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About the impossibility to prove P 6= NP or

P = NP and the pseudo-randomness in NP

Prof. Marcel Rémon

Abstract

The relationship between the complexity classes P and NP is an unsolved question in the

field of theoretical computer science. In this paper, we look at the link between the P - NP

question and the “Deterministic” versus “Non Deterministic” nature of a problem, and more

specifically at the temporal nature of the complexity within theNP class of problems. Let us

remind that the NP class is called the class of “Non Deterministic Polynomial” languages.

Using the meta argument that results in Mathematics should be “time independent” as they

are reproducible, the paper shows that the P 6= NP assertion is impossible to prove in the

a-temporal framework of Mathematics. A similar argument based on randomness shows that

the P = NP assertion is also impossible to prove, so that the P - NP problem turns out

to be “unprovable” in Mathematics. This is not an undecidability theorem, as undecidability

points to the paradoxical nature of a proposition. In fact, this paper highlights the time

dependence of the complexity for any NP problem, linked to some pseudo-randomness in

its heart.

Index Terms

Algorithm Complexity, Non Deterministic Languages, P −NP problem, 3-CNF-SAT

problem

I. Introduction

A. The class P of languages

A decision problem is a problem that takes as input some string, and outputs ”yes” or ”no”.

If there is an algorithm (say a Turing machine, or a computer program with unbounded

memory) which is able to produce the correct answer for any input string of length n in at
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THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 2

most c nk steps, where k and c are constants independent of the input string, then we say

that the problem can be solved in polynomial time and we place it in the class P .

More formally, P is defined as the set of all languages which can be decided by a deterministic

polynomial-time Turing machine. Here we follow the framework proposed by Stephen [1].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings

over Σ. Then a language over Σ is a subset L of Σ∗. Each Turing Machine M has an

associated input alphabet Σ. For each string w in Σ∗, there is a computation associated

with M , with input w. We say that M accepts w if this computation terminates in the

accepting state “Yes”. Note that M fails to accept w either if this computation ends in the

rejecting state “No”, or if the computation fails to terminate.

The language accepted by M , denoted L(M), has associated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗|M accepts w}

We denote by tM (w) the number of steps in the computation of M on input w. If this

computation never halts, then tM (w) =∞. For n ∈ IN, we denote by TM (n) the worst case

run time of M ; that is

TM (n) = max{tM (w)|w ∈ Σn}

where Σn is the set of all strings over Σ of length n. We say that M runs in polynomial time

if :

∃k ∈ IN such that {∀n : TM (n) ≤ nk + k }

Definition I.1: We define the class P of languages by

P = {L|L= L(M) for a machine M which runs in polynomial time}

B. The class NP of languages

The notation NP stands for non deterministic polynomial time, since originally NP was

defined in terms of non deterministic machines. However, it is customary to give an equiv-

alent definition using the notion of a checking relation, which is simply a binary relation

R⊆ Σ∗ ×Σ∗
1 for some finite alphabets Σ and Σ1. We associate with each such relation R a
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THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 3

language LR over Σ∪Σ1 ∪{#} defined by

LR = {w#y|R(w, y)}

where the symbol # is not in Σ. We say that R is polynomial-time iff LR ∈ P .

Definition I.2: We define the class NP of languages by the condition that a language

L over Σ is in NP iff there is k ∈ IN and a polynomial-time checking relation R such that

for all w ∈ Σ∗,

w ∈ L⇔ ∃y(|y| ≤ |w|k and R(w, y))

where |w| and |y| denote the lengths of w and y, respectively. We say that y is a certificate

associated to w.

C. The P - NP question

The “P versus NP problem”, i.e. the question whether P = NP or P 6= NP , is an open

question and is the core of this paper. See [4] for the history of the question. Here, we

show that neither P = NP nor P 6= NP can be proved in the “a-temporal” framework

of Mathematics where results should always be reproducible. We link this assertion to the

existence of some pseudo-random part in the heart of any NP problem.

D. An example of NP problem : the 3-CNF-satisfiability problem

Boolean formulae are built in the usual way from propositional variables xi and the logical

connectives ∧, ∨ and ¬, which are interpreted as conjunction, disjunction, and negation,

respectively. A literal is a propositional variable or the negation of a propositional variable,

and a clause is a disjunction of literals. A Boolean formula is in conjunctive normal form iff

it is a conjunction of clauses.

A 3-CNF formula ϕ is a Boolean formula in conjunctive normal form with exactly three

literals per clause, like ϕ := (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬x4) := ψ1 ∧ ψ2. The 3-CNF-

satisfiability or 3-CNF-SAT problem is to decide whether there exists or not logical values

for the literals so that ϕ can be true (on the previous example, ϕ= 1(True) if x1 = ¬x2 = 1).

Until now, nobody knows whether or not it is possible to check the satisfiability of any given
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THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 4

3-CNF formula ϕ in a polynomial time, as the 3-CNF-SAT problem is known to belong to

the class NP of problems. See [2] for details.

Let us give some general properties of the 3-CNF formulae.

The size s of a 3-CNF formula ϕ is defined as the size of the corresponding Boolean circuit,

i.e. the number of logical connectives in ϕ. Let us note the following property of the size s :

s=O(m) =O(n3) (1)

where n is the number of propositional variables xi and m the number of clauses in ϕ.

Indeed,

n

3
≤ m ≤ 23

n(n− 1)(n− 2)

3× 2
and (3m− 1) ≤ s ≤ (6m− 1)

as there is a maximum of 23 ×Cn
3 possible clauses which corresponds to the choice of 3

different variables among n, each of them being in an affirmative or negative state. Note

that s = 3m− 1 when there is no “¬” in ϕ [m× 2 logical connectives “∨” for the ψi and

m−1 “∧” as conjonctions] and s= 6m−1 when all the litterals in ϕ are in a negative form.

In this paper, we define the dimension d of a 3-CNF formula as (n,m). And we represent

any 3-CNF formula by a matrix A of size 2n×m. The signature ui of a clause ψi is defined

as the value of the binary number corresponding to the row in the matrix. The signature

of a formula is the ordered vector of these clause’s signatures : ϕn,m ≈ (u1,u2, · · · ,um) with

21≤ ui ≤ 21 · 22n−5 and ui > uj for i < j. See Table I.

3-CNF formula ϕ (dimension d= (4,3))
x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4 ui

ψ1 : (x1 ∨x2 ∨¬x3) 1 0 1 0 0 1 0 0 164

∧ ψ2 : (¬x2 ∨x3 ∨¬x4) ⇔ 0 0 0 1 1 0 0 1 25

∧ ψ3 : (¬x1 ∨¬x3 ∨x4) 0 1 0 0 0 1 1 0 70

TABLE I

Example of matrix representation and signatures of a 3-CNF formula.
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THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 5

There are 23×Cn
3 possible clauses with n variables. A 3-CNF formula with dimension (k,m)

with k ≤ n is composed of m different clauses drawn from the 23 ×Cn
3 possible clauses. So,

the total number of such formulae is

C
23×Cn

3

m =
(23 ×Cn

3 )!

m!× (23×Cn
3 −m)!

=O(n3m) (2)

Let Φn,m denote the set of all these formulae :

Φn,m = {ϕ : ϕ is a 3-CNF formula of dimension (k,m) with k ≤ n }

The 3-CNF-Satisfiability problem is to find a function Ξ :

Ξ : Φn,m −→ {0,1} (3)

ϕ  0 if ϕ is non satisfiable and 1 otherwise

The 3-CNF-Satisfiability problem is known to belong to the NP class.

II. A “Meta Mathematical” proof that P 6= NP is impossible to prove

One way to prove that P 6= NP is to show that the complexity measure TM (n) for some

NP problem, like the 3-CNF-SAT problem, cannot be reduced to a polynomial time. We

will show that the 3-CNF-SAT problem behaves as a common safe problem and that its

complexity is time dependent. In fact, at some specific time t0+∆t, the 3-CNF-SAT problem

will be of polynomial complexity. So, P 6=NP will not be provable, as TM (n) is not “always”

supra-polynomial.

A. The analogy with the safe problem and the time dependent nature of complexity

Finding whether or not a given 3-CNF formula ϕ is satisfiable is like being in front of a safe,

trying to find the opening combination. One has to try any possible value (0 or 1) for the

variable xi in ϕ to see whether some combination satisfies ϕ, in the same way as one tries

any combination to get the one, if it exists, that opens the safe.

Let us consider more deeply the analogy between the 3-CNF-SAT problem and the safe
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problem, especially by looking to the time dependent nature of the complexity involved here.

It is clear that when you are in front of a safe for the first time, it is a very hard problem,

as you do not have any information about the correct opening combination. In fact, in the

worst case, it takes an exponential time to find it. But as soon as you have succeeded in

opening the safe (or in finding that there is no solution), the problem becomes trivial. It

takes only one operation to open the safe or to declare it impossible to open.

Let us denote by t0 the first time you try to open the safe, and by ∆t the time needed to

find the solution. Let us remark that ∆t can be huge but it is always finite as the number

of possible combinations is finite. Now we compute the complexity measure Tsafe(n) for the

safe problem at t0 and t0 +∆t.

In t0, one has to test all possible combinations. If the safe has n buttons with only two

positions (0 or 1), there will be 2n possibilities. Because no information is available about

the solution, there is no way to reduce the number of cases to be tested. The exponential

complexity of the problem comes from the total lack of information about the solution. This

absence of information is strictly related to the random nature of the problem : the finding

of the opening combination is a random search process for anyone in front of the safe, at

least in t0. So, we get

Tsafe, t0(n) = 2n

But after ∆t, the correct opening combination is known forever, and the complexity measure

is now

Tsafe, t0+∆t(n) = 1

As one can see, the complexity measure Tsafe(n) for the safe problem is time dependent.

The same occurs for the 3-CNF-SAT problem as well as for any NP problem. Their com-

plexity measure changes in time. The idea of this section about the impossibility to prove P

6= NP is to show that, even if T3−CNF−SAT, t0(n) is not known (exponential or polynomial

?), there exists some ∆t, even huge, such that the complexity measure is polynomial in

t0 +∆t.
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B. The Computation of T3−CNF−SAT, t0+∆t(n)

Let us take ∆t large enough so that Ξ [the 3-CNF-SAT decision function, see equation (3)]

is known for all the 3-CNF formulae in Φn,m. ∆t exists and is finite. In the analogy with the

safe problem, it corresponds to the time needed to find the solution for all safe equipments

of dimension n. Until now, we do not know whether Ξ can be computed in polynomial time

or not, but this only changes the size of ∆t.

The output of Ξ is the set Sn,m of all satisfiable 3-CNF formulae of Φn,m, or equivalently

Sn,m = Φn,m \ Sn,m, the set of all non satisfiable 3-CNF formulae. As equation (2) shows,

Sn,m contains at most O(n3m) elements. The worst case occurs when m = (23 ×Cn
3 )/2 =

O(n3). As Sn,m ⊆ Φn,m, the equation (2) gives us the following result :

#{Sn,m}<#{Φn,m}=O(n3(n3)) ⇒ #{Sn,m}=O(2n
3

) as n3 > 2 (4)

See Figure 1 for an example of #{Φn,m} and #{Sn,m} with n = 4. The figure shows that

#{Φn,m} and #{Sn,m} behaves similarly.

So, one can now calculate T3−CNF−SAT, t0+∆t(n) : it is the time required to check whether a

specific 3-CNF formula belongs or not in Sn,m, after ∆t large enough for the entire set Sn,m

to be computed. If one can allocate an exponential space for memory to save the elements

of Sn,m (as accepted in Turing machines), then a hash algorithm, based on the clause’s

signatures, can be used to see whether a 3-CNF formula ϕ belongs or not to the set Sn,m.

For instance, one can use ui, the i
th ordered signature of clauses, as the ith successive hash

function hi(ϕ). It takes O(2n) operations to compute each of these m clause’s signatures of

ϕ and O(m logm) computations to sort them. We need then O(23 ×Cn
3 ) operations, which

corresponds to the maximum number of possible values for the signatures, to find whether

the signature belongs or not to the corresponding section of Sn,m where the formulae are

also ordered, in a lexical ordering, following their clause’s signatures. Using equation (1)

[i.e. O(m) =O(n3)],

T3−CNF−SAT, t0+∆t(n) = O(m(2n)+ (m logm)+m(23Cn
3 ))

= O(m2) =O(nk) for some k ∈ IN (5)
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Fig. 1

Logarithmic scale : the upper curve represents the total number of all possible 3-CNF in

Φ4,m; the second one, the total of non-satisfiable 3-CNF, i.e. #{S4,m}, and the lower one,

the total of Irreducible Non-Satisfiable 3-CNF, i.e. #{S
INS

4,m } (see section B for the definition).

C. The “unprovability” of P 6=NP

Theorem II.1: It is impossible to prove that P 6=NP in the deterministic or time inde-

pendent framework of Mathematics.

Proof: The solution of the 3-CNF-SAT problem is equivalent to the setting of these two

functions Ξ′ and Ξ” :

(In t0) Ξ′ : Φn,m
O(?)
−→ {0,1} (the construction of Sn,m)

ϕ  0 if ϕ ∈ Sn,m and 1 otherwise (6)

(In t0 +∆t) Ξ′′ : Φn,m
O(nk)
−→ {0,1} (ϕ

?
∈ Sn,m when Sn,m is known)

ϕ  0 if ϕ ∈ Sn,m and 1 otherwise (7)

The meta mathematical argument lies in the fact that any operation done by Ξ′ in t0 can be

reduced to a polynomial time operation by Ξ′′ in t0 +∆t 1.

1 To make it easier to understand, let us think of the version of 3-CNF-SAT with n= 4 : it took us several months
to build Sn,m, but now it only takes seconds to solve the 3-CNF-SAT problem with 4 variables. And this is done
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Mathematically speaking, it is impossible to make a formal or mathematical distinction be-

tween both functions Ξ′ and Ξ”, as time does not interfere with proofs in mathematics.

More precisely, if someone proves that the 3-CNF-SAT problem Ξ (or Ξ′) is non polynomial,

this assertion, as well as the steps for the demonstration, should be true at any time, inde-

pendently of t, even in t0 +∆t. The proof could not introduce time in the demonstration.

But people will only be able to proof the non polynomial nature of 3-CNF-SAT for time t0,

certainly not for time t0 +∆t as shown in equation (5). And this argument holds for all

NP problems because all of them are equivalent, in term of complexity, to the 3-CNF-SAT

problem.

This is exactly the same situation as with the safe problem : the complexity measure of the

problem is changing over time, becoming polynomial after some large ∆t. But the P - NP

question does not consider time as far as complexity is concerned : if we do not consider the

time dependent nature of complexity, one should conclude that P = NP . The next section

will show that it is not so clear.

III. A “Meta Mathematical” proof that P = NP is impossible to prove

A. The “P = NP ” assertion is not equivalent to “Not P 6= NP ”

The previous time dependent argument is no longer valid with respect to P=NP , as we can

have TM,t0(n) = TM,t0+∆t(n) =O(nk) in this case. Indeed, from a strict mathematical point

of view, one should accept that P =NP as soon as P 6=NP is proven to be impossible. But,

if we take into account the time dependence of the complexity measure TM (n), the assertion

“P =NP ” does not mean solely the contrary of “P 6=NP ”, even if both assertions are

mutually exclusive.

Indeed, “P =NP ” can be rewritten as

TM,t(n) = TM,t+∆t(n) =O(nk) ∀t,∆t and for any problem M in NP (8)

forever. A similar reasoning can be done for the i
th decimal of π, or for the list of the n first prime numbers.
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The idea in this section is to show that for any NP problem M , there will be a time t

where TM,t(n) >>O(nk) [TM,t(n) = Ω(2n), for instance2]. Therefore, equation (8) will not

hold and the assertion “P =NP ” will be false. The idea here is to point out some random

property related to a special class of 3-CNF formulae, the INS 3-CNF formulae, as we did

with the safe problem when we computed Tsafe,t0(n).

B. The class of INS 3-CNF formulae

Let us first introduce the notion of Irreducible Non Satisfiable (or INS) 3-CNF formulae.

Definition III.1: An INS 3-CNF formula is a non satisfiable 3-CNF formula ϕ∗
n,m such

that any smaller sub-formulae ϕk,l (k ≤ n, l ≤ m) of ϕ∗
n,m is satisfiable. This means that

the non satisfiability nature of ϕ∗
n,m requires the entire set of the m clauses of ϕ∗

n,m.

The argument in the following section is to divide the 3-CNF-SAT problem into two separated

and “orthogonal” problems : the INS-3-CNF-SAT and the INS-Reduction problems.

C. The “unprovability” of P =NP

Lemma III.1: For some time t+ δt, the 3-CNF-SAT problem is Ω(2n), even if one can

solve the INS-3-CNF-SAT problem in O(nk).

Proof: The core of this proof is to concentrate our attention, not on the satisfiability

characteristic of ϕn,m, but on the non necessary clauses in ϕn,m.

1. Let us suppose that, for some time t, we have got enough time to build the set

S
INS

n,m of all the INS 3-CNF ϕ∗
n,m. As shown in equation (5), at time t, it takes

O(nk) computations to check whether or not a given formula ϕ∗
n,m belongs to S

INS

n,m ,

as S
INS

n,m ⊆ Sn,m.

2. Let ϕ∗
n,m be an INS 3-CNF formula in S

INS

n,m . From ϕ∗
n,m, we generate a new

non satisfiable formula ϕn,2m with 2m clauses, by adding randomly m extra clauses.

These clauses can be considered as noisy extra clauses. This random generation is

over at time t+ δt.

3. At time t+δt (remember that we have knowledge of S
INS

n,m , from time t), we want

to check whether or not ϕn,2m belongs to Sn,2m [the general 3-CNF-SAT problem,

with no information about Sn,2m].

2 Ω(2n) means that the computation time is larger than 2n (i.e. exponential).
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Our 3-CNF-SAT algorithm on ϕn,2m will use the information about S
INS

n,m as this

information is related to the most difficult part of the algorithm (the non satisfiability

property of a 3-CNF formula). Moreover, by hypothesis, at time t+ δt, this sub-

algorithm is supposed to be polynomial for any INS 3-CNF formula.

So, the 3-CNF-SAT algorithm will have to find, inside the clauses of ϕn,2m, the

added or noisy clauses, so that it can find the hidden INS sub-formula ϕ∗
n,m in

ϕn,2m. Let us call this search the INS-Reduction problem. We have thus divided the

3-CNF-SAT problem in two orthogonal problems : the INS-3-CNF-SAT problem

(in O(nk)) and the INS-Reduction problem.

4. Let us now prove that, at time t+δt, the INS-Reduction problem is Ω(2n) for our

3-CNF formula ϕn,2m. Once again, we use a meta mathematical argument, based

on some property of true randomness.

To the Irreducible Non Satisfiable formula ϕ∗
n,m, one can add any extra clause with-

out changing the non satisfiable nature of the obtained formula. These added clauses

can be selected in a totally arbitrary way, with respect to ϕ∗
n,m (except that all

clauses should be unique). So, one can add to ϕ∗
n,m many different clauses, in a ran-

dom way, without link with ϕ∗
n,m. One possible random output of this generation

process can be our peculiar formula ϕn,2m.

In fact, ϕn,2m can be seen as the final output at time t+ δt of a random process

beginning with ϕ∗
n,m at time t. If we look at the process in a backward way, we

see that there are C2m
m different possible random processes beginning with different

ϕ∗
n,m, which lead to a peculiar ϕn,2m. Mathematically speaking, it is impossible to

distinguish the given formula ϕn,2m from the result of a true random process. And

if ϕn,2m is truly a random output, we are then in presence of a problem similar to

the safe problem in time t0, when a random search process was needed to find the

solution. There is no way to get useful information for the search of ϕ∗
n,m inside

ϕn,2m [the INS-Reduction problem]. So, one has to check all possible combinations

for the sub-formula ϕ∗
n,m and then see whether this sub-formula belongs or not to

S
INS

n,m (in O(nk)).

And this INS-Reduction algorithm takes at least an exponential number of operations
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(in fact3 : C2m
m = Ω(2m)). Using the fact that m = Ω(n) (see equation (1)), the 3-

CNF-SAT problem for any formula like ϕn,2m is Ω(2m × nk) = Ω(2m) = Ω(2n), at

least at time t+ δt.

Theorem III.2: Any 3-CNF-SAT algorithm should contain, at some time t+ δt, a sub-

algorithm equivalent to the INS-Reduction algorithm, and therefore is Ω(2n). So, it is

impossible to prove that P =NP , in the sense defined in equation (8).

Proof: The proof of this assertion is based on the very nature of the 2m clauses of ϕn,2m :

m of them are mathematically related to the non satisfiability property of ϕn,2m, while the

other m clauses are totally unrelated (as noise) to it. Any 3-CNF-SAT algorithm for such

formula as ϕn,2m should handle, in some way, these noisy extra clauses. And, as these

extra clauses can be anything (totally random), there is no way to escape some exponential

INS-Reduction (or random search) process to get rid of them.

Once again, the pseudo random nature of the NP problem arises in the reflection. It is

because of the possible randomness within the generation of the extra clauses (from ϕ∗
n,m to

ϕn,2m) that there is no efficient or polynomial way to find back ϕ∗
n,m inside ϕn,2m, and thus

3-CNF-SAT cannot be proved to be in P because of that.

IV. Conclusions

This paper tries to show that the P
?
=NP problem is impossible to solve within the time

independent framework of Mathematics, as neither P =NP nor P 6=NP can be proved

without reference to time. The key concept of the paper is the temporal nature of the com-

plexity measure for the NP −hard problems. This time dependence is closely related to

some (pseudo) randomness in the heart of these problems. Some analogy can be found with

the Chaos theory, when pseudo randomness arises from deterministic processes.

For the author, NP is really different from P but the difference lies in the distinction be-

tween true randomness and mathematical pseudo-randomness, and this frontier is situated

3 See Appendix for a proof.
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on the limit border of Mathematics (which is deterministic).

The impossibility for a solution to P
?
= NP gives a new perspective on the pseudo non

deterministic (or random) nature of the most difficult problems, the NP −hard problems :

we can see these problems as so inextricable that we are in front of them like someone fac-

ing some random search problem (as the safe problem), even if they are deterministic (not

random) in their very essential nature, i.e. as quasi chaotic problems.

Therefore, the P −NP “unprovability” can be seen as the expression of the incapacity for

Mathematics to give a time independent definition of randomness.

V. Appendix : Details about the exponential complexity of the

INS-Reduction Process

A. Preliminaries

Let ϕ∗
n,2m be the 3-CNF formula to be reduced, and ϕn,p be any sub-formulae of ϕ∗

n,2m. We

suppose that ϕ∗
n,2m is a random extension of some ϕn,m in S

INS

n,m , where S
INS

n,p denotes the

set of all Irreducible Non Satisfiable 3-CNF formulae ϕn,p of dimension (n,p). These sets

are supposed to be known here.

The INS-Reduction Process checks whether there exists ϕn,p in S
INS

n,p , for some p≤ 2m, such

that ϕn,p is a sub-formula of ϕ∗
n,2m and ϕn,p is Irreducible Non Satisfiable. We will prove that

this process has an exponential complexity :

TINS−Reduction,t+δt(n) = Ω(2n).

B. The two approaches for the INS-Reduction Process

In fact, there are only two major ways to check whether or not there exists a sub-formula

of ϕ∗
n,2m in S

INS

n,p (p < 2m). Any INS-Reduction algorithm will be a mixture of these two

approaches :

1. From ϕ∗
n,2m to S

INS

n,p : one considers all the possible sub-formulae of ϕ∗
n,2m
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with dimension (n,p) (p < 2m), and then checks whether these sub-formulae belong

to S
INS

n,p ; one stops as soon as such a sub-formula is found. By hypothesis, the

algorithm will stop with p=m as ϕ∗
n,2m is an extension of some ϕn,m ∈ S

INS

n,m .

2. From S
INS

n,p to ϕ∗
n,2m : for each formula ϕn,p in S

INS

n,p (p < 2m), one checks

whether ϕn,p is a sub-formula of ϕ∗
n,2m ; one stops as soon as such a sub-formula is

found. Here again, p=m at the end of the process.

C. Complexity of both approaches

1. Because of the pseudo random nature of ϕ∗
n,2m, the first algorithm is required

to consider all the sub-formulae of ϕ∗
n,2m of dimension (n,p)(p < 2m). As ϕ∗

n,2m is

an extension of some ϕn,m, the algorithm will consider
∑m

p=1C
2m
p = Ω(2m) differ-

ent sub-formulae. For each of these sub-formulae, it takes O(nk) operations (see

equation (5)) to check whether or not it belongs to S
INS

n,p . So, the first algorithm is

Ω(2m)×O(nk) = Ω(2m) = Ω(2n).

2. Because of the pseudo random nature of ϕ∗
n,2m, the second algorithm is required

to consider all the formulae belonging to S
INS

n,p (p < 2m). As ϕ∗
n,2m is an extension of

some ϕn,m, the algorithm will consider
∑m

p=1#{S
INS

n,p } different INS 3-CNF formu-

lae. For each of these formulae, it takes O(nk) operations to check whether one gets

or not a sub-formula of ϕ∗
n,2m. This is just a classical string searching algorithm,

which has polynomial complexity. So, the complexity of the second algorithm will

be
∑m

p=1#{S
INS

n,p }×O(nk).

By proving in the next section that
∑m

p=1#{S
INS

n,p } is Ω(2n), we show that both approaches

for the INS-Reduction process are equivalent in terms of complexity. And this holds for any

mixture of these approaches.

D. Theorem :
m
∑

p=1

#{S
INS

n,p }=Ω(2n) for m≥
Cn

3
2n

2n−3+Cn
3
−1

D.1 Notations

Let ϕn,m ∈ Φn,m be a 3-CNF formula with propositional variables x1, · · · , xn and clauses

ψ1, · · · ,ψm. Let Ψn be the set of the 23 ×Cn
3 possible clauses with n variables, and {0,1}n

be the set of all possible logical values for the variables.
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Let g : Ψn → {0,1}n : ψj  g(ψj) = Sj ⊆ {0,1}n where Sj = {v ∈ {0,1}n : ψj(v) = 0}. For

instance, ψj = x1 ∨ x2 ∨ x4(∈ Ψ4) leads to g(ψj) = Sj = {(0,0,0,0), (0,0,1,0)}. See Table

II where v = (a,b, c,d) corresponds to the column i = a+ b.2+ c.22 + d.23. It is clear that

#Sj = 2n−3.

Let us define g⇐(v|ϕn,m) = {ψj : ψj(v) = 0, ψj in ϕn,m}. We have that

#{g⇐(v|ϕn,m)} ≤ Cn
3 as each v can correspond to maximum Cn

3 clauses.

ψj 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

¬x1 ∨¬x2 ∨¬x3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

x1 ∨¬x2 ∨¬x3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

¬x1 ∨ x2 ∨¬x3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

x1 ∨ x2 ∨¬x3 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

¬x1 ∨¬x2 ∨ x3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

x1 ∨¬x2 ∨ x3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

¬x1 ∨ x2 ∨ x3 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

x1 ∨ x2 ∨ x3 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

¬x1 ∨¬x2 ∨¬x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

x1 ∨¬x2 ∨¬x4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

¬x1 ∨ x2 ∨¬x4 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

x1 ∨ x2 ∨¬x4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

¬x1 ∨¬x2 ∨ x4 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

x1 ∨¬x2 ∨ x4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

¬x1 ∨ x2 ∨ x4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

x1 ∨ x2 ∨ x4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

¬x1 ∨¬x3 ∨¬x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

x1 ∨¬x3 ∨¬x4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

¬x1 ∨ x3 ∨¬x4 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

x1 ∨ x3 ∨¬x4 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

¬x1 ∨¬x3 ∨ x4 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

x1 ∨¬x3 ∨ x4 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

¬x1 ∨ x3 ∨ x4 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

x1 ∨ x3 ∨ x4 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

¬x2 ∨¬x3 ∨¬x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

x2 ∨¬x3 ∨¬x4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

¬x2 ∨ x3 ∨¬x4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

x2 ∨ x3 ∨¬x4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

¬x2 ∨¬x3 ∨ x4 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

x2 ∨¬x3 ∨ x4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

¬x2 ∨ x3 ∨ x4 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

x2 ∨ x3 ∨ x4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II

Graph of g : Value 1 in the ith column corresponds to v ∈ Sj, where v = (a,b,c,d) with

a+ b.2+ c.22+ d.23 = i. The box is the first pivot v1 and the underlined elements are the discarded values

for the next pivot v2 (see section (D.3)).

D.2 Sufficient and necessary conditions for non satisfiability

Theorem V.1: A 3-CNF formula ϕn,m =

m
∧

j=1

ψj is not satisfiable iff

m
⋃

j=1

g(ψj) =

m
⋃

j=1

Sj = {0,1}n.

Proof:
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ϕn,m is not satisfiable ⇔ ∀v ∈ {0,1}n : ϕn,m(v) = 0

⇔ ∀v ∈ {0,1}n : ∃j : ψj(v) = 0

⇔ ∀v ∈ {0,1}n : ∃j : v ∈ Sj

⇔ {0,1}n =

m
⋃

j=1

Sj

Corollary V.1: As Sj ⊆ {0, 1}n, a 3-CNF formula ϕn,m is not satisfiable iff

#{

m
⋃

j=1

Sj}= 2n.

Looking at Table II, it is easy to verify if some formula ϕ4,m is satisfiable or not : one

just has to check the existence of a “1” in each column, when one looks only at the lines

corresponding to the clauses ψj of ϕ4,m. For instance, it is clear that the first 8 clauses taken

together are non satisfiable.

Theorem V.2: A 3-CNF formula ϕn,m is not satisfiable in the INS-3-CNF-SAT sense,

i.e. ϕn,m ∈ {S
INS

n,m }, iff
⋃

j Sj = {0,1}n and ∀ ψj ,∃ v ∈ Sj such that g⇐(v|ϕn,m) = {ψj}.

Definition V.3: This variable v is called the pivot for ψj .

Proof: On the contrary, let us suppose that
⋃

j Sj = {0,1}n but ∃ ψj such that ∀ v ∈

Sj ,g
⇐(v|ϕn,m) 6= {ψj}. Of course, ψj ⊆ g⇐(v|ϕn,m) as v ∈ Sj . Thus,

∀ v ∈ Sj ,∃ ψ
v
k 6= ψj such that ψv

k ⊆ g⇐(v|ϕn,m)

⇔ ∀ v ∈ Sj ,∃ k 6= j such that v ∈ Sk

⇔

m
⋃

i=1

Si =

m
⋃

i=1

i6=j

Si = {0,1}n

⇔ ϕn,m is not satisfiable, even when the clause ψj is deleted.

⇔ ϕn,m is not an Irreducible Non Satisfiable formula.

From Table II, we see that a formula ϕ4,m is a INS formula if for each clause in ϕ4,m there

exists at least one column with only one “1” in it. For instance, it is clear that the first 9

clauses taken together are not Irreducible Non Satisfiable, as there exists two “1” in columns

January 28, 2010—11 : 39 am DRAFT



THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 17

11 and 15 for the 9th clause. This last clause can be considered as a noisy clause, as there

is no pivot for it.

Theorem V.4: Only formulae ϕn,m with 8 ≤ m ≤
Cn

3
2n

2n−3+(Cn
3
−1)

def
= mmax can be non

satisfiable in the INS-3-CNF-SAT sense.

Proof: • As #Sj = 2n−3 :

ϕn,m is non satisfiable ⇔

m
⋃

j=1

Sj = {0,1}n

⇒

m
∑

j=1

#Sj ≥ 2n =#{0,1}n

⇒ m 2n−3 ≥ 2n

⇒ m≥ 8

• As ϕn,m is not satisfiable in the INS-3-CNF-SAT sense :

ϕn,m is not satisfiable ⇔
⋃

j

Sj = {0,1}n and ∀j ∃vj ∈ Sj : g⇐(vj) = {ψj}

⇒ ∀v ∈ {0,1}n :

{

#{g⇐(v|ϕn,m)}= 1 if v = vj

#{g⇐(v|ϕn,m)} ≤ Cn
3 otherwise

⇒
∑

v∈{0,1}n

#{g⇐(v|ϕn,m)} ≤m+Cn
3 (2

n −m)

[
∑

v∈{0,1}n

#{g⇐(v|ϕn,m)} is the total number

of relations between the m clauses ψj and {0,1}n ]

But we know that this total number of relations is also equal to

m
∑

j=1

#{Sj} =

m
∑

j=1

2n−3 = m× 2n−3

So, we have :

m× 2n−3 ≤ m+ Cn
3 (2

n −m)

m ≤
Cn

3 2n

2n−3 + Cn
3 − 1

= mmax

January 28, 2010—11 : 39 am DRAFT



THE P - NP QUESTION AND THE PSEUDO-RANDOMNESS OF NP PROBLEMS 18

D.3 An asymptotic exponential lower bound for

m
∑

p=1

#{S
INS

n,p } for m≥mmax

Theorem V.5:

m
∑

p=1

#{S
INS

n,p } ≥

4
∏

i=0

[2nCn
3 − i{2n−3Cn

3 +(2n−3− 1)(cn3 − 1)}]

4
∏

i=0

[
Cn

3 2n

2n−3 +Cn
3 − 1

− i]

= Ω(2n)

(for m≥mmax =
Cn

3
2n

2n−3+Cn
3
−1 )

Proof: The idea is to build the set of all INS-3-CNF formulae from the graph of g, by

choosing recursively the pivots for these formulae. Indeed, any INS-3-CNF formula ϕn,m is

characterized by (v1, · · · ,vm), where vj is the pivot for the clause ψj . We will get
∑

#{S
INS

n,p }

by counting the number of possible choices for (v1, · · · ,vm), with 8≤m≤mmax. Remember

that ∀vj : g
⇐(vj |ϕn,m) = {ψj} (see definition V.3).

• The first step is to choose a clause ψ1 from the 23Cn
3 possible clauses, and then a pivot

v1 among the 2n−3 elements associated to ψ1 (see Table II for an example of pivot). So,

there is 2nCn
3 possible choices for the first pivot.

• For the choice of the second clause ψ2 and pivot v2, we have to discard those clauses ψ such

that ψ ∈ g⇐(v1|ϕn,1 = ψ1), i.e. those clauses with a “1” in the column of v1 in the table.

Cn
3 clauses (and the 2n−3 corresponding table elements) should be discarded at that stage,

otherwise g⇐(v1|ϕn,2) 6= {ψ1}. Looking at the other elements v in S1 (the line corresponding

to ψ1), we have to reject as future candidate for the next pivot, the elements of the table

in the columns of these v ∈ S1. We should discard (2n−3 − 1)(Cn
3 − 1) elements, i.e. the

number of elements in S1 different from v1 times the number of non null elements in each

column, not in S1. Indeed, if we take such an element as our next pivot v2, we will get

g⇐(v2|ϕn,2 = ψ1 ∧ψ1) = {ψ1,ψ2} 6= {ψ2} and that is contrary to the definition of a pivot.

In Table II, this corresponds to the 3 underlined “1” in column 13, the third line S1 not

being taken into account. In summary, there are 2nCn
3 − {2n−3Cn

3 + (2n−3 − 1)(Cn
3 − 1)}

possibilities for the second pivot v2. In Table II, this means “32 - 11” possibilities.
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• The third (v3) and following steps are similar. We discard the same number of elements

from the table at each stage, or less if we choose a pivot such that some redundancy appears

with previous deletions. From any previous choice of pivots (v1, v2, v3, · · · ), it is always

possible to build at least one INS-3-CNF formula ϕn,m with 8 ≤ m ≤ mmax : as soon

as there is no possible choice for the next pivot, this means that we have a INS-3-CNF

formula. We then put the value “1” for the following terms in our product, so that the total

number of possibilities remains unchanged. This is done by introducing the following term

max{1, [2nCn
3 − i(2n−3Cn

3 +(2n−3− 1)(cn3 − 1))]} in our overall product.

• Let us note that for large n, the term [2nCn
3 − i{2n−3Cn

3 + (2n−3 − 1)(cn3 − 1)}], which

corresponds to the minimum value for the number of possibilities at stage i, becomes negative

for i ≥ 5, so we get that max{1, [2nCn
3 − i(2n−3Cn

3 + (2n−3 − 1)(cn3 − 1))]} = 1 ∀ i ≥ 5. We

can thus limit our product to i= 4. Indeed, the overall product

mmax−1
∏

i=0

max{1, [2nCn
3 − i(2n−3Cn

3 +(2n−3− 1)(cn3 − 1))]}

=

4
∏

i=0

[2nCn
3 − i{2n−3Cn

3 +(2n−3− 1)(cn3 − 1)}]

corresponds to a minimum value for the number of possible ways for choosing the five first

pivots in the building of our INS-3-CNF formulae.

• We have now the pivots vi and their corresponding clauses ψi, such that

g⇐(vi|ϕn,m) = {ψi}. The number m of the so-selected pivots will depend on the selec-

tion, with 8 ≤ m ≤ mmax. For each choice of (v0, · · · , v4), one can build a INS-3-CNF

formula in (m− 5)! ways, depending on the ordering of (v5, · · · , vm). So, we get that

∏4
i=0[2

nCn
3 − i{2n−3Cn

3 +(2n−3− 1)(cn3 − 1)}]× (m− 5)! is a minimum value for the number

of possible choices for the m pivots. Let us remark that these m pivots, as well as their cor-

responding m clauses can be selected in m! different orders, as all these ordered selections

are equivalent in terms of Irreducible Non Satisfiability. We should therefore retrieve the

ordering by dividing by m!.
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• Putting all together, we have

4
∏

i=0

[2nCn
3 − i{2n−3Cn

3 +(2n−3 − 1)(cn3 − 1)}]×
(m− 5)!

m!

possible different INS-3-CNF formulae built with our m pivots. As the term (m− 5)!/m!

depends on the selected pivots, we replace it by a lower bound :

(m− 5)!

m!
≥

(mmax − 5)!

(mmax)!
=

1
4
∏

i=0

(mmax − i)

Finally, we get :

m
∑

p=1

#{S
INS

n,p } =

mmax
∑

p=8

#{S
INS

n,p }

≥

4
∏

i=0

[2nCn
3 − i{2n−3Cn

3 +(2n−3− 1)(cn3 − 1)}]

4
∏

i=0

[mmax − i]

≥ Ω(25 n)

= Ω(2n) for m≥mmax =
Cn

3 2n

2n−3+Cn
3 − 1
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