plots by the horizontal green region of
panels a-c) and have small γ-dependent improvement of
accuracy in the numerical simulations (panels d-f). These
results suggest that low network connectivity (here linked
to a lower minimum degree kmin) can improve accuracy.

As γ increases, the probability of having nodes with
a large degree decreases as 1/kγ and most of the nodes
have a very low degree (about kmin neighbors), also indi-
cated by a decreasing average degree ⟨k⟩ [48]. Higher γ is
also associated with a shortening of the network average
shorted path ⟨ℓ⟩, a measure of global connectivity [48].
Therefore, these results suggest that collective accuracy
can improve as connectivity decreases, i.e., in networks
that are sparse with nodes with mostly low degrees. The
counter-intuitive nature of this result – groups perform
better communicating on sparse networks – can be ex-
plained by complementing the analysis with the decision
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time. In fact, panels (g)-(i) of Fig. 6 show that as the
probability of having nodes with a large degree decreases
(i.e., increasing γ), the average decision time slightly in-
creases. This result supports and extends beyond the
case α = 1 the results presented in [24]. Therefore, once
again, improved accuracy is coupled with slower deci-
sions, and in this case the speed-accuracy trade-off can
be regulated by both the individual cognitive load (pool-
ing error α) and the network connectivity (exponent γ).

B. 2m-ring networks

As a cautionary note, we also want to highlight the
limitations of the HMF approach. While the model pre-
dictions are confirmed by agent-based simulations on the
tested scale-free networks (Figs. 5 and 6), the model is
not able to predict accurately the dynamics of a popu-
lation interacting on 2m-regular graphs notably in net-
works with small values of m. In particular, we investi-
gate the dynamics of nodes interacting on ring networks
where all nodes are connected to their first m neighbor
nodes on the “left” and m on the “right”, in such a way
all nodes have the same degree k = 2m. In Appendix C,
we study the heterogeneous mean-field model for the case
of 2m-regular ring networks and derive the equations de-
scribing the bifurcation points that determine the sta-
bility changes of the system. Figs. 7(a-c) show stability
diagrams for m ∈ {2, 3, 10} that are qualitatively sim-
ilar to the ones computed for the other types of net-
works (complete graph and scale-free networks). How-
ever, Figs. 7(d-f) show that the results of the numerical
simulations only partially agree with the theory predic-
tions. The agreement improves as the connectivity in-
creases (m = 10, panel f), however, the dynamics for low
values ofm are different. In particular, we can appreciate
that the agent-based simulations can make accurate de-
cisions (red region) for a much larger range of parameters
Q and α than what the theory predicted.

One possible cause of this discrepancy between the
mean-field model dynamics and the simulation results
can be the model assumption of a well-mixed system,
which is not satisfied in 2m-ring networks. Our intu-
ition is further supported by the analysis of the op-
tion dynamics on Erdős-Rényi graphs, reported in Ap-
pendix F, which show a good agreement between the
HMF model’s stability diagrams and the multiagent
simulations. Therefore, we applied a degree preserv-
ing rewiring process to the 2m-ring networks (see Ap-
pendix D) to reduce the average shortest path and study
its impact on the population dynamics. More precisely,
we consider a 6-regular ring, i.e. m = 3, made ofN = 500
nodes, and rewire a subset of the network edges. In this
way, all nodes keep 2m neighbors and, as shown in Fig. 8,

only the average shortest path ⟨ℓ⟩ :=
∑

i̸=j ℓij

N(N−1) reduces

as the rewiring increases (where ℓij is the shortest path
among nodes i and j).

By comparing the results of the HMF model and of

the numerical multiagent simulations on a 6-ring network
with increasing rewiring, we can appreciate a good match
between model and simulations as the number of rewiring
increases (Fig. 9). Note that all rewired networks have
the same degree distribution pk = 2m = 6 and thus the
HMF model’s equilibria are the same. With the aver-
age shortest path shortening, the similarity between the
model and the numerical simulation results increases.
Despite the current HFM model cannot completely

grasp the dynamics on 2m-regular ring networks, the sim-
ulation results on this type of networks (Figs. 7d-f) con-
firm our intuition that collective decision-making accu-
racy increases as the network connectivity reduces. Pop-
ulation operating on networks with low m have consis-
tently a higher accuracy. Interestingly, for 2m-regular
ring networks, it seems that there is no trade-off between
decision speed and accuracy but, instead, rings with low
m enable both quick and accurate decisions.

V. CONCLUSIONS

Modeling collective decision-making processes can pro-
vide useful insights into the understanding of the living
world and design new decision protocols for more efficient
group decisions. The voter model and variations of them,
thanks to their mathematical simplicity, have been effec-
tively used to model decision-making at every level of
biological complexity, from ecological dynamics of plant
communities [39] to coordinated motion in fish [37] to
house-hunting in honeybees [5] to human group dynam-
ics [50, 51]. In the best-of-n problem, the group has to
select the best option among a discrete set of n alterna-
tives and these models describe how opinions spread from
one individual to another through voting interactions on
a social network. This study presents a model capable
of generalizing a set of popular existing voter-like models
for collective decision-making in the best-of-2 scenario.
Our analysis focuses on understanding the impact of two
control parameters – the pooling error and the network
connectivity – on the collective performance in terms of
decision accuracy and time.
Both pooling error and the network connectivity regu-

late a speed-accuracy trade-off. By reducing the pooling
error, and therefore demanding a higher cognitive effort
from the individuals to correctly process the social infor-
mation, the population can make quicker and more demo-
cratic decisions, however with reduced accuracy due to
the more frequent selection of the option with the low-
est quality, compared with models with higher pooling
error and thus lower individual cognitive effort. Instead,
by reducing network connectivity, and therefore reduc-
ing the average number of neighbors of each individual,
collective accuracy is improved at the cost of higher de-
cision time. These results improve our understanding of
the role of individual costs and network connectivity in
collective decision-making.
By measuring the losses, and even the benefits, of re-
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FIG. 5. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time (panels
g-i) for collective decision-making on scale-free networks with kmin = 2 as a function of the pooling error α and quality ratio Q.
We present the results for three values of the exponent γ regulating network connectivity: top row γ = 2.2, central row γ = 2.6,
bottom row γ = 3.1. (a-c) Left column panels show the convergence diagram of the mean-field model (9). The parameter
space is divided into the same three regions of Fig. 3a using the same color code. (d-i) Central and right column panels show
the results of simulations (100 independent runs for each (Q,α) configuration) of N = 500 agents interacting on a scale-free
network with random initial configurations (i.e., nA(t = 0) ∼ U(0, N)) for 50 000 time steps. (d-f) Central column panels show
the outcome of the collective decision-making process using the same RGB color code as Fig. 3b. (g-i) Right column panels
show the average number of timesteps needed to reach a consensus, i.e., nA = 500 or nB = 500. The top-right white region
indicates the absence of data, as the system never reaches a consensus.

ducing computation and communication costs, our anal-
ysis can be useful to support the design of autonomous
robot systems capable of operating without human su-
pervision. Reduced costs can save energy, money, and,
in general, resources both at design and run time, i.e., de-
signing robots with simpler circuitry can be cheaper and
consuming less energy in social interactions can improve
efficiency. Erroneous computations and limited connec-

tivity can not only be cheaper but also increase perfor-
mance in terms of decision accuracy (due to a longer
deliberation time during which the decision, rather than
being rushed, is more accurately made). Recent previous
results also observed that there are certain conditions
where reduced connectivity between the agents of the
group – robots, animals, or humans – can give impor-
tant group-level advantages, e.g., better responsiveness
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FIG. 6. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on scale-free networks with kmin = 2 as a function of the pooling error α and
network’s power-law exponent γ. We report results for three values of the quality ratio Q = QB/QA which encodes the decision
problem difficulty: top row Q = 0.5 (easy problem), central row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult
problem), with QA = 1. Color code and experimental design are the same as the one described in the caption of Fig. 5.

to environmental changes [26, 28, 30], evading a predator
or avoiding dangers [25, 27], or generate higher cultural
diversity and innovations [52, 53]. We believe that the
results of our analysis can also have important implica-
tions in the study and design of group decision-making in
human societies, which can be biased and manipulated
through targeted interventions on how information is ex-
changed and aggregated in the social networks [54, 55].

Despite abstracting components of the process, the
type of analysis proposed in our study can give use-
ful predictions. Future work can look into extending

the analysis to measure the impact of different aspects
– e.g., average degree, shortest average path – charac-
terizing the different types of network topologies – e.g.,
Erdős-Rényi random graphs, Barabási-Albert’s scale-free
networks, Watts-Strogatz’s small-word network, and ran-
dom geometric graphs. We also believe that an interest-
ing extension of the work could apply the present analy-
sis to study the dynamics of heterogeneous populations,
comprising individuals that follow different voting rules
or that have different levels of conformism with others
(e.g., populations comprising stubborn agents [56–58]).
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FIG. 7. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on 2m-regular ring networks as a function of the pooling error α and the quality ratio
Q. We present the results for three values of the parameter m regulating network connectivity: top row m = 2, central row
m = 3, bottom row m = 10. Left column panels – i.e., (a), (d), and (g) – show the convergence diagram of the HMF model (9).
Color code and experimental design are the same as the one described in the caption of Fig. 5.
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FIG. 9. Comparison of the HMF model stability diagram (panel a) with the results of the numerical simulations (panels
b-d). We study the impact of the criss-cross rewiring in 2m-ring networks, with m = 3 (i.e., 6-ring). (a) Stability diagram
of the HMF model (this is the same as Fig. 7d). (b-d) Decision outcome of the numerical simulations using the same color
code and experimental design as the ones described in the caption of Fig. 5d. On top of each panel, we indicate how many
edge-rewiring steps (nnew) we compute and the corresponding average shortest path ⟨ℓ⟩, i.e., in panel (b) no rewiring was done
and corresponds to Fig. 7e), in panel (c) we do nrew = 20 edge-rewiring steps, and in panel (d) we did nrew = 500 edge-rewiring
steps.
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Appendix A: The mean-field model

In this appendix, we first indicate the steps needed to deduce the mean-field system of Eq. (4) (in the main text)
and then we find the equilibria of the system and study their stability.

Let us introduce the proportion of agents with opinion A (resp. B), a(t) = nA(t)/N (resp. b(t) = nB(t)/N), hence
a(t) + b(t) = 1. The proportion of agents with opinion A increases because agents with opinion B change their minds
and adopt opinion A, or decreases if agents with opinion A adopt opinion B; therefore, we can write the change of a
in a small time interval dt → 0 as

da

dt
= bPα

(
a#

)
− aPα

(
b#

)
. (A1)

We recall the quantities n#
A and n#

B defined in Eq. (1) in the main text, representing the votes expressed for option A
and B, respectively, which are weighted by the quality. Therefore, we can define the weighted proportions

a# =
a

a+Qb
and b# =

Qb

a+Qb
, (A2)

where Q is the ratio QB/QA. Given the functional form of Pα given in Eq. (2), we can conclude that

Pα

(
a#

)
+ Pα

(
b#

)
= 1 .

Hence, we can derive the mean-field model of Eq. (4) as

da

dt
= (1− a)Pα

(
a#

)
− a

(
1− Pα

(
a#

))
= Pα

(
a

a(1−Q) +Q

)
− a =: fα(a) .

The equilibria of this system are determined by the zeros of fα(a), namely we are looking for values a∗ ∈ [0, 1] such
that

fα(a
∗) = 0 , i.e., Pα

(
a∗

a∗(1−Q) +Q

)
− a∗ = 0 . (A3)

The equilibrium stability is determined by the sign of the derivative computed on the equilibrium, f ′(a∗). To simplify
the analysis, let us introduce a new variable

x =
a

a(1−Q) +Q
. (A4)

Observe that x is well defined, indeed a(1−Q) +Q ̸= 0 for a ∈ [0, 1] and moreover x = 0 if a = 0 and x = 1 if a = 1.
In conclusion, Eq. (A4) defines a bijective map from [0, 1] into [0, 1]. By inverting the relation (A4) we can write

a =
xQ

1− x(1−Q)
, (A5)

hence solving Eq. (A3) is equivalent to solve

Pα (x∗) =
x∗Q

1− x∗(1−Q)
, (A6)
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that is to determine the intersections between the function Pα (x) and the hyperbola g(x) = xQ
1−x(1−Q) . Two solutions

are trivially found: x̌∗ = 0 and x̂∗ = 1. However, for some choice of the parameters Q and α, a third solution x̃∗ can
also exist.

To find the intersections between the two functions, let us define ∆(x) = P (x)− g(x), and search for which values
∆(x) = 0. As indicated above, for x = 0 and x = 1, we have ∆(0) = ∆(1) = 0. To determine the existence of (at
least) a third root let us consider the derivative of ∆(x) at x = 0 and x = 1. A straightforward computation returns
∆′(0) = α−Q and ∆′(1) = α− 1/Q. A sufficient condition to have a third solution is thus ∆′(0) > 0 and ∆′(1) > 0
or ∆′(0) < 0 and ∆′(1) < 0. The reason is that the function ∆(x) is continuous and if it approaches both x = 0 and
x = 1 with increasing (or both decreasing) derivatives, it should cross (at least once) the 0 line at some point.
Let us now consider the stability of the three equilibria. The equilibrium x̌∗ = 0 is stable if and only if ∆′(0) < 0,

namely if α < Q. On the other hand, the equilibrium x̂∗ = 1 is stable if and only if ∆′(1) < 0, namely α < 1/Q.
From Eq. (A5) one can obtain the value of the variable a given x, we can thus draw the following conclusions:

• Let Q > 1:

– if α < 1/Q, then we also have α < Q, thus ǎ∗ = 0 and â∗ = 1 are stable equilibria, and the third equilibrium
0 < ã∗ < 1 exists but it is unstable;

– if 1/Q < α < Q, then ǎ∗ = 0 is stable, â∗ = 1 is unstable, and the third equilibrium 0 < ã∗ < 1 does not
exist;

– if Q < α, then ǎ∗ = 0 and â∗ = 1 are unstable equilibria, and the third equilibrium 0 < ã∗ < 1 exists and
is stable.

• Let Q < 1:

– if α < Q, then we also have α < 1/Q, thus ǎ∗ = 0 and â∗ = 1 are stable equilibria, and the third equilibrium
0 < ã∗ < 1 exists but is unstable;

– if Q < α < 1/Q, then ǎ∗ = 0 is unstable, â∗ = 1 is stable, and the third equilibrium 0 < ã∗ < 1 does not
exist;

– if Q < α, then ǎ∗ = 0 and â∗ = 1 are unstable equilibria, and the third equilibrium 0 < ã∗ < 1 exists and
is stable.

Appendix B: The heterogeneous mean-field model

In this section, we present the detailed computation needed to derive through heterogeneous mean-field theory
Eqs. (7) and (9), presented in the main text. Let us assume that agents are connected via a network and they can
exchange opinions only with neighbors to which they are directly corrected. Given an agent i, her neighbors are
defined as the nodes j for which Aij = 1, where A is the N ×N adjacency matrix. Observe that Aij = 0 if agents i
and j are not connected and therefore cannot directly exchange opinions.

Let us introduce the quantities ni,A and ni,B that indicate the number of neighbors of agent i with opinion A and
B, respectively. Formally, we can define them as

ni,A =
∑
j

AijÂj and ni,B =
∑
j

AijB̂j , (B1)

where Âj = 1 (resp. B̂j = 1) if agent j has opinion A (resp. B), and zero otherwise.
An agent i with opinion A (resp. B) changes her opinion to B (resp. A) with probability defined by the nonlinear

function Pα(n
#
i,B) (resp. Pα(n

#
i,A)) presented in Eq. (2), with argument the weighted proportion n#

i,B (resp. n#
i,A) of

i’s neighbors with opinion B (resp. A). The weights of n#
i,A and n#

i,B are proportional to the quality of opinions A
and B, respectively, and can be mathematically defined as

n#
i,A =

QAni,A

QAni,A +QBni,B
and n#

i,B =
QBni,B

QAni,A +QBni,B
. (B2)

We recall that ki =
∑

j Aij is the degree of the node i and trivially ki = ni,A + ni,B . Let us observe that by defining

Q = QB/QA we can rewrite the previous relations as:

n#
i,A =

ni,A

ni,A +Qni,B
=

ni,A

(1−Q)ni,A +Qki
=

ni,A/ki
(1−Q)ni,A/ki +Q

and n#
i,B = 1− n#

i,A , (B3)
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namely Eq. (5) in the main text.

Let us now assume the validity of the Heterogeneous Mean Field hypothesis (HMF) [31, 32] and let thus aggregate
agents according to their opinion and degree, namely we define Ak and Bk to be the number of agents with degree k
and opinion A or B, respectively. Then, setting Nk to be the number of agents with degree k, we have Ak +Bk = Nk

for all k. Let us introduce ak = Ak/Nk and bk = Bk/Nk as the proportion of agents with degree k and opinion A or
B, respectively. The goal is to express the probability of changing opinion by using the HMF.

Let us consider an agent i with opinion B and assume she has k neighbors; and we want to compute the probability
that ω neighbors have opinion B and k − ω opinion A (with ω ∈ {0, . . . , k}), so that we can compute the weighted

proportions of Eq. (B2) as n#
i,A = (k − ω)/[k − ω + Qω] and n#

i,B = ωQ/[k − ω + Qω]. In the spirit of the HMF

hypothesis, we determine the probability that a node has degree k′ by only knowing that it is connected to a node
with degree k; the latter is given by the excess degree qk′ , namely qk′ = (k′ + 1)pk′+1/⟨k⟩, where pk is the proportion
of nodes with degree k and ⟨k⟩ the average network degree.

Example for k = 2

Before computing the formula for a general degree k, let us present an example for k = 2 which helps us to explain
our reasoning. Assume the focal agent i has degree ki = 2 and the two neighbors have excess degree j1 ≥ 0 and
j2 ≥ 0, then there are three possible cases:

• Both neighbors have opinion A. This happens with probability

qj1aj1+1qj2aj2+1 ,

• Both neighbors have opinion B. This happens with probability

qj1(1− aj1+1)qj2(1− aj2+1) .

• One neighbor has opinion A and one neighbor has opinion B. This happens with probability

qj1aj1+1qj2(1− aj2+1) + qj1(1− aj1+1)qj2aj2 .

Let us define π2,ω be the probability that ω ∈ {0, 1, 2} agents have opinion B and thus 2 − ω opinion A. Then the
previous three cases can be summarized into a single formula

qj1qj2π2,ω , ∀ω ∈ {0, 1, 2} .

We can now compute the probability that the focal agent i changes her opinion to A:

• In the case both neighbors have opinion A,

qj1qj2π2,0Pα

(
2− 0

2− 0 + 0Q

)
= qj1qj2π2,0Pα (1) .

• In the case both neighbors have opinion B,

qj1qj2π2,2Pα

(
2− 2

2− 2 + 2Q

)
= qj1qj2π2,2Pα (0) .

• In the case one of the two neighbors has opinion A the other has opinion B,

qj1qj2π2,1Pα

(
2− 1

2− 1 + 1Q

)
= qj1qj2π2,1Pα

(
1

1 +Q

)
.
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The general case

The reasoning presented in the example for k = 2 can be repeated for a general k. Then qj1 . . . qjk evaluates the
joint probability that each node reachable from any of the k edges emerging from the focal node, has excess degree
j1, . . . , jk. We can define πk,ω, to be the probability that ω nodes among the k neighbors have opinion B and thus k−ω
opinion A. Therefore, the term πk,ω is a linear combination of products of ajm+1 and (1− ajm+1), with m = 1, . . . , k.
Finally, the probability qj1 . . . qjkπk,ω is multiplied by the function Pα with argument the weighted proportion of

agents with opinion A or B, that is k−ω
k−ω+Qω or ωQ

k−ω+Qω .

Let us observe that because of property (3) (i.e., P (n#
A) + P (n#

B) = 1), we have that

Pα

(
Qω

k − ω +Qω

)
= 1− Pα

(
1− Qω

k − ω +Qω

)
= 1− Pα

(
k − ω

k − ω +Qω

)
.

Thus, we can wrap together the above expressions and obtain the time evolution of ak for a generic degree k:

dak
dt

= (1− ak)
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
− ak

∑
j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ω

[
1− Pα

(
k − ω

k − ω + ωQ

)]
.

(B4)
Let us explain each term on the right-hand side. The leftmost term, (1− ak), is the probability that the focal agent
has degree k and does not have opinion A, she hence has opinion B. The term qj1 . . . qjk evaluates the joint probability
that each node reachable from any of the k edges emerging from the focal node, has excess degree j1, . . . , jk; the sum∑

j1,...,jk
allows to consider all the possibilities. For a given choice of j1, . . . , jk, the next term, πk,ω, determines the

probability that ω nodes among the k ones have opinion B and thus k − ω have opinion A. The sum
∑k

ω=0 allows
to consider all the possibilities from ω = 0, all agents have opinion A, to ω = k, all agents have opinion B. Finally,

the term Pα

(
k−ω

k−ω+ωQ

)
is the probability the focal agent with opinion B changes her mind because there are k − ω

agents with opinion A and ω agents with opinion B. The remaining terms denote the opposite process where the
selected agent has opinion A, with probability ak, and she changes opinion after an interaction with her neighbors
with opinion B. As already observed, we used the property (3) for the function Pα to rewrite the rightmost term.

Eq. (B4) can be split into four parts

dak
dt

=
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
− ak

∑
j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
+

− ak
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ω + ak
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
,

and we can observe that the rightmost terms on the first and second line do simplify each other by returning

dak
dt

=
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
− ak

∑
j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ω . (B5)

We trivially have
∑k

ω=0 πk,ω = 1 and, by assuming absence of correlations among nodes degrees, we also have∑
j1,...,jk

qj1 . . . qjk =
∑

j1
qj1 · · ·

∑
jk
qjk = 1, hence we can simplify Eq. (B5) into:

dak
dt

=
∑

j1,...,jk

qj1 . . . qjk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
− ak . (B6)

As already indicated in the main text, we define ⟨a⟩ := ∑
j qjaj+1. By using combinatorics and assuming probability

independence, we can show that ∑
j1,...,jk

qj1 . . . qjkπk,ω =

(
k

ω

)
⟨a⟩k−ω (1− ⟨a⟩)ω ;

the rough idea is that in πk,ω there are k−ω events with probability ajm+1, thus ω with (1−ajm+1), and the binomial
coefficient computes all possible permutations. We can thus rewrite Eq. (B6) as

dak
dt

= −ak +

k−1∑
ω=0

(
k

ω

)
⟨a⟩k−ω (1− ⟨a⟩)ω Pα

(
k − ω

k − ω + ωQ

)
, (B7)
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where we removed from the sum the term ω = k because it contains Pα (0) = 0. By rewriting the previous equation
with k → k+1, and by multiplying both sides by qk and summing over k to bring out ⟨a⟩ we get Eq. (9) in the main
text, namely:

d⟨a⟩
dt

=
∑
k

qk
dak+1

dt
= −

∑
k

qkak+1 +
∑
k

qk

k∑
ω=0

(
k + 1

ω

)
⟨a⟩k+1−ω (1− ⟨a⟩)ω Pα

(
k + 1− ω

k + 1− ω + ωQ

)

= −⟨a⟩+
∑
k

qk

k∑
ω=0

(
k + 1

ω

)
⟨a⟩k+1−ω (1− ⟨a⟩)ω Pα

(
k + 1− ω

k + 1− ω + ωQ

)
,

where the right hand side defines the function f
(hmf)
α (⟨a⟩).

Stability analysis

Let us now consider the zeros of f
(hmf)
α (⟨a⟩), hence the equilibria of the system. Because the sum over ω ranges

from ω = 0 and ω = k, and because the involved terms are of the form ⟨a⟩k+1−ω, they all vanish once ⟨a⟩ = 0, hence

f
(hmf)
α (⟨a⟩) = 0. The same holds true for ⟨a⟩ = 1, indeed

f (hmf)
α (1) = −1 +

∑
k

qk

k∑
ω=0

(
k + 1

ω

)
(1− ⟨a∗⟩)|ω⟨a∗⟩=1Pα

(
k + 1− ω

k + 1− ω + ωQ

)
= −1 +

∑
k

qk ,

where we used the fact that all the terms (1− ⟨a∗⟩)|ω⟨a∗⟩=1 vanish except the one with ω = 0, for which we also have(
k+1
0

)
= 1 and Pα

(
k+1
k+1

)
= 1. The conclusion follows by recalling that

∑
k qk = 1.

The stability of the above equilibria can be determined by considering the derivative of f
(hmf)
α at 0 and 1 that is

given by

(
f (hmf)
α

)′
(⟨a∗⟩) = −1 +

∑
k

qk

k∑
ω=0

(
k + 1

ω

)
Pα

(
k + 1− ω

k + 1− ω + ωQ

)
×[

(k + 1− ω)⟨a∗⟩k−ω (1− ⟨a∗⟩)ω − ω⟨a∗⟩k+1−ω (1− ⟨a∗⟩)ω−1
]
,

hence (
f (hmf)
α

)′
(0) = −1 +

∑
k

qk

(
k + 1

k

)
Pα

(
1

1 + kQ

)
= −1 +

∑
k

qk(k + 1)Pα

(
1

1 + kQ

)
, (B8)

and (
f (hmf)
α

)′
(1) = −1 +

∑
k

qk

[(
k + 1

0

)
Pα

(
k + 1

k + 1

)
(k + 1)−

(
k + 1

1

)
Pα

(
k

k +Q

)]
= −1 +

∑
k

qk(k + 1)

[
1− Pα

(
k

k +Q

)]
= −1 +

∑
k

qk(k + 1)Pα

(
Q

k +Q

)
. (B9)

In Fig. 10 we report four examples of the function fα(x) = x + f
(hmf)
α (x) for four values of α for a scale-free

network with exponent γ = 2.2. Observe that, differently from Fig. 1, the function is smooth even for α = 0 (red

curve). Additionally, the presence of three intersections of fα(x) with the line y = x, hence three zeros for f
(hmf)
α (x),

indicates the presence of three system equilibria. For α = 1 (yellow line), there are only two line intersections, at
x = 0 and x = 1, indicating the existence of only two equilibria.

Limitations of the heterogeneous mean-field model

We conclude this appendix by studying the limitation of the heterogeneous mean-field model, more precisely we look
for (family of) networks for which there is a disagreement between the dynamics predicted by the HMF model and
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FIG. 10. The function fα(x) = x + f
(hmf)
α (x) for some values of α for a scale free network made by N = 400 nodes, γ = 2.2,

kmin = 3, kmax = 189, the quality ratio is Q = 0.9. The dashed line represents the identity curve and thus its intersections
with the function fα(x) determine the equilibria of the system.

the numerical agent-based simulations. More precisely, we look at the case in which the HMF model’s equilibrium
⟨ǎ∗⟩ = 0 is unstable, i.e., Eq. (B8) is positive, and ⟨â∗⟩ = 1 is stable, i.e., Eq. (B9) is negative. Therefore, the
prediction is consistent convergence for any initial state to the latter stable equilibrium ⟨â∗⟩ = 1; however, numerical
simulations do not always terminate with all agents with opinion A.

For any given Q < 1 there exists k̄ such that kQ > 1 for all k ≥ k̄ and thus kQ < 1 for all k < k̄. Hence

kQ > 1 ⇒ 1

1 + kQ
<

1

2
⇒ Pα

(
1

1 + kQ

)
=

1

2
− 1

2

(
1− 2

1 + kQ

)α

,

and

kQ < 1 ⇒ 1

1 + kQ
>

1

2
⇒ Pα

(
1

1 + kQ

)
=

1

2
+

1

2

(
2

1 + kQ
− 1

)α

.

Eq. (B8) rewrites thus(
f (hmf)
α

)′
(0) = −1 +

1

2

∑
k≥k̄

qk(k + 1)

[
1−

(
1− 2

1 + kQ

)α]
+

1

2

∑
k<k̄

qk(k + 1)

[
1 +

(
2

1 + kQ
− 1

)α]
=

= −1 +
1

2

∑
k

qk(k + 1) +
1

2

∑
k<k̄

qk(k + 1)

(
2

1 + kQ
− 1

)α

− 1

2

∑
k≥k̄

qk(k + 1)

(
1− 2

1 + kQ

)α

.

By using the definition of qk, we can compute∑
k≥0

qk(k + 1) =
∑
k≥0

(k + 1)pk+1

⟨k⟩ (k + 1) =
1

⟨k⟩
∑
k≥1

k2pk =
1

⟨k⟩
∑
k≥0

k2pk =
⟨k2⟩
⟨k⟩ ,

hence (
f (hmf)
α

)′
(0) = −1 +

1

2

⟨k2⟩
⟨k⟩ +

1

2

∑
k<k̄

qk(k + 1)

(
2

1 + kQ
− 1

)α

− 1

2

∑
k≥k̄

qk(k + 1)

(
1− 2

1 + kQ

)α

.

To compute
(
f
(hmf)
α

)′
(0) we observe that if k ≥ 1 > Q then Q/(k +Q) < 1/2 and thus we can conclude(

f (hmf)
α

)′
(1) = −1 + q0 +

1

2

∑
k≥1

qk(k + 1)

[
1−

(
1− 2Q

k +Q

)α]
=

= −1 +
q0
2

+
1

2

⟨k2⟩
⟨k⟩ − 1

2

∑
k≥1

qk(k + 1)

(
1− 2Q

k +Q

)α

.
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FIG. 11. Asymptotic state for the agent based model on a 2-ring. In the main panel we report the distribution of the asymptotic
state ⟨n∗

A⟩/N for for N = 500 agents interacting in a 2-ring as a function of the parameter α for a fixed Q = 0.9. For each given
α we repeat the simulation niter = 400 times and we then we display the probability distribution of the obtained values (the
darker the higher the probability). On the left panel we report the case small α, here α = 0.59, and we can appreciate the fact
the all the simulations returned ⟨n∗

A⟩/N = 1; on the right panel we show the case of large α, here α = 1.5, and we can observe
a large spreading of values about the mean (blue dots in the main panel) but also the presence of a small peak corresponding
to ⟨n∗

A⟩/N = 1 and an even smaller for ⟨n∗
A⟩/N = 0.

For sake of definitiveness let us assume 1/2 < Q < 1 and thus k̄ = 2. Hence
(
f
(hmf)
α

)′
(0) simplifies into

(
f (hmf)
α

)′
(0) = −1 +

1

2

⟨k2⟩
⟨k⟩ + q1

(
2

1 +Q
− 1

)α

− 1

2

∑
k≥2

qk(k + 1)

(
1− 2

1 + kQ

)α

.

Finally let us consider a 2-ring network where, i.e., each node is connected with its two neighbors, hence ⟨k⟩ = 2,
⟨k2⟩ = 4, p2 = 1 and pk = 0 for all k ̸= 2 and thus q1 = 1 and qk = 0 if k ̸= 1. The previous equation simplifies to
give (

f (hmf)
α

)′
(0) = −1 +

1

2

4

2
+

(
2

1 +Q
− 1

)α

=

(
2

1 +Q
− 1

)α

> 0 ,

namely ⟨ǎ∗⟩ = 0 is unstable under the assumption of HMF. Similarly the equation for
(
f
(hmf)
α

)′
(1) rewrites

(
f (hmf)
α

)′
(1) = −1 +

1

2

4

2
− 1

2
q12

(
1− 2Q

1 +Q

)α

= −
(
1−Q

1 +Q

)α

< 0 ,

namely ⟨â∗⟩ = 1 is stable according to the HMF theory.
In Fig. 11 we show the results of numerical simulation of 500 agents exchanging opinions on a 2-ring, i.e., each agent

has two neighbors. Each point is asymptotic value after 500 000 time steps, of ⟨n∗
A⟩/N averaged over 401 independent

simulations as a function of α for Q = 0.9. Simulations have different initial conditions (initial opinions distributed
differently on the network) but always with 250 agents with opinion A and 250 agents with opinion B, i.e., half of
the population committed to each option. One can observe that for α < 1 the simulations converge to ⟨n∗

A⟩/N = 1
and thus the claim of the predictions of the HMF model are confirmed. Whereas the good match between theory and
simulations is no longer valid for α > 1. Theory predicts a single stable equilibria for full consensus for A, while the
simulated system remains locked at indecision at 0 < ã∗ < 1 with only a part of the agents with opinion A and the
rest with opinion B.

The different behavior for α > 1 is due to finite-size effects and can be explained as follows. Let us assume to have
a ring with N agents and assume that all agents but one have opinion A, we are interested in the possibility that also
this last B-agent changes her mind and becomes A-agent, in this way the system reaches the equilibrium ⟨n∗

A⟩/N = 1,
i.e., all A. This process should be compared with the one where one agent A becomes a B-agent, the ratio of the
probabilities of those two events determines the stability (or not) of the state all A.
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The probability that the event B → A happens is the combination of the probability of selecting the B-agent, hence
probability 1/N , and the probability that she will receive a message from a neighbour committed to A. Because there
is only one B-agent, her two neighbors have opinion A and thus Pα(1) = 1. In summary, P (B → A) = 1/N .

The probability that the event A → B happens is the combination of the probability of selecting one of the two agents
A sitting in the ring next to the unique agent B, hence probability 2/N , and the probability that the selected agent
A will select the message from the B-agent. The weighted proportion of agents B that are neighbors of the selected

agent A is Pα

(
Q

1+Q

)
. Being Q ∈ [0, 1], the quantity Q

1+Q is smaller than 1/2 and thus Pα

(
Q

1+Q

)
= 1

2 − 1
2

(
1−Q
1+Q

)α

.

In summary, P (A → B) = 2
N

[
1
2 − 1

2

(
1−Q
1+Q

)α]
.

Finally, we can compute the ratio of the probabilities for the two events

P (A → B)

P (B → A)
= 1−

(
1−Q

1 +Q

)α

.

Because 1−Q
1+Q < 1, we can conclude that if α < 1, then P (A→B)

P (B→A) is small and thus the system has a large probability to

evolve toward a consensus for A, the event B → A is much more probable than A → B. On the other hand, if α > 1,
then the above probability approaches 1 and thus both events are (almost) equally probable. Therefore, despite the
equilibrium of a consensus for A being stable, it is difficult to reach it because the two events (A → B and B → A)
are equally likely to happen and the system can fluctuate indefinitely.

Appendix C: The 2m-regular graph

Let us consider now 2m-regular graphs, m ≥ 1, namely networks where all the nodes have the same degree 2m.
Observe that 1-dimensional rings where each node is connected to m left and m right neighbors fall in this class, that
however contains more general structures. By construction we trivially have pk = 1 if k = 2m and pk = 0 otherwise,
then ⟨k⟩ = 2m, which implies that qk = 1 if k = 2m− 1 and 0 otherwise, indeed

qk =
k + 1

⟨k⟩ pk+1 =

{
(2m−1)+1

2m p2m = 1 if k + 1 = 2m

0 if k + 1 ̸= 2m.

Therefore, the weighted average proportion of agents with opinion A simply becomes ⟨a⟩ = a2m. From the defini-

tion (9), we can simplify the function f
(hmf)
α (x) and obtain

f (hmf)
α (x) = −x+

2m−1∑
ω=0

(
2m

ω

)
x2m−ω (1− x)

ω
Pα

(
2m− ω

2m− ω + ωQ

)
. (C1)

The derivatives of (C1) evaluated at x̌∗ = 0 and x̂∗ = 1 are given by (see also (B8) and (B9)):

(f (hmf)
α )′(0) = −1 + 2mPα

(
1

1 + (2m− 1)Q

)
and (f (hmf)

α )′(1) = −1 + 2mPα

(
Q

2m− 1 +Q

)
.

In conclusion, the equilibrium ǎ∗2m = 0, i.e., all agents have opinion B, is stable if and only if

(f (hmf)
α )′(0) = −1 + 2mPα

(
1

1 + (2m− 1)Q

)
< 0 ,

and similarly â∗2m = 1, i.e., all agents have opinion A, is stable if and only if

(f (hmf)
α )′(1) = −1 + 2mPα

(
Q

2m− 1 +Q

)
< 0 .

When Q < 1/(2m− 1), then 1/[(2m− 1)Q+ 1] > 1/2, therefore, using the definition of Pα we get:

(f (hmf)
α )′(0) = −1 + 2m

[
1

2
+

1

2

(
2

1 + (2m− 1)Q
− 1

)α]
= −1 +m

[
1 +

(
2

1 + (2m− 1)Q
− 1

)α]
≥ −1 +m,

and because m ≥ 2, the latter expression is positive for all α ≥ 0. In conclusion, the equilibrium ǎ∗2m = 0 is unstable
for all α ≥ 0 and Q < 1/(2m− 1).
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Let us now consider the case Q > 1/(2m− 1). By definition of Pα we get

(f (hmf)
α )′(0) = −1 + 2m

[
1

2
− 1

2

(
1− 2

1 + (2m− 1)Q

)α]
= −1 +m

[
1−

(
1− 2

1 + (2m− 1)Q

)α]
,

and now the quantity on the right-hand side can have both signs. Let us define α̂(Q) as the value of α for which the
right-hand side vanishes for a fixed Q > 1/(2m− 1), then we can straightforwardly obtain

α̂(Q) =
log

(
1− 1

m

)
log

(
1− 2

1+(2m−1)Q

) . (C2)

By looking at its definition we can conclude that α̂(1) = 1 and that α̂(Q) → 0 for Q → 1/(2m − 1) (from values

larger than 1/(2m − 1)). Given Q > 1/(2m − 1), then (f
(hmf)
α )′(0) > 0 for all α > α̂(Q); this means that the

equilibrium ǎ∗2m = 0 is unstable. The function α̂(Q) is drawn in white in Figs. 7a-c and it delimits the red region

where (f
(hmf)
α )′(0) > 0 (ǎ∗2m = 0 is unstable) and the green region where (f

(hmf)
α )′(0) < 0 (ǎ∗2m = 0 is stable).

Let us now consider the stability of the equilibrium â∗2m = 1. Because m ≥ 1 and Q < 1, we always have
Q/(2m− 1 +Q) < 1/2, hence by definition of Pα we obtain

(f (hmf)
α )′(1) = −1 + 2m

[
1

2
− 1

2

(
1− 2Q

2m− 1 +Q

)α]
= −1 +m

[
1−

(
1− 2Q

2m− 1 +Q

)α]
. (C3)

Eq. (C3) can also have either positive and negative values. Let α̃(Q) the value of α for which the right-hand side of
Eq. (C3) vanishes for a fixed Q, then

α̃(Q) =
log

(
1− 1

m

)
log

(
1− 2Q

2m−1+Q

) . (C4)

We have α̃(1) = 1 and α̃(Q) → ∞ if Q → 0+. The function α̃(Q) is drawn in black in Figs. 7a-c and it delimits

the red region where (f
(hmf)
α )′(1) < 0 (â∗2m = 1 is stable) and the blue region where (f

(hmf)
α )′(1) > 0 (â∗2m = 1 is

unstable).

Generalise to complete graphs

Let us conclude this part by showing the previous analysis returns the results obtained by using the mean-field
hypothesis once we assume the underlying network to be a complete graph. To simplify the setting we will assume
the network to be composed of N = 2N ′ + 1 nodes and m = N ′, hence each node has 2N ′ neighbors. Let us observe
that one trivially has pk = 1 if k = N − 1 = 2N ′ and pk = 0 otherwise, and ⟨k⟩ = N − 1 = 2N ′, which implies that
qk = 1 if k = N − 2 = 2N ′ − 2 = 2(m− 1) and 0 otherwise. From Eq. (8) we can obtain ⟨a⟩ = aN−1 = nA/N , namely
there is only one variable that is the proportion of agents with opinion A. From the Eq. (C1) we can get

f (hmf)
α (aN−1) = −aN−1 +

2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)

2N ′−ω (1− aN−1)
ω
Pα

(
nA

nA + nBQ

)
,

where we recall that ω = nB , to be the number of agents with opinion B, and 2N ′ − ω = nA, the number of agents
with opinion A. Let us observe that we also added the term ω = 2N ′ in the sum, whose contribution vanishes because
Pα does. By using nA + nB = N we can rewrite the previous equation as

f (hmf)
α (aN−1) = −aN−1 +

2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)

2N ′−ω (1− aN−1)
ω
Pα

(
nA

nA(1−Q) +NQ

)

= −aN−1 +

2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)

2N ′−ω (1− aN−1)
ω
Pα

(
aN−1

aN−1(1−Q) +Q

)
,
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where in the last step we divided by N the number of agents to obtain the proportion. Being the term involving Pα

independent from ω, we eventually obtain

f (hmf)
α (aN−1) = −aN−1 + Pα

(
aN−1

aN−1(1−Q) +Q

) 2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)

2N ′−ω (1− aN−1)
ω
=

= −aN−1 + Pα

(
aN−1

aN−1(1−Q) +Q

)
,

where the Newton property for the binomial has been used to eventually get the same function we obtained under
the mean field assumption (4).

Let us now rewrite α̂(Q) given by Eq. (C2) under the above assumption of complete graph, namely

α̂(Q) =
log

(
1− 1

N ′

)
log

(
1− 2

1+(2N ′−1)Q

) ,

then letting the number of nodes to be very large, N = 2N ′ + 1 → ∞, then we obtain

α̂(Q) ∼ Q+ . . . ,

namely the curve separating the convergence to a consensus for option A (red region in Fig. 7) to the region where
mistakes are possible (green region in Fig. 7) converges to the line α̂(Q) = Q in the limit of infinitely many agents, in
agreement with the results reported in Fig. 3.

Appendix D: Degree preserving rewiring process

This section briefly presents the degree preserving rewiring process, sometimes called criss-cross in the literature,
used in the main text to reduce the average shortest path while keeping the degree distribution unchanged.

As shown in Fig. 12, let us consider four nodes, i1, i2, i3 and i4 such that i1 and i2 are connected to each other by
an edge but not to i3 and i4, and vice-versa, nodes i3 and i4 are connected to each other by an edge but not to i1 and
i2. Then, in the criss-cross process, the two existing edges are deleted and two new edges are added from i1 to i4 and
from i2 to i3. In such a way the four nodes will not change their degree and therefore pk also remains unchanged.

i1

i2

i3

i4

initial 
configuration

i1

i2

i3

i4

criss-cross
rewire

FIG. 12. The criss-cross rewiring process. The initial configuration (left panel) has the edges (i1, i2) and (i3, i4), after the
rewiring process (right panel) those edges are deleted and replaced with the new ones (i1, i4) and (i2, i3).

Appendix E: Scale-free networks

Sec. IVA in the main text presents our analysis of the population dynamics on scale-free networks. While Figs. 5
and 6 show the results for scale-free network with minimum degree kmin = 2, here we complement the analysis
providing the results for kmin = 1 and kmin = 3. The multiagent simulations for kmin = 2 and kmin = 3 have been
performed on scale-free networks built using the configuration model [48], instead, as also indicated in the main text,
for kmin = 1 the scale-free networks have been built using the Simon model [48, 49].
For low values of kmin, i.e., for kmin ≤ 2, it is possible to appreciate an important change in the dynamics for

different values of the connectivity parameter γ. Instead, for kmin = 3, the parameter γ has a much smaller effect on
the population dynamics, as clearly shown by almost-horizontal separation lines between the colored areas in Fig. 16.
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FIG. 13. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on scale-free networks with kmin = 1 as a function of the pooling error α and quality
ratio Q. We report results for three values of the exponent γ regulating network connectivity: top row γ = 2.2, central row
γ = 2.6, bottom row γ = 3.1. Color code and experimental design are the same as the one described in the caption of Fig. 5.

Appendix F: Erdős-Rényi random graph

The aim of this section is to perform an analysis similar to the one presented in the main text in the case of scale-free
networks and 2m-regular graphs, but by assuming agents to interact via an Erdős-Rényi random graph, composed of
N nodes and where each couple of nodes has a probability p > 0 to be connected. In Fig. 17 we report the results
obtained by assuming the HMF hypothesis (panels (a) and (d)) and we compare them with the multiagent numerical
simulations performed on an Erdős-Rényi random graph comprising N = 200 nodes and p = 0.02 (panel (b)) and
p = 0.2 (panel (e)). We can observe that the agreement is good, especially in the case of p = 0.2, which corresponds
to a network with a larger average degree, ⟨k⟩ ∼ 40, and thus to a smaller averaged shortest path (compare also with
panel (a) of Fig. 3 in the main text). In panels (c) and (f) we report the converge time to the consensus states, all-A
or all-B, and we can again observe that approaching the deadlock decision regions, the convergence time increases.

Fig. 18 shows the combined impact of the probability to have an edge, p, and the pooling error α on the system
outcome once we fix QB and QA. Let us observe that for an easy problem (QB = 0.2 top row), agents are almost
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FIG. 14. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on scale-free networks with kmin = 1 as a function of the pooling error α and
network’s power-law exponent γ. We report results for three values of the quality ratio Q = QB/QA which encodes the decision
problem difficulty: top row Q = 0.5 (easy problem), central row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult
problem), with QA = 1. Color code and experimental design are the same as the one described in the caption of Fig. 5.

always able to reach a consensus for the better quality option (red region), only for very small α mistakes are possible,
moreover those behaviors do not seem to depend on p. On the other hand for an hard task (QB = 0.8 bottom row),
the diagram is divided into three zones and only for α close to 1, namely once agents adopt the majority rule, they
are able to converge to the best option. For smaller α mistakes are possible, while for larger α a deadlock outcome is
obtained. Again those results seem not to depend on p.
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FIG. 15. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on scale-free networks with kmin = 3 as a function of the pooling error α and quality
ratio Q. We report results for three values of the exponent γ regulating network connectivity: top row γ = 2.2, central row
γ = 2.6, bottom row γ = 3.1. Color code and experimental design are the same as the one described in the caption of Fig. 5.
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FIG. 16. Stability diagrams (panels a-c), decision outcome from multiagent simulations (panels d-f) and convergence time
(panels g-i) for collective decision-making on scale-free networks with kmin = 3 as a function of the pooling error α and
network’s power-law exponent γ. We report results for three values of the quality ratio Q = QB/QA which encodes the decision
problem difficulty: top row Q = 0.5 (easy problem), central row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult
problem), with QA = 1. Color code and experimental design are the same as the one described in the caption of Fig. 5.
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FIG. 17. Stability diagrams (panels a,d), decision outcome from multiagent simulations (panels b,e) and convergence time
(panels c,f) for collective decision-making on Erdős-Rényi random graph as a function of the pooling error α and quality ratio
Q. We present the results for two values of the probability p regulating network connectivity: top row p = 0.02 and bottom
row p = 0.2, the number of nodes has been fixed to N = 200. Left column panels – i.e., (a) and (d) – show the convergence
diagram of the mean-field model (9). The parameter space is divided into the same three regions of Fig. 3a using the same
color code. Central column panels show the results of simulations (100 independent for each (Q,α) configuration) of N = 200
agents interacting on a Erdős-Rényi random graph with random initial configurations (i.e., nA(t = 0) ∼ U(0, N)) for 50 000
time steps. Central column panels – i.e., (b) and (e) – show the outcome of the collective decision-making process using the
same RGB color code as Fig. 3d. Right column panels – i.e., (c) and (f) – show the average number of timesteps needed to
reach a consensus, i.e., nA = 200 or nB = 200. The white area indicates the absence of data, as the system never reaches a
consensus.
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FIG. 18. Stability diagrams (panels a,d), decision outcome from multiagent simulations (panels b,e) and convergence time
(panels c,f) for collective decision-making on Erdős-Rényi random graph as a function of the pooling error α and the probability
p to establish a link between two nodes. We present the results for two values of the quality option QB for fixed QA = 1:
top row QB = 0.2 and bottom row QB = 0.8, the number of nodes has been fixed to N = 200. Left column panels – i.e.,
(a) and (d) – show the convergence diagram of the mean-field model (9). The parameter space is divided into the same three
regions of Fig. 3a using the same color code. Central column panels show the results of simulations (100 independent for each
(p, α) configuration) of N = 200 agents interacting on a Erdős-Rényi random graph with random initial configurations (i.e.,
nA(t = 0) ∼ U(0, N)) for 50 000 time steps. Central column panels – i.e., (b) and (e) – show the outcome of the collective
decision-making process using the same RGB color code as Fig. 3d. Right column panels – i.e., (c) and (f) – show the average
number of timesteps needed to reach a consensus, i.e., nA = 200 or nB = 200. The white area indicates the absence of data,
as the system never reaches a consensus.


