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How the Leopard Gets Its Spots

A single pattern-formation mechanism could underlie the wide
variety of animal coat markings found in nature. Results from
the mathematical model open lines of inquiry for the biologist

ammals exhibit a remarkable
Mvariety of coat patterns; the

variety has elicited a compa-
rable variety of explanations—many
of them at the level of cogency that
prevails in Rudyard Kipling's delight-
ful "How the Leopard Got Its Spots."
Although genes control the proces-
ses involved in coat pattern forma-
tion, the actual mechanisms that cre-
ate the patterns are still not known. It
would be attractive from the view-
point of both evolutionary and devel-
opmental biology if a single mech-
anism were found to produce the
enormous assortment of coat pat-
terns found in nature.

I should like to suggest that a single
pattern-formation mechanism could
in fact be responsible for most if not
all of the observed coat markings. In
this article I shall briefly describe a
simple mathematical model for how
these patterns may be generated in
the course of embryonic develop-
ment. An important feature of the
model is that the patterns it generates
bear a striking resemblance to the
patterns found on a wide variety of
animals such as the leopard, the
cheetah, the jaguar, the zebra and
the giraffe. The simple model is also
consistent with the observation that
although the distribution of spots on
members of the cat family and of
stripes on zebras varies widely and
is unique to an individual, each kind
of distribution adheres to a general
theme. Moreover, the model also pre-
dicts that the patterns can take only
certain forms, which in turn implies
the existence of developmental con-
straints and begins to suggest how
coat patterns may have evolved.

It is not clear as to precisely what
happens during embryonic develop-
ment to cause the patterns. There are
now several possible mechanisms
that are capable of generating such
patterns. The appeal of the simple
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by James D. Murray

model comes from its mathematical
richness and its astonishing ability
to create patterns that correspond to
what is seen. I hope the model will
stimulate experimenters to pose rele-
vant questions that ultimately will
help to unravel the nature of the bio-
logical mechanism itself.

Some facts, of course, are known
about coat patterns. Physically,
spots correspond to regions of differ-
ently colored hair. Hair color is deter-
mined by specialized pigment cells
called melanocytes, which are found
in the basal, or innermost, layer of
the epidermis. The melanocytes gen-
erate a pigment called melanin that
then passes into the hair. In mam-
mals there are essentially only two
kinds of melanin: eumelanin, from
the Greek words eu (good) and
melas (black), which results in black
or brown hairs, and phaecomelanin,
from phaeos (dusty), which makes
hairs yellow or reddish orange.

It is believed that whether or not
melanocytes produce melanin de-
pends on the presence or absence of
chemical activators and inhibitors.
Although it is not yet known what
those chemicals are, each observed
coat pattern is thought to reflect
an underlying chemical prepattern.
The prepattern, if it exists, should re-
side somewhere in or just under the
epidermis. The melanocytes are
thought to have the role of "reading
out" the pattern. The model I shall
describe could generate such a
prepattern.

My work is based on a model de-
veloped by Alan M. Turing (the in-
ventor of the Turing machine and the
founder of modern computing sci-
ence). In 1952, in one of the most im-
portant papers in theoretical biology,
Turing postulated a chemical mecha-
nism for generating coat patterns. He
suggested that biological form fol-

lows a prepattern in the concentra-

tion of chemicals he called
morpho-gens. The existence of
morphogens is  still largely
speculative, except for

circumstantial evidence, but Turing's
model remains attractive because it
appears to explain a large number of
experimental results with one or two
simple ideas.

Turing began with the assumption
that morphogens can react with one
another and diffuse through cells. He
then employed a mathematical model
to show that if morphogens react and
diffuse in an appropriate way, spatial
patterns of morphogen con-
centrations can arise from an initial
uniform distribution in an assem-
blage of cells. Turing's model has
spawned an entire class of models
that are now referred to as
reaction-diffusion models. These
models are applicable if the scale of
the pattern is large compared with the
diameter of an individual cell. The
models are applicable to the leopard's
coat, for instance, because the
number of cells in a leopard spot at
the time the pattern is laid down is
probably on the order of 100.

Turing's initial work has been
developed by a number of investi-
gators, including me, into a more
complete mathematical theory. In a
typical reaction-diffusion model one
starts with two morphogens that can
react with each other and diffuse at
varying rates. In the absence of dif-
fusion—in a well-stirred reaction,
for example—the two morphogens
would react and reach a steady uni-
form state. If the morphogens are
now allowed to diffuse at equal rates,
any spatial variation from that steady
state will be smoothed out. If, however,
the diffusion rates are not equal,

LEOPARD reposes. Do mathematical as
well as genetic rules produce its spots?
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u(x, y, t): Amount of activator
af time t and position (x,y)

Autocatalysis
(positive feedback

v(z, y, t): Amount of inhibitor
af time t and position (x,y)

Activator

%—'t‘ = f(u,v) + D, V?u
g—‘t’ = g(u,v) + D, Vv
(z,y) €

+ houndary conditions
+ initial condition

4

4 A
A.M.Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc London B, 237, (1952), pp.37
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Reaction

Autocatalysis
(positive feedback)

Inhibition
(negative feedback)

b

Catalysis
(positive feedback)

+

Diffusion

Activator

| A.M.Turing, The chemical basis of morphogenesis, Phil. Trans. R Soc London B, 237,
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u(x, y, t): Amount of activator
at time t and position (x,y)

Diffusion can drive anj
linstability by perturbing al
homogeneous stable (in}
| absence of diffusion) fixed|

v(a, y, t): Amount of inhibitor
at time t and position (x,y)

%—;‘ = f(u,v) + D, V?u
X = g(u,v) + D,V
(z,y) € Q2

+ boundary conditions
+ initial condition

'Hence as the perturbation grows, non-inearities enter into the ga
yielding an asymptotic, spatially inhomogeneous, steady state (stationary ]
pattern) or time varying one (wave like pattern). »

(1952), pp.37
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COMPLEX NETWORKS

Patterns of complexity

The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion
systems. A framework that describes Turing-pattern formation in the context of complex networks should provide
' a new basis for studying the phenomenon.

Romualdo Pastor-Satorras and Alessandro Vespignani

e live in the age of networks. The
W Internet and the cyberworld are
networks that we navigate and
explore on a daily basis. Social networks,
in which nodes represent individuals and
links potential interactions, serve to model
human interaction. Mobility, ecological, and
epidemiological models rely on networks
that consist of entire populations interlinked
by virtue of the exchange of individuals.
Network science, therefore, is where we
can expect answers to many pressing
problems of our modern world, from
controlling traffic flow and flu pandemics
to constructing robust power grids and
communication networks. But there is
more than nodes and links. An important
development of recent years has been the
realization that the topology of a network
critically influences the dynamical processes
happening on it’. Hiroya Nakao and
Alexander Mikhailov have now tackled the
problem of the effects of network structure
on the emergence of so-called Turing
patterns in nonlinear diffusive systems. With
their study, reported in Nature Physics?,
they offer a new perspective on an area that
has potential applications in ecology and
developmental morphogenesis.
In the past decade the physics
community has contributed greatly to
the field of network science, by defining
a fresh perspective to understand the
complex interaction patterns of many
natural and artificial complex systems. In
particular, the application of nonlinear-
dynamics and statistical-physics techniques,
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boosted by the ever-increasing availability
of large data sets and computer power

for their storage and manipulation, has
provided tools and concepts for tackling
the problems of complexity and self-
organization of a vast array of networked
systems in the technological, social and
biological realms**. Since the earliest
works that unveiled the complex structural
properties of networks, statistical-physics
and nonlinear-dynamics approaches have
been also exploited as a convenient strategy
for characterizing emergent
macroscopic phenomena

in terms of the dynamical
evolution of the basic elements
of a given system. This has

led to the development of
mathematical methods that
have helped to expose the
potential implications of

the structure of networks

for the various physical

and dynamical processes
occurring on top of them.

A complex beast. The markings
on leopards and other animals
might be a manifestation

of Turing-pattern formation
during morphogenesis®®. A new
framework for studying the Turing
mechanism on complex networks
should deepen our understanding
of the process and its
consequences. Image credit: ©
iStockphoto / Eric Isselée

It has come as a surprise then to discover
that most of the standard results concerning
dynamical processes obtained in the
early studies of percolation and spreading
processes in complex networks are radically
altered once topological fluctuations and
the complex features observed in most
real-world networks are factored in'. The
resilience of networks, their vulnerability to
attacks and their spreading-synchronization
characteristics are all drastically affected by
topological heterogeneities. By no means can

such heterogeneities be neglected:
‘complex behaviour’ often implies
a virtually infinite amount of
fluctuations extending over several
orders of magnitude. This generally
corresponds to the breakdown of
standard theoretical frameworks
and models that assume
homogeneous distributions of
nodes and links. Therefore
systematic investigations
of the impact of the
various network
characteristics on
the basic features of
equilibrium and
non-equilibrium
dynamical
processes are
called for.
The work
of Nakao and
Mikhailov?,
in which they
study the Turing

NATURE PHYSICS | VOL 6 | JULY 2010 | www.nature.com/naturephysics

© 2010 Macmillan Publishers Limited. All rights reserved
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Reactions occur at each node. Diffusion occurs across edges.

metapopulation model
-- macro scale

/\ -- micro scale
< ° ® 2
P o0’ g
® =3
$ee® ®

May R., Will a large complex system be stable? Nature, 238, pp. 413, (1972)
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Reaction term :

| 0:i(t) = g(ui(t),vi(t)) Vi=1,...,nandt >0

At each node i=1...,n, “species” u and v react through some non-linear
functions f and g depending on the quantities available at node i-th
(metapopulation assumption)

Nakao H. and Mikhailov A. S., Turing patterns in network-organized activator-inhibitor systems, Nature Physics, 6, pp. 544 (2010)
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Diffusion term :

Incidence matrix
| ife={ijtandj>i  oystemsiafevedor @(t) = (ui(t),...,un(t))"

Biez —1 1f=a d.<.’ 1
e={hytandi<ts - |iks current vector X(t) = (Xer ()5 Xe (1)

0  otherwise X
Xe(t) = —Du [u;(t) — u;(t)] = Du [BTﬂ(t)] _ constitutive equation (Fick’s first law)
u; () = — [BX(1)]; continuity equation

i(t)=-BxX=—-DuBB'@=:DyLa, (Fick's second low)
L : Laplacian matrix of the network
Diffusive transport of species into a certain node i is given by the sum of

incoming fluxes to node i from other connected nodes j, fluxes are proportional
to the concentration difference between the nodes (Fick's law).
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Turing mechanism: ditfusion driven instability

4
< = uz(t) Amount of activator in node i af fime 1
activator Pt v; (t) Amount of inhibitor in node i at fime t
60 ®
— | diffusion U;
inhibitor ¢
-
()

Local reacifon term Diffusion ferm (Fick’s law)
Lij = Ay — k;6;; Symmetric Laplace matrix

A;i; Symmetric Adjacency matrix
Nakao H. and Mikhailov A. S., Turing patterns in network-organized activator-inhibitor systems, Nature Physics, 6, pp. 544 (2010)
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Turing patterns

Patterns: |
on networks K

Sets of nodes whose
| asymptotic state is far from |
the homogeneous equilibrium |

The Brusselator

. fo(@iyi) =1 = (b+ Dz, + czjy,
Folon ) = b ey,




Turing mechanism: ditfusion driven instability

1) Assume there exists a spatially homogeneous stable solution:

u; =u and v, =0 V1

5’u, 5 5’(1, - fu‘l_DuL f”U
(5 )=a() o= i) |

( 3) Prove that the spatially homogeneous solufion: )
uw; =u and v, = v Vi

turns out to be unstable once the diffusion is in action




('3) Prove that the spatially homogeneous solution:

w;, =uwand v, =v Vi

turns out to be unstable once the diffusion is in action |
Sketch of the proof
et Lo® =A% a=1,....n ¢ = (¢%,...,0)7

Z¢?¢?:5aﬁ A% <0

ii) decompose the solution on the eigenbasis and use the ansaiz
n

ou;i(t) = Z Caﬁb?@/\at

a=1
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iii) A, (called dispersion relation) is solution of

Ju gy + Dy A®

iv) if there exists A%< such that :eAo_ > O then Turing patterns do emerge.

057
0
057

-1+

1.5
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ui =1 — (b -+ 1)uz -+ cu,?vi -+ Du Zj Lijuj
v; = bu; — cufv; + D, Zj Liv;

(u*,v*) = (1,b/c) equilibrium isolated system (no diffusion)

time =0

nodes

WWW.unamur.be timoteo.carletti@unamur.be




naure (

COMMUNICATIONS
ARTICLE
Received 5 Feb 2014 | Accepted 26 Jun 2014 | Published 31 Jul 2014 DOI: 10.1038/ncomms5517
w, =f (Uz y Ui ) + D, E :j Lz‘j U4 The theory of pattern formation
. on directed networks
v?’ T g (Uz ) vz ) + Dv Z] L?’] vj Malbor Asllani2, Joseph D. Challenger?, Francesco Saverio Pavone?34, Leonardo Sacconi®* & Duccio Fanelli?

Ai; Asymmetric Adjocency matrix As =1 §f j — 4

Lij = Agj — k™6 Asymmetric Laplace matrix

gy = > Ay
J Complex spectrum
A eC
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Figure 1 | Instabilities on NW networks. (a) Spectral plot of three Laplacians generated from the NW algorithm for p=0.27, p=0.5 and p=0.95 (blue
triangles, red circles and green diamonds, respectively) and network size Q =100. The shaded area indicates the instability region for the case of
the Brusselator model, where the parameters are b=9, c=30, Dy =1and D, =7. (b) The real part of the dispersion relation for the same three choices of

NW networks as in a. The black line originates from the continuous theory. 100 F 2
)

80 f

60 -

40 -

Node number

2
SAG) | G (RAG)) <« —8; (RAS)

20

b 100 150
X Time

‘ Reg IO n Of ( I n ) Siu b | Illly Figure 2 | Waves on an NW network. Time series for the case of the

kit S 4 Brusselator model on an NW network, generated with p=0.27. The nodes
' ' are ordered as per the original lattice. Details of the network’s spectra and
the system'’s instability are displayed by the blue, triangular symbols in

WWW.unamur.be Umoteocarlet“@unamurbe Fig. 1. The reaction parameters are b=9, c=30, Dgy=1and D, =7.




A LETTERS JOURNAL EXPLORING

THE FRONTIERS OF PHYsIcS October 2023
EPL, 144 (2023) 11004 www.epljournal.org
doi: 10.1209/0295-5075/acfbad

Pattern reconstruction through generalized eigenvectors
on defective networks

MARIE DORCHAIN, RICCARDO MUOLO and TiMOTEO CARLETTI® ©

1.3

1.2

0.7

Fig. 2: Random non-normal defective network composed by
n = 10 nodes, built by using a directed Erdos-Rényi algorithm
where the probability to create a bidirectional link is 0.2 and
the probability to transform it into a directed one is 0.6. Nodes 0 2 4 6 8 1'0

have been colored according to the value of species u at time : —_RAWG)
t = 200 (see colorbar). letti@unamur.be RAY




Turing mechanism: diffusion driven instability

Elegant and simple, but unable to describe patterns onset
in some real scenarios.

P> At least two diffusing species are needed;

B> Activator and inhibitor are both necessary :
fugo <0
P The inhibitor must diffuse much faster than the activator;
Dy > Dy,
P> Based on parabolic PDE (heat equation), hence infinite
propagation of signals.
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; ] st layer

adjacency matrix of
| Iu;’er K degree of i-th node __

in layer K

Laplacian matrix of |
layer K The same 2 nodes are present in each layer

D:, inter-layer diffusion coefficient

D.?, intraloyer diffusion coefficient

af = f(uf,0f) + DE Y LEu + D12 (uf+! — uK)
g

. Q2 K
0K = g(uK of) + DE YT LEVK 4+ D12 (0KF1 — o)
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PHYSICAL REVIEW E 90, 042814 (2014)

Turing patterns in multiplex networks

Malbor Asllani,!? Daniel M. Busiello,? Timoteo Carletti,> Duccio Fanelli,?> and Gwendoline Planchon®>
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Theory of Turing Patterns on Time Varying Networks
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L (1) =AYb () Va=1,...,nandvt
@ A\ —>()
(670) ¢ ©-

Copp + Cpa = 0and ¢4 = 0.

Contents lists available at ScienceDirect
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Simplicial complexes Hypergraphs

d-simplex = d+1 nodes
(all linked together) hyperedge = set of nodes
O-simplex = node
1-simplex = link
2-simplex = triangle
3-simplex = tetrahedron
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Hypergraphs. Some definitions.

|Eaz‘ =3

ensemble of nodes

TS

g hyperedges

Incidence matrix

e, =1 it e E,

Hyperadjacency matrix Hyperedge matrix

A =ee' C=¢c'e
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‘]1
O ®.j2
® O O
Fio

non-linearity

kg — Z(Caa — 1)767;0.6]'@

84

incidence

hyperedge size atrices
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dx; T=1
E — F(xt) o Ezetae]a(caa o 1) (G(X,) T G(X]))

= F(x;) — ez (G(x) — G(x))) = F(x;) — ez — kff) G(x))

= F(x;) — sz i G(x)),

Lg Higher-order Laplace matrix

J.Phys.Complex. 1 (2020) 035006 (16pp)

Journal of Physics: Complexity
PAPER

Dynamical systems on hypergraphs
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Chaos, Solitons and Fractals 166 (2023) 112912

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Turing patterns in systems with high-order interactions e

. Riccardo Muolo <! Luca Gallo »%!, Vito Latora %, Mattia Frasca &", Timoteo Carletti »"
P N N
i _ (d) )
dt _fl(ui,vi)+26d Z ZAi,jl,...,jd [hl (ujl, ce e ’ujd,vjl, ooo,vjd)

(d)
_h1 (7R 7 VR ’Ui)]

Equilibrium — £1@*,v") = f,*,v*) =0 SRy | O
oda = Pa(ign,ega)

L symmetric tensor
Linearize ou; = u; —u*, o6v; = v; — U Y

_ dé 2
P_ 2 d_f — (I[N ®J0+0'1L(1)®JH(1) '|'0'2L(2)®JH(2))‘{»=

Note: need for assumptions on L or H

et ha Bl Be B DL o= - MR- I "4k A ArdRicv R  he Bt Ba Bk BLABR L YV T . I il i . el = - M- kT "k A bR B e Bt Be T DL e - - rt T "k A anibbicw e s B
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I-directed 2-hyperedge 2-directed 2-hyperedge

I-directed 3-hyperedge 2-directed 3-hyperedge  3-directed 3-hyperedge
C. 1.\ C‘ 1‘\ /2. 1.\
g T N
S S & &
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I-directed 2-hyperedge 2-directed 2-hyperedge

Al(yzz’(lz)g) =1 Aﬁ?f%)g =1
I-directed 3-hyperedge 2-directed 3-hyperedge  3-directed 3-hyperedge
P > 8 » 8
- g 3 ol P
Aan = | A e = | A =1
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m-directed d-hyperedge (d.m) — +g=d+1
ypereas A iy — L T4

' dx D d »
‘ "(0) "(d m) (¥ v By (d,m) |
B + E op E E E (xl, Xi » ...,xl-m_lle,...,qu) A(ii1°--im—1)(j1---jq) ,
U 1 i

Diffusive-like

F (%3 Ty Ty ) =R (BT B8 ) HO (3,

WWW.unamur.be timoteo.carletti@unamur.be




fldm) dm
IS q'(m . 2)1 . Z A(l,S,lz,...,lm_l)(jl,...,]q)

R S
jl,...,jq
. 1
flm) — Aldm
[,s (q . 1)'(7}1 . 1)! il,.Z,im_l (z,zl,...,zm_l)(s,]z,...,]q)
Jas -5 Jg
pdmy Y A
i ' . ' (@i 1)1+ oJ,)
qg!(im—1)! T A
jl "jq

\{ Asymmetric Laplacian
‘ (g — 1)Iom— DI 5

‘ d, - .
—q!(m— D9 =g | L = S —q!l(m — 1)!ki(d’m) =S
i¢hors@&h|

ql(m—2)1km s
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increasing m
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- Node-centric

- Use a single incidence matrix => network projection
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up)

o Wnzg

/ [B'Vli 3

[ByVl

5)(c)

(5]10)
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k =2  Three nodes, hence a triangle o?) = [ig, i1, 12]

19
(1) [7/()77/1] ( ) [7/177/ ] O-:gl) — [Z())ZZ]
0, %1] |21, 22] [0, 22]

Z.O 7;1 iQ —1 O —1

B1(U§O)agg(‘1)) = u | I -1 0

Incidence matrices 79 o 1 1

B, € MNox M

[207i1722]
B c MN1><N2 7/07@1 ]_
° B2(0§1>,0§2)) =|t1,02] | 1
:i07i2: —]_
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Bk(agk_l) O'(-k)) = 1if a(k Do (-k)

(2

Incidence matrix By(a\" Y, gj(."“)) — (0 otherwise

Ly =B, By + B 1B,

Hodge Laplace matrix
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d
= — f(u,Biv) —DoLou, w nodes species 1dim)

dt
dv T : N I
— = g(v,Bju) —DiLyv, v links species (1 dim)

Existence of an homogeneous stable solution
fws,B,v¥) =0 gv*Blu*)=0  w*=u*1..D'

vE = p¥(1,...1)T

We need exira conditions for the homogenous solutions to be a solution for the

Wh 0 | e Syste m: PHYSICAL REVIEW LETTERS 130, 187401 (2023)
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PHYSICAL REVIEW E 106, 064314 (2022)

Diffusion-driven instability of topological signals coupled by the Dirac operator

Lorenzo Giambagli ©,"?" Lucille Calmon,* ' Riccardo Muolo ©,>* " Timoteo Carletti ©,> and Ginestra Bianconi ©>°*

Dirac operator Laplace - Dirac coupling
0 B, @ = f(u, Biv) — Dg1B1v — DoLou,
: dv

Z = g(v, B-lru) — DloB-lru — D1L1v.

One can have patterns even it Dy = D = 0
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The three way Dirac operator and dynamical Turing and Dirac induced
patterns on nodes and links

Riccardo Muolo ", Timoteo Carletti °, Ginestra Bianconi %"

- N
M e (U) nodes species (2dim)

— vy w=w  inks species (1dim)

(0 0 B Iy, O 0 0 0 B

BT 0 0 y=|aoly, 0 0 D=yo=| 0 0 «a,B

0 BT 0 0  Aly, By, BT ABT 0
3 ways Hodge-Dirac Y matrix 3 ways Dirac




i . 0 0 a,B
D=|v D =F(D,0P)—c, PP — c, LD D=yo=| 0 0 B

w 5BT BBT 0

U= ou—nu +&v+Bw-— ¢ Ly (D4 + Dyyv) — ¢y, Bw

U= o,V + §2u + Csz - ch[O](Dvuu + vav) - clava

w=oc3w+ B u+ B v - Y c,BT(Bu+ p,v),

c2 7 0 Dirac & Laplace c2 =0 Dirac

a) 0 b) o

Dynamical patterns

Stability Dynamical patterns

Stationary patterns

Stationary patterns
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let us consider a multigraph, e.g. two nodes can be connected through
different edges

o .. — N
A?(0) = A° AV(e) = A 4 (A2 — A%)  AY(1) = A2
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theory vs simulations

0.5 027

0.4+ il I &

creation .~ .. destruction

[ J
2o
0.3} % 01T X %

0 0.05 0.1 0.15 0.2

o - .. — N
A?(0) = A° AV(e) = A 4 (A2 — A%)  AY(1) = A2
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Create patterns by adding a single (optimally chosen) link

A (w) = A° A¥(w) = A° + wT )

0.6
0.5r
0.4r

0.3F

%S\mam

0.2r

0.1r

-0.1
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Movement across links takes fime, so the diffusion part should contain o
delay ferm.

Also reactions can take time, so the reaction part should contain a delay term.
Ei(t) = f(@i(t — 7)) + DY Lija;(t — 7q)
Observe that one single species is enough to have Turing patterns

The relation dispersion can be analytically e
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Finite propagation on complex networks

M Incidence matrix L=—-M"M laploce matrix
/7~ Fidk's law ]
 Xe(t) = — D us(t) — w(t)] = Dy [Ma(0)], —H(0) = - [MTX@)],
% t)= -M'Y¥=-D,M'Mi = D,Li
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Finite propagation on complex networks

M Incidence matrix L=—-M"M laploce matrix

- Xe(t) = =Dy [u;(t) — wi(t)] = D, [Mi(t)], thz (t) = - [MTX@),

( (Cattaneo’s theory 7o relaxation / inertial fime

Xe (t) + Tu

d;ie (t) = Dy, [M(t)], ‘Zf (t) = — [MTx(t)].
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Relativistic Turing mechanism on complex networks

U;
V;

f(ui,vi) + Dy 3 Liju, Parabolic RD
g(ui,vi) + Dy 32 ; Lijv; (Heat equation)

v

du;  d*u, -
CZ T Ty dtg zf(uiavi)'l'DuZLijuj .
= Hyperbolic RD
: 2. n o o 4o .
Wi | 8% guuw) +D,S Liyv;  (Relativistic Heat equation
dt dt2 7
71=1

(Caftaneo equation, telegraph equation, damped nonlinear Klein-Gordon equations)
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Some results

P> Existence of Turing pattern in activator - inhibitor systems
with inhibitor diffusing faster than the activator

Dy > Dy,

P> Existence of Turing pattern in activator - inhibitor systems
with inhibitor diffusing slower than the activator

D, < D,

P> Existence of Turing pattern in inhibitor - inhibitor systems

fu<0and g, <O
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Some results

\ggg

B> Existence of Tyt % tern in activator - inhibitor systems
with inhibigwng faster than the activator
o)

B> Existence of Turipg$etern in activator - inhibitor systems
with inhibitorAffusng slower than the activator

N p <D,

Dy > Dy,

P> Existence of Tuﬂn%}%&%rn in inhibitor - inhibitor systems
%@ fu <0and g, <0

Inertia driven Turing instability
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Turing instability in relafivistic reaction-diffusion

p
do i d25 ) = o «
d? + Tu dt;jJ = 'u,fduz + avfd'vi + Du Z LZ](S’U,] (% ('[;) — Z U 6>\at¢§ )
1 ~
4 J
do t d25 7 - o o .
d: T T dt;J - aug(su’i + avg(S'Uz' + D, Z Lz'j(S’Uj Z Lijqbg- ) — Aaqbg ) V1, o
\ 71=1 J
dia,, | Pid A A N
o (0 + T () = 0ufiia(t) + 0 fia(t) + Dy A@ (1)
dba,, . 0 A A N
S (O + 70— () = 0ugila(t) + Ougia(t) + DyAia(t)
ot (Ao TAE —0uf —A@D 0, f
i o U’ ‘o U Uu (% — o Aa et O i
det ( —8yg Aa 4+ T’UA(zx . avg . A(a)DU p ( ) |

Fourth order polynomial <==>> Routh - Hurwitz criterium
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FitzHugh - Nagumo model : inertia driven patterns

duz- d2uz- 3 ik
J=1
dv; d?v; e
d_tz + Ty dtzz — ’)’(Uz — ,B’Uf,,) -+ Dv Z Lij'vj
J=1
a)
0.02
001 6206,ﬂ:10,’7:40
37 L =5.0,7, =1.0
001} Ty — 9.U, Ty — 1.
-0.02‘- u = 22 > DU p— 02
% 5 10 15 C0 200 400 600 800 1000 T m—
d) —A 9 time
0.05 3
o//\ B 8=25,u=018,7 =40
| i | \ T
3 — i HJ I‘Ill‘ ’I" || IHH H\‘ ‘} H‘ \M‘ ‘H |
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0.05+ db B 1 i ‘Il 1 e O —————
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—A time
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