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Abstract. We present an application of a recently introduced information-theoretic com-
plexity measure for predicting the impact which obstacles to swarm communication have on
swarm performance in the collective perceptual discrimination task. Our formalism is built
on the notion of Empowerment – a task-independent, universal and generic utility function,
which characterizes the level of perceivable control an embodied agent has over its environment.
We conducted series of simulations with an empowerment model of the collective perception
scenario, including simple communication obstacles of the same size and shape placed in vary-
ing positions and/or orientations in one particular environmental pattern used previously for
assessing collective decision-making. The results indicate the potential detrimental impact com-
munication disruptions in particular locations of the arena could have on swarm performance,
while suggesting no effect when the same obstacles are placed elsewhere. Such analysis could
provide a characterization of critical spots in the arena for a given environmental pattern.

Keywords. Information theory; Complexity measures; Swarm robotics; Collective perception;
Empowerment

1 Introduction
Swarm robotics studies multi-robot systems in which each robot has its own controller, percep-
tion is local and communication is based on spatial proximity [11]. The group-level response
emerges from a self-organisation process [5], based on the interaction between the robots and
their physical environment. However, the autonomous nature of this process poses a challenge
for designers, since it is notoriously difficult to infer which set of individual actions leads to
the emergence of a desired collective response. Moreover, traditional design methods lack the
ability to tackle problems and swarms of increasing complexity in uncertain and unpredictable
environments. Real-world contexts may include unexpected obstacles of different size, shape,
position and orientation that affect the unrestricted movement and/or the effective communi-
cation of the swarm. This further intensifies the need for fundamental and generic automated
methodologies for modulating collective behaviour, with the potential to circumvent tedious
trial-and-error model tuning. Generic theoretic measures of behavioural diversity could facil-
itate the assessment of the interactions and trade-offs between individual robots, swarm and
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environment, and could help predict swarm performance without resorting to costly empirical
studies. In this regard, information-theoretic utilities have been proposed as potential generic
measures, since they can abstract from implementation details and focus on the interactions
and dynamics related to information processing only [23].

In this paper, we apply a recently introduced information-theoretic measure for the charac-
terization of task difficulty in the collective perception paradigm. In this task, a swarm of
robots aims to find a consensus on the most salient perceptual cue among those available in
the environment, following a particular decision-making mechanism. We explore the potential
of the empowerment measure [14] to capture and predict the effect of different communica-
tion obstacles in one particular environmental pattern in collective perception. The aim of the
study is to demonstrate the ability of this measure to assess the impact of obstacles with a
purely theoretical treatment. To our knowledge, this is the first study to consider the effect of
communication occlusions on the behavioural dynamics and swarm performance in this task.

2 Background
For designing large groups of robots, which coordinate and cooperatively perform a task, swarm
robotics takes inspiration from natural self-organizing systems and attempts to recreate the
emergence of collective behaviour from simple local interaction rules [see 15, 36]. Through
the design of individual robot behaviour, swarm robotics aims to achieve locally coordinated
interaction that results in a self-organized collective behaviour [10, 12]. Information theory has
previously been applied to formalise guided self-organization [22, 21] in which complex global
patterns emerge from relatively simple local interactions [see 20, 9]. Shannon entropy-based
measures, used to characterise self-organized emergent robot behaviour, range from mutual
information [25, 27] and transfer entropy [26], to predictive and integrated information [7, 2].
Information-theoretic methods allow for a quantitative study of robot-environment systems [29],
and are fundamental in embodied systems research [19]. Generic information-theoretic com-
plexity measures have been used to study system dynamics [16, 4], to characterise information
flows in the sensorimotor loop [17], and to analyse robot behaviour [23], due to their ability to
capture salient features of robot behaviour based on generic information processing principles,
while abstracting from system-specific details [see 23]. The information-theoretic concept of
empowerment [14] has been applied to problems in various domains, such as, dynamical con-
trol systems [13], robotics [24], and human-computer interaction [30, 31], and more recently
in swarm robotics for providing a complexity (i.e., task difficulty) measure in the perceptual
discrimination task [33]. The potential of the empowerment measure, demonstrated in ini-
tial investigations, provides motivation for its further exploration for facilitating the automatic
design of robot swarms and the analysis of their behavioural dynamics.

The collective perceptual discrimination task for swarm of robots has been originally introduced
by [18], who used a binary version of this task to design and evaluate individual mechanisms
underpinning the collective decision-making process. In this task, the swarm explored a close
arena patched with tiles, randomly painted in black and white, with the aim to collectively
decide which colour is dominant. Various individual mechanisms for opinion selection have
been developed since, from the classical hand-crafted solutions, based on the voter model, the
majority rule, and their variants [see 34], to more recent ones, based on the synthesis of artifi-
cial neural networks [1]. The performance of decision-making strategies has been investigated
for varying options quality by [35], while multi-options scenarios have been studied by [8].
Some studies explored the presence of byzantine robots, i.e., robots that communicate decep-
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tive messages with the intent to entice the swarm to converge on a consensus to a non-optimal
choice [28]. Research in this domain generally considers situations where the robot movement is
disturbed only by collisions with close neighbours and arena walls, and communication is unob-
structed and effective in a range of up to 50cm based on the e-puck2 platform [32]. Typically,
the unpredictable disturbances are modelled uniformly as a random additive noise perturb-
ing both actuation (i.e., movement) and perception (i.e., floor sensing and communication).
However, such uncertainty accounts only for sensor and actuator imprecision, while ignoring
the possibility of encountering obstructive foreign objects in the field. Earlier research focused
on the environmental feature ratio for modulating task difficulty, whereas more recently, [3]
proposed that the key determinant of the difficulty in this task is the features’ distribution
and introduced a set of variations in the environmental topology. Building on their work, [33]
introduced an empowerment-based universal and generic measure of task difficulty, which takes
into account not only the environmental complexity (i.e., the features distribution), but also
the agent’s capabilities – arguably a key factor influencing swarm performance. Further ex-
tending this work, we demonstrate the ability of the empowerment measure to quantify salient
features (i.e., obstacles) in the environment, independent from the task or goal of the swarm,
which makes this approach directly applicable to various scenarios in this domain. This initial
study provides important insights regarding the effect of communication obstacles in collective
perception and sheds light on the interaction between obstacle placement and the predicted
impact on swarm performance.

3 Collective Perception
This study is based on the collective perceptual discrimination task as described in [3, 1], which
takes place in a square arena whose floor is covered by black and white tiles and where the
dominant colour (black or white) covers 55% of the arena floor, while the other colour covers
the remaining 45%. The goal of the swarm of robots is to reach a consensus on the dominant
colour by randomly exploring the arena and by communicating their opinions on what is the
dominant colour to spatially proximal robots. The most frequently used features’ distribution
in this task is the random distribution of colour patches (see Figure 1/left), which, however,
has its limitations with respect to generalization of swarm behaviour; that is, decision-making
strategies designed for randomly distributed patches are not equally successful in environments
where features are distributed in a different way (for one such example see Figure 1/right). To
study these limitations, [3] proposed a set of nine structurally different patterns, which revealed
that swarm performance tends to deteriorate when the perceptual evidence is spatially arranged
in distinctive clusters, regardless of the nature of control mechanisms (hand-coded [3] or neural
network-based [1]). Overall, the less clustered the distribution of perceptual evidence, the
higher the swarm accuracy in the collective decision-making [see 3, 1].

Figure 1: The Random environmental pattern, typically investigated in swarm collective per-
ception research (left). The Stripe pattern, which was explored in our study (right).
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N1

N2

A N3

Figure 2: The experimental 2-D grid (20 × 20 cells) used in our study. The perceivable range
of agent A is denoted with a colour map: range0 (blue), range1 (red), range2 (green), range3
(yellow), range4 (purple), and range5 (orange). E.g., neighbours N2 and N3 are in range5, and
N1 is out of range.

Drawing from this work, [33] proposed a generic way of measuring task complexity with respect
to the distribution of features. This approach places a robot with a particular morphology into
a specific environmental condition and attempts to quantify the complexity of the environment
as perceived by the agent, which essentially depends on the agent’s perception–action loop. For
facilitating the analysis, the following simplifications with respect to the original robot-based
scenario, as illustrated in [3, 1], were made. A single agent is placed in a discretized square
grid of size of 20 × 20 cells in which each cell corresponds to a tile, that can be either black
or white. The agent can perceive the colour of the cell in which it is located and the colours
of neighbouring cells. The number of perceivable cells can vary from 5 (range 1) to 61 (range
5). The neighbourhood ranges of an agent A are illustrated in Figure 2. The access to the
colour of neighbouring cells intends to simulate the information generated by social influence.
Within this metaphor, different ranges correspond to different levels of the maximal robot–
robot communication distance, which maps directly this model to studies based on the e-puck2
robotic platform with a communication range of 50 cm and an arena of 2m × 2m, patched with
tiles 10cm × 10cm each [see, for example 1].

To compute empowerment for each neighbourhood size (i.e., range), the agent is located in every
cell of the grid. Thus, empowerment provides a measure of perceivable features with respect to
the current position and range. By computing this measure for all possible positions of the agent
in the arena, a task complexity estimate integrating both the environmental structure and the
agent’s sensory capabilities is obtained. This measure of task difficulty has shown its ability to
predict swarm performance in collective perception using a number of different decision-making
mechanisms for opinion selection and various environmental patterns (see [33]). We extend this
work in the current study, by focusing on one particular environmental pattern – Stripe (see
Figure 1/right) – while introducing communication obstacles in the arena at different locations.
All obstacles have the shape of a straight thin line, three tiles long, placed between tiles and act
as impenetrable walls, further restricting the communication range of 50 cm. To explore the
effect of such communication obstacles, we varied the location and/or orientation according to
the six layouts presented in Figure 3 and computed the empowerment levels for each one using
the above approach.
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w1
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Figure 3: The six conditions investigated in this study, corresponding to six different placements
(i.e., w1, w2, w3, w4, w5, and w6) of the communication obstacle (locations and/or orientations)
in the discrete 2-D grid (20 × 20 cells) reflecting the Stripe environmental pattern.

4 Empowerment Model
The information-theoretic model of the Collective Perception paradigm introduced in [33] is
based on the empowerment formulation [14] of the perception–action loop of an embodied
agent and its environment, represented as a communication channel. Using the causal Bayesian
network representation of the perception-action loop (see Figure 4), empowerment is defined as
the Shannon channel capacity from the sequence of actions Ut, Ut+1, ..., Ut+n−1 to the perception
Yt+n through the environment Xt+1, Xt+2, ..., Xt+n after an arbitrary number of (n) time steps,

. . . Xt−3

Yt−3 Ut−3

Xt−2

Yt−2 Ut−2

Xt−1

Yt−1 Ut−1

Xt. . .

Yt

Figure 4: Perception–action loop as a causal Bayesian network – an agent performs an action
U and injects information into the environment X, and subsequently reacquires part of this
information via its sensors Y . Empowerment is the channel capacity from the action sequence
(e.g., Ut−3, Ut−2, Ut−1) to the resulting observation (e.g., Yt) after n (e.g., 3) time-steps.
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using the following formulation

C(Ut, ..., Ut+n−1 → Yt+n) = sup
p(u⃗)

I(Ut, ..., Ut+n−1; Yt+n)

where u⃗ = (ut, ..., ut+n−1) and the mutual information between two discrete random variables
U and Y is defined by

I(U ; Y ) =
∑

u

p(u)
∑

y

p(y|u) log p(y|u)
p(y) .

Empowerment is a task and representation independent utility function, fully specified by the
dynamics of the perception–action loop of the agent–environment coupling unrolled over time.
It reflects the capacity of an agent to control or influence its environment as perceived by its
sensors. Empowerment depends on the agent’s embodiment, i.e., its sensory apparatus and
motor abilities, and on the degree of interaction between agents, i.e., agents need freedom to
act and at the same time they need certain constraints imposed by other agents [6].

The decision-making mechanisms for collective perception are based on the agent’s own per-
ception and the opinions of its neighbours, which contain information about the environment
at various remote positions and are transmitted from a distance within a specific communica-
tion range. This enables the agent to extend its sensing abilities and to acquire information
about (perceive) the environment at distant locations. The collective perception scenario can
be transformed into the empowerment formalism by re-framing the task into a communication
problem, using swarm communication as an action space and representing the action horizon
with the communication range. In this model, the state space consists of the position of a single
agent in the grid. For simplicity, only the main four orthogonal directions are used from which
neighbourhoods of a particular size are constructed with an action space U of the following five
primitive actions

U = {north, south, east, west, idle}.

The first four actions correspond to communicating with (i.e., polling the opinions of) the
immediate neighbours in the four respective directions, while the last (idle) action reflects the
agent’s own sensor reading. N-step action sequences represent communication with agents in a
neighbourhood of a particular range. The borders of the environment are hard and constrain
the actions. Following this representation, Figure 2 depicts the perceivable range of agent A, in
a blank 2-D grid, defined by a colour map – range0 (blue), range1 (red), range2 (green), range3
(yellow), range4 (purple), and range5 (orange).

We evaluate empowerment in all positions across the grid, using the environmental features as
sensor readings. For any state x ∈ X in the grid empowerment is computed by

E(x) = max
p(u⃗)

I(Ut, ..., Ut+n−1; Yt+n|x),

where the action space U consists of the above five actions and the perception space Y is defined
by a binary random variable

Y = {0, 1},

representing the environmental feature (black or white) in state y ∈ X , where y is the resulting
state after applying the action sequence Ut, ..., Ut+n−1 starting from x. Note that x is a starting
position on the 2-D grid, while the perception Yt+n ∈ Y is a binary value representing the
feature in the final position.
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5 Results
Employing the above model, we computed the empowerment levels for every starting position
in the 2-D grid for all six conditions presented in Figure 3, with a range of empowerment
horizons from one to five, which corresponds to a discrete communication radius of one to five
cells and is in line with previous swarm robotics studies in this scenario [see 1]. Furthermore,
to facilitate the assessment of the experimental conditions, we computed the empowerment for
the baseline case consisting of the Stripe environmental pattern excluding obstacles.

For brevity, in this baseline condition, the evolution of the empowerment levels as the commu-
nication horizon increases is presented only for the minimal (1-step) and the maximal (5-step)
horizon (see Figure 5). The results reveal an empowerment increase to its maximal level (in
this case 1 bit) around the borderline between the black and the white patches, and is zero
elsewhere. The larger the horizon, the wider the area of high empowerment is, as expected.

We found no difference in the empowerment levels between the baseline and the experimen-
tal conditions with two exceptions, namely conditions w3 and w6, which are presented in full
details in Figures 6 and 7. For condition w3 (see Figure 6), the empowerment levels follow
the trends of the baseline condition for 1-step and 2-step horizons, however, with the gradual
increase of the horizon a drop from 1 bit to 0 bit in empowerment appears in the vicinity
of the communication obstacle. For condition w6 (see Figure 7), this drop in empowerment
is symmetrical, as expected, since the communication obstacle is placed exactly between the
black and the white patches, and furthermore, affects all horizons from 1-step to 5-step. The
impact for horizon steps 1 and 2 leads to zero empowerment on the borderline. We present
the overall empowerment levels averaged across the grid for the baseline, w3 and w6 conditions
in Figure 8. It reveals that the closer the obstacle is to the borderline, the stronger the over-
all effect on empowerment is. The impact may appear negligible, however, one should keep in
mind the rather modestly sized obstacle used in this study. These results indicate that both the
position and the orientation of the communication obstacles are crucial for maintaining optimal
empowerment levels across the arena and suggests that swarm performance may be affected to
a different degree by such obstacles depending on their particular placement. This insight high-
lights the intricate relationship between communication obstacles and specific environmental
patterns, and calls for more thorough future investigations.

Figure 5: 1-step (left) and 5-step (right) empowerment levels computed across the 2-D grid in
the Stripe condition without communication obstacles. Empowerment is at its maximum of 1
bit around the borderline between black and white patches, and zero elsewhere.
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Figure 6: 1, 2, 3, 4, and 5-step (from left to right) empowerment levels, computed across the
2-D grid in condition W3 and projected on the X-Y plane. The close proximity of the obstacle
to the borderline between black and white regions in this particular orientation leads to its
detrimental effect on empowerment levels for 3, 4, and 5-step horizons.00.
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Figure 7: 1, 2, 3, 4, and 5-step (from left to right) empowerment levels, computed across the 2-D
grid in condition W6 and projected on the X-Y plane. The placement of the obstacle exactly
on the borderline between black and white regions explains the symmetry of the profiles and
its detrimental effect on empowerment levels for all horizons.
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Figure 8: Average empowerment levels aggregated over the 2-D grid for five horizon spans in
the baseline, w3 and w6 conditions. The drop in empowerment is minor for condition w3 with
respect to the baseline and appears at larger horizons, whereas for w6 the drop is pronounced
and affects all horizons. Note that the maximal empowerment level in this case is 1 bit.
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6 Discussion
We have explored the potential impact communication obstacles might have on swarm perfor-
mance with respect to environmental topology, building on a recently introduced [33] generic
information-theoretic approach for characterizing task difficulty in the collective perception
paradigm. This approach does not characterise the topological structure of the environment
based on number, size, shape and inter-connectivity of clusters, but instead, it explores the
environment with the given agent morphology, which is critically relevant in determining task
difficulty. Our earlier study [33] revealed a significant correlation between the empowerment lev-
els and the accuracy of state-of-the-art decision-making strategies, which suggests the potential
of the empowerment measure to predict swarm performance based solely on properties of the
environment and independent of the particular task. Building on this insight, we investigated
the effect communication obstacles have on empowerment levels across various horizons in one
particular environmental pattern. We applied the empowerment formalism to characterise the
effect various locations and orientations of linear obstacles imply on task difficulty. Two key
parameters influencing swarm performance in this scenario are the environmental pattern type
and the swarm communication abilities. For this – first of its kind study – we have selected the
simplest environment reported previously in this field, which is composed of two coherent colour
patches. For obstacle, we have chosen a straight line placed in six different locations and/or
orientations with respect to the borderline between the two colour patches, which appears to be
a performance-critical spot. The rational behind the simplistic configurations used in our initial
study was grounded in the search for unambiguous and clear interpretations of the interactions
between communication range, environmental pattern and communication obstacles. Different
and more complex environments with multiple obstacles of various sizes and shapes would have
had a less predictable effect on empowerment which is more difficult to interpret, however, is
an important direction for future research.

The results demonstrate that obstacles located sufficiently far – with respect to the empower-
ment horizon – from the borderline have no effect on empowerment, as expected, since the com-
munication exchanges in homogeneous areas carry no new information for the swarm. There-
fore, such communication obstacles have no detrimental impact. However, when placed closer
to the borderline, the same obstacles inflict a drop in empowerment levels for sufficiently large
horizons with respect to the distance between an obstacle and the borderline. Obstacles on the
borderline have the highest impact on empowerment for all horizons, as expected, and result in
a symmetric empowerment profile with respect to the borderline. An interesting finding of this
study is the fact that only obstacles parallel to the borderline have influence on empowerment
levels, which opens up new questions with regard to obstacle orientation for future research.

The key benefits of the applied information-theoretic treatment are that it is universal, general
and could enable the analytical comparison of scenarios with different computational models.
The proposed approach elucidates the trade-off between task difficulty (i.e., swarm perfor-
mance) and the cost of enabling particular agent capacities, and provides information-theoretic
bounds, which are fundamental properties of agent–environment systems. The empowerment
levels could reveal critical points in the environment (e.g., obstacles), which might inflict signif-
icant drops in swarm performance, and thus raise designer’s attention for a more careful consid-
eration. Empowerment captures in a uniform measure salient features of the agent–environment
perception–action loop, such as topology, morphology, noise in the sensing, actuation and com-
munication channels, with a generic information-theoretic model. We believe that theories and
tools from complex systems and information theory can successfully be applied for facilitating
the automated design of robot collectives and for the analysis of their dynamics.
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7 Conclusion
This paper presents an initial study on the effects communication obstacles might have on
swarm performance in the collective perceptual discrimination task. The analysis, based on
an application of the information-theoretic capacity of empowerment to the field of swarm
robotics, highlights the benefits of utilising such a generic utility measure. Our approach is
task-independent and the same model could be applied to further scenarios in this domain,
e.g., shortest-path or site-selection. Leveraging Shannon’s information theory by way of cre-
ating generative mathematical models and artificial simulations, empowerment offers a novel
perspective for swarm robotics, building on objective quantitative measures and analytical tools,
which could support the automated design of robotic swarms. Our study opens up new direc-
tions for research into how environmental factors and communication obstacles influence swarm
behaviour and decision-making. Future work will focus on developing more robust, empirically
validated models of swarm intelligence that have direct implications for the design and optimiza-
tion of swarm-based technologies in various domains. To bridge the gap between theoretical
insights provided here and their practical applications, related domain-specific methodologies
will be explored for contextualizing and enhancing the findings of this study in more realistic
settings and scenarios that reflect the complexity of real-world applications.
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