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To succeed in their objectives, groups of individuals must be able to make quick and accurate collective
decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do
that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programed
to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many
times they should be better at it! Thanks to their mathematical tractability, simple models like the voter model
and the local majority rule model have proven useful to describe the dynamics of such collective decision-
making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their
social network. At least among animals and robots, options with a better quality are exchanged more often and
therefore spread faster than lower-quality options, leading to the collective selection of the best option. With
our work, we study the impact of individuals making errors in pooling others’ opinions caused, for example, by
the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes
the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by
the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the
collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we
show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result
is that reduced network connectivity corresponds to an increase in collective decision accuracy.

DOI: 10.1103/PhysRevE.109.054307

I. INTRODUCTION

Reaching a consensus in a group of individuals without
any central authority or coordinator requires individuals to
exchange opinions and combine conflicting information re-
ceived from peers. Studying the situation in which the group
must agree on the best among a set of options—the so-called
best-of-n problem—is interesting because it helps us to both
understand biological processes and design the robotics sys-
tems of our future [1,2]. Social insects are an example of
collectives which need to solve the best-of-n problem when
selecting the site where to nidificate [3–5]. While each insect
makes an inaccurate estimate of the quality of each site, the
colony is able to filter noise and reach a consensus on the
best alternative [6]. Similarly, other more complex animals
make collective decisions on when and in which direction to
flee danger, or the location where to forage [7–9]. Collective
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agreement is achieved by individuals sharing their opinion
with others (voting) and, in turn, adopting the opinion ex-
pressed by others’ votes. These simple voting rules employed
by animals are a useful source of inspiration to design algo-
rithms for robot swarms, which make best-of-n decisions, for
example, on the shortest path to navigate [10,11] or the most
important location for their operations [12,13].

The group is able to select the best alternative because each
individual shares her opinion as frequently as the estimated
quality; that is, better alternatives are shared (voted) more
often [14,15]. Despite the individual estimates being incor-
rect, most of the time the group reaches a consensus for the
option that, on average, is estimated to be of higher quality.
Depending on the effort individuals make in acquiring, pro-
cessing, and sharing information in their social network, the
collective dynamics change, e.g., in the group accuracy or
the decision speed. While there are several studies analyzing
voting models in decentralized networks [16–19], there is no
explicit connection between the individual cognitive require-
ments, the social network, and the collective decision-making
performance.
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Here, we build a model that explicitly considers the cogni-
tive effort that individuals make in acquiring and processing
their neighbor’s vote. The more cognitive effort individu-
als put in, the better they pool social information (making
smaller pooling errors). We investigate how speed and ac-
curacy change in collective decisions both as a function
of the individual cognitive load and the interaction net-
work. Our analysis reveals that an increased cognitive effort
leads to quicker and more democratic collective decisions,
but which are not necessarily accurate. Counterintuitively,
the highest levels of collective decision accuracy can be
achieved with moderate levels of cognitive efforts. This how-
ever comes at the expense of a longer deliberation time.
Thus, our model enriches our understanding of the classi-
cal speed-accuracy trade-off in decision-making [13,20–23]
by describing it through the lens of the individual cognitive
load.

Additionally, the network analysis we performed reveals
that groups that are sparsely connected can obtain higher col-
lective accuracy than when they are highly connected. Recent
previous research has shown that in a number of conditions,
having reduced connectivity between the group members can
improve collective performance in terms of coordination,
accuracy, or response speed [24–29]. More precisely, fish
adaptively change their interaction network when exposed to
a threat in order to maximize information transfer in the fish
school [25]. Robots that can only run simplistic algorithms
can also exploit the advantages of sparse connections to im-
prove swarm accuracy [28,30]. While it is commonplace to
assume that higher connectivity can improve opinion shar-
ing and thus lead to better coordination, these recent results
show in which conditions limited connectivity can lead to
improved collective dynamics. Our analysis uses the hetero-
geneous mean-field theory (HMF) [31–34] to show that both
network connectivity and individual cognitive load can be
control parameters to regulate the speed-accuracy trade-off of
group decision-making.

II. THE MODEL

Let us consider a population composed of N agents making
a binary collective decision between two alternative options,
say A and B. Each option is characterized by a quality, QA and
QB (for option A and B, respectively); without lack of general-
ity we hereby assume QA > QB > 0 and we define the quality
ratio Q = QB/QA ∈ (0, 1). Each agent, at a given time t , has
an opinion in favor of either option, A or B. Throughout the
collective decision-making process, agents interact with each
other and change their opinions depending on the votes ex-
pressed by their neighbors. Each agent votes with a frequency
linearly proportional to the estimated quality of each option,
thus QA and QB for options A and B, respectively. Therefore,
through the mean-field approximation, we model the change
of agents’ opinions as a function of the number of agents with
opinion A and B, denoted by nA(t ) and nB(t ), respectively,
weighted by the respective option’s quality and normalized
by the group size N . Such weighted proportions, n#

A and n#
B,

represent the mean-field approximation of the votes expressed
by the agents in favor of option A and B, respectively, and

correspond to

n#
A = QAnA/N

QAnA/N + QBnB/N
,

n#
B = QBnB/N

QAnA/N + QBnB/N
. (1)

Aiming at reaching a group consensus, agents follow a
conformist rule where they align their opinion with the most
voted opinion by their neighbors. However, when agents put
a limited effort into acquiring and processing others’ votes
because, for example, they need to reduce their cognitive load,
they may wrongly compute what is the predominant opinion
in their neighborhood, making what we call a pooling error.
Such pooling errors can be caused by agents that, for exam-
ple, subsample their neighborhood (i.e., they do not record
the votes from all their neighbors but only from a subset of
them), or occasionally record the incorrect opinion of some
of their neighbors. Therefore, the pooling error α is inversely
linked to the effort that the agent invests into pooling social
information. When the agents put maximum effort (corre-
sponding to maximum cognitive load), we can assume they
do not make any pooling error, α = 0. This case corresponds
to the weighted local majority rule model where each agent
collects all the votes of its neighbors, group them by opinion,
and adopts the opinion voted by the majority. Instead, when
agents only sample a single vote from a randomly selected
neighbor and adopt her opinion, they commit moderate levels
of pooling error (in our model, α = 1). This case corresponds
to the weighted voter model, where the probability that an
agent committed to A changes her opinion to B is equal to
the weighted proportion n#

B. The extreme case of maximum
pooling error α � 1 corresponds to agents changing their
opinion totally ignoring others’ votes. Despite the high error,
agents experience very low cognitive load as they do not make
any effort to coordinate with the others.

Previous work has investigated opinion dynamics in popu-
lations of agents that update their opinion through either the
voter model [17,35–40] (later extended to the weighted voter
model [15]) and the local majority rule model [41–44] (later
extended to the weighted local majority rule model [45–47]).
We build a model that generalizes the two existing (weighted)
models and can also interpolate, in a continuous way, the
cognitive load level in the form of pooling error among the
two models and beyond. In our model, agents change their
opinion with probability

Pα (x) =
{

1
2 − 1

2 (1 − 2x)α if 0 � x � 1
2

1
2 + 1

2 (2x − 1)α if 1
2 < x � 1,

(2)

where α � 0 is the pooling error and x ∈ [0, 1] is the weighted
proportion of agents with a different opinion. Therefore, an
agent with an opinion in favor of option A, resp. B, will
change her opinion to B, resp. A, with probability Pα (n#

B),
resp. Pα (n#

A). Note that the assumption of fixed population,
nA(t ) + nB(t ) = N , implies n#

A(t ) + n#
B(t ) = 1 and therefore,

as a consequence of the functional form of Eq. (2), we have

P(n#
A) + P(n#

B) = 1. (3)

Figure 1 shows a graphical representation of Pα (x) of
Eq. (2) and lets us appreciate that intermediate values of the
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FIG. 1. The probability Pα (x) given by Eq. (2) for representa-
tive values of the pooling error α, which is a parameter inversely
proportional to agents’ cognitive load. For α = 0, our model corre-
sponds to the (weighted) local majority rule model [42,47], for α = 1
our model corresponds to the (weighted) voter model [15,35], for
0 < α < 1 our model interpolates between the two, and for α > 1 the
agents change their opinion with little attention to others’ opinion.

pooling error α allow interpolating between the two models.
Indeed, values of 0 < α < 1 represent cases in which an
agent makes a higher effort than sampling a random indi-
vidual (as she does in the voter model), still the probability
of changing opinion in favor of the most-voted option is
lower than the ‘perfect’ case (zero error) of the local majority
rule model. These intermediate values represent conditions
in which the agent samples only a subset of the population
or approximately and imprecisely integrates others’ votes.
Values of α > 1 further reduce the cognitive effort that the
agent puts into taking into consideration others’ opinions. As
the value of the pooling error α increases, the probability
Pα (x) gradually becomes more and more independent of the
actual votes. For α � 1, the probability of changing opinion
approximates the flat line Pα (x) = 0.5, that is, the agents
make maximum levels of pooling error by randomly chang-
ing their opinion regardless of the opinions expressed by the
others.

We first consider a well-mixed population; that is, agents
are the nodes of a complete network and therefore every agent
can directly exchange votes with all the other agents. Despite
being an idealized case, it allows us to build a deep analytical
understanding of our model in Sec. III, preliminary to the
study of a population interacting on a heterogeneous network
in Sec. IV.

III. MEAN-FIELD ANALYSIS

Let us introduce the proportion of agents with option A,
resp. B, a(t ) = nA(t )/N , resp. b(t ) = nB(t )/N , hence a(t ) +
b(t ) = 1. The proportion of agents with opinion A increases
when agents with opinion B change their minds and adopt
opinion A, or decreases when agents with opinion A adopt
opinion B. As illustrated in Appendix A, exploiting the well-
mixed hypothesis, we obtain the time evolution of a(t ) in the

form of the following ordinary differential equation:

da

dt
= −a + Pα

(
a

a(1 − Q) + Q

)
=: fα (a). (4)

Because the population size is finite and fixed (a + b = 1),
Eq. (4) is sufficient to fully determine the temporal dynamics
of the system, without the need to explicitly define another
equation ruling the evolution of the proportion of agents with
opinion B.

We analyze the long-term dynamics of the system by find-
ing the equilibria of Eq. (4) and computing their stability as
a function of the model parameters. The equilibria are found
at values of a that satisfy fα (a) = 0. We find that â∗ = 1 and
ǎ∗ = 0 are always two zeros of fα (a). When these equilibria
are stable, they correspond to a consensus decision for either
alternative: for â∗ = 1, all agents eventually have opinion A,
that is, the population has selected the best option (because
QA > QB), or, when ǎ∗ = 0, all agents eventually have opin-
ion B and therefore the population has made a collective
mistake by selecting the option with the inferior quality. For a
range of values of α and Q, a third equilibrium ã∗ ∈ (0, 1)
may exist and it corresponds to a polarized population, in
which agents with opinion A and B coexist. In this case,
there is not a consensus decision but the population is in a
decision deadlock. Recall that Q < 1; therefore, we can prove
(as detailed in Appendix A) that

(1) if Q > α, both ǎ∗ = 0 and â∗ = 1 are stable equilibria,
and a third equilibrium 0 < ã∗ < 1 exists and is unstable.

(2) if Q < α < 1/Q, then ǎ∗ = 0 is unstable while â∗ = 1
is stable, the third equilibrium 0 < ã∗ < 1 does not exist.

(3) if 1/Q < α, both ǎ∗ = 0 and â∗ = 1 are unstable equi-
libria, and a third equilibrium 0 < ã∗ < 1 exists and is stable.

Note that when the third equilibrium ã∗ exists and it is
unstable—i.e., the case (i) above—the fate of the system de-
pends on the initial conditions. Stated differently, the position
of the third equilibrium a∗ splits the interval [0,1] into two
parts [0, ã∗) and (ã∗, 1], and if the initial conditions are such
that a(0) ∈ [0, ã∗), then a(t ) → 0 [and thus b(t ) → 1], while
if a(0) ∈ (ã∗, 1], then a(t ) → 1 [and thus b(t ) → 0]. If there
are only two equilibria—i.e., the case (ii) above—the system
converges to â∗ = 1 for any initial conditions (which corre-
spond to the accurate collective decision, being QA > QB).

In Fig. 2, we show the bifurcation diagram of the mean-
field model of Eq. (4) for QA = 1 and QB = 0.9, as a function
of α. We report the equilibria and their stability (in green
when stable and in red when unstable) for values of α in
the range [0,2] (x axis). Note that ǎ∗ = 0 (corresponding to
a population fully committed to the inferior option B) is a
stable equilibrium for α < Q and unstable otherwise. Simi-
larly, â∗ = 1 (corresponding to a population fully committed
to the best option A) is a stable equilibrium for α < 1/Q
(that is 1/0.9 ≈ 1.11 for the used values of QA and QB) and
unstable in the remaining range of α. The third equilibrium
0 < ã∗ < 1, associated with a population where opinions A
and B coexist, is unstable for α < Q (red branch), stable for
α > 1/Q (green branch), and does not exist for Q < α < 1/Q.

In Fig. 2, we also overlay to the analytical bifurcation
diagram the results obtained from the numerical stochastic
simulation of a system defined on a complete graph made
of N = 500 agents, using the same values for the opinion
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FIG. 2. Bifurcation diagrams showing the equilibria of the mean-
field model of Eq. (4) as a function of α ∈ [0, 2] for QA = 1 and
QB = 0.9. Green dots show stable equilibria, red dots show unstable
equilibria, and blue dots show the average asymptotic values of
〈nA〉/N obtained with stochastic numerical simulations of a pop-
ulation of N = 500 agents interacting on a complete graph and
initialized at nA(0) = 100. The match between mean-field model
predictions and simulations is good.

quality, QA = 1 and QB = 0.9. For each value of α ∈ [0, 2],
we numerically integrate the system for 50 000 time steps
and report the average of the final proportion of agents with
opinion A (i.e., 〈nA〉/N) over 21 runs. When α < QB, the
mean-field theory predicts that the system converges to ǎ∗ = 0

if the initial condition is below the value of the third unstable
equilibrium ã∗. In agreement with the theoretical predictions,
our simulations, which have been initialized with nA(0) = 100
(i.e., a = 0.2), reached the final system state nA = 0 for α <

Q (blue dots in Fig. 2). When only two equilibria exist, the
mean-field analysis predicts convergence to â∗ = 1 for any
initial conditions, and indeed the blue points (up to finite-
size effects) converge to nA = N . Finally for large α, when
the third equilibrium is stable, according to the mean-field
analysis, the system should oscillate about this third equi-
librium; the numerical results agree well with the analytical
predictions, with the blue dots aligned with the green curve.

Figure 3(a) shows the stability diagram of the mean-field
system of Eq. (4) as a function of the parameters α and
Q. The parameter space is divided into three regions, de-
termined by the stability of the system equilibria. The three
regions are delimited by the curves α = Q (white curve) and
α = 1/Q (black curve), and correspond to the three stability
cases described above in this section (see Appendix C for the
analytical derivation of such curves). The large red region
corresponds to model parameters by which the population
correctly chooses the opinion with the highest quality for any
initial conditions [case (ii) above, equilibrium ǎ∗ = 0 is un-
stable and â∗ = 1 is stable]. In the blue region, the population
remains undecided, composed of two subpopulations, each
with a different opinion [case (iii) above, equilibria ǎ∗ = 0
and â∗ = 1 are unstable and 0 < ã∗ < 1 is stable]. In the green
region, the population can converge to the best or the worst
option depending on the initial condition, therefore there is
the possibility the population may make a collective mistake
[case (i) above, equilibria ǎ∗ = 0 and â∗ = 1 are stable and

FIG. 3. Stability diagrams and convergence time. In panel (a) we report the stability diagram of the mean-field model (4) as a function of
the quality ratio Q and the pooling error α (inversely proportional to the cognitive cost). The parameter space is divided into three regions: in
the red region the population makes accurate collective decisions for any initial condition; in the blue region the population remains locked
at indecision with agents’ opinions fluctuating between the two options; in the green region, a consensus for either alternative is possible
depending on the initial conditions, therefore mistakes are possible. The three regions are separated by the curves α = Q (white curve) and
α = 1/Q (black curve). Panels (b) and (c) show the results from simulations of N = 500 agents interacting on a fully connected (all-to-all)
network. For each couple (Q, α), we perform 100 independent simulations with random initial configurations (i.e., the initial number of agents
with opinion A is uniformly drawn in [0, N] at each run). In panel (b), the RGB color of each pixel is computed by assigning to the three values
R, G, and B a value equal to the proportion of simulations that terminated at nA = 500, nA = 0, and 0 < nA < 500, respectively. In panel (c),
the colormap shows the average number of time steps needed to reach a consensus, i.e., nA = 500 or nB = 500, as a function of Q and α. The
white region in the top-right corner indicates the absence of data because no simulations reached a consensus for either option.
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0 < ã∗ < 1 is unstable]. These mean-field predictions match
well with the results shown in Fig. 3(b), obtained from the
numerical simulation of a population of N = 500 agents in-
teracting on a complete graph. The outcome of the decision
is color coded in the RGB space, coloring each pixel with
an RGB color where the red value R ∈ [0, 1] corresponds to
the proportion of simulations terminating with accurate deci-
sions (nA = N), the green value G ∈ [0, 1] to the proportion
of simulations terminating with incorrect decisions (nA = 0),
and the blue value B ∈ [0, 1] to the proportion of simulations
terminating without a consensus decision (0 < nA < N) after
50 000 time steps.

Figures 3(a) and 3(b) show that only when the agents have
a high pooling error (α > 1) corresponding to a low cognitive
load, the population can remain deadlocked at indecision. This
happens in the blue region which increases in size as the cog-
nitive load decreases (i.e., increasing pooling error α) or the
decision problem difficulty increases (i.e., increasing quality
ratio Q). This is caused by agents that are rarely capable of
changing their opinion based on the real distribution of opin-
ions in the population. Interestingly, despite the poor skills of
the agents, the population can either select the best option and
make an accurate decision or remain undecided but it never
selects the inferior option with the lower quality. Differently,
decision deadlocks do not occur for any cognitive level higher
or equal than the voter model, i.e., α � 1, however, decision
mistakes can be made. For any given pooling error α < 1
(i.e., relatively high cognitive level), as the decision problem
becomes harder (i.e., the quality ratio Q increases), the possi-
bility of making a mistake increases. The collective mistake
occurs when the system is in the bistability (green) region
and moves to a state below the unstable equilibrium, a < ã∗,
for example, due to random fluctuations. While the stability
diagram [Fig. 3(a)] only shows the region of bistability, the
simulation results also show that decision mistakes are more
likely to happen for harder decision problems (high Q).

An additional result that may not be obvious is that the red
region in Figs. 3(a) and 3(b)—which corresponds to reliably
accurate decisions—is maximized for intermediate cognitive
load levels (i.e., α = 1 shown as a dashed horizontal gray
line) and it reduces as the agent cognitive load increases.
However, we can appreciate a more complete picture of the
system dynamics by also analyzing the decision time, namely,
the number of steps required for the population to reach a
complete consensus (i.e., all agents have opinion A or all
agents have opinion B). Given this definition, we cannot com-
pute the decision time when the system remains undecided
and agents committed to both options coexist (blue region).
Figure 3(c) shows the time steps needed to reach a consensus
for a population of N = 500 simulated agents interacting on
a complete graph. [Note that the top-right corner of the col-
ormap of Fig. 3(c), which coincides with the blue region in
Fig. 3(b), has no decision time data because the system never
reaches a consensus, therefore we left it colorless, in white.]
The comparison of Figs. 3(b) and 3(c) shows the existence
of a speed-accuracy trade-off, in which the speed to make a
decision is traded with the collective accuracy, as it has been
already documented in previous work [13,21,23,47]. There-
fore, increasing agents’ cognitive load allows the population
to quickly reach a consensus at the cost of possible decision

mistakes [here shown as a wider green region in Figs. 3(a) and
3(b)].

IV. HETEROGENEOUS MEAN-FIELD ANALYSIS

In this section, we relax the assumption of full connectivity
and instead hypothesize that each agent can only exchange her
opinion with a limited number of peers, i.e., with her neigh-
bors. Thus, we can represent each agent as a node of a network
connected through edges to a subset of other agents from
which she can receive and send information. The network of
connections is described by the adjacency matrix A, such that
Ai j = 1 if and only if agents i and j are connected, and Ai j = 0
otherwise. We also assume the network to be undirected, that
is Ai j = Aji, simple, that is at most one edge can connect two
nodes, and connected, that is starting from any node, there is
a sequence of edges that allows reaching any other node.

When agent i is selected, she pools information from her
neighbors to change her opinion. Agent i has ki = ∑

j Ai j

neighbors, of which ni,A have opinion A and ni,B have opin-
ion B, thus, ki = ni,A + ni,B. The number of i’s neighbors ki

corresponds to the degree of the node i. Analogous to Eq. (1),
but assuming a sparse network, the votes expressed by the
neighbors of i in favor of options A and B are, respectively,

n#
i,A = QAni,A/ki

QAni,A/ki + QBni,B/ki
,

n#
i,B = QBni,B/ki

QAni,A/ki + QBni,B/ki
. (5)

As further described in Appendix B, once agent i interacts
with her neighbors, she adopts opinion A or B with proba-
bility Pα (n#

i,A) or Pα (n#
i,B), respectively, as we also recall that

Pα (n#
i,A) = 1 − Pα (n#

i,B).
By assuming the heterogeneous mean-field hypothesis

[31,32] to be valid, we hypothesize that all nodes with the
same degree exhibit the same behavior. Therefore, we can
define Ak (opinion Bk) as the number of agents, i.e., nodes,
with degree k and opinion A (opinion B), and Nk as the total
number of agents with degree k. Hence, Ak + Bk = Nk for all
k. In a similar way to the mean-field analysis of Sec. III, we
define ak = Ak/Nk (bk = Bk/Nk) as the proportion of agents
having opinion A (B) among all agents with degree k; hence,
for all k we have ak + bk = 1.

Let us now describe the time evolution of ak for a generic
k. The proportion ak increases when an agent with degree k
and opinion B changes her opinion to A, or it decreases when
an agent with degree k and opinion A changes her opinion
to B. To compute the frequency of these events, we compute
n#

i,A and n#
i,B given in Eq. (5) under the HMF assumption. The

HMF theory originated in epidemiology, which uses the con-
cept of excess degree [48] to compute the infection probability
of a focal agent. The excess degree is the number of neighbors
that a neighbor of the focal agent has, without considering the
focal agent. In other words, the excess degree of an agent is
its number of neighbors minus one (see Fig. 4). We define pk

as the probability that a uniformly random chosen node has
degree k, and qk as the probability for a node to have excess
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i

...
...

A with prob ajr+1

B with prob 1 − ajr+1

i1

ir

ik

deg(i) = k

deg(ir) = jr + 1 with prob qjr{
FIG. 4. Schematic representation of the probabilities involved in

the heterogeneous mean-field computations. The focal node i has k
neighbors (degree k), denoted by i1, . . . , ir, . . . , ik . Each neighbor,
e.g., node ir , has an excess degree jr with probability qjr and there-
fore degree jr + 1. With probability ajr+1, she has opinion A, and
therefore with probability 1 − ajr+1, she has opinion B.

degree equal to k, which we can compute as

qk = (k + 1)pk+1

〈k〉 ∀ k � 0, (6)

where 〈k〉 = ∑
k kpk is the average node degree, and triv-

ially
∑

k qk = 1. Let us consider a generic focal agent i (or,
equivalently, focal node i) with degree k and opinion B (see
Fig. 4); let q j1 be the probability that an agent i1, connected
to the focal agent i, has excess degree j1 � 0. Let a j1+1 be the
probability that agent i1 has opinion A, and b j1+1 = 1 − a j1+1

the probability she has opinion B. By considering all the k
agents connected with the focal agent i we can conclude that
q j1 , . . . , q jk determines the joint probability that each agent
reachable from any of the k edges emerging from the former
agent, has excess degree j1, . . . , jk . We can then define πk,ω as
the probability that ω agents among the k ones have opinion B
and thus k − ω agents have opinion A. Therefore, the term ω is
a linear combination of the products of ajm+1 and (1 − a jm+1),
with m = 1, . . . , k. Hence, we can compute the weighted pro-
portion of agents with opinion A as n#

i,A = (k − ω)/[k − ω +
Qω], and this event happens with probability qj1 , . . . , q jk πk,ω.
In conclusion, agent i with opinion B can change opinion
with probability q j1 , . . . , q jk πk,ωPα[(k − ω)/(k − ω + Qω)].
See an explanatory example for k = 2 in Appendix B.

In a similar way, we can compute the decrease rate of
agents with degree k and opinion A. In this case, the ar-
gument of the function Pα is QBω/[QA(k − ω) + QBω] =
Qω/(k − ω + Qω), that is, the weighted proportion of agents
with opinion B assuming that ω agents among them have
opinion B. Note that, because Pα (n#

A) + Pα (n#
B) = 1, we have

that

Pα

(
Qω

k − ω + Qω

)
= 1 − Pα

(
1 − Qω

k − ω + Qω

)

= 1 − Pα

(
k − ω

k − ω + Qω

)
.

By combining these equations and following a series of sim-
plifications described in Appendix B, we describe the change

in time of the proportion ak as

dak

dt
= −ak +

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
.

(7)

To analyze the dynamics and equilibria of the system, we
define

〈a〉 :=
∑
j�0

q ja j+1, (8)

and by combining it with Eq. (7), we obtain

d〈a〉
dt

= − 〈a〉 +
∑

k

qk

k∑
ω=0

(
k + 1

ω

)
〈a〉k+1−ω(1 − 〈a〉)ω

× Pα

(
k + 1 − ω

k + 1 − ω + ωQ

)
:= f (hm f )

α (〈a〉). (9)

By imposing f (hm f )
α (〈a∗〉) = 0, we can find (up to) three

equilibria 〈a∗〉. There is the equilibrium 〈ǎ∗〉 = 0, where ak =
0 for all k, which corresponds to the system with no agent
having opinion A (thus, all agents have opinion B). There
is the equilibrium 〈â∗〉 = 1, where ak = 1 for all k, which
corresponds to the system with all agents having opinion A.
There is also a third equilibrium 0 < 〈ã∗〉 < 1, which has a
nontrivial mathematical expression and exists only for a cer-
tain range of parameter values. This equilibrium corresponds
to the coexistence of agents with opinions A and B.

The stability of the three equilibria can be studied by an-
alyzing the sign of the derivative of f (hm f )

α . By following the
steps described in Appendix B, the derivatives evaluated at the
equilibria 〈ǎ∗〉 = 0 and 〈â∗〉 = 1 are, respectively,

(
f (hm f )
α

)′
(0) = −1 +

∑
k

qk (k + 1)Pα

(
1

1 + kQ

)
,

(
f (hm f )
α

)′
(1) = −1 +

∑
k

qk (k + 1)Pα

(
Q

k + Q

)
. (10)

Therefore, we can appreciate that the stability of both equilib-
ria is not only determined by the parameters α and Q, as in the
mean-field case of Sec. III, but also by the network structure,
via the probability of excess degree qk .

A. Scale-free networks

The heterogeneous mean-field analysis allows us to study
the influence of the network topology on group dynamics.
Here, we consider scale-free networks with a degree distri-
bution that follows a power law with exponent γ > 2 and
minimum degree kmin. Therefore, the probability that a uni-
formly random chosen node has degree k is pk = cγ /kγ

(where cγ := (
∑

k�kmin
1/kγ )−1 > 0 is a normalizing con-

stant). The excess degree probability is qk = cγ

〈k〉(k+1)γ−1 , and
the average degree is 〈k〉 = ∑

k�kmin
kcγ /kγ . In our simula-

tions, we build scale-free networks of size N = 500 using the
configuration model [48], except for kmin = 1, where building
connected networks of a given size through the configuration
model is hard; hence to study such a case (kmin = 1), as re-
ported in the Appendix E, we used the Simon model [48,49].
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FIG. 5. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 2 as a function of the pooling error α and quality ratio Q. We present the results for
three values of the exponent γ regulating network connectivity: top row γ = 2.2, central row γ = 2.6, bottom row γ = 3.1. [(a)–(c)] Left
column panels show the convergence diagram of the mean-field model (9). The parameter space is divided into the same three regions of
Fig. 3(a) using the same color code. [(d)–(i)] Central and right column panels show the results of simulations (100 independent runs for each
(Q, α) configuration) of N = 500 agents interacting on a scale-free network with random initial configurations [i.e., nA(t = 0) ∼ U (0, N )] for
50 000 time steps. [(d)–(f)] Central column panels show the outcome of the collective decision-making process using the same RGB color code
as Fig. 3(b). [(g)–(i)] Right column panels show the average number of time steps needed to reach a consensus, i.e., nA = 500 or nB = 500.
The top-right white region indicates the absence of data, as the system never reaches a consensus.

By using the same color code of Fig. 3(a), Figs. 5(a)–
5(c) show the stability diagrams for γ ∈ {2.2, 2.6, 3.1} and
kmin = 2 as a function of the parameters pooling error α and
quality ratio Q, defining the individual cognitive load and the
decision-problem difficulty, respectively. We can appreciate
that, as the exponent γ increases, the size of the red region in-
creases and the size of the green region decreases (on the other
hand, the change in the blue region is unnoticeable). While in
the green region the collective decision depends on the initial
system condition (thus opening the group to possible errors),
in the red region the population cannot make mistakes but only

makes accurate collective decisions for any initial condition.
The same conclusion can be reached by observing the stability
diagrams of Fig. 6, in which the problem difficulty is fixed
(quality ratio Q ∈ {0.5, 0.8, 0.9}) and the stability regions are
computed as a function of α and γ . Therefore, the results
of Figs. 5 and 6 suggest that when opinions are exchanged
in networks with high γ , the population is more accurate in
collective decision-making.

The effect of an improved group accuracy for higher γ is
even more evident in the numerical simulation results, shown
in Figs. 5(d)–5(f) and 6(d)–6(f), where the red region expands
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FIG. 6. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 2 as a function of the pooling error α and network’s power-law exponent γ . We report
results for three values of the quality ratio Q = QB/QA, which encodes the decision problem difficulty: top row Q = 0.5 (easy problem), central
row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult problem), with QA = 1. Color code and experimental design are the same as
that described in the caption of Fig. 5.

to an even larger parameter space than the (green) region
of bistability. This qualitative change of the group dynamics
with γ only happens for kmin � 2 as shown in Figs. 5 and
6 for kmin = 2, and in Figs. 13 and 14 for kmin = 1 in Ap-
pendix E. Instead, the results in Figs. 15 and 16 for kmin = 3
in Appendix E show dynamics that are (almost) indepen-
dent of γ for the mean-field [shown clearly in the γ − α

plots by the horizontal green region of Figs. 16(a)–16(c)]
and and have small γ -dependent improvement of accuracy
in the numerical simulations [Figs. 15(d)–15(f) and 16(d)–
16(f)]. These results suggest that low network connectivity
(here linked to a lower minimum degree kmin) can improve
accuracy.

As γ increases, the probability of having nodes with a
large degree decreases as 1/kγ and most of the nodes have
a very low degree (about kmin neighbors), also indicated by
a decreasing average degree 〈k〉 [48]. Higher γ is also as-
sociated with a shortening of the network average shorted
path 〈�〉, a measure of global connectivity [48]. Therefore,
these results suggest that collective accuracy can improve as
connectivity decreases, i.e., in networks that are sparse with
nodes with mostly low degrees. The counterintuitive nature of
this result—groups perform better communicating on sparse
networks—can be explained by complementing the analysis
with the decision time. In fact, Figs. 6(g)–6(i) show that, as
the probability of having nodes with a large degree decreases
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FIG. 7. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on 2m-regular ring networks as a function of the pooling error α and the quality ratio Q. We present the results for three
values of the parameter m regulating network connectivity: top row m = 2, central row m = 3, bottom row m = 10. Left column panels—i.e.,
(a)–(c)—show the convergence diagram of the HMF model (9). Color code and experimental design are the same as the one described in the
caption of Fig. 5.

(i.e., increasing γ ), the average decision time slightly in-
creases. This result supports and extends beyond the case α =
1 the results presented in Ref. [24]. Therefore, once again,
improved accuracy is coupled with slower decisions, and in
this case the speed-accuracy trade-off can be regulated by both
the individual cognitive load (pooling error α) and the network
connectivity (exponent γ ).

B. 2m-ring networks

As a cautionary note, we also want to highlight the limita-
tions of the HMF approach. While the model predictions are
confirmed by agent-based simulations on the tested scale-free
networks (Figs. 5 and 6), the model is not able to pre-
dict accurately the dynamics of a population interacting on

2m-regular graphs notably in networks with small values of m.
In particular, we investigate the dynamics of nodes interacting
on ring networks where all nodes are connected to their first
m neighbor nodes on the “left” and m on the “right,” in such a
way all nodes have the same degree k = 2m. In Appendix C,
we study the heterogeneous mean-field model for the case of
2m-regular ring networks and derive the equations describing
the bifurcation points that determine the stability changes
of the system. Figures 7(a)–7(c) show stability diagrams for
m ∈ {2, 3, 10} that are qualitatively similar to those computed
for the other types of networks (complete graph and scale-free
networks). However, Figs. 7(d)–7(f) show that the results of
the numerical simulations only partially agree with the the-
ory predictions. The agreement improves as the connectivity
increases [m = 10, Fig. 7(f)], however, the dynamics for low
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FIG. 8. Average shortest path 〈�〉 (y axis) as a function of the
number of crisscross rewiring nnew (x axis), starting from a regular
6-ring network of N = 500 nodes.

values of m are different. In particular, we can appreciate that
the agent-based simulations can make accurate decisions (red
region) for a much larger range of parameters Q and α than
what the theory predicted.

One possible cause of this discrepancy between the mean-
field model dynamics and the simulation results can be the
model assumption of a well-mixed system, which is not satis-
fied in 2m-ring networks. Our intuition is further supported by
the analysis of the option dynamics on Erdős-Rényi graphs,
reported in Appendix F, which show a good agreement
between the HMF model’s stability diagrams and the multi-
agent simulations. Therefore, we applied a degree preserving
rewiring process to the 2m-ring networks (see Appendix D) to
reduce the average shortest path and study its impact on the
population dynamics. More precisely, we consider a 6-regular
ring, i.e., m = 3, made of N = 500 nodes, and rewire a subset
of the network edges. In this way, all nodes keep 2m neigh-
bors and, as shown in Fig. 8, only the average shortest path

〈�〉 := ∑
i �= j �i j/[N (N − 1)] reduces as the rewiring increases

(where �i j is the shortest path among nodes i and j).
By comparing the results of the HMF model and of the

numerical multi-agent simulations on a 6-ring network with
increasing rewiring, we can appreciate a good match between
model and simulations as the number of rewiring increases
(Fig. 9). Note that all rewired networks have the same degree
distribution pk = 2m = 6 and thus the HMF model’s equilib-
ria are the same. With the average shortest path shortening,
the similarity between the model and the numerical simulation
results increases.

Despite the current HFM model cannot completely grasp
the dynamics on 2m-regular ring networks, the simulation
results on this type of networks [Figs. 7(d)–7(f)] confirm our
intuition that collective decision-making accuracy increases
as the network connectivity reduces. Population operating on
networks with low m have consistently a higher accuracy. In-
terestingly, for 2m-regular ring networks, it seems that there is
no trade-off between decision speed and accuracy but, instead,
rings with low m enable both quick and accurate decisions.

V. CONCLUSIONS

Modeling collective decision-making processes can pro-
vide useful insights into the understanding of the living world
and design new decision protocols for more efficient group
decisions. The voter model and variations of them, thanks to
their mathematical simplicity, have been effectively used to
model decision-making at every level of biological complex-
ity, from ecological dynamics of plant communities [39] to
coordinated motion in fish [37] to house-hunting in honey-
bees [5] to human group dynamics [17,50]. In the best-of-n
problem, the group has to select the best option among a
discrete set of n alternatives and these models describe how
opinions spread from one individual to another through vot-
ing interactions on a social network. This study presents a
model capable of generalizing a set of popular existing voter-
like models for collective decision-making in the best-of-two

FIG. 9. (a) Comparison of the HMF model stability diagram with the results of the [(b)–(d)] numerical simulations. We study the impact
of the crisscross rewiring in 2m-ring networks, with m = 3 (i.e., 6-ring). (a) Stability diagram of the HMF model [this is the same as Fig. 7(d)].
[(b)–(d)] Decision outcome of the numerical simulations using the same color code and experimental design as those described in the caption
of Fig. 5(d). On top of each panel, we indicate how many edge-rewiring steps (nnew) we compute and the corresponding average shortest path
〈�〉, i.e., in panel (b) no rewiring is done and it corresponds to Fig. 7(e), in panel (c) we do nrew = 20 edge-rewiring steps, and in panel (d) we
do nrew = 500 edge-rewiring steps.
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scenario. Our analysis focuses on understanding the impact
of two control parameters—the pooling error and the network
connectivity—on the collective performance in terms of deci-
sion accuracy and time.

Both pooling error and the network connectivity regulate
a speed-accuracy trade-off. By reducing the pooling error,
and therefore demanding a higher cognitive effort from the
individuals to correctly process the social information, the
population can make quicker and more democratic decisions,
however with reduced accuracy due to the more frequent
selection of the option with the lowest quality, compared with
models with higher pooling error and thus lower individual
cognitive effort. Instead, by reducing network connectivity,
and therefore reducing the average number of neighbors of
each individual, collective accuracy is improved at the cost of
higher decision time. These results improve our understanding
of the role of individual costs and network connectivity in
collective decision-making.

By measuring the losses, and even the benefits, of reducing
computation and communication costs, our analysis can be
useful to support the design of autonomous robot systems
capable of operating without human supervision. Reduced
costs can save energy, money, and, in general, resources both
at design and runtime, i.e., designing robots with simpler
circuitry can be cheaper and consuming less energy in social
interactions can improve efficiency. Erroneous computations
and limited connectivity cannot only be cheaper but also in-
crease performance in terms of decision accuracy (due to a
longer deliberation time during which the decision, rather than
being rushed, is more accurately made). Recent results also
observed that there are certain conditions where reduced con-
nectivity between the agents of the group—robots, animals,
or humans—can give important group-level advantages, e.g.,
better responsiveness to environmental changes [26,28,30],
evading a predator or avoiding dangers [25,27], or generate
higher cultural diversity and innovations [51,52]. We believe
that the results of our analysis can also have important im-
plications in the study and design of group decision-making
in human societies, which can be biased and manipulated
through targeted interventions on how information is ex-
changed and aggregated in the social networks [53,54].

Despite abstracting components of the process, the type of
analysis proposed in our study can give useful predictions.
Future work can look into extending the analysis to measure
the impact of different aspects—e.g., average degree, shortest
average path—characterizing the different types of network
topologies—e.g., Erdős-Rényi random graphs, Barabási-
Albert’s scale-free networks, Watts-Strogatz’s small-word
network, and random geometric graphs. We also believe that
an interesting extension of the work could apply the present
analysis to study the dynamics of heterogeneous populations,
comprising individuals that follow different voting rules or
that have different levels of conformism with others (e.g.,
populations comprising stubborn agents [55–57]).
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APPENDIX A: THE MEAN-FIELD MODEL

In this Appendix, we first indicate the steps needed to
deduce the mean-field system of Eq. (4) (in the main text)
and then we find the equilibria of the system and study their
stability.

Let us introduce the proportion of agents with opinion A
(B), a(t ) = nA(t )/N [b(t ) = nB(t )/N], hence a(t ) + b(t ) = 1.
The proportion of agents with opinion A increases because
agents with opinion B change their minds and adopt opinion
A, or decreases if agents with opinion A adopt opinion B;
therefore, we can write the change of a in a small time interval
dt → 0 as

da

dt
= bPα (a# ) − aPα (b# ). (A1)

We recall the quantities n#
A and n#

B defined in Eq. (1) in the
main text, representing the votes expressed for option A and
B, respectively, which are weighted by the quality. Therefore,
we can define the weighted proportions

a# = a

a + Qb
and b# = Qb

a + Qb
, (A2)

where Q is the ratio QB/QA. Given the functional form of Pα

given in Eq. (2), we can conclude that

Pα (a# ) + Pα (b# ) = 1.

Hence, we can derive the mean-field model of Eq. (4) as

da

dt
= (1 − a)Pα (a# ) − a[1 − Pα (a# )]

= Pα

(
a

a(1 − Q) + Q

)
− a =: fα (a).

The equilibria of this system are determined by the zeros
of fα (a), namely, we are looking for values a∗ ∈ [0, 1] such
that

fα (a∗) = 0, i.e., Pα

(
a∗

a∗(1 − Q) + Q

)
− a∗ = 0. (A3)

The equilibrium stability is determined by the sign of the
derivative computed on the equilibrium, f ′(a∗). To simplify
the analysis, let us introduce a new variable

x = a

a(1 − Q) + Q
. (A4)

Observe that x is well defined, indeed a(1 − Q) + Q �= 0 for
a ∈ [0, 1] and moreover x = 0 if a = 0 and x = 1 if a = 1. In
conclusion, Eq. (A4) defines a bijective map from [0,1] into
[0,1]. By inverting the relation (A4) we can write

a = xQ

1 − x(1 − Q)
, (A5)
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hence solving Eq. (A3) is equivalent to solve

Pα (x∗) = x∗Q

1 − x∗(1 − Q)
, (A6)

that is to determine the intersections between the function
Pα (x) and the hyperbola g(x) = xQ/[1 − x(1 − Q)]. Two so-
lutions are trivially found: x̌∗ = 0 and x̂∗ = 1. However, for
some choice of the parameters Q and α, a third solution x̃∗
can also exist.

To find the intersections between the two functions, let
us define �(x) = P(x) − g(x), and search for which values
�(x) = 0. As indicated above, for x = 0 and x = 1, we have
�(0) = �(1) = 0. To determine the existence of (at least) a
third root let us consider the derivative of �(x) at x = 0 and
x = 1. A straightforward computation returns �′(0) = α − Q
and �′(1) = α − 1/Q. A sufficient condition to have a third
solution is thus �′(0) > 0 and �′(1) > 0 or �′(0) < 0 and
�′(1) < 0. The reason is that the function �(x) is continuous
and if it approaches both x = 0 and x = 1 with increasing (or
both decreasing) derivatives, it should cross (at least once) the
0 line at some point.

Let us now consider the stability of the three equilibria. The
equilibrium x̌∗ = 0 is stable if and only if �′(0) < 0, namely,
if α < Q. On the other hand, the equilibrium x̂∗ = 1 is stable
if and only if �′(1) < 0, namely, α < 1/Q. From Eq. (A5)
one can obtain the value of the variable a given x, we can thus
draw the following conclusions:

(1) Let Q > 1:
(1) If α < 1/Q, then we also have α < Q, thus ǎ∗ = 0

and â∗ = 1 are stable equilibria, and the third equilibrium
0 < ã∗ < 1 exists but it is unstable.

(2) If 1/Q < α < Q, then ǎ∗ = 0 is stable, â∗ = 1 is
unstable, and the third equilibrium 0 < ã∗ < 1 does not
exist.

(3) If Q < α, then ǎ∗ = 0 and â∗ = 1 are unstable equi-
libria, and the third equilibrium 0 < ã∗ < 1 exists and is
stable.
(2) Let Q < 1:

(1) If α < Q, then we also have α < 1/Q, thus ǎ∗ = 0
and â∗ = 1 are stable equilibria, and the third equilibrium
0 < ã∗ < 1 exists but is unstable.

(2) If Q < α < 1/Q, then ǎ∗ = 0 is unstable, â∗ = 1 is
stable, and the third equilibrium 0 < ã∗ < 1 does not exist.

(3) If Q < α, then ǎ∗ = 0 and â∗ = 1 are unstable equi-
libria, and the third equilibrium 0 < ã∗ < 1 exists and is
stable.

APPENDIX B: THE HETEROGENEOUS
MEAN-FIELD MODEL

In this section, we present the detailed computation needed
to derive through heterogeneous mean-field theory Eqs. (7)
and (9), presented in the main text. Let us assume that agents
are connected via a network and they can exchange opinions
only with neighbors to which they are directly corrected.
Given an agent i, her neighbors are defined as the nodes j
for which Ai j = 1, where A is the N × N adjacency matrix.

Observe that Ai j = 0 if agents i and j are not connected and
therefore cannot directly exchange opinions.

Let us introduce the quantities ni,A and ni,B that indicate
the number of neighbors of agent i with opinion A and B,
respectively. Formally, we can define them as

ni,A =
∑

j

Ai j Â j and ni,B =
∑

j

Ai j B̂ j, (B1)

where Â j = 1 (B̂ j = 1) if agent j has opinion A (B), and zero
otherwise.

An agent i with opinion A (B) changes her opinion to B
(A) with probability defined by the nonlinear function Pα (n#

i,B)
[function Pα (n#

i,A)] presented in Eq. (2), with argument the
weighted proportion n#

i,B (n#
i,A) of i’s neighbors with opinion

B (opinion A). The weights of n#
i,A and n#

i,B are proportional
to the quality of opinions A and B, respectively, and can be
mathematically defined as

n#
i,A = QAni,A

QAni,A + QBni,B
and n#

i,B = QBni,B

QAni,A + QBni,B
.

(B2)

We recall that ki = ∑
j Ai j is the degree of the node i and

trivially ki = ni,A + ni,B. Let us observe that by defining
Q = QB/QA we can rewrite the previous relations as

n#
i,A = ni,A

ni,A + Qni,B
= ni,A

(1 − Q)ni,A + Qki

= ni,A/ki

(1 − Q)ni,A/ki + Q
and n#

i,B = 1 − n#
i,A, (B3)

namely, Eq. (5) in the main text.
Let us now assume the validity of the heterogeneous mean-

field (HMF) hypothesis [31,32] and let thus aggregate agents
according to their opinion and degree, namely, we define Ak

and Bk to be the number of agents with degree k and opinion
A or B, respectively. Then, setting Nk to be the number of
agents with degree k, we have Ak + Bk = Nk for all k. Let
us introduce ak = Ak/Nk and bk = Bk/Nk as the proportion
of agents with degree k and opinion A or B, respectively. The
goal is to express the probability of changing opinion by using
the HMF.

Let us consider an agent i with opinion B and assume
she has k neighbors, and we want to compute the probabil-
ity that ω neighbors have opinion B and k − ω opinion A
(with ω ∈ {0, . . . , k}), so that we can compute the weighted
proportions of Eq. (B2) as n#

i,A = (k − ω)/(k − ω + Qω) and
n#

i,B = ωQ/(k − ω + Qω). In the spirit of the HMF hypoth-
esis, we determine the probability that a node has degree k′
by only knowing that it is connected to a node with degree
k; the latter is given by the excess degree qk′ , namely, qk′ =
(k′ + 1)pk′+1/〈k〉, where pk is the proportion of nodes with
degree k and 〈k〉 the average network degree.

1. Example for k = 2

Before computing the formula for a general degree k, let
us present an example for k = 2 which helps us to explain
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our reasoning. Assume the focal agent i has degree ki = 2 and
the two neighbors have excess degree j1 � 0 and j2 � 0, then
there are three possible cases:

(1) Both neighbors have opinion A. This happens with
probability

q j1 a j1+1q j2 a j2+1.

(2) Both neighbors have opinion B. This happens with
probability

q j1

(
1 − a j1+1

)
q j2

(
1 − a j2+1

)
.

(3) One neighbor has opinion A and one neighbor has
opinion B. This happens with probability

q j1 a j1+1q j2

(
1 − a j2+1

) + q j1

(
1 − a j1+1

)
q j2 a j2 .

Let us define π2,ω be the probability that ω ∈ {0, 1, 2}
agents have opinion B and thus 2 − ω opinion A. Then
the previous three cases can be summarized into a single
formula

q j1 q j2π2,ω ∀ ω ∈ {0, 1, 2}.

We can now compute the probability that the focal agent i
changes her opinion to A:

(1) In the case both neighbors have opinion A,

qj1 q j2π2,0Pα

(
2 − 0

2 − 0 + 0Q

)
= q j1 q j2π2,0Pα (1).

(2) In the case both neighbors have opinion B,

q j1 q j2π2,2Pα

(
2 − 2

2 − 2 + 2Q

)
= q j1 q j2π2,2Pα (0).

(3) In the case one of the two neighbors has opinion A the
other has opinion B,

q j1 q j2π2,1Pα

(
2 − 1

2 − 1 + 1Q

)
= q j1 q j2π2,1Pα

(
1

1 + Q

)
.

2. General case

The reasoning presented in the example for k = 2 can be
repeated for a general k. Then q j1 , . . . , q jk evaluates the joint
probability that each node reachable from any of the k edges
emerging from the focal node, has excess degree j1, . . . , jk .
We can define πk,ω, to be the probability that ω nodes among
the k neighbors have opinion B and thus k − ω opinion A.
Therefore, the term πk,ω is a linear combination of products of
a jm+1 and (1 − a jm+1), with m = 1, . . . , k. Finally, the proba-
bility q j1 , . . . , q jk πk,ω is multiplied by the function Pα with
argument the weighted proportion of agents with opinion A or
B, that is (k − ω)/(k − ω + Qω) or ωQ/(k − ω + Qω).

Let us observe that because of property (3) [i.e., P(n#
A) +

P(n#
B) = 1], we have that

Pα

(
Qω

k − ω + Qω

)
= 1 − Pα

(
1 − Qω

k − ω + Qω

)

= 1 − Pα

(
k − ω

k − ω + Qω

)
.

Thus, we can wrap together the above expressions and obtain
the time evolution of ak for a generic degree k:

dak

dt
= (1 − ak )

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)

− ak

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ω

×
[

1 − Pα

(
k − ω

k − ω + ωQ

)]
. (B4)

Let us explain each term on the right-hand side. The leftmost
term, (1 − ak ), is the probability that the focal agent has
degree k and does not have opinion A, she hence has opinion
B. The term q j1 , . . . , q jk evaluates the joint probability that
each node reachable from any of the k edges emerging from
the focal node, has excess degree j1, . . . , jk ; the sum

∑
j1,..., jk

allows us to consider all the possibilities. For a given choice
of j1, . . . , jk , the next term, πk,ω, determines the probability
that ω nodes among the k ones have opinion B and thus k − ω

have opinion A. The sum
∑k

ω=0 allows us to consider all the
possibilities from ω = 0, all agents have opinion A, to ω = k,
all agents have opinion B. Finally, the term Pα ( k−ω

k−ω+ωQ ) is the
probability the focal agent with opinion B changes her mind
because there are k − ω agents with opinion A and ω agents
with opinion B. The remaining terms denote the opposite
process where the selected agent has opinion A, with prob-
ability ak , and she changes opinion after an interaction with
her neighbors with opinion B. As already observed, we used
the property (3) for the function Pα to rewrite the rightmost
term.

Equation (B4) can be split into four parts

dak

dt
=

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)

− ak

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)

− ak

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ω + ak

∑
j1,..., jk

q j1 , . . . ,

× q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
,

and we can observe that the rightmost terms on
the first and second line do simplify each other by
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returning

dak

dt
=

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)

− ak

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ω. (B5)

We trivially have
∑k

ω=0 πk,ω = 1 and, by assuming ab-
sence of correlations among nodes degrees, we also have∑

j1,..., jk
q j1 , . . . , q jk = ∑

j1
q j1 · · ·∑ jk

q jk = 1, hence we can
simplify Eq. (B5) into

dak

dt
=

∑
j1,..., jk

q j1 , . . . , q jk

k∑
ω=0

πk,ωPα

(
k − ω

k − ω + ωQ

)
− ak .

(B6)

As already indicated in the main text, we define 〈a〉 :=∑
j q ja j+1. By using combinatorics and assuming probability

independence, we can show that

∑
j1,..., jk

q j1 , . . . , q jk πk,ω =
(

k

ω

)
〈a〉k−ω(1 − 〈a〉)ω;

the rough idea is that in πk,ω there are k − ω events with
probability ajm+1, thus ω with (1 − a jm+1), and the binomial
coefficient computes all possible permutations. We can thus
rewrite Eq. (B6) as

dak

dt
= −ak +

k−1∑
ω=0

(
k

ω

)
〈a〉k−ω(1 − 〈a〉)ωPα

(
k − ω

k − ω + ωQ

)
,

(B7)

where we removed from the sum the term ω = k because it
contains Pα (0) = 0. By rewriting the previous equation with
k → k + 1, and by multiplying both sides by qk and summing
over k to bring out 〈a〉 we get Eq. (9) in the main text, namely,

d〈a〉
dt

=
∑

k

qk
dak+1

dt

= −
∑

k

qkak+1 +
∑

k

qk

k∑
ω=0

(
k + 1

ω

)
〈a〉k+1−ω

× (1 − 〈a〉)ωPα

(
k + 1 − ω

k + 1 − ω + ωQ

)

= −〈a〉 +
∑

k

qk

k∑
ω=0

(
k + 1

ω

)
〈a〉k+1−ω(1 − 〈a〉)ω

× Pα

(
k + 1 − ω

k + 1 − ω + ωQ

)
,

where the right-hand side defines the function f (hm f )
α (〈a〉).

3. Stability analysis

Let us now consider the zeros of f (hm f )
α (〈a〉), hence the

equilibria of the system. Because the sum over ω ranges
from ω = 0 and ω = k, and because the involved terms are

of the form 〈a〉k+1−ω, they all vanish once 〈a〉 = 0, hence
f (hm f )
α (〈a〉) = 0. The same holds true for 〈a〉 = 1; indeed,

f (hm f )
α (1) = −1 +

∑
k

qk

k∑
ω=0

(
k + 1

ω

)
(1 − 〈a∗〉)|ω〈a∗〉=1

× Pα

(
k + 1 − ω

k + 1 − ω + ωQ

)
= −1 +

∑
k

qk,

where we used the fact that all the terms (1 − 〈a∗〉)|ω〈a∗〉=1
vanish except the one with ω = 0, for which we also have(k+1

0

) = 1 and Pα ( k+1
k+1 ) = 1. The conclusion follows by recall-

ing that
∑

k qk = 1.
The stability of the above equilibria can be determined by

considering the derivative of f (hm f )
α at 0 and 1 that is given by

(
f (hm f )
α

)′
(〈a∗〉) = −1 +

∑
k

qk

k∑
ω=0

(
k + 1

ω

)

× Pα

(
k + 1 − ω

k + 1 − ω + ωQ

)

× [(k + 1 − ω)〈a∗〉k−ω(1 − 〈a∗〉)ω

− ω〈a∗〉k+1−ω(1 − 〈a∗〉)ω−1],

hence(
f (hm f )
α

)′
(0) = −1 +

∑
k

qk

(
k + 1

k

)
Pα

(
1

1 + kQ

)

= −1 +
∑

k

qk (k + 1)Pα

(
1

1 + kQ

)
, (B8)

and(
f (hm f )
α

)′
(1) = −1 +

∑
k

qk

[(
k + 1

0

)
Pα

(
k + 1

k + 1

)
(k + 1)

−
(

k + 1

1

)
Pα

(
k

k + Q

)]

= −1 +
∑

k

qk (k + 1)

[
1 − Pα

(
k

k + Q

)]

= −1 +
∑

k

qk (k + 1)Pα

(
Q

k + Q

)
. (B9)

In Fig. 10 we report four examples of the function fα (x) =
x + f (hm f )

α (x) for four values of α for a scale-free network
with exponent γ = 2.2. Observe that, differently from Fig. 1,
the function is smooth even for α = 0 (red curve). Addition-
ally, the presence of three intersections of fα (x) with the line
y = x, hence three zeros for f (hm f )

α (x), indicates the presence
of three system equilibria. For α = 1 (yellow line), there are
only two line intersections, at x = 0 and x = 1, indicating the
existence of only two equilibria.

4. Limitations of the heterogeneous mean-field model

We conclude this Appendix by studying the limita-
tion of the heterogeneous mean-field model, more precisely
we look for (family of) networks for which there is a
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FIG. 10. The function fα (x) = x + f (hm f )
α (x) for some values of

α for a scale free network made by N = 400 nodes, γ = 2.2, kmin =
3, kmax = 189, the quality ratio is Q = 0.9. The dashed line repre-
sents the identity curve and thus its intersections with the function
fα (x) determine the equilibria of the system.

disagreement between the dynamics predicted by the HMF
model and the numerical agent-based simulations. More pre-
cisely, we look at the case in which the HMF model’s
equilibrium 〈ǎ∗〉 = 0 is unstable, i.e., Eq. (B8) is positive,
and 〈â∗〉 = 1 is stable, i.e., Eq. (B9) is negative. Therefore,
the prediction is consistent convergence for any initial state
to the latter stable equilibrium 〈â∗〉 = 1; however, numeri-
cal simulations do not always terminate with all agents with
opinion A.

For any given Q < 1 there exists k̄ such that kQ > 1 for all
k � k̄ and thus kQ < 1 for all k < k̄. Hence

kQ > 1 ⇒ 1

1 + kQ
<

1

2
⇒ Pα

(
1

1 + kQ

)

= 1

2
− 1

2

(
1 − 2

1 + kQ

)α

,

and

kQ < 1 ⇒ 1

1 + kQ
>

1

2
⇒ Pα

(
1

1 + kQ

)

= 1

2
+ 1

2

(
2

1 + kQ
− 1

)α

.

Equation (B8) rewrites thus

(
f (hm f )
α

)′
(0) = −1 + 1

2

∑
k�k̄

qk (k + 1)

[
1 −

(
1 − 2

1 + kQ

)α]

+ 1

2

∑
k<k̄

qk (k + 1)

[
1 +

(
2

1 + kQ
− 1

)α]

= −1 + 1

2

∑
k

qk (k + 1) + 1

2

∑
k<k̄

qk (k + 1)

×
(

2

1 + kQ
− 1

)α

− 1

2

∑
k�k̄

qk (k + 1)

(
1 − 2

1 + kQ

)α

.

By using the definition of qk , we can compute∑
k�0

qk (k + 1) =
∑
k�0

(k + 1)pk+1

〈k〉 (k + 1)

= 1

〈k〉
∑
k�1

k2 pk = 1

〈k〉
∑
k�0

k2 pk = 〈k2〉
〈k〉 ,

hence(
f (hm f )
α

)′
(0) = −1 + 1

2

〈k2〉
〈k〉 + 1

2

∑
k<k̄

qk (k+1)

(
2

1 + kQ
−1

)α

− 1

2

∑
k�k̄

qk (k + 1)

(
1 − 2

1 + kQ

)α

.

To compute ( f (hm f )
α )′(0) we observe that if k � 1 > Q then

Q/(k + Q) < 1/2 and thus we can conclude(
f (hm f )
α

)′
(1)

= −1 + q0 + 1

2

∑
k�1

qk (k + 1)

[
1 −

(
1 − 2Q

k + Q

)α]

= −1 + q0

2
+ 1

2

〈k2〉
〈k〉 − 1

2

∑
k�1

qk (k + 1)

(
1 − 2Q

k + Q

)α

.

For sake of definitiveness let us assume 1/2 < Q < 1 and
thus k̄ = 2. Hence ( f (hm f )

α )′(0) simplifies into

(
f (hm f )
α

)′
(0) = −1 + 1

2

〈k2〉
〈k〉 + q1

(
2

1 + Q
− 1

)α

− 1

2

∑
k�2

qk (k + 1)

(
1 − 2

1 + kQ

)α

.

Finally let us consider a 2-ring network where each node is
connected with its two neighbors, hence 〈k〉 = 2, 〈k2〉 = 4,
p2 = 1, and pk = 0 for all k �= 2 and thus q1 = 1 and qk = 0
if k �= 1. The previous equation simplifies to give

(
f (hm f )
α

)′
(0) = −1 + 1

2

4

2
+

(
2

1 + Q
− 1

)α

=
(

2

1 + Q
− 1

)α

> 0,

namely, 〈ǎ∗〉 = 0 is unstable under the assumption of HMF.
Similarly the equation for ( f (hm f )

α )′(1) rewrites

(
f (hm f )
α

)′
(1) = −1 + 1

2

4

2
− 1

2
q12

(
1 − 2Q

1 + Q

)α

= −
(

1 − Q

1 + Q

)α

< 0,

namely 〈â∗〉 = 1 is stable according to the HMF theory.
In Fig. 11 we show the results of numerical simulation

of 500 agents exchanging opinions on a 2-ring, i.e., each
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FIG. 11. Asymptotic state for the agent based model on a 2-ring. In the main panel we report the distribution of the asymptotic state 〈n∗
A〉/N

for N = 500 agents interacting in a 2-ring as a function of the parameter α for a fixed Q = 0.9. For each given α we repeat the simulation
niter = 400 times and we then we display the probability distribution of the obtained values (the darker the higher the probability). In the left
panel we report the case small α, here α = 0.59, and we can appreciate the fact the all the simulations returned 〈n∗

A〉/N = 1; in the right panel
we show the case of large α, here α = 1.5, and we can observe a large spreading of values about the mean (blue dots in the main panel) but
also the presence of a small peak corresponding to 〈n∗

A〉/N = 1 and an even smaller for 〈n∗
A〉/N = 0.

agent has two neighbors. Each point is asymptotic value after
500 000 time steps, of 〈n∗

A〉/N averaged over 401 independent
simulations as a function of α for Q = 0.9. Simulations have
different initial conditions (initial opinions distributed differ-
ently on the network) but always with 250 agents with opinion
A and 250 agents with opinion B, i.e., half of the population
committed to each option. One can observe that for α < 1 the
simulations converge to 〈n∗

A〉/N = 1 and thus the claim of the
predictions of the HMF model are confirmed. Whereas the
good match between theory and simulations is no longer valid
for α > 1. Theory predicts a single stable equilibria for full
consensus for A, while the simulated system remains locked
at indecision at 0 < ã∗ < 1 with only a part of the agents with
opinion A and the rest with opinion B.

The different behavior for α > 1 is due to finite-size effects
and can be explained as follows. Let us assume to have a
ring with N agents and assume that all agents but one have
opinion A, we are interested in the possibility that also this
last B-agent changes her mind and becomes A-agent, in this
way the system reaches the equilibrium 〈n∗

A〉/N = 1, i.e., all

i1

i2

i3

i4

initial 

i1

i2

i3

i4

criss-cross
rewire

FIG. 12. The crisscross rewiring process. The initial configura-
tion (left panel) has the edges (i1, i2) and (i3, i4), after the rewiring
process (right panel) those edges are deleted and replaced with the
new ones (i1, i4) and (i2, i3).

A. This process should be compared with the one where one
agent A becomes a B-agent, the ratio of the probabilities of
those two events determines the stability (or not) of the state
all A.

The probability that the event B → A happens is the com-
bination of the probability of selecting the B-agent, hence
probability 1/N , and the probability that she will receive a
message from a neighbor committed to A. Because there is
only one B agent, her two neighbors have opinion A and thus
Pα (1) = 1. In summary, P(B → A) = 1/N .

The probability that the event A → B happens is the com-
bination of the probability of selecting one of the two agents A
sitting in the ring next to the unique agent B, hence probability
2/N , and the probability that the selected agent A will select
the message from the B-agent. The weighted proportion of
agents B that are neighbors of the selected agent A is Pα ( Q

1+Q ).
Being Q ∈ [0, 1], the quantity Q/(1 + Q) is smaller than 1/2
and thus Pα ( Q

1+Q ) = 1
2 − 1

2 ( 1−Q
1+Q )α . In summary, P(A → B) =

2
N [ 1

2 − 1
2 ( 1−Q

1+Q )α].
Finally, we can compute the ratio of the probabilities for

the two events

P(A → B)

P(B → A)
= 1 −

(
1 − Q

1 + Q

)α

.

Because 1−Q
1+Q < 1, we can conclude that if α < 1, then

P(A → B)/P(B → A) is small and thus the system has a large
probability to evolve toward a consensus for A, the event
B → A is much more probable than A → B. On the other
hand, if α > 1, then the above probability approaches 1 and
thus both events are (almost) equally probable. Therefore,
despite the equilibrium of a consensus for A being stable, it
is difficult to reach it because the two events (A → B and
B → A) are equally likely to happen and the system can
fluctuate indefinitely.
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FIG. 13. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 1 as a function of the pooling error α and quality ratio Q. We report results for three values
of the exponent γ regulating network connectivity: top row γ = 2.2, central row γ = 2.6, bottom row γ = 3.1. Color code and experimental
design are the same as the one described in the caption of Fig. 5.

APPENDIX C: THE 2m-REGULAR GRAPH

Let us consider now 2m-regular graphs, m � 1, namely,
networks where all the nodes have the same degree 2m. Ob-
serve that 1-dimensional rings where each node is connected
to m left and m right neighbors fall in this class, that however
contains more general structures. By construction we trivially
have pk = 1 if k = 2m and pk = 0 otherwise, then 〈k〉 = 2m,
which implies that qk = 1 if k = 2m − 1 and 0 otherwise;
indeed,

qk = k + 1

〈k〉 pk+1 =
{

(2m−1)+1
2m p2m = 1 if k + 1 = 2m

0 if k + 1 �= 2m.

Therefore, the weighted average proportion of agents with
opinion A simply becomes 〈a〉 = a2m. From the definition (9),

we can simplify the function f (hm f )
α (x) and obtain

f (hm f )
α (x) = −x +

2m−1∑
ω=0

(
2m

ω

)
x2m−ω(1 − x)ω

× Pα

(
2m − ω

2m − ω + ωQ

)
. (C1)

The derivatives of (C1) evaluated at x̌∗ = 0 and x̂∗ = 1 are
given by [see also (B8) and (B9)]:

(
f (hm f )
α

)′
(0) = −1 + 2mPα

(
1

1 + (2m − 1)Q

)
and

(
f (hm f )
α

)′
(1) = −1 + 2mPα

(
Q

2m − 1 + Q

)
.
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FIG. 14. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 1 as a function of the pooling error α and network’s power-law exponent γ . We report
results for three values of the quality ratio Q = QB/QA which encodes the decision problem difficulty: top row Q = 0.5 (easy problem), central
row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult problem), with QA = 1. Color code and experimental design are the same as
the one described in the caption of Fig. 5.

In conclusion, the equilibrium ǎ∗
2m = 0, i.e., all agents have

opinion B, is stable if and only if

(
f (hm f )
α

)′
(0) = −1 + 2mPα

(
1

1 + (2m − 1)Q

)
< 0,

and similarly â∗
2m = 1, i.e., all agents have opinion A, is stable

if and only if

(
f (hm f )
α

)′
(1) = −1 + 2mPα

(
Q

2m − 1 + Q

)
< 0.

When Q < 1/(2m − 1), then 1/[(2m − 1)Q + 1] > 1/2,
therefore, using the definition of Pα we get

(
f (hm f )
α

)′
(0) = −1 + 2m

[
1

2
+ 1

2

(
2

1 + (2m − 1)Q
− 1

)α]

= −1 + m

[
1 +

(
2

1 + (2m − 1)Q
− 1

)α]

� −1 + m,

and because m � 2, the latter expression is positive for all α �
0. In conclusion, the equilibrium ǎ∗

2m = 0 is unstable for all
α � 0 and Q < 1/(2m − 1).
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FIG. 15. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 3 as a function of the pooling error α and quality ratio Q. We report results for three values
of the exponent γ regulating network connectivity: top row γ = 2.2, central row γ = 2.6, bottom row γ = 3.1. Color code and experimental
design are the same as the one described in the caption of Fig. 5.

Let us now consider the case Q > 1/(2m − 1). By defini-
tion of Pα we get

(
f (hm f )
α

)′
(0) = −1 + 2m

[
1

2
− 1

2

(
1 − 2

1 + (2m − 1)Q

)α]

= −1 + m

[
1 −

(
1 − 2

1 + (2m − 1)Q

)α]
,

and now the quantity on the right-hand side can have both
signs. Let us define α̂(Q) as the value of α for which the right-
hand side vanishes for a fixed Q > 1/(2m − 1), then we can
straightforwardly obtain

α̂(Q) = ln
(
1 − 1

m

)
ln

(
1 − 2

1+(2m−1)Q

) . (C2)

By looking at its definition we can conclude that α̂(1) =
1 and that α̂(Q) → 0 for Q → 1/(2m − 1) [from val-
ues larger than 1/(2m − 1)]. Given Q > 1/(2m − 1), then
( f (hm f )

α )′(0) > 0 for all α > α̂(Q); this means that the equi-
librium ǎ∗

2m = 0 is unstable. The function α̂(Q) is drawn in
white in Figs. 7(a)–7(c) and it delimits the red region where
( f (hm f )

α )′(0) > 0 (ǎ∗
2m = 0 is unstable) and the green region

where ( f (hm f )
α )′(0) < 0 (ǎ∗

2m = 0 is stable).
Let us now consider the stability of the equilibrium â∗

2m =
1. Because m � 1 and Q < 1, we always have Q/(2m − 1 +
Q) < 1/2, hence by definition of Pα we obtain

(
f (hm f )
α

)′
(1) = −1 + 2m

[
1

2
− 1

2

(
1 − 2Q

2m − 1 + Q

)α]

= −1 + m

[
1 −

(
1 − 2Q

2m − 1 + Q

)α]
. (C3)
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FIG. 16. [(a)–(c)] Stability diagrams, [(d)–(f)] decision outcome from multi-agent simulations, and [(g)–(i)] convergence time for collective
decision-making on scale-free networks with kmin = 3 as a function of the pooling error α and network’s power-law exponent γ . We report
results for three values of the quality ratio Q = QB/QA which encodes the decision problem difficulty: top row Q = 0.5 (easy problem), central
row Q = 0.8 (medium problem), bottom row Q = 0.9 (difficult problem), with QA = 1. Color code and experimental design are the same as
the one described in the caption of Fig. 5.

Equation (C3) can also have either positive and negative val-
ues. Let α̃(Q) the value of α for which the right-hand side of
Eq. (C3) vanishes for a fixed Q, then

α̃(Q) = ln
(
1 − 1

m

)
ln

(
1 − 2Q

2m−1+Q

) . (C4)

We have α̃(1) = 1 and α̃(Q) → ∞ if Q → 0+. The function
α̃(Q) is drawn in black in Figs. 7(a)–7(c) and it delimits the
red region where ( f (hm f )

α )′(1) < 0 (â∗
2m = 1 is stable) and the

blue region where ( f (hm f )
α )′(1) > 0 (â∗

2m = 1 is unstable).

1. Generalize to complete graphs

Let us conclude this part by showing the previous analysis
returns the results obtained by using the mean-field hypothesis
once we assume the underlying network to be a complete
graph. To simplify the setting we assume the network to be
composed of N = 2N ′ + 1 nodes and m = N ′, hence each
node has 2N ′ neighbors. Let us observe that one trivially
has pk = 1 if k = N − 1 = 2N ′ and pk = 0 otherwise, and
〈k〉 = N − 1 = 2N ′, which implies that qk = 1 if k = N −
2 = 2N ′ − 2 = 2(m − 1) and 0 otherwise. From Eq. (8) we
can obtain 〈a〉 = aN−1 = nA/N , namely, there is only one
variable that is the proportion of agents with opinion A. From
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FIG. 17. (a) and (d) Stability diagrams, (b) and (e) decision outcome from multi-agent simulations, and (c) and (f) convergence time for
collective decision-making on Erdős-Rényi random graph as a function of the pooling error α and quality ratio Q. We present the results for
two values of the probability p regulating network connectivity: top row p = 0.02 and bottom row p = 0.2, the number of nodes has been
fixed to N = 200. Left column panels—i.e., (a) and (d)—show the convergence diagram of the mean-field model (9). The parameter space
is divided into the same three regions of Fig. 3(a) using the same color code. Central column panels—i.e., (b) and (e)—show the results of
simulations [100 independent for each (Q, α) configuration] of N = 200 agents interacting on a Erdős-Rényi random graph with random initial
configurations [i.e., nA(t = 0) ∼ U (0, N )] for 50 000 time steps. These panels show the outcome of the collective decision-making process
using the same RGB color code as Fig. 3(d). Right column panels—i.e., (c) and (f)—show the average number of time steps needed to reach a
consensus, i.e., nA = 200 or nB = 200. The white area indicates the absence of data, as the system never reaches a consensus.

the Eq. (C1) we can get

f (hm f )
α (aN−1) = −aN−1 +

2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)2N ′−ω(1−aN−1)ω

× Pα

(
nA

nA + nBQ

)
,

where we recall that ω = nB, to be the number of agents
with opinion B, and 2N ′ − ω = nA, the number of agents with
opinion A. Let us observe that we also added the term ω = 2N ′
in the sum, whose contribution vanishes because Pα does. By
using nA + nB = N we can rewrite the previous equation as

f (hm f )
α (aN−1) = −aN−1 +

2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)2N ′−ω(1−aN−1)ω

× Pα

(
nA

nA(1 − Q) + NQ

)

= −aN−1 +
2N ′∑
ω=0

(
2N ′

ω

)
(aN−1)2N ′−ω(1−aN−1)ω

× Pα

(
aN−1

aN−1(1 − Q) + Q

)
,

where in the last step we divided by N the number of agents
to obtain the proportion. Being the term involving Pα indepen-
dent from ω, we eventually obtain

f (hm f )
α (aN−1) = −aN−1 + Pα

(
aN−1

aN−1(1−Q) + Q

) 2N ′∑
ω=0

(
2N ′

ω

)

× (aN−1)2N ′−ω(1 − aN−1)ω

= −aN−1 + Pα

(
aN−1

aN−1(1 − Q) + Q

)
,

where the Newton property for the binomial has been used to
eventually get the same function we obtained under the mean-
field assumption (4).
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FIG. 18. (a), (d) Stability diagrams, (b), (e) decision outcome from multi-agent simulations, and (c), (f) convergence time for collective
decision-making on Erdős-Rényi random graph as a function of the pooling error α and the probability p to establish a link between two
nodes. We present the results for two values of the quality option QB for fixed QA = 1: top row QB = 0.2 and bottom row QB = 0.8, the
number of nodes has been fixed to N = 200. Left column panels—i.e., (a) and (d)—show the convergence diagram of the mean-field model
(9). The parameter space is divided into the same three regions of Fig. 3 a using the same color code. Central column panels—i.e., (b) and
(e)—show the results of simulations [100 independent for each (p, α) configuration] of N = 200 agents interacting on a Erdős-Rényi random
graph with random initial configurations [i.e., nA(t = 0) ∼ U (0, N )] for 50 000 time steps. Those panels show the outcome of the collective
decision-making process using the same RGB color code as Fig. 3(d). Right column panels—i.e., (c) and (f)—show the average number of
time steps needed to reach a consensus, i.e., nA = 200 or nB = 200. The white area indicates the absence of data, as the system never reaches
a consensus.

Let us now rewrite α̂(Q) given by Eq. (C2) under the above
assumption of complete graph, namely,

α̂(Q) = ln
(
1 − 1

N ′
)

ln
(
1 − 2

1+(2N ′−1)Q

) ,

then letting the number of nodes to be very large, N = 2N ′ +
1 → ∞, then we obtain

α̂(Q) ∼ Q + · · · ,

namely, the curve separating the convergence to a consensus
for option A (red region in Fig. 7) to the region where mistakes
are possible (green region in Fig. 7) converges to the line
α̂(Q) = Q in the limit of infinitely many agents, in agreement
with the results reported in Fig. 3.

APPENDIX D: DEGREE PRESERVING
REWIRING PROCESS

This section briefly presents the degree preserving rewiring
process, sometimes called crisscross in the literature, used in
the main text to reduce the average shortest path while keeping
the degree distribution unchanged.

As shown in Fig. 12, let us consider four nodes, i1, i2, i3
and i4 such that i1 and i2 are connected to each other by an
edge but not to i3 and i4, and vice versa, nodes i3 and i4 are
connected to each other by an edge but not to i1 and i2. Then,
in the criss-cross process, the two existing edges are deleted
and two new edges are added from i1 to i4 and from i2 to i3.
In such a way the four nodes will not change their degree and
therefore pk also remains unchanged.

APPENDIX E: SCALE-FREE NETWORKS

Section IV A in the main text presents our analysis of the
population dynamics on scale-free networks. While Figs. 5
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and 6 show the results for scale-free network with minimum
degree kmin = 2, here we complement the analysis providing
the results for kmin = 1 and kmin = 3 (see Figs. 13, 14, 15, and
16). The multi-agent simulations for kmin = 2 and kmin = 3
have been performed on scale-free networks built using the
configuration model [48], instead, as also indicated in the
main text, for kmin = 1 the scale-free networks have been built
using the Simon model [48,49].

For low values of kmin, i.e., for kmin � 2, it is possible to
appreciate an important change in the dynamics for different
values of the connectivity parameter γ (see Fig. 15). Instead,
for kmin = 3, the parameter γ has a much smaller effect on the
population dynamics, as clearly shown by almost-horizontal
separation lines between the colored areas in Fig. 16.

APPENDIX F: ERDŐS-RÉNYI RANDOM GRAPH

The aim of this section is to perform an analysis similar
to the one presented in the main text in the case of scale-free
networks and 2m-regular graphs, but by assuming agents to
interact via an Erdős-Rényi random graph, composed of N
nodes and where each couple of nodes has a probability p > 0
to be connected. In Figs. 17(a) and 17(d) we report the results

obtained by assuming the HMF hypothesis and we compare
them with the multi-agent numerical simulations performed
on an Erdős-Rényi random graph comprising N = 200 nodes
and p = 0.02 [Fig. 17(b)] and p = 0.2 [Fig. 17(e)]. We ob-
serve that the agreement is good, especially in the case of
p = 0.2, which corresponds to a network with a larger average
degree, 〈k〉 ≈ 40, and thus to a smaller averaged shortest path
[compare also with Fig. 3(a) in the main text]. In Figs. 17(c)
and 17(f) we report the converge time to the consensus states,
all-A or all-B, and we can again observe that approaching the
deadlock decision regions, the convergence time increases.

Figure 18 shows the combined impact of the probability
to have an edge, p, and the pooling error α on the system
outcome once we fix QB and QA. Let us observe that for an
easy problem (QB = 0.2 top row), agents are almost always
able to reach a consensus for the better quality option (red
region), only for very small α mistakes are possible, moreover
those behaviors do not seem to depend on p. On the other hand
for a hard task (QB = 0.8 bottom row), the diagram is divided
into three zones and only for α close to 1, namely, once agents
adopt the majority rule, they are able to converge to the best
option. For smaller α mistakes are possible, while for larger α

a deadlock outcome is obtained. Again those results seem not
to depend on p.
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