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Abstract

Near-Earth space continues to be the focus of critical services and capabilities
provided to the society. With the steady increase of space traffic, the number
of Resident Space Objects (RSOs) has recently boomed in the context of grow-
ing concern due to space debris. The need of a holistic and unified approach for
addressing orbital collisions, assess the global in-orbit risk, and define sustainable
practices for space traffic management has emerged as a major societal challenge.
Here, we introduce and discuss a versatile framework rooted on the use of the
complex network paradigm to introduce a novel risk index for space sustainability
criteria. With an entirely data-driven, but flexible, formulation, we introduce the
Resident Space Object Network (RSONet) by connecting RSOs that experience
near-collisions events over a finite-time window. The structural collisional prop-
erties of RSOs are thus encoded into the RSONet and analysed with the tools of
network science. We formulate a geometrical index highlighting the key role of
specific RSOs in building up the risk of collisions with respect to the rest of the
population. Practical applications based on Two-Line Elements and Conjunction
Data Message databases are presented.
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1 Introduction

1.1 The problem of space traffic

At the current date, the estimated number of objects orbiting Earth is of the order
of millions, most of which smaller than 10 cm in size. Only about 35,000 of them
are large enough to be regularly tracked by the US Space Surveillance Network and
maintained in their catalogue, which includes objects larger than about 5-10 cm in
low-Earth orbit (LEO) and 30 cm to 1 m at geostationary (GEO) altitudes1. About
9,000 objects represent intact and operational satellites2.

In the past decades, there has been a steady increase of the amount of objects in
space, as reported in [1]. The early 2000s saw a boom of fragmentation debris due to
two main events: the Chinese anti-satellite test which lead to the voluntary destruction
of the Fengyun-1C weather satellite in January 2007 [2–4], and the accidental collision
of the U.S. Iridium 33 and Russian Cosmos 2251 satellites in February 2009 [5–7].
While the launch rate of new satellites had maintained a slow, steady growth until a
few years ago, it has recently accelerated to achieve an exponential growth, as visible
in Fig. 1. Thanks to the ever more affordable access to space and miniaturisation of
spacecraft components, commercial exploitation of space has become more affordable.
At the same time, many of the satellites that were launched in the past and those that
are operative now are left in space around the Earth, slowly breaking apart, exploding,
or colliding with other objects.

While the amount of fragmentation debris has remained the major contributor to
the population until recently, currently active satellites represent the largest share of
space traffic, so much that high-risk conjunctions with active and inactive payloads
in lower altitudes exceed conjunctions with fragments [1, 8]. In the latest years, space
became more and more affordable to exploit as a resource, both scientifically and com-
mercially as a platform to offer communication services. The amount of active satellites
is quickly growing, with the resulting increase of complexity of the space environment
around Earth. The most obvious example of this fact is the rise of megaconstellations,
with planned projects such as OneWeb and Starlink where hundreds up to thousands
of light satellites are being launched in LEO to provide high speed internet coverage
to the whole globe [9].

In LEO, multiple close approaches between catalogued space resident objects
(RSOs) are notified to satellite operators per week3, in possible collision scenarios,

1https://www.esa.int/Space Safety/Space Debris/Space debris by the numbers (Online; accessed 10-
Dec-2023).

2https://www.esa.int/Space Safety/Space Debris/About space debris (Online; accessed 10-Dec-2023).
3https://leolabs-space.medium.com/quantifying-conjunction-risk-in-leo-e6eee8134211
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Fig. 1 Evolution in time of the amount and type of artificial objects orbiting Earth that can be
detected from ground: around 30, 000 objects larger than 5− 10 cm are catalogued and tracked every
day, while smaller objects are estimated to be orders of magnitude larger (data extracted from the
Space-Track catalogue).

while several fragmentation events occur spontaneously every year4, further contribut-
ing to the debris population and thus to the risk of collisions with active satellites.
Following the current trends, the projected increase in conjunction rate and collision
risk is expected to reach levels orders of magnitude higher in the next decade [10, 11].

1.2 State of the art

Space debris and space traffic management have become a concern from multiple
viewpoints. On the one hand, it is a matter of safety, as the growth in space debris and
space traffic makes orbit operations more hazardous and costly if frequent maneuvers
are required to avoid other objects. On the other hand, it is a matter of sustainability,
that is ensuring that space as a resource remains usable for future generations as it
is for us now [12]. The various approaches to tackle the problem of space debris and
space traffic management can be split into two main groups: prevention, mitigation,
and remediation procedures on the one hand [13–16], and the use of the long-term
dynamics of space objects on the other hand [17–23].

As for the first approach, it includes all solutions aimed at reducing the number
of space debris, either indirectly by preventing the formation of new ones, or directly
by employing active debris removal (ADR) strategies. Similarly, we can cast into this
category studies aimed at predicting and preventing catastrophic collisions between
existing objects, grounded on the development of methods to quantify collision risk
[24].

4https://www.esa.int/Space Safety/Space Debris/Space debris by the numbers (Online; accessed 10-
Oct-2023).
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As for the second approach, understanding the secular dynamics of objects sub-
ject to Earth’s gravitational influence and other natural orbital perturbations is the
focus of numerous studies aiming at exploiting the natural evolution of orbits under
perturbations and resonances [25, 26] to either achieve an eventual re-entry [27–32]
or to permanently contain objects in long-term stable graveyard orbits [1, 33, 34] and
reduce the creation of and impact associated with space debris.

This manuscript exploits network theory to represent the “interactions” among
RSOs. Networks are used as descriptive and representative tools for several appli-
cations involving complex systems. Social and animal interactions [35], contagion
patterns [36], reactions among chemical species, pattern emergence [37], are only a
few examples of systems falling in this framework and whose dynamics depends on
the interactions between the members (i.e., the nodes) of these networks [38].

The study of the interactions between objects in space becomes relevant for not
only visualising the intricate patterns arising due to the possible collisions between
them, but also to analyse how the collision risk evolves in time and propagates across
the population when fragmentations occur. Thus, shifting the perspective from the
individual events to the whole population, can provide new insight in the identification
of the main actors when studying collision risk and of the possible targets to act upon
for reducing this risk.

A first attempt to represent the space population as a network was done by Lewis
et al. [39]. In their work, they establish a link between two nodes, i.e., two RSOs, if the
collision probability during a conjunction between the corresponding objects exceeds
a given threshold. They analyse the network statistics to identify objects which affect
the most the rest of the network in terms of conjunction and collision probability,
representing a threat for the population. Moreover, they establish a multi-relational
network by defining different types of links and nodes (representing the relationships
“conjunction”, “is a fragment of”, or “is a member of”) to extract more information
from those statistics and identify candidate objects whose removal from the network
would benefit the overall in-orbit situation [40].

An evolution of this model was carried out in the works by Acciarini et al. [41, 42]
and Wang et al. [43], who establish the network of RSOs using a two-layer tempo-
ral model, where a first layer captures the physical effects of collisions propagating
across the network, while a secondary layer models the exchange of information among
satellites via telecommunication. Both layers model dynamically the disruption of the
network as nodes become inactive due to collisions, malfunctions, or deliberate attacks,
with the goal of identifying liabilities and improve resilience of the space environment.
Stevenson et al. [44] continue along the network path, by constructing a network using
a three-filter approach similarly to Casanova et al. [45] and applying machine learn-
ing techniques to obtain efficient conjunction assessment and predict the existence of
upcoming conjunction links over a given screening period, to eventually reduce the
number of collision avoidance manoeuvres.
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1.3 A novel approach

While the prediction of in-orbit conjunctions is already efficiently carried out by several
organisms dedicated to the surveillance of Earth’s orbital environment and collision
avoidance practices, existing approaches generally focus on the conjunction events
individually, in an effort to prevent collisions with active satellites, or on studying
the space debris environment via analytical models to evaluate risk of collisions on a
statistical level.

This manuscript introduces a novel measure of the risk of collisions within the
population of RSOs. The close encounters between space residents are embedded into
a network, whose topology and properties are analysed with the tools from graph
theory and combined to define a metric to quantify how each object contributes to the
overall risk of collisions with respect to the others. This framework is used to study
the patterns of interactions between the objects, which drive the risk of generating
new debris, and to eventually evaluate the sustainability of the current state of the
population.

Fig. 2 Largest connected component of the network of RSOs. The size and the colour of the nodes
correspond to the values of the relevance metric introduced in Sect. 3.
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Table 1 presents a selection of metrics that have been proposed to evaluate in-orbit
collision risk, taken among those presented by McKnight et al. [46]. Notice that many
existing models rely on the definition of risk as the combination of probability and
consequences of the collision, e.g., McKnight, Anselmo & Pardini, Letizia & Lemmens,
Dolado Perez & Ruch, Colombo et al., where the probability of a collision is estimated
statistically by considering the average density of object in a selected orbital region
and the average lifetime for the specific object, while consequences of the collision are
expressed by including the debris-generating mass.

Table 1 An overview of some of the existing metrics to evaluate the risk of collisions in orbit.

Authors Description

McKnight et al. [47, 48]
SMC rank, combines probability factors (collision rate,
area, etc.) with consequence factors (mass, lifetime,
satellite density)

Anselmo & Pardini [49]
Normalised ranking combining probability factors
(orbital debris flux, lifetime, mass) with consequence
factors (fragment mass, decay time)

Letizia et al. [50]
ECOB, combines the probability of a catastrophic col-
lision involving an object across its lifetime due to
simulated debris flux with a severity term

Rossi et al. [51]
CSI, normalised index combining properties of the
object (mass and lifetime) with spatial statistics of a
selected orbital shell (density and inclination)

Lewis [52]
Ranking based on multiple metrics defined according to
the average simulated collision probability and various
properties of the object

Dolado Perez & Ruch [53]
Index combining ECOB and CSI with importance
weights to rank objects

Jing, Dan & Wang
ADR selection based on mass, collision probability, and
objects spatial density

Colombo et al. [54]
Index following the ECOB formulation to assess the
effect of collisions and fragmentations along an object
lifetime

The approach proposed here differs from the ones cited above in multiple aspects.
Firstly, it is data-driven, namely it does not rely on statistical models to estimate the
rate of collisions, rather it uses already available information (CDMs) or computes the
conjunctions between RSOs directly from orbital data (propagation of TLEs or other-
wise) of individual objects. Secondly it does not consider the properties of the RSOs
such as mass or lifetime, rather it relies only on the relationships existing between the
RSOs to draw qualitative and quantitative conclusions about the state of risk of the
population. Let us observe that this assumption can be easily relaxed to allow for a
risk index taking into account also some RSO features. Lastly, while networks have
been employed in the past, the proposed approach is novel as it produces a network
based on conjunctions before including the probability of collision, which is then used
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to weight the links. Moreover, instead of analysing the statistics of the network sepa-
rately to judge which objects are the most dangerous or vulnerable, and thus possible
candidates for removal, here the statistics are combined into a unique metric which
summarises the relevance of each object with respect to the whole population.

An example of the resulting RSO network is represented in Fig. 2, which illustrates
the largest connected component of the RSO network; let us notice that nodes size and
shades of colors encode the proposed relevance score, allowing thus a straightforward
identification of the most relevant objects.

The purpose of the new framework is twofold: on the one hand, it shifts the per-
spective for analysing in-orbit collision risk from individual events to a more global
viewpoint related to the interactions between RSOs within the population; on the
other hand, it provides a guide to define new metrics, such as the one proposed here,
to quantify the risk of collisions via an entirely data-driven approach adaptable to
various data formats and propagation tools, unlike other methods based on statistical
models.

The manuscript is structured as follows. Section 2 presents the tools used for data
collection, orbital propagation, and the network embedding process. Sect. 3 introduces
the definition of the new ranking score in an effort to assess space sustainability. Sect. 4
presents test cases to apply the ranking score to the network and comments upon
the results. Finally, the conclusive Sect. 5 sums up the main results and discusses our
future work directions.

2 The Resident Space Objects Network

This section introduces the definition of the network of RSOs and the main steps
and assumptions in building it, from the network embedding procedure up to the
description of the initial data and the numerical propagator.

Let us consider two RSOs xi and xj of the chosen database of N objects. We define
the binary collision coefficient

cij(ϵ, T ) = Θ
(
ϵ− min

0≤t≤T
∥ri(t)− rj(t)∥2

)
, (1)

where Θ is the Heaviside step function, ϵ a positive real parameter, T a time horizon,
and ∥ • ∥2 the Euclidean norm. This coefficient captures ϵ-close encounter between
two Cartesian geocentric RSOs’ time-dependent position vectors ri(t) and rj(t) when
moving on their respective orbits during the finite time window [0, T ]. The key-point
consists in introducing a network from the near-collision matrix C(ϵ, T ) = (cij)i,j . For
this, we define the (binary) matrix

A(ϵ, T ) = C(ϵ, T )− I, (2)

where I is the N × N identity matrix. We interpret the matrix A as the adjacency
matrix of an undirected, free of self-loops, and static network G = (V,E), where
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V = {x1, · · · , xN} denotes the set of vertices corresponding to N distinct RSOs, and
E ⊆ V × V defines the set of edges between vertices. Distinct RSOs are connected if
they are ϵ-close over (0, T ], this implies that edges are defined by solely identifying
close conjunctions between the objects in the data set. We call this network the
resident space object network, hereafter denoted RSONet.

We build the RSONet by starting either from Two-Line Element (TLE) data
[55, 56] or from Conjunction Data Messages (CDMs) [57, 58] (a breakdown of the
CDM format is provided in Appendix D). The workflow of the two approaches is
represented in Fig. 3: the key difference between the two approaches lays in the com-
putation of the minimum distance between each couple of RSOs, which is expressed as
min0≤t≤T ∥ri(t)− rj(t)∥2 in Eq. (1) and through which conjunctions are identified. It
has to be noted that Space-Track pre-screens the detected events to remove debris-on-
debris conjunctions, among others. Nonetheless, the strategy to build the RSONet is
independent from the input data, TLEs or CDMs; observe however that in the former
case we have to consider the temporal propagation of RSOs. To conclude we would
like to emphasise that the framework is solely data-driven and thus flexible enough to
be adapted to different kinds of formats and propagation methods.

Fig. 3 Flowchart of the network embedding process: on the left, the embedding starting from TLE
data, which includes the propagation and filtering of the trajectories to detect conjunctions; on the
right, the embedding starting from CDM data, which contain already a list of conjunctions.

2.1 RSONet based on TLEs

The minimum distance between RSOs is computed via the TLE-based propagation of
the objects’ orbits and a process to detect conjunctions.

At the beginning of the analysis, TLEs referring to a specific date are read from
an input file. Afterwards, a first pre-screening checks for the presence of multiple
TLEs for the same object, retaining only the most recent, thus more precise, entry.
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All elements, then, are propagated forward within a given period for m time steps to
build an ephemeris table, which will be used later to compute the states of the objects
at any time t1 ≤ t ≤ tm via interpolation, where tk = k∆ and ∆ is the fixed time step
duration.

To retain maximum prediction accuracy, we use the analytical Standard General
Perturbations 4 (SGP4) model to propagate the set of TLEs [56, 59–61]. The SGP4
propagator generates ephemeris in the True Equator Mean Equinox (TEME) coordi-
nate system based on the epoch of the specified TLE [62]. The implementation used
for this work is the one provided by Vallado on the Celestrak portal5. The analytical
modelling of SGP4 allows the rapid propagation of space objects, making it a desir-
able option at this stage of the work, although the simplifications of the perturbation
model of SGP4 limit the accuracy of the propagation to intervals of a few days [55].
Let us however stress that the methodology introduced here is general enough and it
applies beyond the choice of the propagator made here.

At the current stage, the links between the nodes of the network are built by
solely identifying close conjunctions between the various objects in the data set.
Close approaches are identified by following the three-filter approach developed by
Casanova et al. [45], that improves the original triple-loop filter proposed by Hoots
et al. [59]. As per its name, the approach consists of three filters which are applied in
series to compare the relative geometry of each pair of orbits contained in the TLE
set. At each step, the data pool is pruned to remove RSOs which do not satisfy any of
the filters and are, thus, unable to experience close encounters with each other. This
pruning process allows to avoid comparing pairwise elements, reducing thus the com-
putational load of the problem (initially of the order of N2/2); because the number of
unique objects appearing in the daily TLE sets is of the order of ∼ 20, 000, the rough
pairwise check would result in ∼ 200, 000, 000 comparisons. The breakdown of the
three filters is shown in App.A. In case multiple conjunctions between the same two
objects are found in the given time window, only the one with the lowest distance is
considered for the network embedding, in order to avoid creating a non-simple graph
(i.e., a graph with multiple links between two nodes) and keep the model as simple
as possible.

2.2 RSONet based on CDMs

The network embedding can also be generated directly from CDMs, summarised
reports containing the main characteristics of a predicted conjunction between two
catalogued objects, provided by surveillance agents to satellite operators. The message
contains data such as the IDs of the two involved objects, the epoch, the minimum
predicted distance, and the estimated probability of collision between the bodies.

The minimum distance between RSOs is obtained directly from the CDM data,
thus skipping the propagation process as well as the application of filters, ascribing it
to the class of data-driven methods. While faster, this method is less flexible regarding
the choice of the duration window, T , and collision threshold, ϵ, because CDMs are

5https://celestrak.org/publications/AIAA/2006-6753/ (Online; accessed 10-Oct-2023).
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generated by using fixed values, which change depending on the provider and upon
which we do not have any control.

Similarly to the TLE-based case, in case of multiple conjunctions between the same
two RSOs, only the one with the closest distance is kept to build the RSONet.

3 Definition of the relevance score

The network embedding is exploited to introduce a new ranking score to estimate the
importance of each object in relation to the rest of the population in the possibility to
take part of a possible collision. This way, it is possible to both quantify the likelihood
of a collision during a close approach and to measure how each RSO contributes to
this likelihood relative to one another. This score is based on statistics of network
such as the degree, clustering coefficient, the closeness and betweenness centralities
(see App.B for the definition of those metrics). The following assumptions are made:

1. No distinction based on the type of objects (debris, payload, etc.) involved in the
conjunctions is considered;

2. The conjunctions are all assumed to be independent from time, meaning that they
are considered as if they occurred at the same time;

3. The conjunctions are all assumed to be mutually exclusive, meaning that the
combined probability of either of two events X and Y occurring is p(X ∪ Y ) =
p(X) + p(Y ), where p(X) and p(Y ) are the probabilities of the two events;

4. No importance is given to the actual collision probability in each conjunction, thus
a fixed value p is assigned to all links as a weighting factor useful for the definition
of the score;

5. The fixed probability value p used to weight the links is assigned a value small
enough (e.g., 10−4) to be able to combine them in an intuitive way without the risk
of obtaining a total value larger than 1;

6. The probability of collision between object i and any debris produced by object j
is assumed to be the same probability of a collision between i and j, the rationale
being that during the short enough observation period the debris cloud originating
from j will remain very close to the latter object (thus well within the accuracy
limits of SGP4) .

Remark 1. The first assumption is necessary due to the nature of the problem itself.
Since all conjunction events are pairwise interactions, as it will be explained in Sect. 4,
the network obtained by considering encounters over short periods would result in a
small number of connected components encompassing two nodes each. Combining the
conjunctions detected over longer periods of time produces more structured networks
with larger components, not only allowing for better visualisation of the complexity of
the interactions within the space resident population, but also to gain insight on the
way risk changes according to various parameters. Thus, the network so obtained is a
cumulative representation of the conjunction events, a superposition of the networks
that would be obtained by searching over shorter periods of time. Moreover, by using
the same value p to equally weight all links allows to factor it out to allow for the
network topological properties to clearly emerge.
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The combined probability of an object to collide with any other can be divided
into different contributions, which account for the probability of direct collisions (local
interactions) and of indirect collisions with debris produced by other objects (non-
local interactions). This brings us to introduce three scalar quantities C1, C2, and C3,
that are used to define the final relevance score S, and that we are going to discuss.

With reference to the diagrams in Fig. 4 that represent a network with n = 13
nodes, let us consider node a having Da = 6 neighbours denoted by {a1, a2, . . . , a6},
namely equal to the the number of conjunctions it experiences. We hence denote by
paai the probability of a direct collision between any two distinct objects a and, say,
ai, 1 ≤ i ≤ Da. We derive the definition of each contribution specifically for node a
first, to show how they are constructed, and then we provide a generalised definition
valid for any node.

a)
p̂a = paa1

+ paa2
+ paa3

+ paa4
+

paa5
+ paa6

=
∑6

i=1 paai

b)

p̃a = paa1
(pa1a2

+ pa1a6
) +

paa2
(pa2a1

+ pa2a3
+ pa2a4

+
pa2a6

) + paa3
(pa3a2

+
pa3a4

) + paa4
(pa4a2

+ pa4a3
+

pa4a5
) + paa5

(pa5a4
+ pa5a6

) +
paa6

(pa6a1
+ pa6a2

+ pa6a5
) =∑6

i=1 paai

(∑Dai
−1

j ̸=i
j=1

paiaj

)

c)

⌢
p a= paa6

pa6a7
pa7a8

pa8a9
pa9a10

=

paa6

∏10
j=7 paj−1aj

Fig. 4 Illustration of the concept behind the definition of the three contributions to the ranking
score.

Contribution 1

The first contribution C1 arises by considering the conjunctions of an object with
its direct neighbours (Fig. 4a), reflecting the overall probability of a direct pairwise
collision with any of them. Considering node a, which has degree Da, the combined
probability p̂a of a collision between a and any of those neighbouring objects can be
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written as the sum of the individual probabilities. By using the assumption that all
probabilities are identically given by p, the sum is written as:

p̂a =

Da∑
i=1

paai
=

Da∑
i=1

p = pDa.

Generalising the previous expression for a generic node i having degreeDi and recalling

the assumption of equal probability for any close approach, C (i)
1 can be expressed as

C (i)
1 = pDi. (3)

Contribution 2

The second contribution C2 considers the indirect effects on a of the conjunctions
between its neighbours (see Fig. 4b), aiming to quantifying the probability p̃a of a
encountering the debris produced by one of its neighbours; let us remember that,
because of the previous assumption, this probability is the same as a collision of a with
the latter object because we assume the debris cloud to remain close to the originating
RSO. Such probability can thus be written as:

p̃a =

Da∑
i=1

paai


Daj∑
j ̸=i
j=1

paiaj

 =

Da∑
i=1

p


Daj

−1∑
j ̸=i
j=1

p


=

Da∑
i=1

p [p(Dai
− 1)] = p2

Da∑
i=1

(Dai
− 1)

= p2 · 2Na,

(4)

where Na is the number of pairs connected to a, which depends on the number of con-
nections between the neighbours of a. This number can be derived from the numerator
of the expression of the clustering coefficient given in App.B:

Na =
1

2
CaDa(Da − 1). (5)

The generalised expression for the second contribution for a node i can be thus
obtained as

C (i)
2 = p2CiDi(Di − 1). (6)

Contribution 3

The third contribution C3 considers the non-local interactions with distant, in the net-

work topology, nodes. In this case, the intent is to estimate the probability
⌢
p a of a

encountering debris produced in a chain reaction starting from a collision between dis-
tant nodes: the first collision produces debris, which strikes another object producing
new fragments, propagating the chain, but still remaining close enough to the initial
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object from which they originate. Considering the chain from a to aj as pictured in
Fig. 4c, this probability can be defined as the product of the individual probabilities:

⌢
p a= pdaaj , (7)

where daaj
is the length of the shortest-path between nodes a and aj . The extension

of the latter expression to all chains from a to the other n− 1 nodes in the network is
straightforward and requires to consider the summation over the different chains:

⌢
p a=

n−1∑
j=1

pdaaj . (8)

Let us assume the shortest-paths do not vary too much across the network and thus
to be well approximated by the average shortest-path length, ℓa, between node a and
the other nodes in the network, as defined in Eq. (B6) in App.B. Thus, the previous
expression can be approximated and simplified as follows:

⌢
p a=

n−1∑
j=1

pdaaj ≈ (n− 1)pℓa = (n− 1)p1/Ka , (9)

where Ka is the closeness centrality as defined in Eq. (B7) in App.B.
However, the expression above does not capture the whole picture, since it takes
into account solely the probability of chain reactions directed to a given node. The
importance of a node in this regard does not come only from the number of chains
it can connect to, but also from the number of chains it can propagate, representing
an object which can continue multiple fragmentation cascades. In terms of network
properties, this translates to the concept of betweenness.
For this reason, the expression above has to be modified to accommodate for the
possibility of node a to propagate cascades. With reference to Fig. 5, let us modify
the model network of Fig. 4 by removing the edges between the neighbours of a, ai,
1 ≤ i ≤ 6, such that these nodes are only connected to a. If we perform the same
construction as above, by computing the probability that each of these nodes is reached
by a cascade from node a10, we obtain

⌢
p ai

= paai

10∏
j=6

paaj
,∀ 1 ≤ i ≤ 6.

Since all the shortest paths between the neighbours of a and a10 must go through a,
this nodes contributes further to the risk of collisions by propagating cascades; we can

define another measure
⌢
p

′
a by summing all shortest paths passing through a:

⌢
p

′
a=

n−1∑
i=1

n−1∑
j=1

pdaaj ≈ Bap
ℓa = Bap

1/Ka ,
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Fig. 5 Modified model network used to illustrate the definition of contribution C3.

which recalls the definition of betweenness given in App.B.

The generalised expression for C (i)
3 can be finally obtained as

C (i)
3 = Bip

1/Ki . (10)

Finally, by summing the three contributions, one can obtain the formulation of a
ranking score based exclusively on the topology and statistics of the network.
Definition 1 (Relevance score). Based on the previous discussion, the relevance score
for each node i is introduced as the scalar

S (i) = C (i)
1 + C (i)

2 + C (i)
3 = pDi + p2CiDi(Di − 1) +Bip

1/Ki .

Remark 2. The definition introduced above combines two main aspects: the first one
takes into account local properties, i.e., by weighting nodes highly interconnected with
each other, thus experiencing a high risk of direct collisions, while the second one
considers nodes connecting to a large number of chains on a less local scale, highlights
which nodes can drive fragmentation cascades. The latter contributions, containing
powers of p with higher exponents, was observed to be orders of magnitude lower than
the first contribution. On the other hand, nodes with high degree or betweennes may
skew the relevance score towards the indirect contributions.
Remark 3. Let us observe that, by its very first definition, S (i) > 0, and the lower
bound can never be achieved, indeed in the smallest possible network made of two nodes
and one link, the nodes will have degree equal to 1 and clustering equal to 0, resulting
in a strictly positive score. The same holds true for any chain-like network.

4 Application and analysis

In this section, the use of networks to represent the RSOs environment and to evalu-
ate the risk of collisions is showcased. In the first part, examples are made to highlight
the characteristics of the networks and their dependency on the source of the data. In
the second part, the application of the relevance score defined in Sect. 3 is presented,
to show the use of the properties of the network to provide some measure of the risk
of collision. In the third part, a sensitivity analysis is made to show the dependency
of the main network statistics and of the score values on the simulation parameters,
that is the propagation time and the conjunction distance threshold.
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The proposed test cases use either TLEs or CDMs as the source of initial data.
While the strategy to construct the RSONet is independent from the choice of the
input data, as explained in Sect. 2, we want here to show that the latter choice can
however affects the structure and composition of the RSONet, given that different
objects appear in the two datasets as published by Space-Track and also that the
propagation of TLEs and the three-filters process could return different encounter
probability.

All TLEs and CDMs used here are obtained from Space-Track6, a public catalogue
made available by NORAD and updated daily. Despite the ease of access, covariance
matrices tied to the orbital state estimations are not published, so no uncertainties
over the initial state of the objects are considered in the current model. CDMs contain
conjunction predictions up to three days after their creation date, but no information
about the uncertainty over the geometry of the conjunction. Due to the assumptions
made in Sect. 3, in this work conjunctions are studied only in terms of distance between
the objects rather than collision probability. TLEs were propagated using a time step
∆ of 1 minute. The data sets were gathered by using python interfaces to connect to
Space-Track7, while post-processing and plotting of the results was performed using
MATLAB native libraries.

4.1 Results of the network embedding

Both TLE and CDM data sets refer to the month of May 2023 and both analyses
define conjunctions using a threshold distance ϵ = 1km within a T = 3 days long
propagation interval, observing that those values are the standard accepted param-
eters used to generate the CDMs on Space-Track for conjunction monitoring8. The
TLE sets used in these simulations contained the whole catalogue, with no focus on
a particular orbital region.

Figures 6 and 7 shows the two network embeddings obtained by combining the
conjunction data obtained from CDMs and TLEs over 30 days using 1 km and 3 km
as distance thresholds, respectively. The larger threshold used for the TLE-based
embedding was chosen to compensate for the lower precision of the propagation,
which reduces the ability to accurately detect conjunctions between RSOs. As one can
observe, the network is sparse and splits into several disjoint connected components
(i.e., cluster of interconnected nodes that are disjoint from any larger connected sub-
graphs), a zoomed-in view of the largest connected component from each network is
shown in Fig. 8. Table 2 shows some relevant figures of the networks, such as the num-
ber of connected components and their size, the degree, as well as the composition in
terms of type of objects and orbital region, while Fig. 9 shows the distribution of the
size of the connected components and of the node degree in the two cases.

Let us observe that based on Remark 1, since all interactions involve two objects,
most components are composed by only two nodes, representing sporadic single con-
junction events, which is reflected by the low values of mean degree, similarly to what

6https://www.space-track.org (Online; accessed 10-Oct-2023).
7https://pypi.org/project/spacetrack/ (Online; accessed 10-Dec-2023).
8https://www.space-track.org/#conjunctions (Online; accessed 10-Oct-2023).
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had already been observed by Lewis et al. [39]. By combining the conjunctions found
over longer periods, a more complex structure arises, highlighting new interactions
between the members of the population. In particular, it is visible how components
tend to grow by ramification, forming chains which expand as each object encounters
another one in rare occasions. This again reflects the underlying foundation of the
network relying on pairwise interactions. This aspect will be explored more deeply in
Sect. 4.3.

Fig. 6 Complete CDM-based RSONet (nodes are color-coded by object classification).

While maintaining several similarities, the source of the initial data has a great
impact on the structure and composition of the network. The TLE-based networks
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Fig. 7 Complete TLE-based RSONet (nodes are color-coded by object classification).

Table 2 Comparison of the characteristics
of the networks obtained via CDMs and
TLEs.

Count CDMs TLEs

Nodes 4949 3562
Edges 3616 2590
Connected components 1364 996
Largest size 117 447
Mean size 3.5 3.6
Highest degree 7 9
Mean degree 1.4 1.5

# Debris 4212 880
# Payload 277 2535
# Rocket stages 274 76

Obj. in LEO 4675 3546
Obj. in MEO 13 0
Obj. in GEO 22 8
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a)

b)

Fig. 8 Largest connected components of the RSONet from CDMs (a) and TLEs (b) over the course
of 30 days, using distance thresholds of 1 km and 3 km, respectively.

tend to have fewer components with larger size on average with respect to the CDM-
based counterpart. This is due both to the precision of the initial data and to the
orbital propagation method: indeed, CDMs are obtained from the propagation of
high-precision data via a high-fidelity model, used internally by Space-Track. On the
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a) b)
Fig. 9 Distribution of the size of the connected components and of the node degree in the two cases
in the CDM (a) and TLE (b) cases.

contrary, TLEs are inherently less accurate at transmitting orbital data, and SGP4,
being an approximate model, also introduces error in the propagation of the orbits.

Thus, different initial data and propagation methods lead to diverging results:
different conjunction events involving different objects are detected by the two mod-
els, which end up in the representation of different members of the RSO population.
This is visible by the contrasting distribution of orbits (several objects outside of
LEO appear in the CDM data) and of objects (more debris than payloads appear in
CDMs). The different structure of the two networks is, indeed, also due to the way
conjunctions are managed internally, since most encounters between satellites of the
same constellations are not displayed in the CDMs from Space-Track. For example,
the Starlink constellation accounts for more than 5, 000 satellites as of August 2023;
since most of them orbit at close distance, they can trigger algorithms into detecting
conjunctions with low impact probability between them, which are then ignored in
published CDMs. In the TLE-based network, most connected components are com-
posed entirely of Starlink satellites.

Since the networks are made mostly of small connected components, representing
all of them would impact the clarity of the images. While the choice to show the entire
network in Fig. 6 and 7 was made to provide context to the reader, from now on the
figures will show only the 5 largest components from each model. Nevertheless, the
numerical results will still refer to the entire networks.

4.2 Relevance score

This section shows how the score reflects the risk of collision and highlights the relevant
nodes even without directly taking into account the actual probability values.

The choice of the value of p, while changing the value of the metric S, does not influ-
ence directly the ranking of the various RSOs, since there is proportionality between
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Table 3 Top 5 ranking objects by degree D for the CDM- and TLE-based networks.

CDMs TLEs
D NORAD ID Name D NORAD ID Name
6 38017 IRIDIUM 33 DEB 7 48695 STARLINK-2616
6 39603 METEOR 2-5 DEB 6 46382 STARLINK-1769
5 13719 SL-3 R/B 6 48689 STARLINK-2617
5 30525 FENGYUN 1C DEB 5 44959 STARLINK-1076
5 35705 COSMOS 2251 DEB 5 45067 STARLINK-1150

Table 4 Top 5 ranking objects by closeness centrality K for the CDM- and TLE-based networks.

CDMs TLEs
K NORAD ID Name K NORAD ID Name

9.2·10−5 40681 DMSP 5D-2 F13 DEB 1.2·10−4 45067 STARLINK-1150
8.9·10−5 27944 LARETS 1.1·10−4 47625 STARLINK-1704
8.9·10−5 35433 COSMOS 2251 DEB 1.1·10−4 46752 STARLINK-1921
8.6·10−5 40291 CZ-2C DEB 1.1·10−4 48695 STARLINK-2616
8.5·10−5 31419 FENGYUN 1C DEB 1.0·10−4 48148 STARLINK-2491

Table 5 Top 5 ranking objects by betweenness centrality B for the CDM- and TLE-based
networks.

CDMs TLEs
B NORAD ID Name B NORAD ID Name

4326 40681 DMSP 5D-2 F13 DEB 55986 45067 STARLINK-1150
3443 27944 LARETS 48691 46331 STARLINK-1719
3104 31419 FENGYUN 1C DEB 45798 46041 STARLINK-1580
2993 35433 COSMOS 2251 DEB 43800 48360 STARLINK-2622
2899 43326 COSMOS 1867 COOLANT 41521 48695 STARLINK-2616

S and p, thus leaving the ranking mostly unaltered. However, both the values of S
would change if we considered the actual values of the collision probability during each
conjunction.

Figure 10 shows the network embedding obtained from CDMs and TLEs, high-
lighting the values of the network statistics (degree, closeness, and betweenness, in
this order), while Fig. 11 highlights the values of the ranking score. Tables 3 to 6
report the top 5 objects ranked according to the same network statistics and finally
according to the relevance score.

By observing the various rankings reported in the Tables, it becomes clear what
was previously remarked regarding the composition of the networks. Since the initial
conditions and propagation models used to generate the two data sets are fundamen-
tally different, the composition of the networks are also different, resulting in distinct
rankings across the two cases.

In particular, as already pointed out, the CDM-based rankings tend to emphasize
mostly debris, while payloads tend to appear in the TLE-based ones. The prominent
presence of the Starlink satellites in the top positions is another reminder that the
precision of the TLE-based model (both the initial conditions and the propagator) is
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a) d)

b) e)

c) f)

Fig. 10 Network embedding using CDMs ((a) to (c)) and TLEs ((d) to (f)), highlighting various
properties: (a,d) node degree, (b,e) closeness, (c,f) betweenness. The values of the properties are
mapped using both the size and the colour of the nodes.

Table 6 Top 5 ranking objects by score S for the CDM- and TLE-based networks.

CDMs TLEs
S NORAD ID Name S NORAD ID Name
6.0 38017 IRIDIUM 33 DEB 7.0 48695 STARLINK-2616
6.0 39603 METEOR 2-5 DEB 6.3 46382 STARLINK-1769
5.0 13719 SL-3 R/B 6.3 48689 STARLINK-2617
5.0 30525 FENGYUN 1C DEB 6.3 44959 STARLINK-1076
5.0 35705 COSMOS 2251 DEB 6.0 45067 STARLINK-1150
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a) b)

Fig. 11 Network embedding using CDMs (a) and TLEs (b), highlighting relevance score values. The
values of the score are mapped using both the size and the colour of the nodes.

an important actor shaping the network.

More considerations can be made by observing the values of the various ranking
parameters presented in the tables, instead.

In both cases, closeness and betweenness values tend to favour, as expected, objects
in the densest regions (see Fig. 10 (b), (c), (e), and (f)), but their values contribute
to the total score less than the degree does, while the degree appears as the main
contributor to the relevance score (see Tables 3 and 6).

In fact, the centrality measures appear only in the third contribution of the rel-
evance score, that is, the contribution considering the effects of cascading collisions.
This effect is, by definition, smaller, since it represents events which are conditional on
others to occur and, thus, is expressed as a power law, which decreases very quickly.
On the contrary, the degree contribution represents the effects of direct collisions.

Moreover, the structure of the networks in the cases under study, composed mostly
by branching chains, tends to penalise the two centrality measures and the clustering
coefficient, which are more fit to describe dense interconnected networks. A prominent
difference among the Betweenness values of the CDM-based and TLE-based networks
can be seen in Table 5, which is also an effect of the network structure: since the TLE-
based networks has larger components, a higher number of paths pass through each
node, increasing the betweenness values.

Another difference visible from Figures 10 and 11 is the one between nodes lying
near the densest regions of the connected components and the nodes lying on their
boundaries. The latter are clearly characterised by low values of relevance score,
which is expected since they have low degree (equal to 1 or 2 in most cases) and,
by definition, low centrality, while the opposite is true for the nodes lying in the
densest regions. Once again, these considerations help identify the “core” nodes of
the network, which contribute the most in terms of risk of collisions.

Clustering values are not shown since in most cases they are zero, due to the the
branched structure of most connected components which leads to a lack of connected
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pairs between nodes.

Overall, some objects appear in the top rankings regardless of the choice of the
resolving parameter (such as FENGYUN 1C DEB, LARETS, COSMOS 2251 DEB,
and IRIDIUM 33 DEB), meaning that this score definition is able to capture in some
measure how these objects contribute to the overall risk of collisions within the pop-
ulation. Following the example set by McKnight et al. [46], App.C shows the top 50
objects ranked by relevance score for both test cases. While the prevalence of Starlink
satellites in the TLE-based network has already been addressed, the CDM-based one
mainly shows mostly debris and a few of objects appearing in this ranking.

4.3 Sensitivity analysis

This section studies the dependence of the network’s structure and properties on the
main parameters of the analysis, nominally the propagation time T and the conjunc-
tion distance threshold ϵ, and finally how they affect the characteristics of the network
such as the number of connected components, their size, and the values of some of the
key statistics and the relevance score.

In both CDM and TLE cases, the analysis considers different values of the prop-
agation time and of the conjunction threshold. However, due to the way CDMs are
generated, using a fixed distance of 1 km, only the TLE-based network will be analysed
with varying distances.

Figures 12 and 13 show the growth of the networks for increasing values of the
propagation time and of the conjunction distance threshold. As the time and distance
threshold increase, the network transits from a sparse collection of small separate
components to few highly connected clusters. Increasing the propagation time makes
detecting a conjunction eventually easier, while increasing the distance threshold
makes conjunctions more frequent to detect. Following this change to the extreme,
a large enough distance would result in a network made of one fully connected com-
ponent, since all objects would eventually fall within the threshold between each
other.

This is visible from Fig. 14, which shows that the number of connected components
of the network increases with the propagation time for low values of the threshold
distance, but starts decreasing again for larger distance values as the components
starts connecting to each other, forming few larger clusters. This affects the relevant
statistics of the network as well, shown in Fig. 15: as the number of connections between
nodes increases, components grow in size and the degree grows as well. Since non-
adjacent nodes end up being more easily connected, the closeness coefficient (related
to the average distance between nodes) drops, while betweenness (the number of paths
passing through a node) show the opposite trend.

The relevance score reflects all these changes, as seen in Fig. 16. The effects of the
dependency of the network from T and ϵ alter the way the risk of collisions propagates
through the population, as even distant nodes (conjunctions that are separated by
multiple events) become able to affect each other. Overall, the risk of collisions, direct
or indirect, grows.

23



a) e)

b) f)

c) g)

d) h)

Fig. 12 Variation of the network embeddings from the CDM (a-d) and TLE (e-g) datasets according
to the propagation time, respectively set to 1 (a, e), 10 (b, f), 20 (c, h), and 30 (d, g) days, using a
fixed threshold distance of 3 km for the TLE-based one.

5 Conclusions and future work

This manuscript presented a novel method to address the complexity of the orbital
environment around Earth with the use of network theory. The population of RSOs
is embedded into a network, the RSO network (RSONet), which represents the inter-
actions between these objects in the form of close conjunctions, allowing to gain
insight on and quantify how the risk of collisions is generated and evolves within the
population.

These networks are obtained either by propagating Two-Line Element data (cou-
pled with a geometrical filtering to detect conjunctions), or by using directly the
information obtained from CDMs. The properties of RSONet are analysed to extract
information about its topology and, then, combined to create a metric of compari-
son among the RSOs. This relevance score incorporates various key parameters of the
network, such as the degree, clustering, and centrality measures, to quantify how the
RSOs contribute to the risk of collisions within the population and identify the most
important ones.
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a)

b)

c)
Fig. 13 Variation of the network embeddings from the TLE dataset according to the threshold
distance, respectively set to 1, 2, and 3 km from (a) to (c), evaluated after the 30 days propagation.

Some test cases have been presented to apply this approach according to different
initial data and simulation parameters. The relevance score is able to measure how
some objects contribute to the risk of in-orbit collisions, even without directly taking
into account the actual probability of such events. The source of the initial data was
found to affect the structure and the composition of the RSONet. The difference
between CDMs, which are generated starting from high-precision initial condition
and orbital propagators, and TLEs, which are inherently less accurate, is reflected in
the resulting conjunctions detected by the algorithms introduced here. In particular,
TLE-based network appear to include a large number of satellites belonging to the
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Fig. 14 Variation of the number and size of the connected components with respect to the propa-
gation time and conjunction distance.

Fig. 15 Variation of the average (left) and highest (right) statistics of the network (degree, closeness,
and betweenness) with respect to the propagation time and conjunction distance.
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Fig. 16 Variation of the average (left) and highest (right) relevance score with respect to the prop-
agation time and conjunction distance.

same constellation: this aspect should, thus, be taken into account when evaluating
the risk of collisions. The sensitivity of the embedding and of the score against the
time and distance parameters used in the analysis was studied. The choice of these
values has a profound effect on the topology of the network, and thus on the values
of the score.

While the key concepts have been presented in their general formulation, this
framework has been built and presented here under some simplifying assumptions that
will be further relaxed in forthcoming works focusing on different aspects of this novel
approach, which will include a more realistic model with a proper comparison with
existing metrics as well as more precise data. In particular:

1. Uncertainties and probability estimations will be taken into account in building the
network, in an effort to better capture the reality of the RSO population and its
inner interactions.

2. The choice of the orbital propagation will be relaxed to include high-fidelity and
semi-analytical models, to maintain accuracy on longer time scales and propagate
uncertainties.

3. The definition of the relevance score will be refined to include more accurate values
of collision probability and the physical differences between the various RSOs. The
new definition will aim to quantify directly the risk of collisions, introducing risk
categories to classify the contribution of each object to the overall risk and its level
in relation to the other RSOs.

4. Additional numerical campaigns will be performed aiming to comparing the pro-
posed approach against other risk measures to better explicate the novelty of the
proposed approach and its differences with respect to the existing models.

5. More precise orbital data than TLEs will be employed to provide more realism to
the risk analsysis.

27



Acknowledgements

This work was funded via the BEWARE programme by the government of the Wallo-
nia region and by the European Commission (Marie Sklodowska Curie Actions grant
agreement 847587) as part of the Horizon 2020 research and innovation programme.

Declarations

Conflict of interest

The authors declare no conflicts of interest.

Appendix A The three-filter algorithm

This Appendix presents the three-filter algorithm used in Sect. 2.1, breaking down
each step as shown in Fig.A1.

Fig. A1 Schematic geometrical representation of the triple filter approach.

First filter

The first filter compares the minimum and the maximum geocentric distance reached
by the two objects to determine if a crossing between their orbits is possible within
the selected time interval. For each orbit with index 1 ≤ s ≤ N , the Cartesian position
vector along the orbit rs(t) = {x(t), y(t), z(t)}, with 0 ≤ t ≤ T , is given and the
geocentric distance is defined as

rs(t) =
√

x(t)2 + y(t)2 + z(t)2.

Thus, the absolute minimum and maximum of such function can be set as

min(rs) := min{rs(t), t1 ≤ t ≤ tm},
max(rs) := max{rs(t), t1 ≤ t ≤ tm}.

Given a pair of objects (a, b) with 1 ≤ a < b ≤ N , the following terms are defined:

q := max{min(ra),min(rb)},
Q := min{max(ra),max(rb)}.
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Thus, there is no orbit crossing if the condition |q − Q| > ϵ is satisfied, where ϵ is a
fixed threshold distance, and consequently the pair must no longer be considered.

Although the complexity of this operation is of order N2, it is very fast compared
to the subsequent filters, thus adding little computational complexity while pruning
the data pool of a large number of objects [45].

Second filter

The second filter is based on the definition of the local minimal distances introduced
by [63]. For the two orbits under consideration, each described by a set of 6 orbital
parameters Es, s = 1, 2, the Keplerian distance function d is defined as the map

d(E1, E2) = ∥X1 −X2∥,

where Xs = X(Ej(t)), s = 1, 2 is the Cartesian position of each object along its orbit
and ∥·∥ is the Euclidean norm in R3. The critical points of the function d are computed
through those of d2 to avoid problems of differentiability when it vanishes using the
method developed by [63], which computes them as the real roots of a 16th order
complex polynomial. These roots are computed using the algorithm proposed by [64]
based on Aberth’s iterative method.

The minimal points correspond to the possible close approaches of the two objects.
At these points, the sign of the distance map can be changed to obtain a more regular
map called distance with sign. For each pair of objects, it is possible to compute their
signed distances at any time in the interpolation process. If there is a change of sign
in one of the local minimal distances, an orbit crossing occurs, thus the pair passes
the second filter; otherwise, the pair is excluded for a possible collision.

Third filter

The third filter directly considers the distance between the two objects if they passed
the first two filters, meaning that an orbit crossing between the two occurs. Simply,
if their relative distance d(t) = ∥X1 −X2∥ at time t is below a given threshold ϵ, the
crossing is counted as a conjunction and they are at risk of a collision. The pair can be
excluded if there is never a time when the distance between the objects is less than ϵ.

Appendix B Properties of the network

Considering an undirected network with N nodes or vertices labelled 1, ..., n, a link or
an edge between nodes i and j can be denoted by (i, j). The adjacency matrix A of
the network is defined as a N ×N matrix whose elements aij are equal to 1 if there
is a link between nodes i and j and 0 otherwise.

It can be noticed that for a network with no self-edges (that is, no link from a node
to itself), the diagonal matrix elements are all zero. Also, the matrix is symmetric,
since the link between i and j has no direction.

If the elements aij assume values different from 1, then the network is defined as
weighted, with the values of aij acting as weights to the links.

29



Different properties can be derived from the conformation of the network and the
adjacency matrix. Their definitions are given in the following sections, which can be
related to various types of interactions between space objects.

Node degree

The degree, or degree centrality, of a node in an unweighted network is defined as
the number of links connected to it, representing here the number of conjunctions
an object experiences during the selected time frame. In terms of elements of the
adjacency matrix, the degree Di of node i can be defined as [39]:

Di =

n∑
j=1

aij . (B1)

In case of a weighted network, the degree, which in this case takes the name of strength,
will be equal to the average of the weights on the links connected to i.

Clustering coefficient

The clustering coefficient provides a measure of the density of connections between
neighbouring vertices. In this work, a high clustering coefficient identifies those objects
which are more susceptible to encountering a fragment of a neighbouring object which
has undergone a fragmentation. It is related to the number of triangles connected to
node a [38] or, alternatively, to the ratio between the number of pairs of neighbours
of a that are connected between them and the number of pairs of neighbours of a [65,
pp.199-204]:

Ci =
(number of pairs of neighbours of i that are connected)

(number of pairs of neighbours of i)
. (B2)

The local clustering coefficient Ci can be defined by means of a measure called
“redundancy”. The redundancy Ri of a node i is the mean number of connections
from a neighbour of i to other neighbours of i. This implies that the total number of
connections between the neighbours of i is thus 1

2DiRi, and since the total number
of pairs of neighbours of i is 1

2Di(Di − 1), the local clustering coefficient is the ratio
between these two quantities [65]:

Ci =
1
2DiRi

1
2Di(Di − 1)

. (B3)

The expression of the clustering coefficient can also be derived directly from the
elements of the adjacency matrix as [39, 66]:

Ci =
2

Di(Di − 1)

n∑
j ̸=k

n∑
k

aijaikajk. (B4)
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where
∑n

j=1

∑n
k=1 aijaikajk corresponds to the number of triangles connected to node

i. It can be demonstrated that this number is equal to half the i-th diagonal term of
the cube of the adjacency matrix A3.
Generalising, ij-th element of any power r of the adjacency matrix Ar is equal to the
number of paths of length r connecting nodes i and j [65, pp.136-137]. In case i = j
(that is, a diagonal term of Ar), the paths start and end at the same vertex, becoming
“cycles”. In case r = 3, these cycles are triangles of which i is a vertex.
Thus, the local clustering coefficient for node i can be written as

Ci =
1
2 [A

3]ii

Di(Di − 1)
(B5)

Closeness centrality

The closeness centrality measures the mean distance from a vertex to other vertices.
The mean shortest-path distance from i to j, averaged over all j vertices, is

ℓi =
1

n− 1

n∑
j=1
j ̸=i

dij , (B6)

where dij is the length of the shortest path connecting nodes i and j in an undirected
network, for which dij = dji. The shortest-path length can be determined numerically.

The closeness Ki for a vertex i is defined as the inverse of ℓi [65, pp.181-184]:

Ki =
1

ℓi
=

n− 1∑n
j=1
j ̸=i

dij
. (B7)

Betweenness centrality

The betweenness centrality, or shortest-path betweenness, quantifies the extent to
which a vertex lies on the paths between others: if a vertex is situated on many paths
between other vertices then it is said to have high betweenness, and has a role in con-
necting different parts of the network with the potential of transmitting fragmentation
chain reactions. The shortest-path betweenness Bi of a vertex i is defined to be [65]:

Bi =

n∑
s=1

n∑
t=1

σst(i). (B8)

where σst(i) represents the total number of shortest paths between nodes s and t
passing through node i.
Remark 4. Both centrality measures presented here can be related to the ability of an
object to propagate a chain of fragmentations, where an object produces debris (whether
from a collision or a spontaneous breakup) which hits a neighbouring object which in
turn produces new debris which goes on hitting another object and so on. While the
scenario of a fragmentation cascade is unlikely, it is still interesting to consider it
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in the risk evaluation. With this in mind, Centrality measures the average length of
these chains, thus the potential debris production of a fragmentation cascade, while
Betweenness indicates those objects which play the most important role as “bridges”
in propagating multiple chains.

Appendix C Ranking of top 50 objects

The ranking of the 50 RSOs with the highest relevance score (either based on TLEs
or CDMs) appears in Tab.C1.

Appendix D The CDM format

This Appendix provides the reader with a breakdown of CDM format. CDMs usually
change depending on the provider. However, the public format used by Space-Track
follows the CCSDS Recommended Standard 508.0-B-1 [67].

FigureD2 shows an example of CDM, while TableD2 explains how data is stored.

Fig. D2 Representation of the CDM format.
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Table C1 Top 50 ranking objects by score S for the CDM- and TLE-based networks.

CDMs TLEs
S NORAD ID Name S NORAD ID Name
6.0 38017 IRIDIUM 33 DEB 7.0 48695 STARLINK-2616
6.0 39603 METEOR 2-5 DEB 6.3 46382 STARLINK-1769
5.0 13719 SL-3 R/B 6.3 48689 STARLINK-2617
5.0 30525 FENGYUN 1C DEB 6.3 44959 STARLINK-1076
5.0 35705 COSMOS 2251 DEB 6.0 45067 STARLINK-1150
5.0 36274 FENGYUN 1C DEB 6.0 45706 STARLINK-1411
5.0 38069 COSMOS 2251 DEB 6.0 45713 STARLINK-1436
5.0 40681 DMSP 5D-2 F13 DEB 6.0 46156 STARLINK-1545
5.0 43326 COSMOS 1867 COOLANT 6.0 46173 STARLINK-1640
4.0 8924 SL-8 R/B 5.0 46746 STARLINK-1905
4.0 17621 COSMOS 1275 DEB 5.0 47602 STARLINK-2007
4.0 22455 SL-16 DEB 5.0 47770 STARLINK-2193
4.0 27944 LARETS 5.0 48285 STARLINK-2548
4.0 29525 DMSP 5D-3 F17 DEB 5.0 48566 STARLINK-2214
4.0 30938 FENGYUN 1C DEB 5.0 48598 STARLINK-2256
4.0 30960 FENGYUN 1C DEB 5.0 46041 STARLINK-1580
4.0 31231 FENGYUN 1C DEB 5.0 46331 STARLINK-1719
4.0 31568 FENGYUN 1C DEB 4.0 47164 STARLINK-1879
4.0 33716 FENGYUN 1C DEB 4.0 45058 STARLINK-1162
4.0 34477 COSMOS 2251 DEB 4.0 45060 STARLINK-1166
4.0 34979 COSMOS 2251 DEB 4.0 45073 STARLINK-1170
4.0 35229 FENGYUN 1C DEB 4.0 45082 STARLINK-1160
4.0 35391 ERS 2 DEB 4.0 45368 STARLINK-1276
4.0 36259 FENGYUN 1C DEB 4.0 45380 STARLINK-1207
4.0 36271 FENGYUN 1C DEB 4.0 45419 STARLINK-1308
4.0 37053 FENGYUN 1C DEB 4.0 45551 STARLINK-1294
4.0 39302 SL-16 DEB 4.0 45583 STARLINK-1340
4.0 39554 COSMOS 2251 DEB 4.0 45669 STARLINK-1452
4.0 39985 SL-14 DEB 4.0 46034 STARLINK-1557
4.0 40672 DMSP 5D-2 F13 DEB 4.0 46363 STARLINK-1739
4.0 41153 NOAA 16 DEB 4.0 46572 STARLINK-1531
4.0 41247 NOAA 16 DEB 4.0 46578 STARLINK-1683
4.0 41657 NOAA 16 DEB 4.0 46785 STARLINK-1883
4.0 46997 FENGYUN 1C DEB * 4.0 46796 STARLINK-1944
4.0 54600 CZ-6A DEB 4.0 47552 STARLINK-1940
3.0 4718 THORAD AGENA D DEB 4.0 47622 STARLINK-1645
3.0 5024 THORAD AGENA D DEB 4.0 47640 STARLINK-2018
3.0 5063 THORAD AGENA D DEB 4.0 47728 STARLINK-2131
3.0 7209 METEOR 1-16 4.0 48027 STARLINK-2300
3.0 12169 DELTA 1 DEB 4.0 48122 STARLINK-2463
3.0 12285 DELTA 1 DEB 4.0 48123 STARLINK-2464
3.0 12294 DELTA 1 DEB 4.0 48305 STARLINK-2519
3.0 12693 COSMOS 1275 DEB 4.0 48481 STARLINK-2706
3.0 13464 COSMOS 1275 DEB 4.0 48584 STARLINK-2238
3.0 15950 SCOUT G-1 DEB 4.0 48587 STARLINK-2242
3.0 17719 THORAD AGENA D DEB 4.0 48644 STARLINK-2695
3.0 17768 DELTA 1 DEB 4.0 48660 STARLINK-2688
3.0 18095 COSMOS 1850 4.0 48666 STARLINK-2666
3.0 18552 SL-8 DEB 4.0 53611 STARLINK-4650
3.0 20433 SL-8 R/B 4.0 54280 CZ-6A DEB
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Table D2 Explanation of the TLE format.

Field Example Description
CDM ID 713235044 Identification number of the CDM

CREATED
2024-04-25
06:59:39.000000

Creation date and time of the CDM

EMERGENCY REPORTABLE Y

Whether (Y/N) the con-
junction constitutes an
emergency (that is, the
collision probability is
above the 10−4 thresh-
old) or not

TCA 2024-04-25T12:02:50.779000 Epoch of closest approach
MIN RNG 286 Distance at closest approach (in metres)

PC 0.0003496965 Probability of collision
SAT 1 ID 56673 NORAD ID of first object

SAT 1 NAME CZ-6A DEB Catalogue name of first object
SAT1 OBJECT TYPE DEBRIS Classification of first object

SAT1 RCS SMALL
Size of the RCS volume of
the first object

SAT 1 EXCL VOL 1.00
Exclusion volume of the
first object (in metres)

SAT 2 ID 7734 NORAD ID of second object
SAT 2 NAME GEOS 3 Catalogue name of second object

SAT2 OBJECT TYPE PAYLOAD Classification of second object

SAT2 RCS LARGE
Size of the RCS volume of
the second object

SAT 2 EXCL VOL 5.00
Exclusion volume of the
second object (in metres)
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[29] Lara, M., San-Juan, J.F., López-Ochoa, L.M., Cefola, P.: Long-term evolution of
Galileo operational orbits by canonical perturbation theory. Acta Astronautica
94(2), 646–655 (2014)

[30] Celletti, A., Gales, C.: Dynamics of resonances and equilibria of Low Earth
Objects. SIAM Journal on Applied Dynamical Systems 17(1), 203–235 (2018)

[31] Alessi, E.M., Schettino, G., Rossi, A., Valsecchi, G.B.: Natural highways for end-
of-life solutions in the LEO region. Celestial Mechanics and Dynamical Astronomy
130(5), 34 (2018)

[32] Daquin, J., Legnaro, E., Gkolias, I., Efthymiopoulos, C.: A deep dive into the
2g+h resonance: separatrices, manifolds and phase space structure of navigation
satellites. Celestial Mechanics and Dynamical Astronomy 134(1), 6 (2022)

[33] Skinner, M.A., Oltrogge, D., Strah, M., Rovetto, R.J., Lacroix, A., Kumar,
A.K.A., Grattan, K., Francillout, L., Alonso, I.: Space traffic management ter-
minology. Journal of Space Safety Engineering 9(4), 644–648 (2022) https://doi.
org/10.1016/j.jsse.2022.09.001

[34] IADC: Iadc report on the status of the space debris environment. Available online
at https://www.iadc-home.org/documents public (accessed 01/10/2023) (2023)

[35] Landi, P., Minoarivelo, H.O., Brännström, Å., Hui, C., Dieckmann, U.: Complex-
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