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Many natural or human-made systems encompassing local reactions and diffusion processes ex-
hibit spatially distributed patterns of some relevant dynamical variable. These interactions, through
self-organization and critical phenomena, give rise to power-law distributions, where emergent pat-
terns and structures become visible across vastly different scales. Recent observations reveal power-
law distributions in the spatial organization of, e.g., tree clusters and forest patch sizes. Crucially,
these patterns do not follow a spatially periodic order but rather a statistical one. Unlike the spa-
tially periodic patterns elucidated by the Turing mechanism, the statistical order of these particular
vegetation patterns suggests an incomplete understanding of the underlying mechanisms. Here, we
present a novel self-segregation mechanism, driving the emergence of power-law scalings in pattern-
forming systems. The model incorporates an Allee-logistic reaction term, responsible for the local
growth, and a nonlinear diffusion process accounting for positive interactions and limited resources.
According to a self-organized criticality (SOC) principle, after an initial decrease, the system mass
reaches an analytically predictable threshold, beyond which it self-segregates into distinct clusters,
due to local positive interactions that promote cooperation. Numerical investigations show that the
distribution of cluster sizes obeys a power-law with an exponential cutoff.

Introduction.- Nature exhibits various forms and
shapes of order, spanning from the collective flight
of birds in flocks [1] to the synchronized flashing
of fireflies [2]. Self-organization has long been rec-
ognized as the fundamental principle driving the
emergence of such captivating patterns [3–5]. Ex-
ploring how these collective behaviors and patterns
arise from the interactions among the system’s ba-
sic units has been a vibrant research field for a
long time. Notably, the past two decades have wit-
nessed a growing interest in understanding the for-
mation of vegetation patterns in semi-arid ecosys-
tems [6–16] where, even in harsh environmental con-
ditions, plants manage to survive by clustering to-
gether. In the following, we shall consider veg-
etation patterning as a prototype system, primar-
ily focusing on the analysis within a broader con-
text. In particular, we focus on the so-called irreg-
ular patterns [7], which lack apparent spatial or-
der. By considering the feedback between plant
biomass and resources (e.g., water), Klausmeier pro-
posed a reaction-diffusion model capable of repro-
ducing the emergence of spatially regular patterns,
such as stripes of vegetation on hillslopes, by fol-
lowing a Turing-like instability [7, 11]. This model
also predicts the emergence of irregular patterns,
it was suggested that they arise from the amplifi-
cation of small topographic variations or quenched
disorder of some other nature [17, 18]. While regu-
lar patterns, understood through Turing-like insta-
bilities [6, 9, 10, 19], provide a foundational con-
text with their characteristic scale length and spa-
tial order, our emphasis shifts towards irregular pat-
terns. These consist of clusters with diverse sizes,
distributed seemingly at random and interspersed
with bare areas [7], representing a more recent area
of investigation. Despite apparent disorganization
at smaller scales, irregular patterns reveal an emer-

gent global order. For instance, studies across var-
ious geographical regions have demonstrated that
cluster size distributions in these patterns exhibit a
power-law behavior, often with an exponential cut-
off [8, 12, 13, 20], highlighting the lack of complete
understanding of the formation of irregular patterns.
Differently from Klausmeier’s approach, the organi-
zation of irregular patterns here is not affected by the
nonuniformity of the spatial support, but rather by
the positive feedback between plants and the finite
size effects.

In this work, we introduce a novel self-segregation
process relying on self-organized criticality (SOC) [21].
The latter has proved successful in explaining emer-
gent phenomena characterized by power-law scaling
in various scenarios, such as avalanches in the sand-
pile model [22], forest-fire dynamics [23], the spread
of infections in epidemics [24] or in tropical geom-
etry [25]. SOC models are distinguished by their
critical state, wherein system dynamics reach a crit-
ical point as a specific dynamical variable, such as
mass [22] or energy [26], surpasses a certain thresh-
old, instead of relying on fine-tuning of some model
parameter. By considering fundamental principles
that describe individual efforts to survive against
hostile (environmental) factors, as well as their dis-
persal in the spatial domain while considering lim-
ited resources and cooperation, we derive a reaction-
diffusion equation that governs the temporal evo-
lution of density in the spatial domain. Notably,
the deterministic reaction-diffusion process that we
propose exhibits a self-organized criticality with the
emergence of power-law scalings at the critical point.
To address the challenges of survival in a harsh en-
vironment, we utilize a modified logistic equation
with an Allee effect [27, 28]. The latter models the
fact that a species can only persist if its local pop-
ulation exceeds a specific threshold, otherwise lead-
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ing to extinction. Notably, the nonlinear diffusion
model developed in this study is reminiscent of ear-
lier nonlinear random walk processes introduced by
the authors in the case of network structures [29–
32] and where it has been shown that heterogene-
ity and social affinity lead to self-segregation, with
individuals clustering in high-degree nodes, leav-
ing the lower-degree nodes empty. In contrast, the
present study shifts focus to continuous spatial do-
mains; moreover we emphasize how asymmetric co-
operation among neighboring individuals helps to
surpass the Allee threshold, by fostering the emer-
gence of clusters of occupied territories interspersed
by vacant areas. Analysis of cluster size distribu-
tions reveals a power-law behavior with an exponen-
tial cutoff at larger sizes.

Individual-based model and mean-field limit.-
We start by considering the spatial domain R, where
the interactions between agents occur, to be a two-
dimensional square support of unit length with pe-
riodic boundary conditions divided into Ω = L × L
spatial compartments or squared patches of equal
area, labeled vi for i = 1, · · · , Ω. For simplicity,
we assume each patch contains the same limited
amount of generic resources, which sets the max-
imal number N of individuals the patch can host
simultaneously. The number of individuals within
patch vi at time t is denoted by 0 ≤ ni(t) ≤ N and
thus N − ni(t) quantifies the vacancies, i.e., the addi-
tional number of individuals the patch vi might host.
The stochastic nature of the processes at play can be
modeled by using the master equation

dP(n, t)
dt

= ∑
n′ ̸=n

T(n|n′)P(n′, t)− T(n′|n)P(n, t) (1)

which provides a detailed probabilistic description
of the dynamics starting from the microscopic set-
ting. Here n(t) = (n1 (t) , n2 (t) , · · · , nΩ (t)) is the
state vector and P(n, t) is the probability that the
system will be in such a state at time t. Further-
more T(n′|n) denotes the transition probability, per
time unit, from state n to state n′ and the summation
in Eq. (1) extends over all the states different from n.
We will assume that individuals interact with each
other both within each patch and between adjacent
ones. The dynamics at a purely local level will cap-
ture the natural death process for which an agent
will be removed from the i-th patch, Xi + Ei

r1−→ 2Ei,
where Xi, Ei, and r1 denote a single individual, a
single vacancy and death rate, respectively. On the
other side, the birth process of an agent in any patch
i, is constrained by a strong Allee effect [28], i.e.,
2Xi + Ei

r2−→ 3Xi, with a birth rate r2 > r1 to allow
survivability. The finite carrying capacity encapsu-
lates not simply limited resources but all other possi-
ble factors with a negative impact on the growth and
survivability of the species, such as the presence of
predators, intra- or inter-species competition, lack of
potential mating partners and so on, broadly known
as the Allee effect [27, 28, 33–39]. In conclusion, the
dynamics at the level of patch i will be described by

the following transition rates

T(ni − 1|ni) =
r1

Ω
ni
N

(
1 − ni

N

)
, (2a)

T(ni + 1|ni) =
r2

Ω
ni
N

ni − 1
N

(
1 − ni

N

)
, (2b)

for the death and birth dynamics, respectively.
On the other side, the individuals are allowed to

interact with each other at the inter-patch level, i.e.,

Xi + aXj + Ej
δ−→ Ei + 2Xj with a > 0, where the pre-

vious reaction, occurring with a rate δ, models the
process by which a plant sends its seed to a neigh-
boring patch before dying. Such an interaction is the
key point of this paper and describes the asymmetric
mutualistic interaction between individuals of differ-
ent patches while taking into account the finite car-
rying capacity of each site [29, 30, 40]. Provided vi
and vj are neighbor sites, the transition from vi to vj
reads

T(ni − 1, nj + 1|ni, nj) =
δ

kΩ
ni
N

(nj

N

)a(
1 −

nj

N

)
, (3)

with k the number of neighbors per site, i.e., k = 4
in the present setting. The dispersion of the vegeta-
tion in the spatial domain will thus act as a trade-off
between the positive interactions between individ-
uals and the finite carrying capacity. Studies have
shown that positive spatial feedbacks, such as im-
proved water retention under tree canopies, support
tree growth and survival, yet the ecosystem’s limited
resources, dictated by rainfall and nutrients, keep
these dynamics under control, avoiding overgrowth
or desertification [41–45]. In the following, we will
assume a > 1. This requirement implies an asymme-
try in the interaction between individuals of adjacent
sites, i.e., they will perceive a higher number of indi-
viduals than those available on the hosting site. In-
spired by the ecological literature [46], we will refer
to it as size-asymmetric interaction.

Starting from the master equation (1) we will look
for a mean-field formalism, see SM [47]. Let us
here recall that the standard approach is to con-
sider the time evolution of the density of agents
⟨ni⟩/N within the site vi in the limit N → +∞
and then take the continuum limit in which the
number of mesh points goes to infinity, i.e., ρ =
limN→+∞,L→+∞ ⟨ni⟩/N. This procedure leads to the
following partial differential equation for the time
evolution of species density ρ ≡ ρ(x, t) at point
x = (x, y) and time t:

∂ρ

∂t
= r f (ρ) + D

[
g(ρ)∆ρ − ρ∆g(ρ)

]
. (4)

Here D > 0 represents the diffusion coefficient,
∆= ∂2

x + ∂2
y the Laplace operator, f (ρ) = ρ(1 −

ρ)(ρ − A) the Allee reaction term with r > 0 the
growth rate and 0 < A < 1 the Allee coefficient [48].
The function g(ρ) = ρa(1 − ρ) captures in a compact
form the nonlinear interacting terms between indi-
viduals of neighbor sites. Let us observe that if r = 0
the total mass is conserved (see SM [47]).
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(a) (b)

FIG. 1. (a) Site densities evolve in a square lattice, starting from uniform densities in [0.5, 0.6]. As densities cross βc = 0.5,
self-segregation occurs, with some reaching carrying capacity (pink, ρ = 1) and others (green) converging to ρ = 0.
Average node density evolution is shown by the dashed black line. (b) Final average density, β∞, versus initial density,
β0, is depicted with red points, and the fraction of nodes above the Allee constant is represented by a black line for
comparison. Shaded red region indicates survivability gain from self-organized criticality (SOC). Blue dashed line and
shaded region show stochastic system superiority over deterministic (averaged over 10 Gillespie algorithm realizations).
Parameters: A = 0.6, r = 1/6, D = 10, a = 2. Spatial mesh: 500 × 500 points. Initial conditions: [β0 − 0.05, β0 + 0.05],
rescaled for initial average density β0.

Self-segregation process as a self-organized crit-
icality mechanism.- As a preview of our findings,
we will establish that irregular patterns arise when
the total mass of the system reaches a critical value,
a characterizing feature of SOC processes [21]. Let
us first observe that a uniformly distributed density
ρ(x, t) = β with β = 0, A, 1 represents a stationary
solution of Eq. (4). The stability of these states can
be determined by analyzing the linear evolution of
the perturbation δρ(x, t), governed by the equation

∂δρ

∂t
= f ′(β)δρ + D

[
g(β)− βg′(β)

]
∆δρ . (5)

It can be readily verified that f ′(β) < 0 when β =
0, 1 and f ′(β) > 0 when β = A, indicating the
bistable nature of the Allee model. By seeking so-
lutions of the form δρ ∼ ∑k eλkteik·x, we obtain the
dispersion relation

λk = f ′(β)− D
[
g(β)− βg′(β)

]
|k|2 , (6)

where |k|2 = k2
1 + k2

2 is the square of the mod-
ule of the vector k. For the fixed point β = A,
there will always exist a finite interval (e.g., near
the origin where |k|2 is small enough) for which
λk > 0, proving its unstable behavior. Conversely,
the other homogeneous fixed points β = 0, 1 are
stable as long as the effective diffusion coefficient
Deff = D [g(β)− βg′(β)] is non-negative, a condi-
tion that holds true but that does not contribute to
pattern formation because they will represent global
extinction or a fully occupied domain. Furthermore,
the dynamics stemming from the unstable state β =
A could not guarantee the emergence of any non-
trivial spatial pattern organized into separate clus-
ters as the system might converge to the fully occu-
pied or empty state. Eq. (4) displays other station-
ary solutions, whose existence and stability are ad-
dressed in the following, by adopting an approach

based on slow-fast dynamics. Specifically, we con-
sider the limit r/D → 0, where the fast dynamics is
solely governed by the nonlinear diffusion process.
Let us observe that this separation of timescales is
in line with SOC [21]. In general, diffusion pro-
cesses tend to homogenize the spatial distribution
of mass. However, as previously mentioned, un-
der certain conditions, the effective diffusion coef-
ficient can become negative (Deff < 0). Negative dif-
fusion exhibits the opposite effect of homogeniza-
tion, leading to the accumulation and localization
of mass within the spatial domain [49, 50]. Moti-
vated by this insight, we first note that, in contrast
to the full reaction-diffusion equation, the nonlinear
diffusion operator vanishes for every uniform state
ρ(x) = β > 0. At this stage, we can ascertain the
critical value βc of the average node density β be-
low which the equilibrium ρ(x) = β undergoes in-
stability due to diffusion. It can be easily shown (see
SM [47]), that this critical value is given by

βc =
a − 1

a
. (7)

This formula justifies the choice of a > 1 for het-
erogeneous patterns to develop, i.e., the asymmetry
in the interactions along with the cooperation be-
tween individuals of adjacent sites allows for the
self-segregation to occur; indeed if a < 1, then
βc < 0 < β, returning ρ(x) = β to be a stable homo-
geneous solution. Any uniform state ρ(x) = β < βc
becomes unstable, while it remains stable otherwise.
Upon instability, due to mass conservation, a redis-
tribution of mass is expected to occur. The latter
takes place in the form of clusters, hereby referred
to as connected subregions of homogeneous mass,
separated by empty patches. The size of the cluster
is then defined as the the contiguous area covered,
numerically calculated as the number of connected
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patches it contains. For a cluster Cs to be stable, the
local density must satisfy βloc =

1
|Cs |

∫
Cs

ρ(x)dx > βc,
where |Cs| is the area of the cluster Cs. Once the
(fast) diffusion creates a precursor of what will be-
come a stable uniform cluster, the (slow) reaction
comes into play by maximizing the cluster density
to unity if βloc > A or reducing it to zero other-
wise [51]. This approach uncovers the presence of
heterogeneous (stable) stationary solutions. A more
comprehensive and rigorous proof is provided in the
SM [47]. This initial finding unveils a fundamental
insight: the stability of a specific state crucially relies
on the total mass of the state itself. This property
aligns perfectly with the concept of self-organized
criticality (SOC), which pertains to the inherent self-
organization of a system when it reaches a critical
threshold of a globally defining observable, such as
mass or energy [22, 26].

In Fig. 1, panel (a), we consider a slow-fast dy-
namics setting, i.e., r/D ≪ 1, where initially, the
total mass is randomly distributed throughout the
spatial domain, yet always below the Allee thresh-
old and above the critical value βc. The strong diffu-
sion tends to initially homogenize the mass, which
decreases since it remains below the survivability
threshold. As expected in SOC dynamics, when the
global observable (density in our case) reaches the
critical value βc, a change of behavior occurs, lead-
ing to an overall increase in mass across most lattice
sites. The remarkable and conterintuitive aspect is
that the species manage to survive in the stationary
state, i.e., limt→+∞ ρi(t) = 1 for some nodes i, al-
though the initial density at each site is below the
Allee parameter, as confirmed by the early trend. As
the average density decreases further, a new phe-
nomenon emerges: self-segregation. Driven by the
negative value of Deff , the mass rapidly accumu-
lates and localizes in different subregions of the do-
main R. If the densities of the new clusters surpass
both the critical values of self-segregation and Allee
(βloc > βc, A), the species will survive in those par-
ticular clusters and eventually reach a full carrying
capacity βloc = 1, as illustrated in Fig. 1, panel (a). In
the SM [47] we also give evidence of intermittency, a
characterizing feature of SOC models. The benefit of
self-segregation for individual survivability is sys-
tematically investigated in Fig. 1, panel (b), where
various initial density values β0 =

∫
R ρ(x, 0)dx are

considered. In all cases, the species survive beyond
intuitive expectations. Particularly, in the interval
β ∈ [βc, A], the diffusion has a homogenizing effect
by reducing the initial perturbation, thereby slowing
down the fast dynamics of the diffusion component.
Consequently, the final equilibrium density is lower
than the initial density. However, this outcome is an
artifact of the deterministic mean-field approach uti-
lized here. In a real scenario, the presence of external
or demographic noise acts as a permanent perturba-
tion (forcing) term, preventing a substantial decrease
in the final density compared to the critical value βc.
Stochastic simulations, performed using the Gille-
spie algorithm, are depicted by the blue dashed line
(and corresponding shaded blue region) in Fig. 1 (b),

thereby substantiating our claim.
Power-law distribution in self-segregation pat-

terns.- SOC processes are renowned for the presence
of power-law distributions of some relevant vari-
ables. This is the case for instance of the sandpile
model where the size of generated avalanches has
a scale-free distribution [22]. Based on the intuition
that in the present model the relevant variable will
be the cluster size, we have conducted a significant
number of independent simulations of Eq. (4) with
various initial values for the density β0, closer and
closer to the critical value of the system for which
patterns are expected to emerge. In the slow-fast
setting, this critical value is anticipated to be close
to βc. Fig. 2, panels (a1) and (a2), show patterns
with clusters of varying sizes for two different val-
ues of the initial density β0. In Fig. 2 (b1) we show
the cumulative distribution P(S ≥ s) of the size S
of the stationary clusters resulting from Eq. (4). It
can readily be observed that they fit very well to a
power-law function with almost the same critical ex-
ponent α and are characterized by different values of
exponential cutoffs that depend on the initial density
β0. In summary

P(S ≥ s)= κs−αes ξ(β0) , (8)

where κ is a normalization constant and the func-
tion ξ(β0) vanishes when β0 equals β̂c, the value
for which a perfect power-law relation is ob-
served. Inspired by similar scenarios as in the Ising
model [52] or the percolation processes [53], we set
ξ(β0)= −C|β̂c − β0|

γ
, with C > 0 being an appro-

priately chosen scaling constant, leading to a sec-
ond exponent γ > 0 which describes the transi-
tion to a genuine power-law and thus the indepen-
dence of the exponential cutoff from the size of the
system. In Fig. 2 (b1) we have shown with a red
dashed line and colored solid lines, respectively, for
the power-law and the exponential cutoff, the best
fit to the empirical critical exponents α ≈ 0.9 and
γ ≈ 2.1. Let us observe that both fits agree well
with the numerical data except for small and large
values of s due to the finite resolution of the nu-
merical simulations. Since the latter two parame-
ters are independent of the values of the initial sys-
tem mass suggests that our model belongs to a uni-
versality class, typical of systems where power-law
distributions emerge [52]. A compact way to illus-
trate this is by plotting sαP(S ≥ s) as a function of
s |β̂c − β0|

γ
; the different curves now collapse onto a

single one, known in the literature as the universal
curve, shown in panel (b2). In conclusion, we as-
sert that while the universal power-law distribution
of patch sizes is solely driven by the self-segregation
process (see SM [47]), the reaction component is vital
for accurately describing the resilience of individuals
in harsh conditions.

Conlusions.- In this study, we presented a novel
dynamical model that addresses the emergence
of spatially-extended patterns, characterized by a
power-law distribution of spatial cluster sizes. By
considering positive interactions between individu-
als and accounting for limited resources, we devel-
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(a1)

(a2)

(b1)

(b2)

FIG. 2. (a) Vegetation patterns for two average initial site density values: (upper) β0 = 0.445 and (lower) β0 = 0.455. (b)
(Upper) Cumulative distribution of cluster sizes, each curve for a distinct β0 (results from 10 configurations). Data align
with a power-law distribution (red dashed curve) with an exponential cutoff. (Lower) Data collapse onto a universal
curve by plotting sαP(S ≥ s) against s|β̂c − β0|

γ. Deviations in the black curve from exponential fitting stem from finite
size effects, manifesting at large s. Initial node densities were in [β0 − 0.05, β0 + 0.05], rescaled for initial average density
β0. Simulations on a 500 × 500 square lattice, parameters: a = 2, A = 1/6, r = 0.1, D = 10.

oped a self-consistent mathematical formalism. The
model encompasses a single-species evolution equa-
tion with a local reaction term based on the Allee-
logistic function. To capture the spatial dynam-
ics, we introduced a nonlinear diffusion term that
models the phenomenon of self-segregation. The
latter process assumes a critical role in initiating
pattern formation and establishing a mechanism of
self-organized criticality. Within this framework,
we observe an initial decrease in mass, driven by
insufficient resource availability, until a threshold,
that can be analytically predicted, is reached. Be-
yond this threshold, we observe the spatial organi-
zation of mass into distinct clusters characterized by

higher densities, thus fostering cooperative behav-
iors among individuals. Consequently, clusters with
densities surpassing the Allee threshold shape the
final pattern. Numerical investigations confirm that
the distribution of cluster sizes follows a power-law
function with an exponential cutoff.
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SUPPLEMENTAL MATERIAL

Appendix A: Mathematical details of the individual-based modeling

1. Transition rates

This section aims to derive the transition probabilities given by Eq. (2)-(3) in the main text from the corre-
sponding reactions:

Xi + Ei
r1−→ 2Ei =⇒ T(ni − 1|ni) =

r1

Ω
ni
N

N − ni
N

, (A1a)

2Xi + Ei
r2−→ 3Xi =⇒ T(ni + 1|ni) =

r2

Ω
ni
N

ni − 1
N

N − ni
N

, (A1b)

Xi + aXj + Ej
δ−→ Ei + 2Xj =⇒ T(ni − 1, nj + 1|ni, nj) =

δ

Ωk
ni
N

g
(N − nj

N

)
, (A1c)

Xj + aXi + Ei
δ−→ Ej + 2Xi =⇒ T(ni + 1, nj − 1|ni, nj) =

δ

Ωk
nj

N
g
(N − ni

N

)
, (A1d)

where g(ρ) = ρa(1 − ρ).
The derivation is similar to the one discussed in [54]. As a preliminary step, let us remind how to compute

the probability P(X = k, E = ℓ) to pick without reinsertion k ≤ n letters X and ℓ ≤ N − n letters E in an
urn that contains n letters X and N − n letters E. As a first step, let us determine the probability of picking k
consecutive letters X followed by ℓ consecutive letters E. This probability reads:( n

N
n − 1
N − 1

· · · n − k + 1
N − k + 1

)(N − n
N − k

N − n − 1
N − k − 1

· · · N − n − ℓ+ 1
N − k − ℓ+ 1

)
=

n!
(n − k)!

(N − k − ℓ)!
N!

(N − n)!
(N − n − ℓ)!

. (A2)

The probability P(X = k, E = ℓ) is then obtained by multiplying the above expression by the number of
distinct configurations obtained upon permutations of X and E, which is given by the binomial coefficient
(k+ℓ

ℓ ). Overall, we obtain:

P(X = k, E = ℓ) =
(N−n

ℓ )(n
k)

( N
k+ℓ)

. (A3)

It follows that for (A1b), for instance, the probability to pick two agents X and one vacancy E within node

vi is given by 3
ni
N

ni − 1
N − 1

N − ni
N − 2

. By denoting by p2 (resp. p1) the probability that the reaction will be of

type (A1b) (resp. (A1a)) and using the fact that node vi is selected with probability 1/Ω, the transition rate
corresponding to reaction (A1b) is given by:

T(ni + 1|ni) ∼ 3r2
p2

Ω
ni
N

ni − 1
N − 1

N − ni
N − 2

∼ 3r2
p2

Ω
N

N − 1
N

N − 2
ni
N

ni − 1
N

N − ni
N

≡ r′2
Ω

ni
N

ni − 1
N

N − ni
N

,
(A4)

with r′2 proportional to r2. Without affecting the results in the paper, one can omit the ′ notation in the above
reaction rate (which amounts to relabeling r′2 into r2). Similarly, one obtains:

T(ni − 1|ni) ∼ 2r1
p1

Ω
ni
N

N − ni
N − 1

∼ 2r1
p1

Ω
N

N − 1
ni
N

N − ni
N

≡
r′1
Ω

ni
N

N − ni
N

,
(A5)

with r′1 proportional to r1. As before, one can omit the ′ notation. With probability 1 − p1 − p2, the reaction
will correspond to the displacement of an agent between neighboring sites. Since the probability to select
node vi and one of its neighbors, vj is given by 1

Ωk with k = 4 (each node has four nearest neighbors), we
obtain:

T(ni − 1, nj + 1|ni, nj) ∼ δ(1 − p1 − p2)
1

Ωk
ni
N

g
(

1 −
nj

N

)
≡ δ′

Ωk
ni
N

g
(

1 −
nj

N

)
,

T(ni + 1, nj − 1|ni, nj) ∼ δ(1 − p1 − p2)
1

Ωk
nj

N
g
(

1 − ni
N

)
≡ δ′

Ωk
nj

N
g
(

1 − ni
N

)
.

(A6)

Again, one can relabel δ′ into δ.
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One can thus rewrite the master equation as follows:

dP(n, t)
dt

=∑
i

[
T(ni|ni + 1)P(ni + 1) + T(ni|ni − 1)P(ni − 1)− T(ni + 1|ni)P(ni)− T(ni − 1|ni)P(ni)

]
+∑

i
∑

j∈N (i)

[
T(ni, nj|ni + 1, nj − 1)P(ni + 1, nj − 1) + T(ni, nj|ni − 1, nj + 1)P(ni − 1, nj + 1)

]
−∑

i
∑

j∈N (i)

[
T(ni − 1, nj + 1|ni, nj)P(ni, nj) + T(ni + 1, nj − 1|ni, nj)P(ni, nj)

]
,

(A7)

where N (i) denotes the set of (nearest) neighbors of node i. For the sake of clarity, we only highlighted the
entries corresponding to the site(s) involved in the reaction. For instance, P(ni − 1) is the probability that the
state of the system at time t is given by n′ = (n1, n2, · · · , ni−1, ni − 1, ni+1, · · · , nΩ).

2. Details about the averaging method and mass conservation

Let us now denote by ⟨ni⟩ the average number of agents within node vi, where the average is performed
over all the stochastic realizations of the system. Starting from the master equation (A7), the time evolution
of ⟨ni⟩ is given by:

d⟨ni⟩
dτ

=
〈

T(ni + 1|ni)
〉
−
〈

T(ni − 1|ni)
〉
+ ∑

j∈N (i)

〈
T(ni + 1, nj − 1|ni, nj)

〉
− ∑

j∈N (i)

〈
T(nj + 1, ni − 1|ni, nj)

〉
.

(A8)

Let us then substitute the transition probabilities by their expressions given in Eq. (A1) and let us take the
limit N → +∞. Upon rescaling of the time t = τ

N , one finds:

d⟨ ni
N ⟩

dt
= − r1

Ω

〈ni
N

〉〈
1 − ni

N

〉
+

r2

Ω

〈ni
N

〉2〈
1 − ni

N

〉
+

δ

Ω ∑
j∈N (i)

1
k

〈nj

N

〉
g
(〈ni

N

〉)
− δ

Ω ∑
j∈N (i)

1
k

〈ni
N

〉
g
(〈nj

N

〉)
.

(A9)

Recalling the definition ρi = limN→+∞

〈
ni
N

〉
, one obtains:

ρ̇i =
r2

Ω
ρi(1 − ρi)(ρi − r1/r2) +

δ

Ωk ∑
j∈N (i)

[ρjg(ρi)− ρig(ρj)], i = 1, · · · , Ω . (A10)

The reaction part is a cubic polynomial in ρi, modeling the Allee effect. One immediately sees that any state
in which sites either are fully occupied, i.e., ρ∗i = 1, or fully empty, i.e., ρ∗i = 0 will be a fixed point of the
system. There are in total 2Ω of such fixed points, each of them being (locally) stable as shown in Appendix C.
Taking the continuum limit, i.e., Ω → +∞ while keeping the size of the domain fixed, leads to the following
partial differential equation governing the spatio-temporal evolution of the vegetation density ρ

∂ρ

∂t
= r ρ(1 − ρ)(ρ − A) + D

[
g(ρ)∆ρ − ρ∆g(ρ)

]
, (A11)

where we have defined the positive and bounded quantities r = limΩ→∞ r2/Ω and D = limΩ→∞ δ/Ω and
we assume 0 < A := r1/r2 < 1. In the above expression, ρ ≡ ρ(x, t) is defined on the square domain
R = [0, 1]× [0, 1] with periodic boundary conditions, x ≡ (x, y) and ∆ ≡ ∂

∂x2 +
∂

∂y2 . The nonlinear diffusion

(second term of the r.h.s.) preserves the total mass M =
∫
R ρ(x, t)dx. Indeed, by assuming r = 0, one has:

dM
dt

= D
∫
R
(g(ρ)∆ρ − ρ∆g(ρ))dx = 0, (A12)

as follows upon integrating by parts and using the assumption of periodic boundary conditions.

Appendix B: Fixed points of the system and their stability

In this appendix, we assume g(x) = xa(1 − x) with a > 1 and investigate the stability of the fixed points of
the ODE system given by (A10), namely (upon relabelling),

ρ̇i = rρi(1 − ρi)(ρi − A) +
D
4 ∑

j∈N (i)
[ρjg(ρi)− ρig(ρj)], i = 1, · · · , Ω . (B1)
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Let us first consider the homogeneous fixed points of the system. We will denote by ρ∗i the stationary density
within site vi. There are in total three distinct homogeneous states, corresponding to ρ∗i = {0, 1, A} for all i. A
linear stability analysis, see hereafter for more details, shows that the homogeneous state ρ∗i = A is unstable
while the two others are (locally) stable.

Any configuration in which stationary sites’ densities are equal to 0 or 1 will be a fixed point of the system.
There are 2Ω of such fixed points, including the two homogeneous states ρ∗i = {0, 1} for all i. To determine
their local stability, let us compute the Jacobian matrix J of the system. The (i, j) element of this matrix is
given by:

Jij =
Aij

4

(
g(ρi)− ρig′(ρj)

)
+ δij

[
f ′(ρi) + ∑

l

Ail
4

(
ρl g′(ρi)− g(ρl)

)]
, (B2)

with Aij = 1 if nodes i and j are nearest neighbors (Aij = 0 otherwise) and the constant D has been absorbed
in the function f . Since g(x) = xa(1 − x) (with a > 1), it follows that g(0) = 0 = g(1) and thus:

Jij(ρ
∗
k ∈ {0, 1}) = −

Aij

4
ρ∗i g′(ρ∗j ) + δij

[
f ′(ρ∗i ) + ∑

l

Ail
4

ρ∗l g′(ρ∗i )
]
, (B3)

with g′(x) = xa−1[a − x(a + 1)
]
. In particular, one has g′(0) = 0 and g′(1) = −1.

Let i ∈ {1, · · · , Ω} be arbitrarily fixed. If ρ∗i = 0, then Jij = δij f ′(0) for all j = 1, · · · , Ω, while if ρ∗i = 1,

Jij = − Aij
4 g′(ρ∗j ) + δij

[
f ′(1)− ∑l

Ail
4 ρ∗l

]
, for all j = 1, · · · , Ω. Let us observe that ∑j ̸=i |

Aij
4 g′(ρ∗j )| = ∑j ̸=i

Aij
4 ρ∗j

by using the fact that g′(0) = 0 and g′(1) = −1. By Gershgorin’s theorem, we know that all the eigenvalues
fall within the union of discs centered at Jii and of radius Ri = ∑j ̸=i |Jij|. Since f ′(0) < 0 and f ′(1) < 1, we
thus deduce, by virtue of Gershgorin’s theorem, that all the eigenvalues lie in the complex half-plane and
hence the fixed point is stable.

Appendix C: Self-segregation in the slow-fast limit

In this section, we consider the limit r → 0. In this case, the dynamical system boils down to the following
equation:

ρ̇i = ∑
j
Lij[ρjg(ρi)− ρig(ρj)], i = 1, · · · , Ω , (C1)

with Lij =
Aij
k − δij. Following a linear stability analysis, see Sect. B, we obtain that the homogeneous state

ρ∗i = β is stable if and only if β > βc, with

βc =
a − 1

a
. (C2)

Below this critical threshold, empty nodes emerge, as shown in Fig. 3 where we report the stationary densities
for g(x) = x2(1 − x) and an average density β = 0.3 (left panel) and β = 0.4 (right panel). Further numerical
analysis, see Fig. 4, indicates that the distribution of the cluster sizes is well-described by a power-law with
an exponential cut-off, suggesting that the distribution of mass into distinct clusters with power-laws scalings
is driven by diffusion.

Appendix D: Intermittency in the self-segregation process

The dynamics in self-organized critical systems is characterized by large intermittent temporal phases [55].
For instance, in the celebrated sandpile model, the slow addition of sand grains alternates with fast releases
of sand, commonly called avalanches [55]. The self-segregation reaction-diffusion process considered in the
main text, namely,

∂ρ

∂t
= rρ(1 − ρ)(ρ − A) + D

[
g(ρ)∆ρ − ρ∆g(ρ)

]
. (D1)

also exhibits intermittent phases in the slow fast setting, i.e., for D/r ≫ 1. Fig. 5 (Left) shows the temporal
evolution of the number of empty nodes as well as the size of the largest cluster, for D/r = 10000 and a
square lattice composed by 200 × 200 cells. The latter are considered empty if their density decreases below
ϵ = 0.001. Throughout this study, a cluster refers to a set of nearest neighbor non-empty cells and the
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FIG. 3. Stationary densities for a square lattice of dimension 40 × 40 and g(x) = x2(1 − x). Initial densities were sampled
in [β − 0.02, β + 0.02], with β0 = 0.3 (left) and β0 = 0.4 (right).
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FIG. 4. The cumulative distribution P(S ≥ s) of cluster sizes is depicted, with each curve corresponding to a distinct
average initial site density β0 and representing the results of 10 independent configurations. The data align well with a
power-law distribution (indicated by the red dashed curve) that exhibits an exponential cutoff. The initial node densities
were initialized within the range of [β0 − 0.01, β0 + 0.01], followed by rescaling to ensure that the initial total mass divided
by the number of sites equals β0. The simulations were conducted on a square lattice of 500 × 500 sites, with a = 2.

size of a cluster is the number of non-empty cells it contains. Let us observe that because of the dynamics
Eq. (D1), nodes will become empty or completely full only asymptotically, for this reason we have to fix
a threshold below which nodes are considered empty. The size of the cluster will depend on such choice
but not the general behavior resulting from intermittent dynamics. As it can be observed, the fraction of
empty nodes and the size of the largest cluster correlate and manifest phases in which they remain constant
(plateaus) interspersed with abrupt variations. The size of these plateaus also varies, as emphasized in Fig. 5
(Right) where the dynamics at early times reveals a smaller plateau. This provides further evidence that the
self-segregation mechanism considered in this paper belongs to the class of self-organized processes [55].
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FIG. 5. (Left) Number of empty nodes (red) and size of the largest cluster (blue) as a function of time for a square lattice
of size 200 × 200. Initial conditions were randomly sampled in [β0 − 0.05, β0 + 0.05] with β0 = 0.52. Parameters are
given by r = 0.001, D = 10, A = 0.6 and g(ρ) = ρ2(1 − ρ). Nodes are considered empty if their density decreases below
ϵ = 0.001. (Right) Dynamics at early times, revealing a smaller plateau.


